Science.gov

Sample records for increased dj-1 expression

  1. DJ-1 Expression in Cervical Carcinoma and its Effects on Cell Viability and Apoptosis.

    PubMed

    Wang, Han; Gao, Weiwei

    2016-01-01

    BACKGROUND This study aimed to investigate the expression of DJ-1 in cervical carcinoma and its effects on cell viability and apoptosis. MATERIAL AND METHODS Cervical carcinoma cell line Hela and 85 tissue samples, including 45 primary tumor biopsies, 30 para-carcinoma tissues, and 10 normal cervical tissues samples were used in this study. The expressions of DJ-1 in cervical carcinoma tissue, para-carcinoma tissue, and normal tissue samples were investigated by immunohistochemistry. DJ-1 expression in Hela cells was also investigated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. DJ-1 was interfered and transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. Additionally, the expressions of phosphatase and tensin homolog (PTEN), AKT, and phospho-AKT (P-AKT) were detected. RESULTS Immunohistochemistry results showed that DJ-1 was highly expressed in cervical carcinoma tissues. In Hela cells, the expression of DJ-1 was significantly higher than that in normal controls (P<0.05). When cells were treated with DJ-1 siRNA, the cell viability decreased significantly (P<0.05), and the percentage of apoptosis cells increased significantly (P<0.05). In addition, the expressions of PTEN and AKT were significantly higher in the DJ-1 siRNA treatment group than those in the control group (P<0.05). The expression of p-AKT was significantly lower in the DJ-1 siRNA treatment group than in the control group and the DJ-1 over-expression group (P<0.05). CONCLUSIONS The aberrant up-regulation of DJ-1 expression might be an important step in the pathogenesis of cervical carcinoma. PMID:27544688

  2. DJ-1 Expression in Cervical Carcinoma and its Effects on Cell Viability and Apoptosis

    PubMed Central

    Wang, Han; Gao, Weiwei

    2016-01-01

    Background This study aimed to investigate the expression of DJ-1 in cervical carcinoma and its effects on cell viability and apoptosis. Material/Methods Cervical carcinoma cell line Hela and 85 tissue samples, including 45 primary tumor biopsies, 30 para-carcinoma tissues, and 10 normal cervical tissues samples were used in this study. The expressions of DJ-1 in cervical carcinoma tissue, para-carcinoma tissue, and normal tissue samples were investigated by immunohistochemistry. DJ-1 expression in Hela cells was also investigated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. DJ-1 was interfered and transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. Additionally, the expressions of phosphatase and tensin homolog (PTEN), AKT, and phospho-AKT (P-AKT) were detected. Results Immunohistochemistry results showed that DJ-1 was highly expressed in cervical carcinoma tissues. In Hela cells, the expression of DJ-1 was significantly higher than that in normal controls (P<0.05). When cells were treated with DJ-1 siRNA, the cell viability decreased significantly (P<0.05), and the percentage of apoptosis cells increased significantly (P<0.05). In addition, the expressions of PTEN and AKT were significantly higher in the DJ-1 siRNA treatment group than those in the control group (P<0.05). The expression of p-AKT was significantly lower in the DJ-1 siRNA treatment group than in the control group and the DJ-1 over-expression group (P<0.05). Conclusions The aberrant up-regulation of DJ-1 expression might be an important step in the pathogenesis of cervical carcinoma. PMID:27544688

  3. The positive correlation between DJ-1 and β-catenin expression shows prognostic value for patients with glioma.

    PubMed

    Wang, Chao; Fang, Mao; Zhang, Meng; Li, Weiping; Guan, Hong; Sun, Yanhua; Xie, Siming; Zhong, Xueyun

    2013-12-01

    The relationship between DJ-1 and β-catenin, and its impact on the prognosis for glioma patients has not been fully understood. This study determined the effect of DJ-1 on β-catenin and the prognostic significance of this interaction in glioma patients. We collected tumor specimens from 88 glioma patients and determined the expression of DJ-1, β-catenin and PTEN by using immunohistochemical staining. The involvement of DJ-1 and β-catenin in glioma cell lines was evaluated by immunohistochemistry and Western blotting. High DJ-1 expression (37.5%) and high β-catenin expression (34.1%) in glioma specimens were significantly associated with high grade and poor prognosis in glioma patients. However, only high levels of DJ-1 (P = 0.014) was a strong independent prognostic factor, correlated with a reduced overall survival time. In vitro DJ-1 expression was positively correlated with the expression levels of β-catenin and p-Akt, and negatively correlated with PTEN expression in U87, U251 MG, SWO-38 and SHG44 human glioma cell lines. After the knockdown of DJ-1, Akt, p-Akt or β-catenin expression levels were not affected in the PTEN-null cell lines (U87 and U251 MG). However, in the SWO-38 cell line, which has wild-type PTEN protein, the level of PTEN increased while Akt/p-Akt and β-catenin levels were reduced. Furthermore, β-catenin staining weakened in SWO-38 cells after DJ-1 levels decreased according to immunocytochemical analysis. In conclusion, DJ-1 and β-catenin may contribute to the development and recurrence of glioma and are valuable prognostic factors for glioma patients. DJ-1 may regulate β-catenin expression via PTEN and p-Akt.

  4. Expression and role of DJ-1 in leukemia

    SciTech Connect

    Liu Hang; Wang Min Li Min; Wang Donghai; Rao Qing; Wang Yang; Xu Zhifang; Wang Jianxiang

    2008-10-24

    DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well as some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.

  5. In Inclusion-Body Myositis Muscle Fibers Parkinson-Associated DJ-1 is Increased and Oxidized

    PubMed Central

    Terracciano, Chiara; Nogalska, Anna; Engel, W. King; Wojcik, Slawomir; Askanas, Valerie

    2008-01-01

    Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. The muscle-fiber molecular phenotype exhibits similarities to both Alzheimer-disease (AD) and Parkinson-disease (PD) brains, including accumulations of amyloid-β, phosphorylated tau, α-synuclein and parkin, as well as evidence of oxidative stress and mitochondrial abnormalities. Early-onset autosomal-recessive PD can be caused by mutations in the DJ-1 gene, leading to its inactivation. DJ-1 has anti-oxidative and mitochondrial-protective properties. In AD and PD brains, DJ-1 is increased and oxidized. We studied DJ-1 in 17 s-IBM and 18 disease-control and normal muscle biopsies by: 1) immunoblots of muscle homogenates and mitochondrial fractions; 2) real-time PCR; 3) oxyblots evaluating DJ-1 oxidation; 4) light- and electron-microscopic immunocytochemistry. Compared to controls, in s-IBM muscle fibers DJ-1 was: a) increased in the soluble fraction, monomer 2-fold (p=0.01), and dimer 2.8-fold (p=0.004); b) increased in the mitochondrial fraction; c) highly oxidized; and d) aggregated in about 15% of the abnormal muscle fibers. DJ-1 mRNA was increased 3.5-fold (p=0.034). Accordingly, DJ-1 might play a role in human muscle disease, and thus not be limited to human CNS degenerations. In s-IBM muscle fibers, DJ-1 could be protecting these fibers against oxidative stress, including protection of mitochondria. PMID:18601999

  6. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    PubMed Central

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  7. The Expression of DJ-1 (PARK7) in Normal Human CNS and Idiopathic Parkinson's Disease

    ERIC Educational Resources Information Center

    Bandopadhyay, Rina; Kingsbury, Ann E.; Cookson, Mark R.; Reid, Andrew R.; Evans, Ian M.; Hope, Andrew D.; Pittman, Alan M.; Lashley, Tammaryn; Canet-Aviles, Rosa; Miller, David W.; McLendon, Chris; Strand, Catherine; Leonard, Andrew J.; Abou-Sleiman, Patrick M.; Healy, Daniel G.; Ariga, Hiroyashi; Wood, Nicholas W.; de Silva, Rohan; Revesz, Tamas; Hardy, John A.; Lees, Andrew J.

    2004-01-01

    Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia…

  8. The protective role of DJ-1 in ultraviolet-induced damage of human skin: DJ-1 levels in the stratum corneum as an indicator of antioxidative defense.

    PubMed

    Ishiwatari, Shioji; Takahashi, Minako; Yasuda, Chie; Nakagawa, Maho; Saito, Yoshiro; Noguchi, Noriko; Matsukuma, Shoko

    2015-12-01

    DJ-1 is a multifunctional protein associated with Parkinson's disease and plays a significant role in protecting nerve cells from oxidative stress. DJ-1 is expressed in the skin, although its function there is unknown. In this study, we investigated DJ-1 function in keratinocytes. DJ-1 was induced by H2O2 exposure and UV irradiation in keratinocytes. DJ-1 knockdown with small interfering RNA (siRNA) increased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release after UVB irradiation, suggesting that DJ-1 reduces ROS and might protect skin cells from UV damage in vitro. To investigate the in vivo role of DJ-1 in the skin, we determined DJ-1 levels in human stratum corneum samples obtained by the tape-stripping method. DJ-1 levels in the stratum corneum (scDJ-1) correlated with total antioxidant capacity. We also examined the effect of scDJ-1 on changes in skin after UVB irradiation. DJ-1 was elevated in SC from the upper arm 1 to 2 weeks after UVB irradiation. One day after UVB irradiation, L* (brightness) and a* (redness) values, indicators of skin color, were altered regardless of scDJ-1 expression. However, these values recovered more quickly in subjects with high scDJ-1 expression than in those with low scDJ-1 expression. These data suggest that DJ-1 in skin plays a significant role in protection against UV radiation and oxidative stress, and that DJ-1 levels in the SC might be an indicator of antioxidative defense against UV-induced damage.

  9. DJ-1 protects the heart against ischemia-reperfusion injury by regulating mitochondrial fission.

    PubMed

    Shimizu, Yuuki; Lambert, Jonathan P; Nicholson, Chad K; Kim, Joshua J; Wolfson, David W; Cho, Hee Cheol; Husain, Ahsan; Naqvi, Nawazish; Chin, Li-Shen; Li, Lian; Calvert, John W

    2016-08-01

    Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission. PMID:27108530

  10. DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury

    PubMed Central

    Dongworth, R K; Mukherjee, U A; Hall, A R; Astin, R; Ong, S-B; Yao, Z; Dyson, A; Szabadkai, G; Davidson, S M; Yellon, D M; Hausenloy, D J

    2014-01-01

    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection. PMID:24577080

  11. DJ-1 Is Upregulated in Oral Squamous Cell Carcinoma and Promotes Oral Cancer Cell Proliferation and Invasion

    PubMed Central

    Xu, Shuaimei; Ma, Dandan; Zhuang, Rui; Sun, Wenjuan; Liu, Ying; Wen, Jun; Cui, Li

    2016-01-01

    Background: The development of oral squamous cell carcinoma (OSCC) is a multistep process that involves in both genetic alterations and epigenetic modifications. DJ-1, a negative regulator of tumor suppressor PTEN, functions as an oncogene in many types of cancers. However, its role in OSCC is poorly known. Methods: Immunohistochemical staining and Western blotting were performed to evaluate the expression level of DJ-1 in oral leukoplakia (OLK) and OSCC tissues respectively. Then lentiviral mediated DJ-1 shRNA was constructed and used to infect the OSCC cell lines (Tca8113 and CAL-27). MTT, cell counting, and Matrigel invasion assay were utilized to examine the effects of DJ-1 down-regulation on proliferation and invasion capacity of oral cancer cells. Results: The immunoreactivity and expression level of DJ-1 protein was significantly increased in OLK and OSCC tissues compared with the controls. Lentiviral-delivered shRNA targeting DJ-1 could effectively knock down DJ-1 at mRNA and protein level (P<0.01). The proliferative and invasion ability of OSCC cell lines was significantly suppressed following DJ-1 inhibition (P<0.01). Conclusions: Our study indicated that DJ-1 is over-expressed in both oral precancer and cancer tissues and shRNA inhibition of DJ-1 expression led to decreased proliferation and invasion capability of oral cancer cells. These findings suggest that DJ-1 might be actively involved in the development of OSCC. Future studies will investigate the potential of DJ-1 as a biomarker for early detection of OSCC. PMID:27313793

  12. Serum DJ-1 level is positively associated with improvements in some aspects of metabolic syndrome in Japanese women through lifestyle intervention.

    PubMed

    Yamane, Takuya; Murao, Sato; Kozuka, Miyuki; Shimizu, Mari; Suzuki, Junko; Kubo, Chizuru; Yamaguchi, Atsuko; Musashi, Manabu; Minegishi, Yukiko; Momose, Izumi; Matsushita, Mami; Shirahata, Aki; Furukawa, Naomi; Kobayashi, Ryoko; Umezawa, Atsuko; Sakamoto, Megumi; Moriya, Kiyoshi; Saito, Masayuki; Makita, Akira; Ohkubo, Iwao; Ariga, Hiroyoshi

    2014-10-01

    DJ-1 is a protein that is associated with Parkinson disease and cancer, and the reduction of DJ-1 function and expression is also thought to be a cause of diabetes and hypertension. However, little is known about the association between the plasma concentration of DJ-1 and risk of metabolic syndrome. We hypothesized that a lifestyle intervention would increase serum DJ-1 and that up-regulated DJ-1 functions will result in the prevention of metabolic syndrome. The objective of our study is to examine whether the level of serum DJ-1 is associated with the risk of metabolic syndrome. Therefore, to reveal the association between DJ-1 and metabolic syndrome, this study investigated lifestyle intervention in a control group (n = 37) and intervention group (n = 45). The results showed that body mass index, body fat ratio, waist-hip ratio, waist circumference, blood pressure, and plasma glucose level were improved in the intervention group, as compared with those in the control group. Furthermore, serum levels of DJ-1 were increased in the intervention group, when compared with those in the control group. These results suggest that serum DJ-1 is increased by lifestyle intervention and that increased serum DJ-1 prevents metabolic syndrome. Thus, the level of serum DJ-1 will become one of the indexes for the risk of metabolic syndrome.

  13. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation.

    PubMed

    Xu, Xiang Ming; Lin, Hong; Maple, Jodi; Björkblom, Benny; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2010-05-15

    Mutations in the DJ-1 gene (also known as PARK7) cause inherited Parkinson's disease, which is characterized by neuronal death. Although DJ-1 is thought to be an antioxidant protein, the underlying mechanism by which loss of DJ-1 function contributes to cell death is unclear. Human DJ-1 and its Arabidopsis thaliana homologue, AtDJ-1a, are evolutionarily conserved proteins, indicating a universal function. To gain further knowledge of the molecular features associated with DJ-1 dysfunction, we have characterized AtDJ-1a. We show that AtDJ-1a levels are responsive to stress treatment and that AtDJ-1a loss of function results in accelerated cell death in aging plants. By contrast, transgenic plants with elevated AtDJ-1a levels have increased protection against environmental stress conditions, such as strong light, H(2)O(2), methyl viologen and copper sulfate. We further identify superoxide dismutase 1 (SOD1) and glutathione peroxidase 2 (GPX2) as interaction partners of both AtDJ-1a and human DJ-1, and show that this interaction results in AtDJ-1a- and DJ-1-mediated cytosolic SOD1 activation in a copper-dependent fashion. Our data have highlighted a conserved molecular mechanism for DJ-1 and revealed a new protein player in the oxidative stress response of plants. PMID:20406884

  14. Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2.

    PubMed

    Björkblom, Benny; Maple-Grødem, Jodi; Puno, Marc Rhyan; Odell, Mark; Larsen, Jan Petter; Møller, Simon Geir

    2014-08-01

    Mutations in DJ-1 are a cause of recessive, early-onset Parkinson's disease (PD). Although oxidative stress and mitochondrial integrity have been implicated in PD, it is largely unknown why neurons degenerate. DJ-1 is involved in oxidative stress-mediated responses and in mitochondrial maintenance; however, its specific function remains vague. Here we show that DJ-1 exhibits neuronal dynamic intracellular trafficking, with dimeric/monomeric cycling modulated by the oxidative environment. We demonstrate that oxidative stress enhances monomerization of wild-type cytosolic DJ-1, leading to nuclear recruitment. The pathogenic DJ-1/E163K variant is unable to homodimerize but is retained in the cytosol upon wild-type DJ-1 heterodimerization. We found that this wild-type/pathogenic heterodimer is disrupted by oxidative stress, leading to DJ-1/E163K mitochondrial translocation. We further demonstrated that endogenously expressed wild-type DJ-1 is imported into neuronal nuclei as a monomer and that nucleo-cytoplasmic transport is oxidative stress mediated. We identified a novel proline-tyrosine nuclear localization signal (PY-NLS) in DJ-1, and we found that nuclear monomeric DJ-1 import is mediated by an oxidative stress-dependent interaction with karyopherin β2. Our study provides evidence that oxidative stress-mediated intracellular trafficking of DJ-1, mediated by dynamic DJ-1 dimeric/monomeric cycling, is implicated in PD pathogenesis. PMID:24912681

  15. Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2.

    PubMed

    Björkblom, Benny; Maple-Grødem, Jodi; Puno, Marc Rhyan; Odell, Mark; Larsen, Jan Petter; Møller, Simon Geir

    2014-08-01

    Mutations in DJ-1 are a cause of recessive, early-onset Parkinson's disease (PD). Although oxidative stress and mitochondrial integrity have been implicated in PD, it is largely unknown why neurons degenerate. DJ-1 is involved in oxidative stress-mediated responses and in mitochondrial maintenance; however, its specific function remains vague. Here we show that DJ-1 exhibits neuronal dynamic intracellular trafficking, with dimeric/monomeric cycling modulated by the oxidative environment. We demonstrate that oxidative stress enhances monomerization of wild-type cytosolic DJ-1, leading to nuclear recruitment. The pathogenic DJ-1/E163K variant is unable to homodimerize but is retained in the cytosol upon wild-type DJ-1 heterodimerization. We found that this wild-type/pathogenic heterodimer is disrupted by oxidative stress, leading to DJ-1/E163K mitochondrial translocation. We further demonstrated that endogenously expressed wild-type DJ-1 is imported into neuronal nuclei as a monomer and that nucleo-cytoplasmic transport is oxidative stress mediated. We identified a novel proline-tyrosine nuclear localization signal (PY-NLS) in DJ-1, and we found that nuclear monomeric DJ-1 import is mediated by an oxidative stress-dependent interaction with karyopherin β2. Our study provides evidence that oxidative stress-mediated intracellular trafficking of DJ-1, mediated by dynamic DJ-1 dimeric/monomeric cycling, is implicated in PD pathogenesis.

  16. Oxidative Damage of DJ-1 Is Linked to Sporadic Parkinson and Alzheimer Diseases*

    PubMed Central

    Choi, Joungil; Sullards, M. Cameron; Olzmann, James A.; Rees, Howard D.; Weintraub, Susan T.; Bostwick, David E.; Gearing, Marla; Levey, Allan I.; Chin, Lih-Shen; Li, Lian

    2006-01-01

    Mutations in DJ-1 cause an autosomal recessive, early onset familial form of Parkinson disease (PD). However, little is presently known about the role of DJ-1 in the more common sporadic form of PD and in other age-related neurodegenerative diseases, such as Alzheimer disease (AD). Here we report that DJ-1 is oxidatively damaged in the brains of patients with idiopathic PD and AD. By using a combination of two-dimensional gel electrophoresis and mass spectrometry, we have identified 10 different DJ-1 isoforms, of which the acidic isoforms (pI 5.5 and 5.7) of DJ-1 monomer and the basic isoforms (pI 8.0 and 8.4) of SDS-resistant DJ-1 dimer are selectively accumulated in PD and AD frontal cortex tissues compared with age-matched controls. Quantitative Western blot analysis shows that the total level of DJ-1 protein is significantly increased in PD and AD brains. Mass spectrometry analyses reveal that DJ-1 is not only susceptible to cysteine oxidation but also to previously unsuspected methionine oxidation. Furthermore, we show that DJ-1 protein is irreversibly oxidized by carbonylation as well as by methionine oxidation to methionine sulfone in PD and AD. Our study provides new insights into the oxidative modifications of DJ-1 and indicates association of oxidative damage to DJ-1 with sporadic PD and AD. PMID:16517609

  17. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death

    PubMed Central

    Jo, Hyo Sang; Yeo, Hyeon Ji; Cha, Hyun Ju; Kim, Sang Jin; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Eum, Won Sik; Choi, Soo Young

    2016-01-01

    Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302] PMID:26996344

  18. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  19. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance.

    PubMed

    Su, Yang; Chen, Caiping; Huang, Linting; Yan, Jianhua; Huang, Ying

    2015-01-01

    The Parkinson's disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.

  20. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression.

    PubMed

    Wang, Yue-Hua; Yu, Hai-Tao; Pu, Xiao-Ping; Du, Guan-Hua

    2013-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction is involved in the mechanism of cell damage in Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a dopamine analog which specifically damages dopaminergic neurons. Baicalein has been previously reported to have potential in the treatment of PD. The purpose of the present study was to investigate the mechanism of action of baicalein against 6-OHDA injury in SH-SY5Y cells. The results showed that baicalein significantly alleviated alterations of mitochondrial redox activity and mitochondrial membrane potential induced by 6-OHDA in a dose-dependent manner in SH-SY5Y cells compared with vehicle group. Futhermore, baicalein decreased the production of ROS and upregulated the DJ-1 protein expression in SH-SY5Y cells. In addition, baicalein also inhibited ROS production and lipid peroxidation (IC50 = 6.32 ± 0.03 μM) in rat brain mitochondia. In summary, the underlying mechanisms of baicalein against 6-OHDA-induced mitochondrial dysfunction may involve inhibition of mitochondrial oxidation and upregulation of DJ-1 protein expression. PMID:24288000

  1. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte.

    PubMed

    Advedissian, Tamara; Deshayes, Frédérique; Poirier, Françoise; Viguier, Mireille; Richarme, Gilbert

    2016-04-22

    Reducing sugars and dicarbonyls form covalent adducts with proteins through a nonenzymatic process known as glycation, which inactivates proteins, is increased in diabetic patients and is associated with diabetic complications, including retinopathy, cataracts, nephropathy, neuropathy, cardiomyopathy and skin defects. We recently characterized DJ-1/Park7 as a protein deglycase that repairs proteins from glycation by glyoxal and methylglyoxal, two major glycating agents which are responsible for up to 65% of glycation events. In this study, we investigated the ability of DJ-1 to prevent protein glycation in keratinocytes. Glycation of collagen and keratinocyte proteins was tested by measuring ultraviolet absorption and fluorescence emission. Protein glycation in HaCaT keratinocytes was investigated by immunodetection with anti-advanced glycation endproduct antibodies, after DJ-1 depletion or overexpression. In vitro, DJ-1 prevented glycation of collagen and keratinocyte protein extracts. In cell culture, DJ-1 depletion by small interfering RNAs resulted in a 3-fold increase in protein glycation levels. Moreover, protein glycation levels were decreased several-fold in cells overexpressing DJ-1 after addition of the Nrf2 inducer sulforaphane or after transfection with a DJ-1 plasmid. Thus, the DJ-1 deglycase plays a major role in preventing protein glycation in eukaryotic cells and might be important for preventing skin glycation. PMID:26995087

  2. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage.

    PubMed

    Cheng, Yu-Ting; Ho, Cheng-Ying; Jhang, Jhih-Jia; Lu, Chi-Cheng; Yen, Gow-Chin

    2014-10-01

    Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague-Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.

  3. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis.

    PubMed

    Kim, Do-Kyun; Beaven, Michael A; Kulinski, Joseph M; Desai, Avanti; Bandara, Geethani; Bai, Yun; Prussin, Calman; Schwartz, Lawrence B; Komarow, Hirsh; Metcalfe, Dean D; Olivera, Ana

    2016-01-01

    Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage. PMID:27611333

  4. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis

    PubMed Central

    Kim, Do-Kyun; Beaven, Michael A.; Kulinski, Joseph M.; Desai, Avanti; Bandara, Geethani; Bai, Yun; Prussin, Calman; Schwartz, Lawrence B.; Komarow, Hirsh

    2016-01-01

    Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage. PMID:27611333

  5. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial.

    PubMed

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-05-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1(-/-)) and wild-type mice (DJ-1(+/+)) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1(-/-) and DJ-1(+/+) mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1(-/-) mice showed a significant increase in a time-dependent manner, compared to that of DJ-1(+/+) mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  6. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial

    PubMed Central

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-01-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1−/−) and wild-type mice (DJ-1+/+) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1−/− and DJ-1+/+ mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1−/− mice showed a significant increase in a time-dependent manner, compared to that of DJ-1+/+ mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  7. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants.

    PubMed

    Maita, Chinatsu; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is a novel oncogene and also a causative gene for familial Parkinson's disease (park7). DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106) of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18) DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria. PMID:23326576

  8. Unexpected mitochondrial matrix localization of Parkinson's disease-related DJ-1 mutants but not wild-type DJ-1.

    PubMed

    Kojima, Waka; Kujuro, Yuki; Okatsu, Kei; Bruno, Queliconi; Koyano, Fumika; Kimura, Mayumi; Yamano, Koji; Tanaka, Keiji; Matsuda, Noriyuki

    2016-07-01

    DJ-1 has been identified as a gene responsible for recessive familial Parkinson's disease (familial Parkinsonism), which is caused by a mutation in the PARK7 locus. Consistent with the inferred correlation between Parkinson's disease and mitochondrial impairment, mitochondrial localization of DJ-1 and its implied role in mitochondrial quality control have been reported. However, the mechanism by which DJ-1 affects mitochondrial function remains poorly defined, and the mitochondrial localization of DJ-1 is still controversial. Here, we show the mitochondrial matrix localization of various pathogenic and artificial DJ-1 mutants by multiple independent experimental approaches including cellular fractionation, proteinase K protection assays, and specific immunocytochemistry. Localization of various DJ-1 mutants to the matrix is dependent on the membrane potential and translocase activity in both the outer and the inner membranes. Nevertheless, DJ-1 possesses neither an amino-terminal alpha-helix nor a predictable matrix-targeting signal, and a post-translocation processing-derived molecular weight change is not observed. In fact, wild-type DJ-1 does not show any evidence of mitochondrial localization at all. Such a mode of matrix localization of DJ-1 is difficult to explain by conventional mechanisms and implies a unique matrix import mechanism for DJ-1 mutants. PMID:27270837

  9. Structure of the stress response protein DR1199 from Deinococcus radiodurans: a member of the DJ-1 superfamily.

    PubMed

    Fioravanti, Emanuela; Durá, M Asunción; Lascoux, David; Micossi, Elena; Franzetti, Bruno; McSweeney, Sean

    2008-11-01

    The expression level of protein DR1199 is observed to increase considerably in the radio-resistant bacterium Deinococcus radiodurans following irradiation. This protein belongs to the DJ-1 superfamily, which includes proteins with diverse functions, such as the archaeal proteases PhpI and PfpI, the bacterial chaperone Hsp31 and hyperosmotic stress protein YhbO, and the human Parkinson's disease-related protein DJ-1. All members of the superfamily are oligomeric, and the oligomerization interface varies from protein to protein. Although for many of these proteins, their function remains obscure, most of them are involved in cellular protection against environmental stresses. We have determined the structure of DR1199 to a resolution of 2.15 A, and we have tested its function and studied its role in the response to irradiation and more generally to oxidative stress in D. radiodurans. The protein is a dimer displaying an oligomerization interface similar to that observed for the YhbO and PhpI proteins. The cysteine in the catalytic triad (Cys 115) is oxidized in our structure, similar to modifications seen in the corresponding cysteine of the DJ-1 protein. The oxidation occurs spontaneously in DR1199 crystals. In solution, no proteolytic or chaperone activity was detected. On the basis of our results, we suggest that DR1199 might work as a general stress protein involved in the detoxification of the cell from oxygen reactive species, rather than as a peptidase in D. radiodurans.

  10. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  11. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage.

    PubMed

    Tanti, Goutam Kumar; Goswami, Shyamal K

    2014-10-01

    SG2NA is a WD-40 repeat protein with multiple protein-protein interaction domains of unknown functions. We demonstrate that it associates with the antioxidant protein DJ-1 and the survival kinase Akt. The C-terminal WD-40 repeat domain of SG2NA is required for its interaction with Akt, while DJ-1 binds it further upstream. No interaction between DJ-1 and Akt occurs in the absence of SG2NA. SG2NA, DJ-1, and Akt colocalize in mitochondria and plasma membrane. Their association is enhanced by increasing levels of reactive oxygen species up to a threshold level but falters thereafter with further increase in oxidants. Mutants of DJ-1 found in patients with familial parkinsonism are not recruited by SG2NA, suggesting its role in neuroprotection. Cells depleted of SG2NA are susceptible, while those overexpressing it are resistant to apoptosis induced by oxidative stress. Our study thus unravels a novel pathway of recruitment of Akt and DJ-1 that provides protection against oxidative stress, especially in neurons.

  12. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  13. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  14. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease

    PubMed Central

    Chen, Pan; DeWitt, Margaret R.; Bornhost, Julia; Soares, Felix A.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Parkinson’s Disease (PD) is the second most common neurodegenerative disease, yet its etiology and pathogenesis are poorly understood. PD is characterized by selective dopaminergic (DAergic) degeneration and progressive hypokinetic motor impairment. Mutations in dj-1 cause autosomal recessive early-onset PD. DJ-1 is thought to protect DAergic neurons via an antioxidant mechanism, but the precise basis of this protection has not yet been resolved. Aging and manganese (Mn) exposure are significant non-genetic risk factors for PD. Caenorhabditis elegans (C. elegans) is an optimal model for PD and aging studies because of its simple nervous system, conserved DAergic machinery, and short 20-day lifespan. Here we tested the hypothesis that C. elegans DJ-1 homologues were protective against Mn-induced DAergic toxicity in an age-dependent manner. We showed that the deletion of C. elegans DJ-1 related (djr) genes, djr-1.2, decreased survival after Mn exposure. djr-1.2, the DJ-1 homologue was expressed in DAergic neurons and its deletion decreased lifespan and dopamine (DA)-dependent dauer movement behavior after Mn exposure. We also tested the role of DAF-16 as a regulator of dj-1.2 interaction with Mn toxicity. Lifespan defects resulting from djr-1.2 deletion could be restored to normal by overexpression of either DJR-1.2 or DAF-16. Furthermore, dauer movement alterations after djr-1.2 deletion were abolished by constitutive activation of DAF-16 through mutation of its inhibitor, DAF-2 insulin receptor. Taken together, our results reveal PD-relevant interactions between aging, the PD environmental risk factor manganese, and homologues of the established PD genetic risk factor DJ-1. Our data demonstrate a novel role for the DJ-1 homologue, djr-1.2, in mitigating Mn-dependent lifespan reduction and DA signaling alterations, involving DAF-2/DAF-16 signaling. PMID:25531510

  15. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  16. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation

    PubMed Central

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis. PMID:27766037

  17. DJ-1 binds to mitochondrial complex I and maintains its activity

    SciTech Connect

    Hayashi, Takuya; Ishimori, Chikako; Takahashi-Niki, Kazuko; Taira, Takahiro; Kim, Yun-chul; Maita, Hiroshi; Maita, Chinatsu; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2009-12-18

    Parkinson's disease (PD) is caused by neuronal cell death, and oxidative stress and mitochondrial dysfunction are thought to be responsible for onset of PD. DJ-1, a causative gene product of a familial form of Parkinson's disease, PARK7, plays roles in transcriptional regulation and anti-oxidative stress. The possible mitochondrial function of DJ-1 has been proposed, but its exact function remains unclear. In this study, we found that DJ-1 directly bound to NDUFA4 and ND1, nuclear and mitochondrial DNA-encoding subunits of mitochondrial complex I, respectively, and was colocalized with complex I and that complex I activity was reduced in DJ-1-knockdown NIH3T3 and HEK293 cells. These findings suggest that DJ-1 is an integral mitochondrial protein and that DJ-1 plays a role in maintenance of mitochondrial complex I activity.

  18. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network.

    PubMed

    Díaz-Casado, María E; Lima, Elena; García, José A; Doerrier, Carolina; Aranda, Paula; Sayed, Ramy Ka; Guerra-Librero, Ana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-08-01

    Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease.

  19. DJ-1 family Maillard deglycases prevent acrylamide formation.

    PubMed

    Richarme, Gilbert; Marguet, Evelyne; Forterre, Patrick; Ishino, Sonoko; Ishino, Yoshizumi

    2016-09-23

    The presence of acrylamide in food is a worldwide concern because it is carcinogenic, reprotoxic and neurotoxic. Acrylamide is generated in the Maillard reaction via condensation of reducing sugars and glyoxals arising from their decomposition, with asparagine, the amino acid forming the backbone of the acrylamide molecule. We reported recently the discovery of the Maillard deglycases (DJ-1/Park7 and its prokaryotic homologs) which degrade Maillard adducts formed between glyoxals and lysine or arginine amino groups, and prevent glycation damage in proteins. Here, we show that these deglycases prevent acrylamide formation, likely by degrading asparagine/glyoxal Maillard adducts. We also report the discovery of a deglycase from the hyperthermophilic archaea Pyrococcus furiosus, which prevents acrylamide formation at 100 °C. Thus, Maillard deglycases constitute a unique enzymatic method to prevent acrylamide formation in food without depleting the components (asparagine and sugars) responsible for its formation. PMID:27530919

  20. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  1. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice.

    PubMed

    Hauser, David N; Primiani, Christopher T; Langston, Rebekah G; Kumaran, Ravindran; Cookson, Mark R

    2015-01-01

    Mutations in the DJ-1 gene cause autosomal recessive parkinsonism in humans. Several mouse models of DJ-1 deficiency have been developed, but they do not have dopaminergic neuron cell death in the substantia nigra pars compacta (SNpc). Mitochondrial DNA (mtDNA) damage occurs frequently in the aged human SNpc but not in the mouse SNpc. We hypothesized that the reason DJ-1-deficient mice do not have dopaminergic cell death is due to an absence of mtDNA damage. We tested this hypothesis by crossing DJ-1-deficient mice with mice that have similar amounts of mtDNA damage in their SNpc as aged humans (Polg mutator mice). At 1 year of age, we counted the amount of SNpc dopaminergic neurons in the mouse brains using both colorimetric and fluorescent staining followed by unbiased stereology. No evidence of dopaminergic cell death was observed in DJ-1-deficient mice with the Polg mutator mutation. Furthermore, we did not observe any difference in dopaminergic terminal immunostaining in the striatum of these mice. Finally, we did not observe any changes in the amount of GFAP-positive astrocytes in the SNpc of these mice, indicative of a lack of astrogliosis. Altogether, our findings demonstrate the DJ-1-deficient mice, Polg mutator mice, and DJ-1-deficient Polg mutator mice have intact nigrastriatal pathways. Thus, the lack of mtDNA damage in the mouse SNpc does not underlie the absence of dopaminergic cell death in DJ-1-deficient mice.

  2. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1.

    PubMed

    van der Merwe, Celia; Jalali Sefid Dashti, Zahra; Christoffels, Alan; Loos, Ben; Bardien, Soraya

    2015-05-01

    Parkinson's disease (PD) is characterised by the loss of dopaminergic neurons in the midbrain. Autosomal recessive, early-onset cases of PD are predominantly caused by mutations in the parkin, PINK1 and DJ-1 genes. Animal and cellular models have verified a direct link between parkin and PINK1, whereby PINK1 phosphorylates and activates parkin at the outer mitochondrial membrane, resulting in removal of dysfunctional mitochondria via mitophagy. Despite the overwhelming evidence for this interaction, few studies have been able to identify a link for DJ-1 with parkin or PINK1. The aim of this review is to summarise the functions of these three proteins, and to analyse the existing evidence for direct and indirect interactions between them. DJ-1 is able to rescue the phenotype of PINK1-knockout Drosophila models, but not of parkin-knockouts, suggesting that DJ-1 may act in a parallel pathway to that of the PINK1/parkin pathway. To further elucidate a commonality between these three proteins, bioinformatics analysis established that Miro (RHOT1) interacts with parkin and PINK1, and HSPA4 interacts with all three proteins. Furthermore, 30 transcription factors were found to be common amongst all three proteins, with many of them being involved in transcriptional regulation. Interestingly, expression of these proteins and their associated transcription factors are found to be significantly down-regulated in PD patients compared to healthy controls. In summary, this review provides insight into common pathways linking three PD-causing genes and highlights some key questions, the answers to which may provide critical insight into the disease process.

  3. Salivary DJ-1 could be an indicator of Parkinson's disease progression

    PubMed Central

    Kang, Wen-Yan; Yang, Qiong; Jiang, Xu-Feng; Chen, Wei; Zhang, Lin-Yuan; Wang, Xiao-Ying; Zhang, Li-Na; Quinn, Thomas J.; Liu, Jun; Chen, Sheng-Di

    2014-01-01

    Objective: The goal of the current investigation was to explore whether salivary DJ-1 could be a potential biomarker for monitoring disease progression in Parkinson's disease (PD) by evaluating the association between salivary DJ-1 concentrations and nigrostriatal dopaminergic function. Methods: First, in 74 patients with PD and 12 age-matched normal controls, single photon emission computed tomography (SPECT) imaging with labeled dopamine transporters (DAT) (99mTc-TRODAT-1), which has been used for measuring DAT density in PD was prformed. Then, the DJ-1 level in their saliva was analyzed by quantitative and sensitive Luminex assay and compared to caudate or putamen DAT density. Finally, based on the above, our cross-section study was carried out in 376 research volunteers (285 patients with PD and 91 healthy controls) to measure salivary DJ-1 level. Results: From our analysis, we found a correlation between salivary concentration of DJ-1 and putamen nucleus uptake of 99mTc-TRODAT-1 in the PD group. Although salivary DJ-1 levels were not affected by UPDRS scores, gender, age, and pharmacotherapy, DJ-1 levels in H&Y 4 stage of PD were higher than those in H&Y 1-3 stage as well as those in healthy controls. Salivary DJ-1 also decreased significantly in mixed type PD patients compared to the tremor-dominant type (TDT) and akinetic-rigid dominant type (ARDT) PD patients. Conclusions: According to the investigation in a large cohort, we reported for the first time the prognostic potential of the salivary DJ-1 as a biomarker for evaluating nigrostriatal dopaminergic function in PD. PMID:24936184

  4. DJ-1 Is a Redox-Dependent Molecular Chaperone That Inhibits α-Synuclein Aggregate Formation

    PubMed Central

    2004-01-01

    Parkinson's disease (PD) pathology is characterized by the degeneration of midbrain dopamine neurons (DNs) ultimately leading to a progressive movement disorder in patients. The etiology of DN loss in sporadic PD is unknown, although it is hypothesized that aberrant protein aggregation and cellular oxidative stress may promote DN degeneration. Homozygous mutations in DJ-1 were recently described in two families with autosomal recessive inherited PD (Bonifati et al. 2003). In a companion article (Martinat et al. 2004), we show that mutations in DJ-1 alter the cellular response to oxidative stress and proteasomal inhibition. Here we show that DJ-1 functions as a redox-sensitive molecular chaperone that is activated in an oxidative cytoplasmic environment. We further demonstrate that DJ-1 chaperone activity in vivo extends to α-synuclein, a protein implicated in PD pathogenesis. PMID:15502874

  5. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death.

    PubMed

    Jain, Deepak; Weber, Gesine; Eberhard, Daniel; Mehana, Amir E; Eglinger, Jan; Welters, Alena; Bartosinska, Barbara; Jeruschke, Kay; Weiss, Jürgen; Päth, Günter; Ariga, Hiroyoshi; Seufert, Jochen; Lammert, Eckhard

    2015-01-01

    A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting. PMID:26422139

  6. SOD1 and DJ-1 Converge at Nrf2 Pathway: A Clue for Antioxidant Therapeutic Potential in Neurodegeneration

    PubMed Central

    Milani, Pamela; Ambrosi, Giulia; Gammoh, Omar; Blandini, Fabio; Cereda, Cristina

    2013-01-01

    Neurodegenerative diseases share diverse pathological features and among these oxidative stress (OS) plays a leading role. Impaired activity and reduced expression of antioxidant proteins have been reported as common events in several aging-associated disorders. In this review paper, we first provide an overview of the involvement of reactive oxygen species- (ROS-) induced oxidative damage in Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Subsequently, we focus on DJ-1 and SOD1 proteins, which are involved in PD and ALS and also exert a prominent role in the interaction between redox homeostasis and neurodegeneration. Interestingly, recent studies demonstrated that DJ-1 and SOD1 are both tightly connected with Nrf2 protein, a transcriptional factor and master regulator of the expression of many antioxidant/detoxification genes. Nrf2 is emerging as a key neuroprotective protein in neurodegenerative diseases, since it helps neuronal cells to cope with toxic insults and OS. We herein summarize the recent literature providing a detailed picture of the promising therapeutic efficacy of Nrf2 natural and synthetic inducers as disease-modifying molecules for the treatment of neurodegenerative diseases. PMID:23983902

  7. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease.

    PubMed

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G; Dagda, Ruben K; Domínguez-Solís, Carlos A; Dagda, Raul Y; Coronado-Ramírez, Cynthia K; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  8. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly

    PubMed Central

    Heo, Jun Young; Park, Ji Hoon; Kim, Soung Jung; Seo, Kang Sik; Han, Jeong Su; Lee, Sang Hee; Kim, Jin Man; Park, Jong Il; Park, Seung Kiel; Lim, Kyu; Hwang, Byung Doo; Shong, Minho; Kweon, Gi Ryang

    2012-01-01

    DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease. PMID:22403686

  9. Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress.

    PubMed

    Tai-Nagara, Ikue; Matsuoka, Sahoko; Ariga, Hiroyoshi; Suda, Toshio

    2014-01-01

    Hematopoietic stem cells (HSCs) maintain stemness through various mechanisms that protect against stressful conditions. Heat shock proteins (HSPs) preserve cell homeostasis during stress responses through protein quality control, suggesting that HSPs may safeguard HSCs against numerous traumas. Here, we show that mortalin, a mitochondrial HSP, plays an essential role in maintaining HSC properties by regulating oxidative stress. Mortalin is primarily localized in hematopoietic stem and progenitor cell (HSPC) compartments. In this study, the inhibition of mortalin function caused abnormal reactive oxygen species (ROS) elevation in HSCs and reduced HSC numbers. Knockdown (KD) of mortalin in HSPCs impaired their ability to repopulate and form colonies. Moreover, mortalin-KD HSCs could not maintain quiescence and showed severe downregulation of cyclin-dependent kinase inhibitor- and antioxidant-related genes. Conversely, HSCs that overexpressed mortalin maintained a high reconstitution capacity and low ROS levels. Furthermore, DJ-1, one of the genes responsible for Parkinson's disease, directly bound to mortalin and acted as a negative ROS regulator. Using DJ-1-deficient mice, we demonstrated that mortalin and DJ-1 coordinately maintain normal ROS levels and HSC numbers. Collectively, these results indicate that the mortalin/DJ-1 complex guards against mitochondrial oxidative stress and is indispensable for the maintenance of HSCs. PMID:24243970

  10. Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India.

    PubMed

    Joshi, Dhaval N; Flora, S J S; Kalia, Kiran

    2009-07-30

    Arsenic hypertolerant bacterial cells were isolated from the common industrial effluent treatment plant, Vapi, India. Strain DJ-1 sustaining 400 mM, As (V) out of 16 bacterial strains was identified as Bacillus sp. strain DJ-1 through 16S rRNA ribotyping. The maximum arsenic accumulation of 9.8+/-0.5 mg g(-1) (dry weight) was observed during stationary phase of growth. Intracellular compartmentalization has shown 80% of arsenic accumulation in cytoplasm. The lack of arsC gene and arsenate reductase activity indicated that Bacillus sp. strain DJ-1 may lack classical ars operon and detoxification may be mediated through some novel mechanism. The arsenite binding protein was purified by affinity chromatography and characterized as DNA protection during starvation (DPS) protein by electrospray ionization mass spectrometry. The induction of DPS showed the adaptation of bacteria in arsenic stress condition and/or in detoxification mechanism, relies on its ability to bind with arsenic. These results indicate the hypertolerance with higher intracellular accumulation of arsenic by Bacillus sp. strain DJ-1, which could be mediated by DPS protein thus signifying this organism is a potential candidate for the removal of arsenic from industrial wastewater, which needs further study.

  11. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson's disease patients.

    PubMed

    Saito, Yoshiro; Akazawa-Ogawa, Yoko; Matsumura, Akihiro; Saigoh, Kazumasa; Itoh, Sayoko; Sutou, Kenta; Kobayashi, Mayuka; Mita, Yuichiro; Shichiri, Mototada; Hisahara, Shin; Hara, Yasuo; Fujimura, Harutoshi; Takamatsu, Hiroyuki; Hagihara, Yoshihisa; Yoshida, Yasukazu; Hamakubo, Takao; Kusunoki, Susumu; Shimohama, Shun; Noguchi, Noriko

    2016-01-01

    Parkinson's disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD. PMID:27470541

  12. Choice of Biological Source Material Supersedes Oxidative Stress in Its Influence on DJ-1 in Vivo Interactions with Hsp90

    PubMed Central

    Knobbe, Christiane B.; Revett, Timothy J.; Bai, Yu; Chow, Vinca; Jeon, Amy Hye Won; Böhm, Christopher; Ehsani, Sepehr; Kislinger, Thomas; Mount, Howard T.; Mak, Tak W.; St. George-Hyslop, Peter; Schmitt-Ulms, Gerold

    2016-01-01

    DJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells. The analysis identified a subset of glycolytic enzymes, heat shock proteins 70 and 90, and peroxiredoxins as interactors of DJ-1. Consistent with a role of DJ-1 in Hsp90 chaperone biology, we document destabilization of Hsp90 clients in DJ-1 knockout cells. We further demonstrate the existence of a C106 sulfinic acid modification within DJ-1 and thereby establish that this previously inferred modification also exists in vivo. Our data suggest that caution has to be exerted in interpreting interactome data obtained from a single biological source material and identify a role of DJ-1 as an oxidative stress sensor and partner of a molecular machinery notorious for its involvement in cell fate decisions. PMID:21819105

  13. From reptilian phylogenomics to reptilian genomes: analyses of c-Jun and DJ-1 proto-oncogenes.

    PubMed

    Katsu, Y; Braun, E L; Guillette, L J; Iguchi, T

    2009-01-01

    Genome projects have revolutionized our understanding of both molecular biology and evolution, but there has been a limited collection of genomic data from reptiles. This is surprising given the pivotal position of reptiles in vertebrate phylogeny and the potential utility of information from reptiles for understanding a number of biological phenomena, such as sex determination. Although there are many potential uses for genomic data, one important and useful approach is phylogenomics. Here we report cDNA sequences for the c-Jun(JUN) and DJ-1(PARK7) proto-oncogenes from 3 reptiles (the American alligator, Nile crocodile, and Florida red-belly turtle), show that both genes are expressed in the alligator, and integrate them into analyses of their homologs from other organisms. With these taxa it was possible to conduct analyses that include all major vertebrate lineages. Analyses of c-Jun revealed an unexpected but well-supported frog-turtle clade while analyses of DJ-1 revealed a topology largely congruent with expectation based upon other data. The conflict between the c-Jun topology and expectation appears to reflect the overlap between c-Jun and a CpG island in most taxa, including crocodilians. This CpG island is absent in the frog and turtle, and convergence in base composition appears to be at least partially responsible for the signal uniting these taxa. Noise reduction approaches can eliminate the unexpected frog-turtle clade, demonstrating that multiple signals are present in the c-Jun alignment. We used phylogenetic methods to visualize these signals; we suggest that examining both historical and non-historical signals will prove important for phylogenomic analyses.

  14. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity.

    PubMed

    Aslam, Kiran; Hazbun, Tony R

    2016-03-01

    Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses.

  15. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity.

    PubMed

    Aslam, Kiran; Hazbun, Tony R

    2016-03-01

    Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  16. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity

    PubMed Central

    Aslam, Kiran; Hazbun, Tony R.

    2016-01-01

    ABSTRACT Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  17. Effect of single amino acid substitution on oxidative modifications of the Parkinson's disease-related protein, DJ-1.

    PubMed

    Madian, Ashraf G; Hindupur, Jagadish; Hulleman, John D; Diaz-Maldonado, Naomi; Mishra, Vartika R; Guigard, Emmanuel; Kay, Cyril M; Rochet, Jean-Christophe; Regnier, Fred E

    2012-02-01

    Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD. PMID:22104028

  18. Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase

    PubMed Central

    Miller-Fleming, Leonor; Antas, Pedro; Pais, Teresa Faria; Smalley, Joshua L.; Giorgini, Flaviano; Outeiro, Tiago Fleming

    2014-01-01

    The yeast Hsp31 minifamily proteins (Hsp31, Hsp32, Hsp33, Hsp34) belong to the highly conserved DJ-1 superfamily. The human DJ-1 protein is associated with cancer and neurodegenerative disorders, such as Parkinson disease. However, the precise function of human and yeast DJ-1 proteins is unclear. Here we show that the yeast DJ-1 homologs have a role in diauxic-shift (DS), characterized by metabolic reprogramming because of glucose limitation. We find that the Hsp31 genes are strongly induced in DS and in stationary phase (SP), and that deletion of these genes reduces chronological lifespan, impairs transcriptional reprogramming at DS, and impairs the acquisition of several typical characteristics of SP, including autophagy induction. In addition, under carbon starvation, the HSP31 family gene-deletion strains display impaired autophagy, disrupted target of rapamycin complex 1 (TORC1) localization to P-bodies, and caused abnormal TORC1-mediated Atg13 phosphorylation. Repression of TORC1 by rapamycin in the gene-deletion strains completely reversed their sensitivity to heat shock. Taken together, our data indicate that Hsp31 minifamily is required for DS reprogramming and cell survival in SP, and plays a role upstream of TORC1. The enhanced understanding of the cellular function of these genes sheds light into the biological role of other members of the superfamily, including DJ-1, which is an attractive target for therapeutic intervention in cancer and in Parkinson disease. PMID:24706893

  19. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes.

    PubMed

    Kim, Kwang Soo; Kim, Jin Soo; Park, Ji-Young; Suh, Young Ho; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2013-12-01

    Parkinson's disease (PD) is the second most common progressive neurodegenerative disease. Several genes have been associated with familial type PD, providing tremendous insights into the pathogenesis of PD. Gathering evidence supports the view that these gene products may operate through common molecular pathways. Recent reports suggest that many PD-associated gene products, such as α-synuclein, LRRK2, parkin and PINK1, associate with lipid rafts and lipid rafts may be associated with neurodegeneration. Here, we observed that DJ-1 protein also associated with lipid rafts. Palmitoylation of three cysteine residues (C46/53/106) and C-terminal region of DJ-1 were required for this association. Lipopolysaccharide (LPS) induced the localization of DJ-1 into lipid rafts in astrocytes. The LPS-TLR4 signaling was more augmented in DJ-1 knock-out astrocytes by the impairment of TLR4 endocytosis. Furthermore, lipid rafts-dependent endocytosis including the endocytosis of CD14, which play a major role in regulating TLR4 endocytosis was also impaired, but clathrin-dependent endocytosis was not. This study provides a novel function of DJ-1 in lipid rafts, which may contribute the pathogenesis of PD. Moreover, it also provides the possibility that many PD-related proteins may operate through common molecular pathways in lipid rafts.

  20. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson’s Disease

    PubMed Central

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G.; Dagda, Ruben K.; Domínguez-Solís, Carlos A.; Dagda, Raul Y.; Coronado-Ramírez, Cynthia K.; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson’s disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  1. Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1

    SciTech Connect

    Blackinton, Jeff; Lakshminarasimhan, Mahadevan; Thomas, Kelly J.; Ahmad, Rili; Greggio, Elisa; Raza, Ashraf S.; Cookson, Mark R.; Wilson, Mark A.

    2009-03-02

    The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys{sup 106} in human DJ-1). Mutation of Cys{sup 106} causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys{sup 106} oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu{sup 18}) in human DJ-1 that alter the oxidative propensity of Cys{sup 106} through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys{sup 106} to be oxidized to Cys{sup 106}-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys{sup 106}-sulfinic acid is a key modification that regulates the protective function of DJ-1.

  2. Degradation of Redox-Sensitive Proteins including Peroxiredoxins and DJ-1 is Promoted by Oxidation-induced Conformational Changes and Ubiquitination

    NASA Astrophysics Data System (ADS)

    Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo

    2016-10-01

    Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.

  3. Degradation of Redox-Sensitive Proteins including Peroxiredoxins and DJ-1 is Promoted by Oxidation-induced Conformational Changes and Ubiquitination

    PubMed Central

    Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo

    2016-01-01

    Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1. PMID:27703196

  4. L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM

    EPA Science Inventory

    Abstract

    Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

  5. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  6. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson’s disease patients

    PubMed Central

    Saito, Yoshiro; Akazawa-Ogawa, Yoko; Matsumura, Akihiro; Saigoh, Kazumasa; Itoh, Sayoko; Sutou, Kenta; Kobayashi, Mayuka; Mita, Yuichiro; Shichiri, Mototada; Hisahara, Shin; Hara, Yasuo; Fujimura, Harutoshi; Takamatsu, Hiroyuki; Hagihara, Yoshihisa; Yoshida, Yasukazu; Hamakubo, Takao; Kusunoki, Susumu; Shimohama, Shun; Noguchi, Noriko

    2016-01-01

    Parkinson’s disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD. PMID:27470541

  7. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

    SciTech Connect

    Landon, Melissa R.; Lieberman, Raquel L.; Hoang, Quyen Q.; Ju, Shulin; Caaveiro, Jose M.M.; Orwig, Susan D.; Kozakov, Dima; Brenke, Ryan; Chuang, Gwo-Yu; Beglov, Dmitry; Vajda, Sandor; Petsko, Gregory A.; Ringe, Dagmar

    2010-08-04

    The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.

  8. A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast*

    PubMed Central

    Mathiassen, Søs G.; Larsen, Ida B.; Poulsen, Esben G.; Madsen, Christian T.; Papaleo, Elena; Lindorff-Larsen, Kresten; Kragelund, Birthe B.; Nielsen, Michael L.; Kriegenburg, Franziska; Hartmann-Petersen, Rasmus

    2015-01-01

    A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway. PMID:26152728

  9. Increasing Originality in Written Expression.

    ERIC Educational Resources Information Center

    Belasco, Jack Thomas

    This study partially replicated Moss's "A Study of the Effect of Selected Methods of Instruction Designed to Increase Originality in Written Expression," except for the fact that this investigator taught a 5th grade and an 11th grade class for most of a school year. Some of the conclusions of the study were: no particular teaching technique was…

  10. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases.

  11. Use of cysteine-reactive crosslinkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers

    PubMed Central

    Prahlad, Janani; Hauser, David N.; Milkovic, Nicole M.; Cookson, Mark R.; Wilson, Mark A.

    2014-01-01

    The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2− (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein’s function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, CD spectroscopy, sedimentation equilibrium ultracentrifugation, and crosslinking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol crosslinking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple crosslinked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed crosslinking efficiency in cells. In addition, thiol crosslinkers may have an underappreciated value as qualitative probes of protein conformational flexibility. PMID:24832775

  12. Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase

    PubMed Central

    Amm, Ingo; Norell, Derrick; Wolf, Dieter H.

    2015-01-01

    The Saccharomyces cerevisiae heat shock proteins Hsp31, Hsp32, Hsp33 and Hsp34 belong to the DJ-1/ThiJ/PfpI superfamily which includes the human protein DJ-1 (PARK7) as the most prominent member. Mutations in the DJ-1 gene are directly linked to autosomal recessive, early-onset Parkinson’s disease. DJ-1 acts as an oxidative stress-induced chaperone preventing aggregation and fibrillation of α-synuclein, a critical factor in the development of the disease. In vivo assays in Saccharomyces cerevisiae using the model substrate ΔssCPY*Leu2myc (ΔssCL*myc) as an aggregation-prone misfolded cytoplasmic protein revealed an influence of the Hsp31 chaperone family on the steady state level of this substrate. In contrast to the ubiquitin ligase of the N-end rule pathway Ubr1, which is known to be prominently involved in the degradation process of misfolded cytoplasmic proteins, the absence of the Hsp31 chaperone family does not impair the degradation of newly synthesized misfolded substrate. Also degradation of substrates with strong affinity to Ubr1 like those containing the type 1 N-degron arginine is not affected by the absence of the Hsp31 chaperone family. Epistasis analysis indicates that one function of the Hsp31 chaperone family resides in a pathway overlapping with the Ubr1-dependent degradation of misfolded cytoplasmic proteins. This pathway gains relevance in late growth phase under conditions of nutrient limitation. Additionally, the Hsp31 chaperones seem to be important for maintaining the cellular Ssa Hsp70 activity which is important for Ubr1-dependent degradation. PMID:26466368

  13. A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid42 and DJ-1 in Human Cerebrospinal Fluid

    PubMed Central

    Kruse, Niels; Schlossmacher, Michael G.; Schulz-Schaeffer, Walter J.; Vanmechelen, Eugeen; Vanderstichele, Hugo; El-Agnaf, Omar M.; Mollenhauer, Brit

    2016-01-01

    The quantification of four distinct proteins (α-synuclein, β-amyloid1-42, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins (‘tetraplex’) in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid42, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid42 to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed. PMID:27116005

  14. Lead exposure increases blood pressure by increasing angiotensinogen expression.

    PubMed

    Jiao, Jiandong; Wang, Miaomiao; Wang, Yiqing; Sun, Na; Li, Chunping

    2016-01-01

    Lead exposure can induce increased blood pressure. Several mechanisms have been proposed to explain lead-induced hypertension. Changes in angiotensinogen (AGT) expression levels or gene variants may also influence blood pressure. In this study, we hypothesized that AGT expression levels or gene variants contribute to lead-induced hypertension. A preliminary HEK293 cell model experiment was performed to analyze the association between AGT expression and lead exposure. In a population-based study, serum AGT level was measured in both lead-exposed and control populations. To further detect the influence of AGT gene single nucleotide polymorphisms (SNPs) in lead-induced hypertension, two SNPs (rs699 and rs4762) were genotyped in a case-control study including 219 lead-exposed subjects and 393 controls. Lead exposure caused an increase in AGT expression level in HEK 293 cell models (P < 0.001) compared to lead-free cells, and individuals exposed to lead had higher systolic and diastolic blood pressure (P < 0.001). Lead-exposed individuals had higher serum AGT levels compared to controls (P < 0.001). However, no association was found between AGT gene SNPs (rs699 and rs4762) and lead exposure. Nevertheless, the change in AGT expression level may play an important role in the development of lead-induced hypertension.

  15. Duplicate genes increase gene expression diversity within and between species.

    PubMed

    Gu, Zhenglong; Rifkin, Scott A; White, Kevin P; Li, Wen-Hsiung

    2004-06-01

    Using microarray gene expression data from several Drosophila species and strains, we show that duplicated genes, compared with single-copy genes, significantly increase gene expression diversity during development. We show further that duplicate genes tend to cause expression divergences between Drosophila species (or strains) to evolve faster than do single-copy genes. This conclusion is also supported by data from different yeast strains.

  16. Lead induces increased water permeability in astrocytes expressing aquaporin 4.

    PubMed

    Gunnarson, E; Axehult, G; Baturina, G; Zelenin, S; Zelenina, M; Aperia, A

    2005-01-01

    The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes. There is now compelling evidence that AQP4 may contribute to an unfavorable course in brain edema. Acute lead intoxication is a condition that causes brain damage preceded by brain edema. Here we report that lead increases AQP4 water permeability (P(f)) in astrocytes. A rat astrocyte cell line that does not express aquaporin 4 was transiently transfected with aquaporin 4 tagged with green fluorescent protein (GFP). Using confocal laser scanning microscopy we measured water permeability in these cells and in AQP4-negative cells located on the same plate. AQP4-expressing astrocytes had a three-fold higher water permeability than astrocytes not expressing AQP4. Lead exposure induced a significant, 40%, increase in water permeability in astrocytes expressing AQP4, but had no effect on P(f) in astrocytes not expressing AQP4. The increase in water permeability persisted after lead washout, while treatment with a lead chelator, meso-2,3-dimercaptosuccinic acid, abolished the lead-induced increase in P(f). The effect of lead was attenuated in the presence of a calcium (Ca(2+))/calmodulin-dependent protein kinase II (CaMKII) inhibitor, but not in the presence of a protein kinase C inhibitor. In cells expressing AQP4 where the consensus site for CaMKII phosphorylation was mutated, lead failed to increase water permeability. Lead exposure also increased P(f) in rat astroglial cells in primary culture, which express endogenous AQP4. Lead had no effect on P(f) in astrocytes transfected with aquaporin 3. In situ hybridization studies on rat brain after oral lead intake for three days showed no change in distribution of AQP4 mRNA. It is suggested that lead-triggered stimulation of water transport in AQP4-expressing astrocytes may contribute to the pathology of acute lead intoxication.

  17. Increased expression of IL-16 in inflammatory bowel disease

    PubMed Central

    Seegert, D; Rosenstiel, P; Pfahler, H; Pfefferkorn, P; Nikolaus, S; Schreiber, S

    2001-01-01

    BACKGROUND—Inflammatory bowel disease (IBD) is characterised by infiltration of inflamed mucosal regions with CD4+ T lymphocytes and other mononuclear cells. Interleukin (IL)-16 exerts a strong chemoattractant activity on CD4+ cells. Moreover, IL-16 activates expression and production of proinflammatory cytokines such as IL-1β, IL-6, IL-15, and tumour necrosis factor α (TNF-α) in human monocytes.
AIM—To examine if IL-16 expression is increased in IBD patients compared with healthy controls.
METHODS—Twenty one patients with IBD (10 with ulcerative colitis (UC), 11 with Crohn's disease (CD)), seven disease specificity controls (DSC), and seven healthy controls were studied. Biopsies were taken during colonoscopies and IL-16 mRNA as well as protein expression were investigated by reverse transcriptase-polymerase chain reaction, ELISA, western blot, and immunohistochemistry.
RESULTS—IL-16 mRNA and protein expression in the colonic mucosa of IBD patients were increased twofold compared with healthy controls, DSC, or IBD patients under steroid treatment. Most of the detected IL-16 protein was in its bioactive 17 kDa form and was predominantly expressed in eosinophils. Increased IL-16 expression in UC patients appeared to be mainly restricted to the inflamed regions of the colonic mucosa. Levels of caspase 3, which processes the 68 kDa IL-16 precursor molecule into the biological active 17 kDa form, were not increased.
CONCLUSIONS—Our results provide evidence that IL-16 expression is significantly increased in the inflamed colonic mucosa of IBD patients but not in control individuals, DSC, or patients under steroid treatment. Therefore, upregulation of IL-16 expression seems to be specific for chronic intestinal inflammation and could lead to increased secretion of other proinflammatory cytokines in IBD.


Keywords: interleukin-16; T lymphocytes; eosinophils; Crohn's disease; ulcerative colitis; inflammatory bowel disease PMID:11171821

  18. Increased expression of senescence markers in cystic fibrosis airways.

    PubMed

    Fischer, Bernard M; Wong, Jessica K; Degan, Simone; Kummarapurugu, Apparao B; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A

    2013-03-15

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells. PMID:23316069

  19. Prostaglandin E₂ increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression.

    PubMed

    Huang, Steven K; Scruggs, Anne M; Donaghy, Jake; McEachin, Richard C; Fisher, Aaron S; Richardson, Bruce C; Peters-Golden, Marc

    2012-09-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E(2) (PGE(2)) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE(2) also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE(2). PGE(2), compared with nontreated controls, increased expression and activity (EC(50)∼10(7) M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE(2) to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE(2), compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC(50)∼3×10(7) M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE(2) increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE(2) decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE(2) biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.

  20. Increased intra- and extracellular granzyme expression in patients with tuberculosis.

    PubMed

    Garcia-Laorden, M Isabel; Blok, Dana C; Kager, Liesbeth M; Hoogendijk, Arie J; van Mierlo, Gerard J; Lede, Ivar O; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E; Md Zahed, Abu Shahed; Husain, Md Anwar; Alam, Khan Mashrequl; Chandra Barua, Pravat; Hassan, Mahtabuddin; Hossain, Ahmed; Tayab, Md Abu; Day, Nick; Dondorp, Arjen M; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis.

  1. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  2. SFRP2 Is Associated with Increased Adiposity and VEGF Expression

    PubMed Central

    Crowley, Rachel K.; Bujalska, Iwona J.; Hassan-Smith, Zaki K.; Hazlehurst, Jonathan M.; Foucault, Danielle R.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2016-01-01

    Aims The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Methods Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. Results sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Conclusions Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression. PMID:27685706

  3. Ethynylestradiol increases expression and activity of rat liver MRP3.

    PubMed

    Ruiz, María L; Villanueva, Silvina S M; Luquita, Marcelo G; Vore, Mary; Mottino, Aldo D; Catania, Viviana A

    2006-06-01

    We evaluated the effect of ethynylestradiol (EE) administration (5 mg/kg b.wt. s.c., for 5 consecutive days) on the expression and activity of multidrug resistance-associated protein 3 (Mrp3) in rats. Western blotting analysis revealed decreased Mrp2 (-41%) and increased Mrp3 (+200%) expression by EE. To determine the functional impact of up-regulation of Mrp3 versus Mrp2, we measured the excretion of acetaminophen glucuronide (APAP-glu), a common substrate for both transporters, into bile and perfusate in the recirculating isolated perfused liver (IPL) model. APAP-glu was generated endogenously from acetaminophen (APAP), which was administered as a tracer dose (2 micromol/ml) into the perfusate. Biliary excretion of APAP-glu after 60 min of perfusion was reduced in EE-treated rats (-80%). In contrast, excretion into the perfusate was increased by EE (+45%). Liver content of APAP-glu at the end of the experiment was reduced by 36% in the EE group. The total amount of glucuronide remained the same in both groups. Taken together, these results indicate that up-regulation of Mrp3 led to an exacerbated basolateral versus canalicular excretion of conjugated APAP in IPL. We conclude that induced expression of basolateral Mrp3 by EE may represent a compensatory mechanism to prevent intracellular accumulation of common Mrp substrates, either endogenous or exogenous, due to reduced expression and activity of apical Mrp2. PMID:16554369

  4. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  5. Increased Expression of Interleukin-18 in Lenses of Ovariectomized Rats.

    PubMed

    Nagai, Noriaki; Ogata, Fumihiko; Kawasaki, Naohito; Ito, Yoshimasa

    2016-01-01

    Previous studies showed an increased prevalence of cataracts in postmenopausal women. In this study, we investigated changes in the levels of calcium ion (Ca(2+)) and interleukin (IL)-18, which are factors in cataract development, in the lenses of ovariectomized (OVX) rats, a model of postmenopausal woman. Although the Ca(2+) content in the blood of OVX rats increased 1 month after ovariectomy and subsequently decreased, the Ca(2+) content in the lenses was unchanged in OVX rats 1-3 months after ovariectomy. The Ca(2+)-ATPase activity in the lenses of OVX rats peaked 1 month after ovariectomy, and the behavior of Ca(2+)-ATPase activity in lenses of OVX rats was similar to that of the Ca(2+) concentration in the blood. It is possible that hypercalcemia increases the Ca(2+) inflow into the lens; however, the enhanced Ca(2+)-ATPase activity prevents the Ca(2+) level from rising. On the other hand, we found that the levels of both IL-18 and interferon (IFN)-γ in the lenses of OVX rats were significantly increased as compared with the lenses of sham (control) rats during the period 1-3 months after surgery. These results suggest that the expression of IFN-γ via IL-18 in the lenses of OVX rats is induced by ovariectomy, and that excessive IL-18 and IFN-γ production in the lenses may be related to cataract development in postmenopausal women. These findings support those of previous studies that assessed lens opacification in postmenopausal women.

  6. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  7. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  8. Brazilian propolis extract increases leptin expression in mouse adipocytes.

    PubMed

    Washio, Kohei; Shimamoto, Yoshinori; Kitamura, Hiroshi

    2015-01-01

    We investigated the anti-obesity effects of Brazilian green propolis ethanol extract using a mouse model of obesity. Repeated intraperitoneal injection of propolis (100 mg/kg twice a week) caused feeding suppression in C57BL/6 mice, whereas this treatment had negligible effects on C57BL/6 ob/ob mice. Since C57BL/6 ob/ob mice have a missense mutation in the Lep gene, leptin is likely to contribute to the propolis-induced feeding suppression. We found that propolis treatment indeed clearly increased leptin mRNA production in the visceral adipose tissues. Moreover, propolis extract directly elevated leptin expression in differentiated 3T3-L1 adipocytes. Artepillin C, an important organic compound found in Brazilian green propolis, failed to induce leptin mRNA in 3T3-L1 cells. Compounds other than artepillin C in Brazilian propolis must thus cause leptin induction in adipocytes, possibly resulting in the suppression of feeding and obesity.

  9. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation

    PubMed Central

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E.; Ginzburg, Yelena Z.

    2016-01-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes. PMID:26635037

  10. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    PubMed

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  11. Regret Expression and Social Learning Increases Delay to Sexual Gratification

    PubMed Central

    Quisenberry, Amanda J.; Eddy, Celia R.; Patterson, David L.; Franck, Christopher T.; Bickel, Warren K.

    2015-01-01

    Objective Modification and prevention of risky sexual behavior is important to individuals’ health and public health policy. This study employed a novel sexual discounting task to elucidate the effects of social learning and regret expression on delay to sexual gratification in a behavioral task. Methods Amazon Mechanical Turk Workers were assigned to hear one of three scenarios about a friend who engages in similar sexual behavior. The scenarios included a positive health consequence, a negative health consequence or a negative health consequence with the expression of regret. After reading one scenario, participants were asked to select from 60 images, those with whom they would have casual sex. Of the selected images, participants chose one image each for the person they most and least want to have sex with and person most and least likely to have a sexually transmitted infection. They then answered questions about engaging in unprotected sex now or waiting some delay for condom-protected sex in each partner condition. Results Results indicate that the negative health outcome scenario with regret expression resulted in delayed sexual gratification in the most attractive and least STI partner conditions, whereas in the least attractive and most STI partner conditions the negative health outcome with and without regret resulted in delayed sexual gratification. Conclusions Results suggest that the sexual discounting task is a relevant laboratory measure and the framing of information to include regret expression may be relevant for prevention of risky sexual behavior. PMID:26280349

  12. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion.

    PubMed

    Kon, Risako; Ikarashi, Nobutomo; Hayakawa, Akio; Haga, Yusuke; Fueki, Aika; Kusunoki, Yoshiki; Tajima, Masataka; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2015-06-01

    Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.

  13. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression

    PubMed Central

    Liu, S-C; Chuang, S-M; Hsu, C-J; Tsai, C-H; Wang, S-W; Tang, C-H

    2014-01-01

    Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1α-dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo. Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF-κB/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1α-dependent VEGF expression and angiogenesis in human synovial fibroblasts. PMID:25341039

  14. Inhibition of the liver expression of arylalkylamine N-acetyltransferase increases the expression of angiogenic factors in cholangiocytes

    PubMed Central

    Renzi, Anastasia; Mancinelli, Romina; Onori, Paolo; Franchitto, Antonio; Alpini, Gianfranco; Glaser, Shannon

    2014-01-01

    Background and aims Reduction of biliary serotonin N-acetyltransferase (AANAT) expression and melatonin administration/secretion in cholangiocytes increases biliary proliferation and the expression of SR, CFTR and Cl–/HCO3– AE2. The balance between biliary proliferation/damage is regulated by several autocrine neuroendocrine factors including vascular endothelial growth factor-A/C (VEGF-A/C). VEGFs are secreted by several epithelia, where they modulate cell growth by autocrine and paracrine mechanisms. No data exists regarding the effect of AANAT modulation on the expressions of VEGFs by cholangiocytes. Methods In this study, we evaluated the effect of local modulation of biliary AANAT expression on the cholangiocytes synthesis of VEGF-A/C. Results The decrease in AANAT expression and subsequent lower melatonin secretion by cholangiocytes was associated with increased expression of VEGF-A/C. Overexpression of AANAT in cholangiocyte lines decreased the expression of VEGF-A/C. Conclusions Modulation of melatonin synthesis may affect the expression of VEGF-A/C by cholangiocytes and may modulate the hepatic microvascularization through the regulation of VEGF-A/C expression regulating biliary functions. PMID:24696833

  15. A cautionary note on cosmetics containing ingredients that increase aquaporin-3 expression.

    PubMed

    Verkman, A S

    2008-10-01

    Aquaporin-3 (AQP3) is a membrane transport protein that facilitates water and glycerol transport across cell plasma membranes in the basal layer of keratinocytes in normal skin. Motivated by a relation between AQP3 expression and skin water content, several companies have marketed cosmetics containing ingredients that increase AQP3 expression. However, caution seems warranted in targeting AQP3 to increase skin moisturization based on a recently discovered association in mice between epidermal AQP3 expression and skin tumor formation. PMID:18312385

  16. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  17. [Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium].

    PubMed

    Zhang, Wen-Cheng; Lu, Yuan-Ming; Yang, Huai-Zhang; Xu, Peng-Tao; Chang, Hui; Yu, Zhi-Bin

    2013-04-25

    One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.

  18. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli.

    PubMed

    Kim, Jinyeong; Kim, Seul I; Hong, Eunsoo; Ryu, Yeonwoo

    2016-11-01

    Heterologous proteins expressed in bacteria are used for numerous biotechnological applications. Escherichia coli is the most commonly used host for heterologous protein expression because of its many advantages. Researchers have been studying proteins from extremophiles heterologously expressed in E. coli because the proteins of extremophiles are strongly resistant to extreme conditions. In a previous study, a thermostable esterase Est-AF was isolated from Archaeoglobus fulgidus and expressed in E. coli. However, further studies of Est-AF were difficult owing to its low expression levels in E. coli. In this study, we used various strategies, such as changing the expression vector and host strain, codon optimization, and optimization of induction conditions, to increase the expression of Est-AF. Through codon optimization and by changing the vector and host strain, Est-AF expression was increased from 31.50 ± 0.35 mg/L to 61.75 ± 0.28 mg/L. The optimized expression system consisted of a codon-optimized Est-AF gene in a pET28a(+)-based expression plasmid in E. coli Rosetta cells. The expression level was further increased by optimizing the induction conditions. The optimized conditions were induction with 0.4 mM isopropyl-b-d-1-thiogalactoside (IPTG) at 37 °C for 5 h. Under these conditions, the expression level of Est-AF was increased from 31.5 ± 0.35 mg/L to 119.52 ± 0.34 mg/L. PMID:27449918

  19. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression. PMID:10496171

  20. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  1. HO-1 expression increases mesenchymal stem cell-derived osteoblast but decreases adipocyte lineage

    PubMed Central

    Vanella, Luca; Kim, Dong Hyun; Asprinio, David; Peterson, Stephen J.; Barbagallo, Ignazio; Vanella, Angelo; Goldstein, Dove; Ikehara, Susumu; Abraham, Nader G.

    2009-01-01

    Human bone marrow mesenchymal stem cells (MSC) are pleitrophic cells that differentiate to either adipocytes or osteoblasts as a result of cross-talk by specific signaling pathways including heme oxygenase (HO)-1/-2 expression. We examined the effect of inducers of HO-1 expression and inhibitors of HO activity on MSC differentiation to the osteoblast and adipogenesis lineage. HO-1 expression is increased during osteoblast stem cell development, but remains elevated, at 25 days. The increase in HO-1 levels proceed an increase in alkaline phosphatase (AP) activity and an increase in BMP, osteonectin and RUNX-2 mRNA. Induction of HO-1 by osteogenic growth peptide (OGP) was associated with an increase in BMP-2 and osteonectin. Exposure of MSC to high glucose levels decreased osteocalcin and osteogenic protein expression, which was reversed by upregulation of the OGP-mediated increase in HO-1 expression. The glucose mediated decrease in HO-1 resulted in decreased levels of pAMPK, pAKT and the eNOS signaling pathway and was reversed by OGP. In contrast, MSC-derived adipocytes were increased by glucose. HO-1 siRNA decreased HO-1 expression but increased adipocyte stem cell differentiation and the adipogenesis marker, PPARγ. Thus, upregulation of HO-1 expression shifts the balance of MSC differentiation in favor of the osteoblast lineage. In contrast, a decrease in HO-1 or exposure to glucose drives the MSC towards adipogenesis. Thus targeting HO-1 expression is a portal to increased osteoblast stem cell differentiation and to the attenuation of osteoporosis by the promotion of bone formation. PMID:19853072

  2. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity

    PubMed Central

    Prisco, Anthony R.; Prisco, Michael R.; Carlson, Brian E.

    2014-01-01

    Endothelial progenitor cells (EPCs) are a rare population of cells that participate in angiogenesis. To effectively use EPCs for regenerative therapy, the mechanisms by which they participate in tissue repair must be elucidated. This study focused on the process by which activated EPCs bind to a target tissue. It has been demonstrated that EPCs can bind to endothelial cells (ECs) through the tumore necrosis factor-α (TNF-α)-regulated vascular cell adhesion molecule 1/very-late antigen 4 (VLA4) interaction. VLA4 can bind in a high or low affinity state, a process that is difficult to experimentally isolate from bond expression upregulation. To separate these processes, a new parallel plate flow chamber was built, a detachment assay was developed, and a mathematical model was created that was designed to analyze the detachment assay results. The mathematical model was developed to predict the relative expression of EPC/EC bonds made for a given bond affinity distribution. EPCs treated with TNF-α/vehicle were allowed to bind to TNF-α/vehicle-treated ECs in vitro. Bound cells were subjected to laminar flow, and the cellular adherence was quantified as a function of shear stress. Experimental data were fit to the mathematical model using changes in bond expression or affinity as the only free parameter. It was found that TNF-α treatment of ECs increased adhesion through bond upregulation, whereas TNF-α treatment of EPCs increased adhesion by increasing bond affinity. These data suggest that injured tissue could potentially increase recruitment of EPCs for tissue regeneration via the secretion of TNF-α. PMID:25539711

  3. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  4. Increased Gene Expression by the First Intron of Maize Shrunken-1 Locus in Grass Species 1

    PubMed Central

    Vasil, Vimla; Clancy, Maureen; Ferl, Robert J.; Vasil, Indra K.; Hannah, L. Curtis

    1989-01-01

    The first intron of the shrunken-1 (Sh1) locus of maize was incorporated into constructs containing the chloramphenicol acetyltransferase gene (CAT) coupled with the nopaline synthase 3′ polyadenylation signal. Transcription was driven with the 35S promoter of the cauliflower mosaic virus (CaMV) or the Sh1 promoter of maize. Transient gene expression was monitored following electroporation into protoplasts of Panicum maximum (guineagrass), Pennisetum purpureum (napiergrass), or Zea mays (maize). The 1028 base pair intron increased gene expression in cells of each species when transcription was driven with the 35S promoter. Eleven to 91-fold increases were observed. Expression levels observed in maize were two and eight times those observed in napiergrass and guineagrass, respectively. The 35S promoter gave CAT activity 10 to 100 times that observed with the Sh1 promoter. Whereas expression driven by the 35S promoter was reproducible, that observed with the Sh1 promoter proved quite variable. In similar constructs the first intron of the alcohol dehydrogenase-1 (Adh1) gene of maize led to increased gene expression of only 7 to 10% of that observed with the Sh1 first intron. The increased level of gene expression caused by the Sh1 first intron is approximately 10 times higher than that caused by any other plant introns that have been used. Thus, the Sh1 first intron may prove quite useful in increasing expression of foreign genes in monocots and possibly other plants. Images Figure 2 PMID:16667219

  5. Neurotensin decreases the proinflammatory status of human skin fibroblasts and increases epidermal growth factor expression.

    PubMed

    Pereira da Silva, Lucília; Miguel Neves, Bruno; Moura, Liane; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  6. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  7. REDUCED TISSUE OSMOLARITY INCREASES TRPV4 EXPRESSION AND PRO-INFLAMMATORY CYTOKINES IN INTERVERTEBRAL DISC CELLS

    PubMed Central

    Walter, B.A.; Purmessur, D; Moon, A.; Occhiogrosso, J.; Laudier, D.M.; Hecht, A.C.; Iatridis, J.C.

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  8. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  9. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis.

  10. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer.

    PubMed

    Gupta, Brij K; Maher, Diane M; Ebeling, Mara C; Sundram, Vasudha; Koch, Michael D; Lynch, Douglas W; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2012-11-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.

  11. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445

  12. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages.

  13. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  14. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.

    PubMed

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B

    2009-10-01

    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  15. Increased expression of dermatopontin and its implications for testicular dysfunction in mice

    PubMed Central

    CAI, JUN; LIU, WEIJIA; HAO, JIE; CHEN, MAOXIN; LI, GANG

    2016-01-01

    An array of specific and non-specific molecules, which are expressed in the testis, have been demonstrated to be responsible for testicular function. Our previous study revealed that dermatopontin (DPT) is expressed in Sertoli cells of the testis, however, its roles in testicular function remains somewhat elusive. In the present study, CdCl2- and busulfan-induced testicular dysfunction models were used to investigate the implications of DPT expression for testicular function. The mRNA and protein expression levels of DPT were detected using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. A negative correlation was observed between testicular damage and the expression of DPT, which suggested that an increase in DPT expression may be a marker for testicular dysfunction. This result was corroborated by the finding that transgenic mice exhibiting Sertoli cell-specific overexpression of DPT exhibited damage to their testicular morphology. Additionally, DPT overexpression in the testis affected the expression levels of claudin-11 and zonula occludens-1, which indicated that DPT may affect testicular function by affecting the integrity of the blood-testis barrier (BTB). In conclusion, the present study provided evidence to suggest that DPT may be indicative of mouse testicular dysfunction, since increased expression may be associated with damage to the BTB. PMID:26861869

  16. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  17. PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells

    PubMed Central

    Soliman, Hatem; Khalil, Farah; Antonia, Scott

    2014-01-01

    Background Tumor cells express programmed death ligand 1 (PD-L1) and is a key immune evasion mechanism. PD-L1 expression in multiple breast cancer cell lines was evaluated to identify intrinsic differences that affect their potential for immune evasion. Methods PD-L1 expression was analyzed in six breast cancer cell lines: AU565&MCF7 (luminal), BT20&HCC1143 (basal A), MDA231&HCC38 (basal B). Surface and intracellular PD-L1 expression +/− interferon γ for 48 hours was measured by flow cytometry. PD-L1 gene expression data for all breast cancer cell lines in the Comprehensive Cell Line Encyclopedia (CCLE) was analyzed. Correlation between PD-L1 levels and clinicopathologic parameters was analyzed within Oncomine datasets. A tissue microarray containing 61 invasive breast cancer primary tumor cores was stained for PD-L1 expression and analyzed. Results Basal breast cancer cells constitutively express the highest levels of PD-L1. All cell lines increased PD-L1 expression with interferon γ, but basal B cells (MDA-231 and HCC38) demonstrated the largest increases. There were no differences in protein localization between cell lines. In the CCLE data, basal cell lines demonstrated higher mean PD-L1 expression compared to luminal cell lines. High PD-L1 expressing basal cell lines over-express genes involved in invasion, proliferation, and chemoresistance compared to low PD-L1 basal cell lines. High PD-L1 basal cell lines had lower expression of IRF2BP2 and higher STAT1 levels compared to low PD-L1 expressing cell lines. Within Oncomine datasets PDL1 mRNA levels were higher in basal type tumors. The TMA analysis demonstrated that lymph node positive cases had higher levels of PD-L1 protein expression compared to lymph node negative cases. Conclusions Basal type breast cancer (especially basal B) express greater levels of PD-L1 constitutively and with IFN γ. High PD-L1 basal cells over-express genes involved in invasion, motility, and chemoresistance. Targeting PD-L1

  18. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  19. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese. PMID:26341925

  20. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    PubMed

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs.

  1. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  2. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    SciTech Connect

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J. . E-mail: edmond_yunis@dfci.harvard.edu

    2006-08-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.

  3. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  4. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  5. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP

    PubMed Central

    Hatzl, Stefan; Geiger, Olivia; Kuepper, Maja Kim; Caraffini, Veronica; Seime, Till; Furlan, Tobias; Nussbaumer, Erika; Wieser, Rotraud; Pichler, Martin; Scheideler, Marcel; Nowek, Katarzyna; Jongen-Lavrencic, Mojca; Quehenberger, Franz; Wölfler, Albert; Troppmair, Jakob; Sill, Heinz; Zebisch, Armin

    2016-01-01

    RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3′-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a–binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a–binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. PMID:27197200

  6. Aerosol-induced brucellosis increases TLR-2 expression and increased complexity in the microanatomy of astroglia in rhesus macaques.

    PubMed

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Didier, Peter J; Ficht, Thomas A; Arenas-Gamboa, Angela M; Roy, Chad J; Maclean, Andrew G

    2013-01-01

    Brucella melitensis, a bacterial pathogen and agent of epizootic abortion causes multiple pathologies in humans as well as a number of agriculturally important animal species. Clinical human brucellosis manifests as a non-specific, chronic debilitating disease characterized by undulant fever, arthropathies, cardiomyopathies and neurological sequelae. These symptoms can occur acutely for a few weeks or persist for months to years. Within the brain, endothelial and glial cells can be infected leading to downstream activation events including matrix metalloprotease (MMP) and cytokine secretion and Toll-like receptor (TLR) signaling. These events are likely to lead to tissue remodeling, including morphologic changes in neuronal and glial cells, which are linked to neurological complications including depressive behavior, immune activation and memory loss. Our hypothesis was that B. melitensis infection and neurobrucellosis would lead to activation of astrocytes through upregulation of TLR2 and stimulate concurrent changes in the microanatomy. All six animals were infected via inhalation route. TLR2 expression was approximately doubled in white matter astrocytes of infected rhesus macaques. There was also a 50% increase in the number of astrocytes per unit area in subcortical white matter tracts suggesting increased innate immune activation. This coincided with dramatic increases in the length and complexity of the cell arbor of hypertrophic astrocytes in both cortical gray and white matter. Thus, aerosol-induced brucellosis results in dramatically increased innate immune activation of astrocytes in the absence of widespread neuroinflammation. PMID:24350061

  7. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression

    PubMed Central

    Henry, Matthew K.; Welliver, Kathryn C.; Jepson, Amanda J.; Garnett, Emily R.

    2013-01-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43. PMID:23302960

  8. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.

    PubMed

    Moffitt, Julia A; Henry, Matthew K; Welliver, Kathryn C; Jepson, Amanda J; Garnett, Emily R

    2013-03-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43.

  9. Interleukin-induced increase in Ia expression by normal mouse B cells

    PubMed Central

    1984-01-01

    The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen- presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology. PMID:6432933

  10. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala.

    PubMed

    Reagan, Lawrence P; Hendry, Robert M; Reznikov, Leah R; Piroli, Gerardo G; Wood, Gwendolyn E; McEwen, Bruce S; Grillo, Claudia A

    2007-06-22

    Chronic restraint stress affects hippocampal and amygdalar synaptic plasticity as determined by electrophysiological, morphological and behavioral measures, changes that are inhibited by some but not all antidepressants. The efficacy of some classes of antidepressants is proposed to involve increased phosphorylation of cAMP response element binding protein (CREB), leading to increased expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Conversely, some studies suggest that acute and chronic stress downregulate BDNF expression and activity. Accordingly, the aim of the current study was to examine total and phosphorylated CREB (pCREB), as well as BDNF mRNA and protein levels in the hippocampus and amygdala of rats subjected to chronic restraint stress in the presence and absence of the antidepressant tianeptine. In the hippocampus, chronic restraint stress increased pCREB levels without affecting BDNF mRNA or protein expression. Tianeptine administration had no effect upon these measures in the hippocampus. In the amygdala, BDNF mRNA expression was not modulated in chronic restraint stress rats given saline in spite of increased pCREB levels. Conversely, BDNF mRNA levels were increased in the amygdala of chronic restraint stress/tianeptine rats in the absence of changes in pCREB levels when compared to non-stressed controls. Amygdalar BDNF protein increased while pCREB levels decreased in tianeptine-treated rats irrespective of stress conditions. Collectively, these results demonstrate that tianeptine concomitantly decreases pCREB while increasing BDNF expression in the rat amygdala, increases in neurotrophic factor expression that may participate in the enhancement of amygdalar synaptic plasticity mediated by tianeptine.

  11. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells

    PubMed Central

    Hur, Jae H.; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L.; Ulgherait, Matthew; Rera, Michael; Jones, D. Leanne; Walker, David W.

    2013-01-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging. PMID:24038661

  12. Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer.

    PubMed

    Shan, Yan-Shen; Hsu, Hui-Ping; Lai, Ming-Derg; Yen, Meng-Chi; Luo, Yi-Pey; Chen, Yi-Ling

    2015-01-01

    Aberrant expression of argininosuccinate synthetase (ASS1, also known as ASS) has been found in cancer cells and is involved in the carcinogenesis of gastric cancer. The aim of the present study was to investigate the level of ASS expression in human gastric cancer and to determine the possible correlations between ASS expression and clinicopathological findings. Immunohistochemistry was performed on paraffin‑embedded tissues to determine whether ASS was expressed in 11 of 11 specimens from patients with gastric cancer. The protein was localized primarily to the cytoplasm of cancer cells and normal epithelium. In the Oncomine cancer microarray database, expression of the ASS gene was significantly increased in gastric cancer tissues. To investigate the clinicopathological and prognostic roles of ASS expression, we performed western blot analysis of 35 matched specimens of gastric adenocarcinomas and normal tissue obtained from patients treated at the National Cheng Kung University Hospital. The ratio of relative ASS expression (expressed as the ASS/β-actin ratio) in tumor tissues to that in normal tissues was correlated with large tumor size (P=0.007) and with the tumor, node, metastasis (TNM) stage of the American Joint Committee on Cancer staging system (P=0.031). Patients whose cancer had increased the relative expression of ASS were positive for perineural invasion and had poor recurrence-free survival. In summary, ASS expression in gastric cancer was associated with a poor prognosis. Further study of mechanisms to silence the ASS gene or decrease the enzymatic activity of ASS protein has the potential to provide new treatments for patients with gastric cancer.

  13. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients.

    PubMed

    Barandika, Olatz; Ezquerra-Inchausti, Maitane; Anasagasti, Ander; Vallejo-Illarramendi, Ainara; Llarena, Irantzu; Bascaran, Lucia; Alberdi, Txomin; De Benedetti, Giacomo; Mendicute, Javier; Ruiz-Ederra, Javier

    2016-10-01

    In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate.

  14. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients.

    PubMed

    Barandika, Olatz; Ezquerra-Inchausti, Maitane; Anasagasti, Ander; Vallejo-Illarramendi, Ainara; Llarena, Irantzu; Bascaran, Lucia; Alberdi, Txomin; De Benedetti, Giacomo; Mendicute, Javier; Ruiz-Ederra, Javier

    2016-10-01

    In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate. PMID:27497833

  15. Increased fibronectin expression in sturge-weber syndrome fibroblasts and brain tissue.

    PubMed

    Comi, Anne M; Hunt, Piper; Vawter, Marquis P; Pardo, Carlos A; Becker, Kevin G; Pevsner, Jonathan

    2003-05-01

    Sturge-Weber syndrome (SWS) is a neurocutaneous disorder that presents with a facial port-wine stain and a leptomeningeal angioma. Fibronectin expression regulates angiogenesis and vasculogenesis and participates in brain tissue responses to ischemia and seizures. We therefore hypothesized that abnormal gene expression of fibronectin and other extracellular matrix genes would be found in SWS brain tissue and SWS port-wine skin fibroblasts. Fibronectin gene and protein expression from port-wine-derived fibroblasts were compared with that from normal skin-derived fibroblasts of four individuals with SWS using microarrays, reverse transcriptase-PCR, Western analysis, and immunocytochemistry. Fibronectin gene and/or protein expression from eight SWS surgical brain samples was compared with that in two surgical epilepsy brain samples and six postmortem brain samples using microarrays, reverse transcriptase-PCR, and Western analysis. The gene expression of fibronectin was significantly increased (p < 0.05) in the SWS port-wine-derived fibroblasts compared with that of fibroblasts from SWS normal skin. A trend for increased protein levels of fibronectin in port-wine fibroblasts was found by Western analysis. No difference in the pattern of fibronectin staining was detected. The gene expression of fibronectin was significantly increased (p < 0.05), and a trend for increased fibronectin protein expression was found in the SWS surgical brain samples compared with the postmortem controls. These results suggest a potential role for fibronectin in the pathogenesis of SWS and in the brain's response to chronic ischemic injury in SWS. The reproducible differences in fibronectin gene expression between the SWS port-wine-derived fibroblasts and the SWS normal skin-derived fibroblasts are consistent with the presence of a hypothesized somatic mutation underlying SWS. PMID:12621118

  16. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines.

    PubMed

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  17. Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes.

    PubMed

    Tsuboi, R; Sato, C; Oshita, Y; Hama, H; Sakurai, T; Goto, K; Ogawa, H

    1995-09-01

    The effect of ultraviolet B (UVB) irradiation on endothelin-1 (ET-1) and ET receptor expression was examined using cultured normal human keratinocytes. Keratinocytes secreted ET-1 in the medium at a level of 2.1 pg/day/10(5) cells. UVB irradiation up to 10 mJ/cm2 increased ET-1 secretion 3-fold, and potentiated expression of mRNA for ET-1. Both ETA and ETB receptor mRNAs were detected in keratinocytes, and their expression was up-regulated by 5 mJ/cm2 UVB irradiation.

  18. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines

    PubMed Central

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  19. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells

    PubMed Central

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong

    2016-01-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  20. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells.

    PubMed

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong; Kwon, Hyuk-Sang

    2016-03-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  1. MMP-9 expression increases according to the grade of squamous intraepithelial lesion in cervical smears.

    PubMed

    Matheus, Erika R; Zonta, Marco A; Discacciati, Michelle G; Paruci, Priscila; Velame, Fernanda; Cardeal, Laura B S; Barros, Silvia B M; Pignatari, Antonio C; Maria-Engler, Silvya S

    2014-10-01

    Studies about cervical carcinogenesis have demonstrated the increased expression of matrix-metalloproteinase (MMP) according to the grade of cervical intraepithelial lesions. Considering the importance of innovative techniques to introduce noninvasive and rapid diagnoses for patients, this study aimed to perform MMP-9 immunocytochemistry in cervical smears according to the cytopathological diagnoses, in order to monitor MMP activity in cervical smears. This cross-sectional study investigated the expression of MMP-9 in normal cervical smears, inflammatory cervical smears, squamous intraepithelial lesions, and cervical carcinoma. Cervical smears from 630 women were collected for cytopathological diagnoses and immunocytochemistry. Women with squamous intraepithelial lesions showed an increase in MMP-9 expression, with moderate to intense staining occurring with increasing cervical lesion grade. The prevalence of moderate to intense MMP-9 staining was 9% in normal cervical smears, 12% in cervical inflammation, 24% in low-grade squamous intraepithelial lesion (LSIL), 92% in high-grade squamous intraepithelial lesions (HSIL) and 100% in cervical carcinoma cases. In the specific case of LSIL, we found that association with MMP-9 is more evident when there is the simultaneous presence of an infectious agent. Thus, the expression of MMP-9 in cervical smears increases according to the grade of cervical lesion and LSIL in the presence of infectious agents showed higher MMP-9 expression than women with LSIL without infectious agents.

  2. GnRH increases glucose transporter-1 expression and stimulates glucose uptake in the gonadotroph.

    PubMed

    Harris, Valerie M; Bendre, Sachin V; Gonzalez De Los Santos, Francina; Fite, Alemu; El-Yaman El-Dandachli, Ahmad; Kurenbekova, Lyazat; Abou-Samra, Abdul B; Buggs-Saxton, Colleen

    2012-02-01

    GnRH is the main regulator of the hypothalamic-pituitary-gonadal (H-P-G) axis. GnRH stimulates the pituitary gonadotroph to synthesize and secrete gonadotrophins (LH and FSH), and this effect of GnRH is dependent on the availability of glucose and other nutrients. Little is known about whether GnRH regulates glucose metabolism in the gonadotroph. This study examined the regulation of glucose transporters (Gluts) by GnRH in the LβT2 gonadotroph cell line. Using real-time PCR analysis, the expression of Glut1, -2, -4, and -8 was detected, but Glut1 mRNA expression level was more abundant than the mRNA expression levels of Glut2, -4, and -8. After the treatment of LβT2 cells with GnRH, Glut1 mRNA expression was markedly induced, but there was no GnRH-induction of Glut2, -4, or -8 mRNA expression in LβT2 cells. The effect of GnRH on Glut1 mRNA expression is partly mediated by ERK activation. GnRH increased GLUT1 protein and stimulated GLUT1 translocation to the cell surface of LβT2 cells. Glucose uptake assays were performed in LβT2 cells and showed that GnRH stimulates glucose uptake in the gonadotroph. Finally, exogenous treatment of mice with GnRH increased the expression of Glut1 but not the expression of Glut2, -4, or -8 in the pituitary. Therefore, regulation of glucose metabolism by GnRH via changes in Gluts expression and subcellular location in the pituitary gonadotroph reveals a novel response of the gonadotroph to GnRH.

  3. Increased Expression of Angiopoietins and Tie2 in the Lungs of Chronic Asthmatic Mice

    PubMed Central

    Makinde, Toluwalope O.; Agrawal, Devendra K.

    2011-01-01

    Angiopoietin (Ang)1 and Ang2 are ligands for Tie2 tyrosine kinase receptor (Tie2). Elevated levels of Ang1 and Ang2 in induced sputum of patients with asthma have been reported, with a positive correlation of Ang2 levels with the severity of airway occlusion. Although studies have shown Tie2-mediated regulation of nonvascular cells in some pathological conditions, current knowledge on Tie2 signaling in asthma is limited to the vasculature. We examined the expression pattern of Ang1, Ang2, vascular endothelial growth factor (VEGF), and Tie2 and their correlation with the degree of airway remodeling in the lung of ovalbumin (OVA)-sensitized and OVA-challenged mice with airway hyperresponsiveness. Lung tissues were isolated from Balb/c mice after OVA sensitization and challenge. Hematoxylin and eosin, periodic acid-Schiff, and trichrome staining were used to show the lung pathology. The expression of Ang1, Ang2, VEGF, and Tie2 was examined using immunofluorescence, Western blot, ELISA, and real-time PCR. In the lung of normal mice, Tie2 expression was detected only in the blood vessels. However, in the lung of OVA-sensitized and OVA-challenged mice, Tie2 was abundantly expressed in airway epithelial cells and in a subset of macrophages in addition to constitutive expression in pulmonary vessels. The increase in Tie2 expression correlated with the severity of airway remodeling. Macrophages and airway epithelial cells express Ang2 and VEGF only in allergic models. Ang1 was constitutively expressed, with a decrease in mRNA level in allergic models. In conclusion, increased expression of Tie2 and Ang2 in allergic airway epithelium and alveolar macrophages correlates with the severity of airway remodeling. PMID:20463289

  4. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    PubMed

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.

  5. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  6. SPARCL1 Expression Increases With Preoperative Radiation Therapy and Predicts Better Survival in Rectal Cancer Patients

    SciTech Connect

    Kotti, Angeliki Holmqvist, Annica; Albertsson, Maria; Sun, Xiao-Feng

    2014-04-01

    Purpose: The secreted protein acidic and rich in cysteine-like 1 (SPARCL1) is expressed in various normal tissues and many types of cancers. The function of SPARCL1 and its relationship to a patient's prognosis have been studied, whereas its relationship to radiation therapy (RT) is not known. Our aim was to investigate the expression of SPARCL1 in rectal cancer patients who participated in a clinical trial of preoperative RT. Methods and Materials: The study included 136 rectal cancer patients who were randomized to undergo preoperative RT and surgery (n=63) or surgery alone (n=73). The expression levels of SPARCL1 in normal mucosa (n=29), primary tumor (n=136), and lymph node metastasis (n=35) were determined by immunohistochemistry. Results: Tumors with RT had stronger SPARCL1 expression than tumors without RT (P=.003). In the RT group, strong SPARCL1 expression was related to better survival than weak expression in patients with stage III tumors, independent of sex, age, differentiation, and margin status (P=.022; RR = 18.128; 95% confidence interval, 1.512-217.413). No such relationship was found in the non-RT group (P=.224). Further analysis of interactions among SPARCL1 expression, RT, and survival showed statistical significance (P=.024). In patients with metastases who received RT, strong SPARCL1 expression was related to better survival compared to weak expression (P=.041) but not in the non-RT group (P=.569). Conclusions: SPARCL1 expression increases with RT and is related to better prognosis in rectal cancer patients with RT but not in patients without RT. This result may help us to select the patients best suited for preoperative RT.

  7. Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients.

    PubMed

    Uberti, D; Cenini, G; Bonini, S A; Barcikowska, M; Styczynska, M; Szybinska, A; Memo, M

    2010-01-01

    In this study, we demonstrated for the first time an increased CD44 gene expression in lymphocytes derived from Alzheimer's disease (AD) patients in comparison with healthy subjects. CD44 is a surface antigen expressed by cells of the immune and central nervous system as well as in a variety of other tissues. Functioning as adhesion molecule, CD44 is furthermore involved in driving immune response into infected tissues, including the CNS. We also found that lymphocytes of the same patients expressed significant levels of unfolded p53 isoform, confirming what we already demonstrated in fibroblasts and lymphocytes derived from other cohorts of AD patients. A correlation between p53 and CD44 expression has been well demonstrated in cancer cells, suggesting that CD44 could be a target gene of mutant p53, or either mutant p53 could lack its ability to negatively regulate CD44 expression. The contemporaneous increased expression of unfolded p53 and CD44 in AD lymphocytes may suggest that these two molecules cross-talk together participating in peripheral immune response during the development of the disease.

  8. WISP-1 increases MMP-2 expression and cell motility in human chondrosarcoma cells.

    PubMed

    Hou, Chun-Han; Chiang, Yi-Chun; Fong, Yi-Chin; Tang, Chih-Hsin

    2011-06-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matricellular proteins. However, the effect of WISP-1 on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that WISP-1 increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells (JJ012 cells). We also found that human chondrosarcoma tissues had significant expression of the WISP-1 which was higher than that in normal cartilage. α5β1 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) inhibited the WISP-1-induced increase of the migration and MMP-2 up-regulation of chondrosarcoma cells. WISP-1 stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal-regulated kinase (ERK). In addition, NF-κB inhibitors also suppressed the cell migration and MMP-2 expression enhanced by WISP-1. Moreover, WISP-1 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-2 promoter. Taken together, our results indicated that WISP-1 enhances the migration of chondrosarcoma cells by increasing MMP-2 expression through the α5β1 integrin receptor, FAK, MEK, ERK, p65 and NF-κB signal transduction pathway.

  9. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  10. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  11. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries.

    PubMed

    Terrón-González, L; Medina, C; Limón-Mortés, M C; Santero, E

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.

  12. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  13. Natalizumab treatment leads to an increase in circulating CXCR3-expressing B cells

    PubMed Central

    Penttilä, Tarja-Leena; Airas, Laura

    2016-01-01

    Objective: To study the effects of natalizumab treatment on subgroups of circulating peripheral blood B cell populations. Methods: We studied the proportions and absolute numbers of CD19+CD20+, CD10+, and CD5+ B cell populations, and determined very late activation antigen-4 and chemokine receptor CXCR3, CCR5, and CCR6 expression on B cells in the peripheral blood of 14 natalizumab-treated patients with relapsing-remitting multiple sclerosis. Five blood samples per patient were obtained longitudinally before and during the first year of treatment. Blood samples were analyzed by 6-color flow cytometry. Results: Proportions of B cells and CD10+ pre–B cells were significantly increased, and very late activation antigen-4 expression on the B cell surface was significantly decreased already after 1 week of natalizumab treatment. Natalizumab-induced sustained increase in the proportion and absolute number of CXCR3-expressing B cells was statistically significant after 1 month of treatment. There were no changes in the proportions of CCR5- or CCR6-expressing B cells. Conclusions: The rapid and persistent increase in circulating CXCR3-expressing B cells in response to natalizumab treatment possibly reflects the relevance of this chemokine receptor in controlling migration of B cells into the CNS in humans in vivo. PMID:27800533

  14. Decrease in PTEN and increase in Akt expression and neuron size in aged rat spinal cord

    PubMed Central

    Rodrigues De Amorim, Miguel Augusto; Garcia-Segura, Luis Miguel; Goya, Rodolfo Gustavo; Portiansky, Enrique Leo

    2010-01-01

    PTEN is a tumor suppressor gene known to play an important role in the regulation of cell size. In this study we compared PTEN expression in the spinal cord of young (5 mo.) versus aged (32 mo.) female rats and correlated them with alterations in neuron size and morphology in the same animals. Total and phosphorylated PTEN (pPTEN) as well as its downstream target phosphorylated Akt (pAkt) were assessed by western blotting. Spinal cord neurons were morphometrically characterized. Total PTEN, pPTEN and total Akt expression were significantly higher in young rats than in aged animals. Expression of pAkt was stronger in aged animals. A significant increase in neuronal size was observed in large motoneurons of aged as compared with young rats. Our data show that in the spinal cord of rats, neuronal PTEN expression diminishes with advanced age while neuronal size increases. These results suggest that in the spinal cord, an age-related reduction in PTEN and increase of pAkt expression may be involved in the progressive enlargement of neurons. PMID:20347952

  15. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.

    PubMed Central

    Hirschi, K D

    1999-01-01

    Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses. PMID:10559438

  16. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats.

    PubMed

    Arnold, Jennifer C; Salvatore, Michael F

    2016-02-17

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.

  17. Increased expression of TRPC4 channels associated with erectile dysfunction in diabetes.

    PubMed

    Sung, H H; Choo, S H; Ko, M; Kang, S J; Chae, M R; Kam, S C; Han, D H; So, I; Lee, S W

    2014-07-01

    In recent reports, an association between altered TRPC channel function and the development of various diabetic complications has drawn the attention of many investigators. The aim of this study was to investigate the expression of TRPC4 channels of corpus smooth muscle (CSM) cells in diabetes, and to evaluate the association between erectile dysfunction (ED) and altered TRPC4 channel function. The expression of TRPC4 in the penile tissue of human, normal and diabetic rat was investigated using RT-PCR, western blotting and immunohistochemistry (IHC). In vivo gene transfer of dominant negative (DN) TRPC4 into the CSM of rat was conducted. In vivo pelvic nerve stimulation was performed to measure erectile function. Expression of TRPC1, TRPC3, TRPC4 and TRPC6 in human and rat CSM tissues was confirmed by RT-PCR, western blot and IHC. In the diabetic rat, the expression levels of mRNA and protein of the TRPC4, and TRPC6 were significantly increased compared to control rats (p < 0.05). The change in TRPC4 expression in the diabetic rats was higher than those of the other TRPC subunits (p < 0.05). The IHC showed that only TRPC4 expression had a higher intensity in the diabetes compared to normal rats (p < 0.05). Gene transfection with TRPC4(DN) into the diabetic rats restored erectile function to levels similar to that of normal controls. Gene expression of TRPC4(DN) in CSM tissue was confirmed by RT-PCR 2 weeks after transfection. This study demonstrated that TRPC4 channel expression increased in the penile CSM cells of diabetic rats. The down-regulation of TRPC4 with DN form restored erectile function in the diabetic rats. The alteration of TRPC4 channel is one of pathophysiology of ED and could be a target for drug development for ED.

  18. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    SciTech Connect

    Radvanyi, H.H.; Gourdon, G.; Junien, C. |

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  19. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    PubMed

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.

  20. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders. PMID:25697398

  1. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  2. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders.

  3. Increased expression of the antiapoptotic protein MCL1 in canine mast cell tumors.

    PubMed

    Amagai, Yosuke; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jung, Kyungsook; Nishikawa, Sho; Jang, Hyosun; Ishizaka, Saori; Matsuda, Hiroshi

    2013-07-31

    Myeloid cell leukemia sequence 1 (MCL1) is a potent antiapoptotic protein that plays a critical role in cell survival and drug resistance in various cancers. However, to the best of our knowledge, the role of MCL1 in mast cell tumors (MCTs) has not been investigated in dogs. Here, we detected increased MCL1 expression in MCT cell lines, regardless of the presence of a c-kit mutation. MCL1 expression increased when the cells were exposed to specific inhibitors of mitogen-activated protein kinase or Janus kinase-signaling pathways, thus protecting the cells from apoptosis, but not when KIT or phosphatidylinositol-3 kinase signaling cascades were inhibited. These results indicate that MCL1 expression may contribute to MCT survival and confer drug resistance. PMID:23428776

  4. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPAR{alpha}

    SciTech Connect

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine . E-mail: Martine.Aggerbeck@univ-paris5.fr

    2006-12-22

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPAR{alpha} or {gamma}. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPAR{alpha} to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPAR{alpha}.

  5. Increased expression of transglutaminase 2 drives glycolytic metabolism in renal carcinoma cells.

    PubMed

    Ku, Bo Mi; Lee, Chang-Hun; Lee, Seon-Hyeong; Kim, Soo-Youl

    2014-06-01

    Transglutaminase 2 (TGase 2) expression and glycolysis are increased in most renal cell carcinoma (RCC) cell lines compared to the HEK293 kidney cell line. Although increased glycolysis and altered tricarboxylic acid cycle are common in RCC, the detailed mechanism by which this phenomenon occurs remains to be elucidated. In the present study, TGase 2 siRNA treatment lowered glucose consumption and lactate levels by about 20-30 % in RCC cells; conversely, high expression of TGase 2 increased glucose consumption and lactate production together with decreased mitochondrial aconitase (Aco 2) levels. In addition, TGase 2 siRNA increased mitochondrial membrane potential and ATP levels by about 20-30 % and restored Aco 2 levels in RCC cells. Similarly, Aco 2 levels and ATP production decreased significantly upon TGase 2 overexpression in HEK293 cells. Therefore, TGase 2 leads to depletion of Aco 2, which promotes glycolytic metabolism in RCC cells. PMID:24643363

  6. Increased expression of estrogen-related receptor β during adaptation of adult cardiomyocytes to sustained hypoxia

    PubMed Central

    Cunningham, Kathryn F; Beeson, Gyda C; Beeson, Craig C; McDermott, Paul J

    2016-01-01

    Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRβ has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRβ in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRβ mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRβ mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and β isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRβ expression via adenoviral-mediated delivery of ERRβ shRNA blocked hypoxia-induced increases in PGC-1β mRNA, but not PGC-1α mRNA. Loss of ERRβ had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRβ affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRβ shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRβ knockdown. In conclusion: 1) hypoxia increases in ERRβ mRNA expression in contracting cardiomyocytes; 2) ERRβ is required for induction of the PGC-1β isoform in response to hypoxia; 3) ERRβ expression is required to sustain OCR in normoxic conditions. PMID:27335690

  7. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  8. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury.

  9. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  10. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  11. Transient increase in obese gene expression after food intake or insulin administration.

    PubMed

    Saladin, R; De Vos, P; Guerre-Millo, M; Leturque, A; Girard, J; Staels, B; Auwerx, J

    1995-10-12

    Obesity is a disorder of energy balance, indicating a chronic disequilibrium between energy intake and expenditure. Recently, the mouse ob gene, and subsequently its human and rat homologues, have been cloned. The ob gene product, leptin, is expressed exclusively in adipose tissue, and appears to be a signalling factor regulating body-weight homeostasis and energy balance. Because the level of ob gene expression might indicate the size of the adipose depot, we suggest that it is regulated by factors modulating adipose tissue size. Here we show that ob gene exhibits diurnal variation, increasing during the night, after rats start eating. This variation was linked to changes in food intake, as fasting prevented the cyclic variation and decreased ob messenger RNA. Furthermore, refeeding fasted rats restored ob mRNA within 4 hours to levels of fed animals. A single insulin injection in fasted animals increased ob mRNA to levels of fed controls. Experiments to control glucose and insulin independently in animals, and studies in primary adipocytes, showed that insulin regulates ob gene expression directly in rats, regardless of its glucose-lowering effects. Whereas the ob gene product, leptin, has been shown to reduce food intake and increase energy expenditure, our data demonstrate that ob gene expression is increased after food ingestion in rats, perhaps through a direct action of insulin on the adipocyte.

  12. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  13. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  14. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  15. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes.

    PubMed

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M; Serra, Dolors; Herrero, Laura

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  16. Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...

  17. Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions.

    PubMed

    Chen, Minguang; Cai, Hui; Klein, Janet D; Laur, Oskar; Chen, Guangping

    2015-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and plays an important role in the maintenance of body water homeostasis. Excessive glucocorticoid as often seen in Cushing's syndrome causes water retention. However, whether and how glucocorticoid regulates AQP2 remains unclear. In this study, we examined the direct effect of dexamethasone on AQP2 protein expression and activity. Dexamethasone increased AQP2 protein abundance in rat inner medullary collecting duct (IMCD) suspensions. This was confirmed in HEK293 cells transfected with AQP2 cDNA. Cell surface protein biotinylation showed an increase of dexamethasone-induced cell membrane AQP2 expression and this effect was blocked by glucocorticoid receptor antagonist RU486. Functionally, dexamethasone treatment of oocytes injected with an AQP2 cRNA increased water transport activity as judged by cell rupture time in a hypo-osmotic solution (66 ± 13 s in dexamethasone vs. 101 ± 11 s in control, n = 15). We further found that dexamethasone treatment reduced AQP2 protein degradation, which could result in an increase of AQP2 protein. Interestingly, dexamethasone promoted cell membrane AQP2 moving to less buoyant lipid raft submicrodomains. Taken together, our data demonstrate that dexamethasone promotes AQP2 protein expression and increases water permeability mainly via inhibition of AQP2 protein degradation. The increase in AQP2 activity promotes water reabsorption, which may contribute to glucocorticoid-induced water retention and hypertension. PMID:26578982

  18. Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli.

    PubMed

    Niiranen, Laila; Espelid, Sigrun; Karlsen, Christian R; Mustonen, Milla; Paulsen, Steinar M; Heikinheimo, Pirkko; Willassen, Nils P

    2007-03-01

    Functional and structural studies require gene overexpression and purification of soluble proteins. We wanted to express proteins from the psychrophilic bacterium Vibrio salmonicida in Escherichia coli, but encountered solubility problems. To improve the solubility of the proteins, we compared the effects of six N-terminal fusion proteins (Gb1, Z, thioredoxin, GST, MBP and NusA) and an N-terminal His6-tag. The selected test set included five proteins from the fish pathogen V. salmonicida and two related products from the mesophilic human pathogen Vibrio cholerae. We tested the expression in two different expression strains and at three different temperatures (16, 23 and 37 degrees C). His6-tag was the least effective tag, and these vector constructs were also difficult to transform. MBP and NusA performed best, expressing soluble proteins with all fusion partners in at least one of the cell types. In some cases MBP, GST and thioredoxin fusions resulted in products of incorrect size. The effect of temperature is complex: in most cases level of expression increased with temperature, whereas the effect on solubility was opposite. We found no clear connection between the preferred expression temperature of the protein and the temperature of the original host organism's natural habitat.

  19. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  20. Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia

    PubMed Central

    Gergics, Peter; Brinkmeier, Michelle L.

    2015-01-01

    Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression. PMID:25668206

  1. Increased expression of the Hutchinson-Gilford progeria syndrome truncated lamin A transcript during cell aging.

    PubMed

    Rodriguez, Sofia; Coppedè, Fabio; Sagelius, Hanna; Eriksson, Maria

    2009-07-01

    Most cases of the segmental progeroid syndrome, Hutchinson-Gilford progeria syndrome (HGPS), are caused by a de novo dominant mutation within a single codon of the LMNA gene. This mutation leads to the increased usage of an internal splice site that generates an alternative lamin A transcript with an internal deletion of 150 nucleotides, called lamin A Delta 150. The LMNA gene encodes two major proteins of the inner nuclear lamina, lamins A and C, but not much is known about their expression levels. Determination of the overall expression levels of the LMNA gene transcripts is an important step to further the understanding of the HGPS. In this study, we have performed absolute quantification of the lamins A, C and A Delta 150 transcripts in primary dermal fibroblasts from HGPS patients and unaffected age-matched and parent controls. We show that the lamin A Delta 150 transcript is present in unaffected controls but its expression is >160-fold lower than that in samples from HGPS patients. Analysis of transcript expression during in vitro aging shows that although the levels of lamin A and lamin C transcripts remain unchanged, the lamin A Delta 150 transcript increases in late passage cells from HGPS patients and parental controls. This study provides a new method for LMNA transcript analysis and insights into the expression of the LMNA gene in HGPS and normal cells.

  2. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    PubMed

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  3. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44.

    PubMed Central

    Lamb, R F; Hennigan, R F; Turnbull, K; Katsanakis, K D; MacKenzie, E D; Birnie, G D; Ozanne, B W

    1997-01-01

    Fibroblasts transformed by Fos oncogenes display increased expression of a number of genes implicated in tumor cell invasion and metastasis. In contrast to normal 208F rat fibroblasts, Fos-transformed 208F fibroblasts are growth factor independent for invasion. We demonstrate that invasion of v-Fos- or epidermal growth factor (EGF)-transformed cells requires AP-1 activity. v-Fos-transformed cell invasion is inhibited by c-jun antisense oligonucleotides and by expression of a c-jun dominant negative mutant, TAM-67. EGF-induced invasion is inhibited by both c-fos and c-jun antisense oligonucleotides. CD44s, the standard form of a transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. We demonstrate that increased expression of CD44 in Fos- and EGF-transformed cells is dependent upon AP-1. CD44 antisense oligonucleotides reduce expression of CD44 in v-Fos- or EGF-transformed cells and inhibit invasion but not migration. Expression of a fusion protein between human CD44s and Aequorea victoria green fluorescent protein (GFP) in 208F cells complements the inhibition of invasion by the rat-specific CD44 antisense oligonucleotide. We further show that both v-Fos and EGF transformations result in a concentration of endogenous CD44 or exogenous CD44-GFP at the ends of pseudopodial cell extensions. These results support the hypothesis that one role of AP-1 in transformation is to activate a multigenic invasion program. PMID:9001250

  4. Matrix attachment regions and regulated transcription increase and stabilize transgene expression.

    PubMed

    Abranches, Rita; Shultz, Randall W; Thompson, William F; Allen, George C

    2005-09-01

    Transgene silencing has been shown to be associated with strong promoters, but it is not known whether the propensity for silencing is caused by the level of transcription, or some other property of the promoter. If transcriptional activity fosters silencing, then transgenes with inducible promoters may be less susceptible to silencing. To test this idea, a doxycycline-inducible luciferase transgene was transformed into an NT1 tobacco suspension culture cell line that constitutively expressed the tetracycline repressor. The inducible luciferase gene was flanked by tobacco Rb7 matrix attachment regions (MAR) or spacer control sequences in order to test the effects of MARs in conjunction with regulated transcription. Transformed lines were grown under continuous doxycycline (CI), or delayed doxycycline induction (DI) conditions. Delayed induction resulted in higher luciferase expression initially, but continued growth in the presence of doxycycline resulted in a reduction of expression to levels similar to those found in continuously induced lines. In both DI and CI treatments, the Rb7 MAR significantly reduced the percentage of silenced lines and increased transgene expression levels. These data demonstrate that active transcription increases silencing, especially in the absence of the Rb7 MAR. Importantly, the Rb7 MAR lines showed higher expression levels under both CI and DI conditions and avoided silencing that may occur in the absence of active transcription such as what would be expected as a result of condensed chromatin spreading. PMID:17173639

  5. S-Allylcysteine, a garlic compound, increases ABCA1 expression in human THP-1 macrophages.

    PubMed

    Malekpour-Dehkordi, Zahra; Javadi, Ebrahim; Doosti, Mahmood; Paknejad, Maliheh; Nourbakhsh, Mitra; Yassa, Narguess; Gerayesh-Nejad, Siavash; Heshmat, Ramin

    2013-03-01

    ATP-binding cassette transporter A1 (ABCA1) is a key mediator of cholesterol efflux to apoA-I in lipid-loaded macrophages, which is the first step of reverse cholesterol transport in vivo and a critical step in preventing atherosclerosis. Enhanced ABCA1 expression may inhibit foam cell formation and consequently reduce atherogenic risk. The purpose of this study was to investigate the effect of S-allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, on the expression of ATP-binding cassette transporter A1 in human THP-1 macrophages. The human monocyte THP-1 cells were differentiated to macrophage cells in the presence of phorbol 12-myristate13-acetate (PMA). Macrophage cells were then treated with different concentrations (10, 20 and 40 mM) of SAC for 24 h. Total RNA of treated macrophages was extracted and analyzed with real-time RT-PCR. ABCA1 protein expression was also analyzed with western blotting. Results showed that SAC increased the ABCA1 mRNA (1.82-, 2.07- and 2.23-fold) and protein (1.37-, 1.55- and 2.08-fold) expression in macrophage THP-1 cells compared with control (untreated cells). Results suggested that SAC can increase ABCA1 expression in macrophages and may be beneficial in promoting reverse cholesterol efflux. PMID:22610793

  6. REM sleep deprivation increases the expression of interleukin genes in mice hypothalamus.

    PubMed

    Kang, Won Sub; Park, Hae Jeong; Chung, Joo-Ho; Kim, Jong Woo

    2013-11-27

    Recently, evidence has suggested the possible involvement of inflammatory cytokines in sleep deprivation (SD). In this study, we assessed the patterns of inflammatory gene regulation in the hypothalamus of REM SD mice. C57BL/6 mice were randomly assigned to two groups, SD (n=15) and control groups (n=15). Mice in the SD group were sleep-deprived for 72h using modified multiple platforms. Microarray analysis on inflammatory genes was performed in mice hypothalamus. In addition, interleukin 1 beta (IL1β) protein expression was analyzed by the immunochemistry method. Through microarray analysis, we found that expressions of IL subfamily genes, such as IL1β (2.55-fold), IL18 (1.92-fold), IL11 receptor alpha chain 1 (1.48-fold), IL5 (1.41-fold), and IL17E genes (1.31-fold), were up-regulated in the hypothalamus of SD mice compared to the control. The increase in the expression of these genes was also confirmed by RT-PCR. Among these genes, the expression of IL1β was particularly increased in the hypothalamus of SD mice. Interestingly, we found that the protein expression of endogenous IL1β was also elevated in the hypothalamus of SD mice compared to the control mice. These results implicate that IL subfamily genes, and in particular, IL1β, may play a role in sleep regulation in the hypothalamus of REM SD mice.

  7. Amygdala kindling increases fear responses and decreases glucocorticoid receptor mRNA expression in hippocampal regions.

    PubMed

    Kalynchuk, Lisa E; Meaney, Michael J

    2003-12-01

    Amygdala kindling dramatically increases fearful behavior in rats. Because kindling-induced fear increases in magnitude as rats receive more stimulations, kindling provides an excellent model for studying the nature and neural mechanisms of fear sensitization. In the present experiment, we studied whether the development of kindling-induced fear is related to changes in glucocorticoid receptor (GR) mRNA expression in various brain regions. Rats received 20, 60 or 100 amygdala kindling stimulations or 100 sham stimulations. One day after the final stimulation, their fearful behavior was assessed in an unfamiliar open field. Then, the rats were sacrificed and their brains were processed for in situ hybridization of GR mRNA expression. We found that compared with the sham-stimulated rats, the rats that received 60 or 100 kindling stimulations were significantly more fearful in the open field and also had significantly less GR mRNA expression in the dentate gyrus and CA1 subfield of the hippocampus. Importantly, the changes in fearful behavior were significantly correlated with the changes in GR mRNA expression. These results suggest that alterations in GR mRNA expression in hippocampal regions may play a role in the development of kindling-induced fear.

  8. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).

    PubMed

    Takata, Naoki; Kasuga, Jun; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Xylem parenchyma cells (XPCs) in larch adapt to subfreezing temperatures by deep supercooling, while cortical parenchyma cells (CPCs) undergo extracellular freezing. The temperature limits of supercooling in XPCs changed seasonally from -30 degrees C during summer to -60 degrees C during winter as measured by freezing resistance. Artificial deacclimation of larch twigs collected in winter reduced the supercooling capability from -60 degrees C to -30 degrees C. As an approach to clarify the mechanisms underlying the change in supercooling capability of larch XPCs, genes expressed in association with increased supercooling capability were examined. By differential screening and differential display analysis, 30 genes were found to be expressed in association with increased supercooling capability in XPCs. These 30 genes were categorized into several groups according to their functions: signal transduction factors, metabolic enzymes, late embryogenesis abundant proteins, heat shock proteins, protein synthesis and chromatin constructed proteins, defence response proteins, membrane transporters, metal-binding proteins, and functionally unknown proteins. All of these genes were expressed most abundantly during winter, and their expression was reduced or disappeared during summer. The expression of all of the genes was significantly reduced or disappeared with deacclimation of winter twigs. Interestingly, all but one of the genes were expressed more abundantly in the xylem than in the cortex. Eleven of the 30 genes were thought to be novel cold-induced genes. The results suggest that change in the supercooling capability of XPCs is associated with expression of genes, including genes whose functions have not been identified, and also indicate that gene products that have been thought to play a role in dehydration tolerance by extracellular freezing also have a function by deep supercooling.

  9. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  10. Aqueous Tear Deficiency Increases Conjunctival Interferon-γ (IFN-γ) Expression and Goblet Cell Loss

    PubMed Central

    Pflugfelder, Stephen C.; De Paiva, Cintia S.; Moore, Quianta L.; Volpe, Eugene A.; Li, De-Quan; Gumus, Koray; Zaheer, Mahira L.; Corrales, Rosa M.

    2015-01-01

    Purpose To investigate the hypothesis that increased interferon-γ (IFN-γ) expression is associated with conjunctival goblet cell loss in subjects with tear dysfunction. Methods Goblet cell density (GCD) was measured in impression cytology from the temporal bulbar conjunctiva, and gene expression was measured in cytology samples from the nasal bulbar conjunctiva obtained from 68 subjects, including normal control, meibomian gland disease (MGD), non-Sjögren syndrome (non-SSATD)-, and Sjögren syndrome (SSATD)-associated aqueous tear deficiency. Gene expression was evaluated by real-time PCR. Tear meniscus height (TMH) was measured by optical coherence tomography. Fluorescein and lissamine green dye staining evaluated corneal and conjunctival disease, respectively. Between-group mean differences and correlation coefficients were calculated. Results Compared to control, IFN-γ expression was significantly higher in both ATD groups, and its receptor was higher in SSATD. Expression of IL-13 and its receptor was similar in all groups. Goblet cell density was lower in the SSATD group; expression of MUC5AC mucin was lower and cornified envelope precursor small proline-rich region (SPRR)-2G higher in both ATD groups. Interferon-γ transcript number was inversely correlated with GCD (r = −0.37, P < 0.04) and TMH (r = −0.37, P = 0.02), and directly correlated with lissamine green staining (r = 0.51, P < 0.001) and SPRR-2G expression (r = 0.32, P < 0.05). Conclusions Interferon-γ expression in the conjunctiva was higher in aqueous deficiency and correlated with goblet cell loss and severity of conjunctival disease. These results support findings of animal and culture studies showing that IFN-γ reduces conjunctival goblet cell number and mucin production. PMID:26618646

  11. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L. Heck, Diane E.; Laskin, Jeffrey D.

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  12. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    PubMed Central

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L.; Heck, Diane E.; Laskin, Jeffrey D.

    2008-01-01

    Paraquat (1,1’-dimethyl-4,4’-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST’s, mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquatmediated cytotoxicity. PMID:18620719

  13. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  14. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  15. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  16. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  17. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  18. Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres

    PubMed Central

    Bar, Eli E.; Lin, Alex; Mahairaki, Vasiliki; Matsui, William; Eberhart, Charles G.

    2010-01-01

    Hypoxia promotes the expansion of non-neoplastic stem and precursor cell populations in the normal brain, and is common in malignant brain tumors. We examined the effects of hypoxia on stem-like cells in glioblastoma (GBM). When GBM-derived neurosphere cultures are grown in 1% oxygen, hypoxia-inducible factor 1α (HIF1α) protein levels increase dramatically, and mRNA encoding other hypoxic response genes, such as those encoding hypoxia-inducible gene-2, lysyl oxidase, and vascular endothelial growth factor, are induced over 10-fold. Hypoxia increases the stem-like side population over fivefold, and the percentage of cells expressing CD133 threefold or more. Notch pathway ligands and targets are also induced. The rise in the stem-like fraction in GBM following hypoxia is paralleled by a twofold increase in clonogenicity. We believe HIF1α plays a causal role in these changes, as when oxygen-stable HIF1α is expressed in normoxic glioma cells CD133 is induced. We used digoxin, which has been shown to lower HIF protein levels in vitro and in vivo, to inhibit the hypoxic response. Digoxin suppressed HIF1α protein expression, HIF1α downstream targets, and slowed tumor growth in vivo. In addition, pretreatment with digoxin reduced GBM flank xenograft engraftment of hypoxic GBM cells, and daily intraperitoneal injections of digoxin were able to significantly inhibit the growth of established subcutaneous glioblastoma xenografts, and suppressed expression of vascular endothelial growth factor. PMID:20671264

  19. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  20. Vacuum-assisted closure increases ICAM-1, MIF, VEGF and collagen I expression in wound therapy

    PubMed Central

    WANG, WEIYANG; PAN, ZHENYU; HU, XIANG; LI, ZONGHUAN; ZHAO, YONG; YU, AI-XI

    2014-01-01

    Severe traumatic wounds are challenging to manage during surgery. The introduction of vacuum-assisted closure (VAC) is a breakthrough in wound management. The aim of the present study was to investigate the effect of VAC on cytokines in wounds during the management of severe traumatic wounds following initial debridement. VAC and conventional wound care (CWC) were independently applied to severe traumatic wounds on pigs. The expression levels of intercellular adhesion molecule-1 (ICAM-1), migration inhibitory factor (MIF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor, collagen I and human fibroblast collagenase 1 were detected by quantitative polymerase chain reaction and western blotting. VAC significantly increased the expression of ICAM-1, MIF, VEGF and collagen I compared with that induced by CWC at the protein and mRNA levels. Therefore, the results of the present study indicate that VAC therapy is an effective method for treating severe traumatic wounds, as it increases the expression of cytokines in wounds. VAC significantly increases the expression of ICAM-1, MIF, VEGF and collagen I to manage severe traumatic wounds. PMID:24940415

  1. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis.

    PubMed

    Molojwane, E; Adams, N; Sweetlove, L J; Ingle, R A

    2015-07-01

    Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild-type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col-0 ecotype of Arabidopsis is unaffected by CN.

  2. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells.

    PubMed

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  3. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice.

    PubMed

    Katic, Masa; Kennedy, Adam R; Leykin, Igor; Norris, Andrew; McGettrick, Aileen; Gesta, Stephane; Russell, Steven J; Bluher, Matthias; Maratos-Flier, Eleftheria; Kahn, C Ronald

    2007-12-01

    Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, beta-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) and PGC-1beta, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse.

  4. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Chang, Alan L.; Ahmed, Atique U.; Moon, Kyung-Sub; Auffinger, Brenda; Tobias, Alex L.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Purpose Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4+FoxP3+GITR+ regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment. Experimental Design To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression and long-term survival was determined. Results Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Co-incidently, both IDO -competent and -deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared to IDO-competent brain tumors. Moreover, IDO-deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO-deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO-deficiency was lost in T cell-deficient mice. Conclusions These clinical and pre-clinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs which leads to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and supports the continued investigation of IDO-Treg interactions in the context of brain tumors. PMID:22932670

  5. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  6. Increased expression of the oligopeptidase THOP1 is a neuroprotective response to Abeta toxicity.

    PubMed

    Pollio, Giuseppe; Hoozemans, Jeroen J M; Andersen, Claus A; Roncarati, Renza; Rosi, Maria Cristina; van Haastert, Elise S; Seredenina, Tamara; Diamanti, Daniela; Gotta, Stefano; Fiorentini, Anna; Magnoni, Letizia; Raggiaschi, Roberto; Rozemuller, Annemieke J M; Casamenti, Fiorella; Caricasole, Andrea; Terstappen, Georg C

    2008-07-01

    In a comprehensive proteomics study aiming at the identification of proteins associated with amyloid-beta (Abeta)-mediated toxicity in cultured cortical neurons, we have identified Thimet oligopeptidase (THOP1). Functional modulation of THOP1 levels in primary cortical neurons demonstrated that its overexpression was neuroprotective against Abeta toxicity, while RNAi knockdown made neurons more vulnerable to amyloid peptide. In the TgCRND8 transgenic mouse model of amyloid plaque deposition, an age-dependent increase of THOP1 expression was found in brain tissue, where it co-localized with Abeta plaques. In accordance with these findings, THOP1 expression was significantly increased in human AD brain tissue as compared to non-demented controls. These results provide compelling evidence for a neuroprotective role of THOP1 against toxic effects of Abeta in the early stages of AD pathology, and suggest that the observed increase in THOP1 expression might be part of a compensatory defense mechanism of the brain against an increased Abeta load.

  7. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    PubMed Central

    Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.

    2015-01-01

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  8. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    PubMed

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  9. Ovarian Steroids Increase PSD-95 Expression and Dendritic Spines in the Dorsal Raphe of Ovariectomized Macaques

    PubMed Central

    Rivera, Heidi M.; Bethea, Cynthia L.

    2014-01-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E±P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E+P for 1 month (n=3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P and E+P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P=0.04). In the Golgi study, adult Ovx monkeys received placebo, E or E+P for 1 month (n=3–4) and the midbrain was Golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E+P treatment significantly increased spine density in higher-order (3–5°) dendritic branches relative to Ovx group (Bonferroni, P<0.05). In summary, E+P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. PMID:23959764

  10. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  11. Different Resistance-Training Regimens Evoked a Similar Increase in Myostatin Inhibitors Expression.

    PubMed

    Santos, A R; Lamas, L; Ugrinowitsch, C; Tricoli, V; Miyabara, E H; Soares, A G; Aoki, M S

    2015-08-01

    The aim of the present study was to investigate the effect of different resistance-training regimens (S or P) on the expression of genes related to the MSTN signaling pathway in physically-active men. 29 male subjects with at least 2 years of experience in strength training were assigned to either a strength-training group (S; n=11) or a power-training group (P; n=11). The control group (C; n=7) was composed of healthy physically-active males. The S and the P groups performed high- and low-intensity squats, respectively, 3 times per week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. No change was observed in MSTN, ACTIIB, GASP-1 and FOXO-3 A gene expression after the training period. A similar increase in the gene expression of the inhibitory proteins of the MSTN signaling pathway, FLST (S: 4.2 fold induction and P: 3.7 fold induction, p<0.01) and FL-3 (S: 5.6 fold induction and P: 5.6 fold induction, p<0.01), was detected after the training period. SMAD-7 gene expression was similarly augmented after both training protocols (S: 2.5 fold induction; P: 2.8 fold induction; p<0.05). In conclusion, the resistance-training regimens (S and P) activated the expression of inhibitors of the MSTN signaling pathway in a similar manner. PMID:25822941

  12. PTEN expression in ovine granulosa cells increases during terminal follicular growth.

    PubMed

    Froment, Pascal; Bontoux, Martine; Pisselet, Claudine; Monget, Philippe; Dupont, Joëlle

    2005-04-25

    In the present paper, we have studied the expression of the Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) and its putative biological role in the sheep ovary. We found by Northern-blot, immunohistochemistry and immunoblot that PTEN is highly expressed in granulosa cells from large differentiated follicles (LF) in comparison with small proliferating follicles (SF) (P < 0.001), with no clear effect of follicle quality. Moreover, the PTEN lipid phosphatase activity is also higher in LF than in SF (P < 0.01). In contrast, levels of the phosphorylated form of AKT (pAKT) are lower in LF than in SF (P < 0.0001). IGF-I and insulin but not FSH, LH or forskolin are able to stimulate the expression of PTEN mRNA (P < 0.001) and protein by ovine granulosa cells after 48 h of culture in vitro. An IGF-1 time course analysis showed that expression of PTEN protein appeared after 12h of culture, concomitant with the fall of the pAKT levels, which peaked after 6h of stimulation with IGF-I. Moreover, transfection experiments showed that overexpression of PTEN in ovine granulosa cells induced a decrease and an increase in E2F and p27 promoter activity, respectively (P < 0.05). Overall, our present data show for the first time that the expression of PTEN increases during terminal follicular growth. This increase, that might be induced by IGF-I but not FSH, would participate in the proliferation/differentiation transition of ovine granulosa cells in differentiating follicles.

  13. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia

    PubMed Central

    LI, LUNXU; LI, ZHENGQIAN; CAO, YIYUN; FAN, DONGSHENG; CHUI, DEHUA; GUO, XIANGYANG

    2016-01-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25–6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment. PMID:27347033

  14. Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin.

    PubMed

    Hegerle, N; Paris, A-S; Brun, D; Dore, G; Njamkepo, E; Guillot, S; Guiso, N

    2012-09-01

    Bordetella pertussis and Bordetella parapertussis are closely related bacterial agents of whooping cough. Whole-cell pertussis (wP) vaccine was introduced in France in 1959. Acellular pertussis (aP) vaccine was introduced in 1998 as an adolescent booster and was rapidly generalized to the whole population, changing herd immunity by specifically targeting the virulence of the bacteria. We performed a temporal analysis of all French B. pertussis and B. parapertussis isolates collected since 2000 under aP vaccine pressure, using pulsed-field gel electrophoresis (PFGE), genotyping and detection of expression of virulence factors. Particular isolates were selected according to their different phenotype and PFGE type and their characteristics were analysed using the murine model of respiratory infection and in vitro cell cytotoxic assay. Since the introduction of the aP vaccines there has been a steady increase in the number of B. pertussis and B. parapertussis isolates collected that are lacking expression of pertactin. These isolates seem to be as virulent as those expressing all virulence factors according to animal and cellular models of infection. Whereas wP vaccine-induced immunity led to a monomorphic population of B. pertussis, aP vaccine-induced immunity enabled the number of circulating B. pertussis and B. parapertussis isolates not expressing virulence factors to increase, sustaining our previous hypothesis.

  15. Increased G Protein-Coupled Receptor Kinase (GRK) Expression in the Anterior Cingulate Cortex in Schizophrenia

    PubMed Central

    Funk, Adam J.; Haroutunian, Vahram; Meador-Woodruff, James H.; McCullumsmith, Robert E.

    2014-01-01

    Background Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that expression of GRK proteins are altered in schizophrenia, consistent with previous findings of alterations up and downstream from this family of molecules that facilitate intracellular signaling processes. Methods In this study we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (N = 36) and a comparison group (N = 33). To control for antipsychotic treatment we measured these same targets in haloperidol treated vs. untreated rats (N = 10 for both). Results We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. Conclusion These data suggest that increased GRK5 expression may contribute the the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification. PMID:25153362

  16. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression.

    PubMed

    He, Bin; Peng, Hua; Zhao, Ying; Zhou, Hui; Zhao, Zhongxin

    2011-12-01

    Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats.

  17. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    SciTech Connect

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L. . E-mail: bslagle@bcm.edu

    2006-04-10

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis.

  18. SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients

    PubMed Central

    Christophi, George P; Hudson, Chad A; Gruber, Ross C; Christophi, Christoforos P; Mihai, Cornelia; Mejico, Luis J; Jubelt, Burk; Massa, Paul T

    2010-01-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and demyelination in central nervous system. The present study investigates a possible similar role for SHP-1 in the human disease multiple sclerosis (MS). The levels of SHP-1 protein and mRNA in PBMCs of MS patients were significantly lower compared to normal subjects. Moreover, promoter II transcripts, expressed from one of two known promoters, were selectively deficient in MS patients. To examine functional consequences of the lower SHP-1 in PBMCs of MS patients, we measured the intracellular levels of phosphorylated STAT6 (pSTAT6). As expected, MS patients had significantly higher levels of pSTAT6. Accordingly, siRNA to SHP-1 effectively increased the levels of pSTAT6 in PBMCs of controls to levels equal to MS patients. Additionally, transduction of PBMCs with a lentiviral vector expressing SHP-1 lowered pSTAT6 levels. Finally, multiple STAT6-responsive inflammatory genes were increased in PBMCs of MS patients relative to PBMCs of normal subjects. Thus, PBMCs of MS patients display a stable deficiency of SHP-1 expression, heightened STAT6 phosphorylation, and an enhanced state of activation relevant to the mechanisms of inflammatory demyelination. PMID:18209728

  19. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression

    PubMed Central

    Fu, Jinhua; Zhang, Yingjin; Wu, Renrong; Zheng, Yingjun; Zhang, Xianghui; Yang, Mei; Zhao, Jingping; Liu, Yong

    2014-01-01

    Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results confirmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule significantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain. PMID:25206843

  20. Young adults with head and neck cancer express increased susceptibility to mutagen-induced chromosome damage

    SciTech Connect

    Schantz, S.P.; Hsu, T.C.; Ainslie, N.; Moser, R.P. )

    1989-12-15

    Factors that contribute to an increased prevalence of squamous cell carcinoma of the upper aerodigestive tract among young adults in the United States remain unknown. A potential etiologic factor may relate to a genetically controlled sensitivity to environmental carcinogens. This study, therefore, examined 20 young adult patients who had squamous cell carcinoma for mutagen-induced chromosome sensitivity. Lymphocytes from respective patients were cultured, exposed to the clastogen bleomycin, arrested during metaphase, and examined quantitatively for chromosome breakage. The young adult population with squamous cell carcinoma expressed a significantly increased number of bleomycin-induced chromosome breaks per cell. Furthermore, among the study patients, chromosome sensitivity was most apparent in the non-tobacco users and in patients less than 30 years of age. The expression of such chromosome fragility following mutagen exposure should be considered in epidemiologic studies that intend to define risk factors for development of head and neck cancer.

  1. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Avola, Roberto; Di Tullio, Maria Antonietta; Sabbatini, Maurizio; Vitaioli, Lucia; Amenta, Francesco

    2004-05-01

    Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.

  2. Increased expression of the sodium transporter BSC-1 in spontaneously hypertensive rats.

    PubMed

    Sonalker, Prajakta A; Tofovic, Stevan P; Jackson, Edwin K

    2004-12-01

    The purpose of this study was to compare the expression of BSC-1 (bumetanide-sensitive Na+-K+-2Cl- cotransporter) in kidneys of spontaneously hypertensive rats (SHR) versus Wistar-Kyoto (WKY) rats by immunoblotting and reverse transcription-polymerase chain reaction. To determine the specificity of any observed changes in BSC-1 expression, we also compared expression of the thiazide sensitive Na+-Cl- cotransporter (TSC), the type-3 Na+-H+ exchanger (NHE-3), Na+-K+-ATPase-alpha1, the inwardly rectifying K+ channel (ROMK-1), the type-1 Na+-HCO3- cotransporter (NBC-1), aquaporin-1, and aquaporin-2. Analyses were performed on outer cortex, outer medulla, and inner medulla. BSC-1 protein was detected in outer medulla and was markedly (6-fold) higher in SHR. TSC protein was detected in the cortex and was not overexpressed in SHR. Aquaporin-1 protein was detected in all three regions and was not overexpressed in SHR. Aquaporin-2 and ROMK-1 proteins were detected in all three regions, but were moderately elevated (2-fold) only in the SHR inner medulla. Na+-K+-ATPase and NHE-3 proteins were detected in all three regions. Na+-K+-ATPase-alpha1 was modestly (25%) increased in SHR outer and inner medulla, whereas NHE-3 was moderately (2-fold) increased in the SHR cortex and inner medulla. NBC-1 protein was detected only in the cortex and was higher (2-fold) in SHR. mRNA levels of BSC-1, aquaporin-2, and ROMK-1 were not elevated in SHR, indicating a post-translational mechanism of protein overexpression. High-dose furosemide increased fractional sodium excretion more in SHR than WKY (3-fold). We conclude that increased expression of BSC-1, and to a lesser extent, aquaporin-2, ROMK-1, NHE-3, and NBC-1 may contribute to the pathogenesis of hypertension in the SHR.

  3. Severe preeclampsia is characterized by increased placental expression of galectin-1

    PubMed Central

    Than, Nandor Gabor; Erez, Offer; Wildman, Derek E.; Tarca, Adi L.; Edwin, Samuel S.; Abbas, Asad; Hotra, John; Kusanovic, Juan Pedro; Gotsch, Francesca; Hassan, Sonia S.; Espinoza, Jimmy; Papp, Zoltan; Romero, Roberto

    2009-01-01

    demonstrate that the protein is abundantly present in third trimester human placentas. 2) Placental galectin-1 expression is higher in severe PE than in normal pregnancy regardless of the presence of SGA. 3) However, it is not altered in SGA without PE. We propose that the increased placental expression of galectin-1 in patients with severe PE may represent a fetal response to an exaggerated systemic maternal inflammation; thus, galectin-1 may be implicated in maternal-fetal immune tolerance in humans. PMID:18570123

  4. Does MMP-2 expression and secretion change with increasing serial passage of keratocytes in culture?

    PubMed

    Sandeman, S R; Faragher, R G; Allen, M C; Liu, C; Lloyd, A W

    2001-02-01

    The effects of ageing on matrix metalloprotease degradation of the extracellular matrix during corneal wound healing are largely unknown. The following study used an in vitro model of ageing to assess changes in MMP-2 RNA expression and protein secretion. Early passage (EP) EK1.BR keratocyte cultures from 14 to 18 cumulative population doublings (cpds) and late passage (LP) cultures from 40 to 47 cpds were used to isolate protein and mRNA samples. Total protein from EP and LP cultures was measured using the Bradford protein assay. Zymographic analysis of EP and LP samples was carried out to compare MMP-2 activity. Northern blot analysis was used to assess changes in MMP-2 mRNA expression by EP and LP cultures, using a digoxigenin (DIG) based chemiluminescent detection system. LP cultures secreted more total protein per cell. MMP-2 but not MMP-9 activity was detected in keratocyte cultures. Densitometric analysis of zymograms and calculation of MMP-2 activity indicated a significant increase in MMP-2 activity per cell (P<0.05, n=11). No difference was observed in the levels of MMP-2 mRNA expressed by EP and LP cultures. An increase in MMP-2 activity per cell by LP cultures suggests that senescent keratocytes increase their degradative capacity. Similar changes in the keratocyte phenotype within the ageing cornea may alter the balanced response necessary for adequate wound healing and may have implications for the therapeutic use of MMP inhibitors in the eye.

  5. Nerve Demyelination Increases Metabotropic Glutamate Receptor Subtype 5 Expression in Peripheral Painful Mononeuropathy

    PubMed Central

    Ko, Miau-Hwa; Hsieh, Yu-Lin; Hsieh, Sung-Tsang; Tseng, To-Jung

    2015-01-01

    Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities. PMID:25739080

  6. INCREASED EXPRESSION OF AT2 RECEPTORS IN THE SOLITARY-VAGAL COMPLEX BLUNTS RENOVASCULAR HYPERTENSION

    PubMed Central

    Blanch, Graziela Torres; Freiria-Oliveira, André Henrique; Speretta, Guilherme Fina Fleury; Carrera, Eduardo J.; Li, Hongwei; Speth, Robert C.; Colombari, Eduardo; Sumners, Colin; Colombari, Débora S. A.

    2014-01-01

    Angiotensin II increases and decreases arterial pressure by acting at angiotensin type 1 and type 2 receptors respectively. Renovascular hypertensive rats exhibit a high level of activity of the peripheral and central renin-angiotensin system. Therefore, in the present study we evaluated the effect of increasing the expression of angiotensin type 2 receptors in the solitary-vagal complex [nucleus of the solitary tract/dorsal motor nucleus of the vagus], a key brainstem region for cardiovascular regulation, on the development of renovascular hypertension. Holtzman normotensive rats were implanted with a silver clip around the left renal artery to induce 2 kidney-1 clip renovascular hypertension. Three weeks later, rats were microinjected in the solitary-vagal complex with either an adeno-associated virus to increase the expression of angiotensin type 2 receptors, or with a control vector. We observed that increasing angiotensin type 2 receptor expression in the solitary-vagal complex attenuated the development of renovascular hypertension and also reversed the impairment of the baroreflex and the increase in the low frequency component of systolic blood pressure observed in renovascular hypertensive rats. Further, an observed decrease in mRNA levels of angiotensin converting enzyme 2 in the solitary-vagal complex of renovascular hypertensive rats was restored to control levels following viral-mediated increases in angiotensin type 2 receptors at this site. Collectively, these data demonstrate specific and beneficial effects of angiotensin type 2 receptors via the brain of hypertensive rats, and suggest that central angiotensin type 2 receptors may be a potential target for therapeutics in renovascular hypertension. PMID:24958505

  7. Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Dai, Huaping; Geng, Jing; Wan, Xuan; Huang, Xiaoxi; Li, Fei; Jiang, Dianhua; Wang, Chen

    2015-08-01

    Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis. PMID:26192087

  8. Mu opioid receptor expression is increased in inflammatory bowel diseases: implications for homeostatic intestinal inflammation

    PubMed Central

    Philippe, D; Chakass, D; Thuru, X; Zerbib, P; Tsicopoulos, A; Geboes, K; Bulois, P; Breisse, M; Vorng, H; Gay, J; Colombel, J‐F; Desreumaux, P; Chamaillard, M

    2006-01-01

    Background and aims Recent studies with μ opioid receptor (MOR) deficient mice support a physiological anti‐inflammatory effect of MOR at the colon interface. To better understand the potential pharmacological effect of certain opiates in inflammatory bowel diseases (IBD), we (1) evaluated the regulation in vivo and in vitro of human MOR expression by inflammation; and (2) tested the potential anti‐inflammatory function of a specific opiate (DALDA) in inflamed and resting human mucosa. Patients and methods Expression of MOR mRNA and protein was evaluated in healthy and inflamed small bowel and colonic tissues, isolated peripheral blood mononuclear cells and purified monocytes, and CD4+ and CD8+ T cells from healthy donors and IBD patients. The effect of cytokines and nuclear factor κB (NFκB) activation on MOR expression in lymphocyte T and monocytic human cell lines was assessed. Finally, DALDA induced anti‐inflammatory effect was investigated in mucosal explants from controls and IBD patients. Results MOR was expressed in ileal and colonic enteric neurones as well as in immunocytes such as myeloid cells and CD4+ and CD8+ T cells. Overexpressed in active IBD mucosa, MOR was significantly enhanced by cytokines and repressed by NFκB inhibitor in myeloid and lymphocytic cell lines. Furthermore, ex vivo DALDA treatment dampened tumour necrosis factor α mRNA expression in the colon of active IBD patients. Conclusions Given the increased expression of MOR and the ex vivo beneficial effect of DALDA in active IBD, natural and/or synthetic opioid agonists could help to prevent overt pathological intestinal inflammation. PMID:16299031

  9. Increased expression of Dock180 protein in the noninfarcted myocardium in rats.

    PubMed

    Liu, Xiao-Lan; Li, Gang; Wang, Zhi-Hua; Zhao, Wen-Ju; Wang, Li-Ping

    2013-03-01

    The integrin β1 subunit and its downstream molecule focal adhesion kinase have been identified as critical molecules for the inhibition of postinfarction cardiac remodeling, ischemic cardiomyopathy, and heart failure. However, as a component of the integrin pathway, it is still unclear whether Dock180 (dedicator of cytokinesis 1) protein is expressed in the noninfarcted myocardium of the peri-infarct zones. In this study, experimental myocardial infarction (MI) and sham-operation (sham) models were established in Sprague Dawley rats and the expression of Dock180 protein in the myocardium of the sham group and in the noninfarcted myocardium of the peri-infarct zones of the MI group was detected by Western blot technique. The Dock180 protein expression in the myocardium was as follows: postsham 24-hour group, 0.10 ± 0.04 (n = 8); post-MI 24-hour group, 0.13 ± 0.03 (n = 8); postsham 12-week group, 0.11 ± 0.05 (n = 8); and post-MI 12-week group 0.17 ± 0.04 (n = 8). The Dock180 protein expression in the myocardium in the post-MI 12-week group was significantly higher than that in the postsham 12-week group (p = 0.019), in the postsham 24-hour group (p = 0.004), and in the post-MI 24-hour group (p = 0.040). We conclude that Dock180 protein is expressed in the myocardium in rats. Furthermore, its expression is significantly increased in the noninfarcted myocardium of the peri-infarct zones.

  10. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    SciTech Connect

    Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu

    2011-06-03

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  11. ZBTB2 increases PDK4 expression by transcriptional repression of RelA/p65

    PubMed Central

    Kim, Min-Young; Koh, Dong-In; Choi, Won-Il; Jeon, Bu-Nam; Jeong, Deok-yoon; Kim, Kyung-Sup; Kim, Kunhong; Kim, Se-Hoon; Hur, Man-Wook

    2015-01-01

    The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, −31 to −21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression. PMID:25609694

  12. Copper-GHK increases integrin expression and p63 positivity by keratinocytes.

    PubMed

    Kang, Youn-A; Choi, Hye-Ryung; Na, Jung-Im; Huh, Chang-Hun; Kim, Min-Ji; Youn, Sang-Woong; Kim, Kyu-Han; Park, Kyoung-Chan

    2009-04-01

    Glycyl-L-histidyl-L-lysyl (GHK) possesses a high affinity for copper(II) ions, with which it spontaneously forms a complex (copper-GHK). It is well known that copper-GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. This study was conducted to investigate the effects of copper-GHK on keratinocytes. Proliferative effects were analyzed and hematoxylin and eosin staining and immunohistochemistry were conducted to evaluate the effects of copper-GHK in skin equivalent (SE) models. In addition, western blotting was performed. In monolayer cultured keratinocytes, copper-GHK increased the proliferation of keratinocytes. When the SE models were evaluated, basal cells became cuboidal when copper-GHK was added. Immunohistochemical analysis revealed that copper-GHK increased proliferating cell nuclear antigen (PCNA) and p63 positivity. Furthermore, the expression of integrin alpha6 and beta1 increased in SE models, and these results were confirmed by Western blotting. The results of this study indicate that treatment with copper-GHK may increase the proliferative potential of basal keratinocytes by modulating the expression of integrins, p63 and PCNA. In addition, increased levels of p63, a putative stem cell marker of the skin, suggests that copper-GHK promotes the survival of basal stem cells in the skin. PMID:19319546

  13. Serum factor induces selective increase in Na-channel expression in cultured skeletal muscle

    SciTech Connect

    Brodie, C.; Sampson, S.R. )

    1991-07-01

    The authors have examined effects of horse serum (HS) and various fractions (1 million-1M, 300K, 100K, and 30K nominal molecular weight limit) obtained by ultrafiltration on expression of TTX-sensitive Na-channels and on activities of the Na-K pump and glucose transport systems in cultured myotubes obtained from 1-2-day-old neonatal rat pups. Five-day-old cells were transferred to serum-free medium with no hormone or growth factor supplements (DMEM) for 24 hr and then treated with the various serum fractions for 48 hr. Measurements were made of specific (3H)-saxitoxin (STX) binding, action potential properties, 86Rb-uptake and 2-deoxyglucose (2-DG) uptake. HS significantly increased all parameters compared to DMEM (increases in STX-binding, 69%; Rb-uptake, 65%; 2-DG uptake, 93%). Results of treatment with the separate fractions showed that the 300K fraction caused a significantly greater increase in STX-binding than either HS or the other fractions. In contrast, the increases in Rb and 2-DG uptakes induced by the different fractions were not different from that obtained with HS. They conclude that serum contains a factor that selectively increases expression of TTX-sensitive Na-channels in skeletal muscle.

  14. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression.

    PubMed

    Gilbert, Jeffrey S; Gilbert, Sara A B; Arany, Marietta; Granger, Joey P

    2009-02-01

    Recent clinical studies indicate that an excess of angiostatic factors, such as soluble endoglin (sEng), is related to the occurrence of preeclampsia. Although recent clinical studies report that sEng is increased in preeclamptic women, the mechanisms underlying its overexpression remain unclear. Evidence suggests that hypoxia and induction of heme oxygenase-1 have opposing effects on sEng expression, the former stimulatory and the latter inhibitory. Hence, we hypothesized that placental ischemia because of reduced uterine perfusion pressure (RUPP) in the pregnant rat would increase sEng expression and decrease heme oxygenase-1. Mean arterial pressure was obtained via arterial catheter, and serum and placental proteins were measured by Western blot. Mean arterial pressure was increased (132+/-3 mm Hg versus 102+/-2 mm Hg; P<0.001), and fetal (2.35+/-0.05 g versus 1.76+/-0.08 g; P<0.001) and placental weight were decreased (0.47+/-0.04 g versus 0.58+/-0.03 g; P<0.01) in the RUPP compared with normal pregnant controls. Serum sEng (0.10+/-0.02 arbitrary pixel units [apu] versus 0.05+/-0.01 apu; P<0.05) and placental endoglin (4.7+/-2.3 apu versus 1.45+/-0.42 apu; P<0.05) were increased along with placental hypoxia inducible factor-1 alpha (1.42+/-0.25 apu versus 0.68+/-0.09 apu; P<0.05) expression in the RUPP versus the normal pregnant dams. Placental HO-1 (1.4+/-0.3 apu versus 2.5+/-0.1 apu; P<0.05) expression decreased in the RUPP compared with normal pregnant dams. The present findings support our hypothesis that placental ischemia because of RUPP increases the expression of sEng and shifts the balance of angiogenic factors in the maternal circulation toward an angiostatic state. The present study provides further evidence that placental ischemia is a strong in vivo stimulus of angiostatic factors during pregnancy.

  15. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression.

    PubMed

    Gilbert, Jeffrey S; Gilbert, Sara A B; Arany, Marietta; Granger, Joey P

    2009-02-01

    Recent clinical studies indicate that an excess of angiostatic factors, such as soluble endoglin (sEng), is related to the occurrence of preeclampsia. Although recent clinical studies report that sEng is increased in preeclamptic women, the mechanisms underlying its overexpression remain unclear. Evidence suggests that hypoxia and induction of heme oxygenase-1 have opposing effects on sEng expression, the former stimulatory and the latter inhibitory. Hence, we hypothesized that placental ischemia because of reduced uterine perfusion pressure (RUPP) in the pregnant rat would increase sEng expression and decrease heme oxygenase-1. Mean arterial pressure was obtained via arterial catheter, and serum and placental proteins were measured by Western blot. Mean arterial pressure was increased (132+/-3 mm Hg versus 102+/-2 mm Hg; P<0.001), and fetal (2.35+/-0.05 g versus 1.76+/-0.08 g; P<0.001) and placental weight were decreased (0.47+/-0.04 g versus 0.58+/-0.03 g; P<0.01) in the RUPP compared with normal pregnant controls. Serum sEng (0.10+/-0.02 arbitrary pixel units [apu] versus 0.05+/-0.01 apu; P<0.05) and placental endoglin (4.7+/-2.3 apu versus 1.45+/-0.42 apu; P<0.05) were increased along with placental hypoxia inducible factor-1 alpha (1.42+/-0.25 apu versus 0.68+/-0.09 apu; P<0.05) expression in the RUPP versus the normal pregnant dams. Placental HO-1 (1.4+/-0.3 apu versus 2.5+/-0.1 apu; P<0.05) expression decreased in the RUPP compared with normal pregnant dams. The present findings support our hypothesis that placental ischemia because of RUPP increases the expression of sEng and shifts the balance of angiogenic factors in the maternal circulation toward an angiostatic state. The present study provides further evidence that placental ischemia is a strong in vivo stimulus of angiostatic factors during pregnancy. PMID:19075097

  16. Proline Metabolism Increases katG Expression and Oxidative Stress Resistance in Escherichia coli

    PubMed Central

    Zhang, Lu; Alfano, James R.

    2014-01-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity. PMID:25384482

  17. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  18. Cell- and Isoform-specific Increases in Arginase Expression in Acute Silica-induced Pulmonary Inflammation

    PubMed Central

    Poljakovic, Mirjana; Porter, Dale W.; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G.; Castranova, Vincent; Morris, Sidney M.

    2009-01-01

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase was elucidated in lungs of Sprague-Dawley rats 24 hr following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time PCR, and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced 2- and 3-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no iNOS immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  19. Fingolimod Increases CD39-Expressing Regulatory T Cells in Multiple Sclerosis Patients

    PubMed Central

    Muls, Nathalie; Dang, Hong Anh; Sindic, Christian J. M.; van Pesch, Vincent

    2014-01-01

    Background Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs. Conclusions In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod. PMID:25411844

  20. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression

    PubMed Central

    Hu, Ya-Ling; Yin, Yuan; Liu, He-Yong; Feng, Yu-Yang; Bian, Ze-Hua; Zhou, Le-Yuan; Zhang, Ji-Wei; Fei, Bo-Jian; Wang, Yu-Gang; Huang, Zhao-Hui

    2016-01-01

    AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved. METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively. RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression. PMID:27468213

  1. Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells.

    PubMed

    Florin, Lore; Pegel, Antje; Becker, Eric; Hausser, Angelika; Olayioye, Monilola A; Kaufmann, Hitto

    2009-04-20

    Recent studies have demonstrated that the introduction of transgenes regulating protein transport or affecting post-translational modifications can further improve industrial processes for the production of therapeutic proteins in mammalian cells. Our study on improving therapeutic protein production in CHO cells by heterologous expression of the ceramide transfer protein (CERT) was initiated by the recent discovery that CERT is involved in protein kinase D (PKD)-dependent protein transport from the Golgi to the plasma membrane. We generated a set of CHO DG44 cell lines by stable integration of constructs expressing either CERT wild-type or CERT S132A, a mutant conferring increased lipid transfer activity, or a mock plasmid. CHO cells expressing heterologous CERT demonstrated significantly higher specific productivities of the therapeutic protein HSA when grown in inoculum suspension cultures. This effect translated into significantly increased overall HSA titers in a fed-batch format where cells are grown in chemically defined serum-free media. Furthermore, we could show that CERT also enhanced monoclonal antibody secretion in two IgG production cell lines with different basal productivities. The data demonstrate the potential of CERT engineering to improve mammalian cell culture production processes to yield high amounts of a therapeutic protein product of desired quality. To our knowledge, this is the first study showing a bottle neck in recombinant protein secretion at the Golgi complex in mammalian cells. PMID:19428735

  2. Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors

    PubMed Central

    Herbst-Robinson, Katie J.; Liu, Li; James, Michael; Yao, Yuemang; Xie, Sharon X.; Brunden, Kurt R.

    2015-01-01

    Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer’s disease (AD) brain, as are activated glia that release inflammatory molecules, including eicosanoids. Previous studies have demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies. PMID:26672557

  3. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic

    SciTech Connect

    Pysher, Michele D.; Sollome, James J.; Regan, Suzanne; Cardinal, Trevor R.; Hoying, James B.; Brooks, Heddwen L.; Vaillancourt, Richard R.

    2007-10-01

    Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.

  4. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  5. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    PubMed Central

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  6. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  7. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells.

    PubMed

    Sánchez-Jiménez, Flora; Pérez-Pérez, Antonio; González-Yanes, Carmen; Najib, Souad; Varone, Cecilia L; Sánchez-Margalet, Víctor

    2011-01-30

    Leptin is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy, promoting antiapoptotic and trophic effects. Leptin receptor is present in trophoblastic cells and leptin may fully activate signaling. We have previously implicated the RNA-binding protein Sam68 in leptin signal transduction in immune cells. In the present work, we have studied the possible role of Sam68 in leptin receptor signaling in trophoblastic cells (JEG-3 cells). Leptin dose-dependently stimulated Sam68 phosphorylation in JEG-3 cells, as assessed by immunoprecipitation and immunoblot with anti-phosphotyrosine antibodies. As previously observed in other systems, tyrosine phosphorylation of Sam68 in response to leptin inhibits its RNA binding capacity. Besides, leptin stimulation dose-dependently increases Sam68 expression in JEG-3 cells, as assessed by quantitative PCR. Consistently, the amount of Sam68 protein is increased after 24h of leptin stimulation of trophoblastic cells. In order to study the possible role of Sam68 on leptin receptor synthesis, we employed antisense strategy to knockdown the expression of Sam68. We have found that a decrease in Sam68 expression leads to a decrease in leptin receptor amount in JEG-3 cells, as assessed both by quantitative PCR and immunoblot. These results strongly suggest the participation of Sam68 in leptin receptor signaling in human trophoblastic cells, and therefore, Sam68 may mediate some of the leptin effects in placenta. PMID:21035519

  8. Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease.

    PubMed

    Pérez, Esther; Barrachina, Marta; Rodríguez, Agustín; Torrejón-Escribano, Benjamín; Boada, Mercé; Hernández, Isabel; Sánchez, Marisa; Ferrer, Isidre

    2007-01-12

    Abnormalities in the cerebral microvasculature are common in Alzheimer disease (AD). Expression levels of the water channels aquaporin 1 and aquaporin 4 (AQP1, AQP4) were examined in AD cases by gel electrophoresis and Western blotting, and densitometric values normalized with beta-actin were compared with corresponding values in age-matched controls processed in parallel. In addition, samples of cases with Pick disease (PiD) were examined for comparative purposes. A significant increase in the expression levels of AQP1 was observed in AD stage II (following Braak and Braak classification). Individual variations were seen in advanced stages which resulted in non-significant differences between AD stages V-VI and age-matched controls. No differences in AQP1 levels were observed between familial AD cases (FAD, all of them at advanced stages) and corresponding age-matched controls. Immunohistochemistry showed increased AQP1 in astrocytes at early stages of AD. Double-labelling immunofluorescence and confocal microscopy disclosed AQP1 immunoreactivity at the cell surface of astrocytes which were recognized with anti-glial fibrillary acidic protein antibodies. No differences in the levels of AQP4 were observed in AD, FAD and PiD when compared with corresponding controls. These results indicate abnormal expression of AQP1 in astrocytes in AD, and they add support to the idea that abnormal regulation of mechanisms involved in the control of water fluxes occurs at early stages in AD.

  9. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency.

    PubMed

    Roy, Marc; Leclerc, Daniel; Wu, Qing; Gupta, Sapna; Kruger, Warren D; Rozen, Rima

    2008-10-01

    Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr(+/+) and Mthfr(+/-) mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr(+/+) and Mthfr(+/-) pregnant mice were injected with VPA on gestational day 8.5; resorption rates and occurrence of neural tube defects (NTDs) were examined on gestational day 14.5. We also examined the effects of VPA on MTHFR expression in HepG2 cells and on MTHFR activity and homocysteine levels in mice. Mthfr(+/+) mice had increased resorption rates (36%) after VPA treatment, compared to saline treatment (10%), whereas resorption rates were similar in Mthfr(+/-) mice with the two treatments (25-27%). NTDs were only observed in one group (VPA-treated Mthfr(+/+)). In HepG2 cells, VPA increased MTHFR promoter activity and MTHFR mRNA and protein (2.5- and 3.7-fold, respectively). Consistent with cellular MTHFR upregulation by VPA, brain MTHFR enzyme activity was increased and plasma homocysteine was decreased in VPA-treated pregnant mice compared to saline-treated animals. These results underscore the importance of folate interconversion in VPA-induced teratogenicity, since VPA increases MTHFR expression and has lower teratogenic potential in MTHFR deficiency. PMID:18615588

  10. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

    PubMed Central

    Na, Han-Heom; Noh, Hee-Jung; Cheong, Hyang-Min; Kang, Yoonsung; Kim, Keun-Cheol

    2016-01-01

    The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243] PMID:26949019

  11. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  12. Estrogen prevents increased hepatic aquaporin-9 expression and glycerol uptake during starvation.

    PubMed

    Lebeck, Janne; Gena, Patrizia; O'Neill, Heidi; Skowronski, Mariusz T; Lund, Sten; Calamita, Giuseppe; Praetorius, Jeppe

    2012-02-01

    In starvation, glycerol is released from adipose tissue and serves as an important precursor for hepatic gluconeogenesis. By unknown sex-specific mechanisms, women suppress the endogenous glucose production better than men and respond to metabolic stress with higher plasma glycerol levels. Hepatic glycerol uptake is facilitated by aquaporin-9 (AQP9), a broad-selectivity neutral solute channel, and represents an insulin-regulated step in supplying gluconeogenesis with glycerol. In the present study, hepatic AQP9 abundance was increased 2.6-fold in starved male rats as assessed by immunoblotting and immunohistochemistry. By contrast, starvation had no significant effect on hepatic AQP9 expression in female rats. Coordinately, plasma glycerol levels remained unchanged with starvation in male rats, whereas it was increased in female rats. The different responses to starvation were paralleled by higher glycerol permeability in basolateral hepatocyte membranes from starved male rats compared with starved females. Ovariectomy led to a starvation-response pattern identical to that observed in male rats with increased hepatic AQP9 expression and unchanged plasma glycerol levels. In cultured hepatocytes, 17β-estradiol and the selective estrogen receptor α-agonist, propyl pyrazole triol, caused a decrease in AQP9 expression. Our results support that a sex-specific regulation of the hepatic glycerol channel AQP9 during starvation contributes to the higher plasma glycerol levels observed in women during fasting and possibly results in a lower cytosolic availability of glycerol. Furthermore, the sexual dimorphism in the hepatic handling of glycerol during starvation might be explained by 17β-estradiol preventing the starvation-induced increase in hepatic AQP9 abundance.

  13. Estrogen therapy increases BDNF expression and improves post-stroke depression in ovariectomy-treated rats

    PubMed Central

    Su, Qiaoer; Cheng, Yifan; Jin, Kunlin; Cheng, Jianhua; Lin, Yuanshao; Lin, Zhenzhen; Wang, Liuqing; Shao, Bei

    2016-01-01

    The present study investigated the effect of exogenous estrogen on post-stroke depression. Rats were exposed to chronic mild stress following middle cerebral artery occlusion. The occurrence of post-stroke depression was evaluated according to the changes in preference for sucrose and performance in a forced swimming test. Estrogen therapy significantly improved these neurological symptoms, indicating that estrogen is effective in treating post-stroke depression. Increased brain-derived neurotrophic factor (BDNF) expression was reported in the hippocampus of rats that had been treated with estrogen for two weeks, suggesting that BDNF expression may be an important contributor to the improvement of post-stroke depression that is observed following estrogen therapy.

  14. Estrogen therapy increases BDNF expression and improves post-stroke depression in ovariectomy-treated rats

    PubMed Central

    Su, Qiaoer; Cheng, Yifan; Jin, Kunlin; Cheng, Jianhua; Lin, Yuanshao; Lin, Zhenzhen; Wang, Liuqing; Shao, Bei

    2016-01-01

    The present study investigated the effect of exogenous estrogen on post-stroke depression. Rats were exposed to chronic mild stress following middle cerebral artery occlusion. The occurrence of post-stroke depression was evaluated according to the changes in preference for sucrose and performance in a forced swimming test. Estrogen therapy significantly improved these neurological symptoms, indicating that estrogen is effective in treating post-stroke depression. Increased brain-derived neurotrophic factor (BDNF) expression was reported in the hippocampus of rats that had been treated with estrogen for two weeks, suggesting that BDNF expression may be an important contributor to the improvement of post-stroke depression that is observed following estrogen therapy. PMID:27602095

  15. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β.

    PubMed

    Ichikawa, Tomonaga; Nakahata, Shingo; Tamura, Tomohiro; Manachai, Nawin; Morishita, Kazuhiro

    2015-10-01

    N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety.

  16. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy.

    PubMed

    Zhai, Ya-Ling; Zhu, Li; Shi, Su-Fang; Liu, Li-Jun; Lv, Ji-Cheng; Zhang, Hong

    2016-03-01

    Aberrant glycosylated IgA1 molecules, mainly galactose-deficient IgA1 (Gd-IgA1), are important causal factors in IgA nephropathy; however, the underlying mechanism for the production of aberrantly glycosylated IgA1 is unknown. A recent genome-wide association study identified a novel IgAN susceptibility gene, TNFSF13, which encoded a proliferation-inducing ligand (APRIL) that promotes lymphocyte proliferation and IgA class switching. We aimed to explore the mechanism of APRIL's involvement in IgAN. We enrolled 166 patients with IgAN and 77 healthy controls and detected the plasma APRIL levels by the ELISA method, identified the mRNA expression of APRIL and its receptors by relative quantitative PCR, and confirmed by in vitro experiment. We identified increased plasma APRIL levels in IgAN, which was further proved by upregulated mRNA expression in B-lymphocytes from 27 IgAN patients. Analysis of the clinical characteristics of patients with IgAN showed that higher plasma APRIL level was associated with more severe clinical presentations (high proteinuria and low eGFR). The plasma APRIL level was positively correlated with Gd-IgA1 levels. Furthermore, exogenous APRIL could induce more production of Gd-IgA1 in cultured lymphocytes from patients with IgAN, compared with that from healthy controls. And, the relative higher expression of receptors of APRIL, that is, BCMA and TACI, in B-lymphocytes from IgAN patients were observed. Our findings implied that in patients with IgAN, increased APRIL is accompanied elevated expression of its receptors in B-lymphocytes, which induces overproduction of Gd-IgA1, ultimately contributing to the pathogenesis of IgAN.

  17. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  18. Increased leukemia-associated gene expression in benzene-exposed workers.

    PubMed

    Li, Keqiu; Jing, Yaqing; Yang, Caihong; Liu, Shasha; Zhao, Yuxia; He, Xiaobo; Li, Fei; Han, Jiayi; Li, Guang

    2014-07-04

    Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers.

  19. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression

    PubMed Central

    Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases. PMID:25933064

  20. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model

    PubMed Central

    Lakomá, Jarmila; Rimondini, Roberto; Ferrer Montiel, Antonio; Donadio, Vincenzo; Liguori, Rocco

    2016-01-01

    Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(−/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(−/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(−/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(−/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(−/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(−/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life. PMID:27531673

  1. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model.

    PubMed

    Lakomá, Jarmila; Rimondini, Roberto; Ferrer Montiel, Antonio; Donadio, Vincenzo; Liguori, Rocco; Caprini, Marco

    2016-01-01

    Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(-/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(-/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(-/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(-/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(-/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(-/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life. PMID:27531673

  2. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems.

    PubMed

    Bai, Shuangyi; Wallis, James G; Denolf, Peter; Browse, John

    2016-07-01

    Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc. PMID:26724425

  3. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    SciTech Connect

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-07-18

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo.

  4. Imiquimod Increases Cutaneous VEGF Expression in Imiquimod-induced Psoriatic Mouse Model.

    PubMed

    Wu, Hui-Hui; Xie, Wen-Lin; Zhao, Yu-Kun; Liu, Juan-Hua; Luo, Di-Qing

    2016-01-01

    Psoriasis is a chronic skin disease of unknown aetiology but increasing evidence suggests that cutaneous angiogenesis plays an important role. Vascular endothelial growth factor (VEGF) is one of the pro-angiogenic cytokines which is related to the pathogenesis of psoriasis. Our study evaluated the influence of imiquimod (IMQ) on VEGF in IMQ-induced mouse model. Balb/c female mice (n=16) 8-12 weeks of age were randomly divided into an experimental group (5% IMQ cream) and the control group (Vaseline cream). Serum levels of circulating VEGF-A were quantified by enzyme-linked immunosorbent assay. VEGF protein expression in tested skin was measured by western blotting and immunohistochemical staining. The tested skin in the experimental group expressed higher levels of VEGF protein than in the control group (p=0.012); immunohistochemical staining revealed that the cells over-expressing VEGF localized predominantly in the epidermis and vascular endothelium. Circulating VEGF-A levels showed no significant difference between the experimental and control groups (p=0.445). The IMQ-induced mouse psoriatic model showed an upregulation of VEGF in the skin lesions mimicking human psoriasis but the circulating VEGF-A levels showed no difference. This model may be useful to investigate the role of angiogenesis in psoriasis. PMID:26733387

  5. Dramatic early event in chronic allograft nephropathy: increased but not decreased expression of MMP-9 gene

    PubMed Central

    2013-01-01

    Objective The infiltration of mononuclear cells and replication and migration of smooth muscle cells (SMCs) from media into the intima in the vascular wall are the cardinal pathological changes in the early stage of chronic allograft nephropathy (CAN). But the mechanism is unclear. Therefore we investigated the role of matrix metalloproteinase 9 (MMP-9) and its interaction with TGF-beta1, tubulointerstitial mononuclear cells infiltration and migration of SMCs in the early stage of CAN. Methods Kidneys of Fisher (F334) rats were orthotopically transplanted into bilaterally nephrectomized Lewis (LEW) recipients. To suppress an initial episode of acute rejection, rats were briefly treated with cyclosporine A (1.5 mg/kg/day) for the first 10 days. Animals were harvested at 12 weeks after transplantation for histological, immunohistochemistry and molecular biological analysis. Results The expression of MMP-9 was up-regulated in interstitium and vascular wall in the early stage of CAN, where there were interstitial mononuclear cells infiltration and SMCs migration and proliferation. Moreover the expression of MMP-9 were positively correlated with the degree of interstitial mononuclear cells infiltration, the quantity of SMCs in arteriolar wall, and also the increased TFG-beta1 expression in the tubulointerstitium and arteriolar wall. Conclusions MMP-9 may play an important role in the mechanism of pathological changes during the earlier period of CAN. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1582313332832700. PMID:23351884

  6. Childhood and later life stressors and increased inflammatory gene expression at older ages.

    PubMed

    Levine, M E; Cole, S W; Weir, D R; Crimmins, E M

    2015-04-01

    Adverse experiences in early life have the ability to "get under the skin" and affect future health. This study examined the relative influence of adversities during childhood and adulthood in accounting for individual differences in pro-inflammatory gene expression in late life. Using a pilot-sample from the Health and Retirement Study (N = 114) aged from 51 to 95, OLS regression models were run to determine the association between a composite score from three proinflammatory gene expression levels (PTGS2, ILIB, and IL8) and 1) childhood trauma, 2) childhood SES, 3) childhood health, 4) adult traumas, and 5) low SES in adulthood. Our results showed that only childhood trauma was found to be associated with increased inflammatory transcription in late life. Furthermore, examination of interaction effects showed that childhood trauma exacerbated the influence of low SES in adulthood on elevated levels of inflammatory gene expression-signifying that having low SES in adulthood was most damaging for persons who had experienced traumatic events during their childhood. Overall our study suggests that traumas experienced during childhood may alter the stress response, leading to more sensitive reactivity throughout the lifespan. As a result, individuals who experienced greater adversity in early life may be at higher risk of late life health outcomes, particularly if adulthood adversity related to SES persists.

  7. DUOX2 Expression Is Increased in Barrett Esophagus and Cancerous Tissues of Stomach and Colon

    PubMed Central

    Qi, Ran; Zhou, Yunfeng; Li, Xiaozhen; Guo, Hong; Gao, Lei; Wu, Lijuan; Wang, Yufeng; Gao, Qiang

    2016-01-01

    Aim. To detect the expression of dual oxidase (DUOX) 2 in Barrett esophagus, gastric cancer, and colorectal cancer (CRC). Materials and Methods. The endoscopic biopsies were collected from patients with Barrett esophagus, while the curative resection tissues were obtained from patients with gastric cancer, CRC, or hepatic carcinoma. The DUOX2 protein and mRNA levels were detected with immunohistochemistry (IHC) and real-time quantitative PCR (qPCR). The correlation of DUOX2 expression with clinicopathological parameters of tumors was identified. Results. Low levels of DUOX2 mRNA were detected in Barrett esophagus and the adjacent normal tissues, and there was no difference between these two groups. DUOX2 protein was found in Barrett esophagus and undetectable in the normal epithelium. The DUOX2 mRNA and protein levels in the gastric cancer and CRC were increased compared to the adjacent nonmalignant tissues. The elevated DUOX2 in the gastric cancer was significantly associated with smoking history. In CRC tissues, the DUOX2 protein expression level in stages II–IV was significantly higher than that in stage I. In both hepatic carcinoma and the adjacent nonmalignant tissue, the DUOX2 was virtually undetectable. Conclusion. DUOX2 in Barrett esophagus, gastric cancer, and CRC may be involved in the tumorigenesis of these tissues. PMID:26839536

  8. Childhood and later life stressors and increased inflammatory gene expression at older ages.

    PubMed

    Levine, M E; Cole, S W; Weir, D R; Crimmins, E M

    2015-04-01

    Adverse experiences in early life have the ability to "get under the skin" and affect future health. This study examined the relative influence of adversities during childhood and adulthood in accounting for individual differences in pro-inflammatory gene expression in late life. Using a pilot-sample from the Health and Retirement Study (N = 114) aged from 51 to 95, OLS regression models were run to determine the association between a composite score from three proinflammatory gene expression levels (PTGS2, ILIB, and IL8) and 1) childhood trauma, 2) childhood SES, 3) childhood health, 4) adult traumas, and 5) low SES in adulthood. Our results showed that only childhood trauma was found to be associated with increased inflammatory transcription in late life. Furthermore, examination of interaction effects showed that childhood trauma exacerbated the influence of low SES in adulthood on elevated levels of inflammatory gene expression-signifying that having low SES in adulthood was most damaging for persons who had experienced traumatic events during their childhood. Overall our study suggests that traumas experienced during childhood may alter the stress response, leading to more sensitive reactivity throughout the lifespan. As a result, individuals who experienced greater adversity in early life may be at higher risk of late life health outcomes, particularly if adulthood adversity related to SES persists. PMID:25658624

  9. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  10. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  11. Peripheral sensitization increases opioid receptor expression and activation by crotalphine in rats.

    PubMed

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids.

  12. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds.

    PubMed

    El Tahchy, Anna; Petrie, James R; Shrestha, Pushkar; Vanhercke, Thomas; Singh, Surinder P

    2015-01-01

    Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  13. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    PubMed

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  14. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds

    PubMed Central

    El Tahchy, Anna; Petrie, James R.; Shrestha, Pushkar; Vanhercke, Thomas; Singh, Surinder P.

    2015-01-01

    Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes. PMID:26834753

  15. Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

    PubMed Central

    Grabarczyk, Piotr; Nähse, Viola; Delin, Martin; Przybylski, Grzegorz; Depke, Maren; Hildebrandt, Petra; Völker, Uwe; Schmidt, Christian A.

    2010-01-01

    Background The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. Methodology/Principal Findings Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. Conclusions The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells. PMID:20824091

  16. Granzyme expression in fine-needle aspirates from liver allografts is increased during acute rejection.

    PubMed

    Kuijf, M L; Kwekkeboom, Jaap; Kuijpers, Marianne A; Willems, Marc; Zondervan, Pieter E; Niesters, Hubert G M; Hop, Wim C J; Hack, C Erik; Paavonen, Timo; Höckerstedt, Krister; Tilanus, Hugo W; Lautenschlager, Irmeli; Metselaar, Herold J; Kuijf, Mark M L

    2002-10-01

    We investigated whether determination in fine-needle aspiration biopsy (FNAB) specimens of cells expressing granzymes (Grs) and Fas ligand would provide a reliable, easy, and quantitative measure of rejection activity in the transplanted liver. Retrospectively, 13 FNAB specimens obtained during clinical acute rejection, 10 FNAB specimens obtained during subclinical rejection, 12 FNAB specimens obtained during cytomegalovirus (CMV) infection, and 26 FNAB specimens obtained in the absence of rejection or infection were included on the study. Cytospin preparations of FNAB and peripheral-blood specimens were immunocytochemically stained for Fas-ligand and Gr, and increments in the liver were calculated by subtracting frequencies of positive cells in blood from those in FNAB specimens. Only sporadically Fas ligand-expressing, but many Gr-expressing, cells were detected in FNAB specimens. Increments in Gr-positive (Gr(+)) cells were significantly greater in FNAB specimens obtained during clinical rejection (median, 70 Gr(+) cells; range, 0 to 312 Gr(+) cells; P = .006) and tended to be greater in FNAB specimens obtained during subclinical rejection (median, 62 Gr(+) cells; range, 5 to 113 Gr(+) cells; P = .09) compared with those obtained in the absence of rejection (median, 16 Gr(+) cells; range, 0 to 103 Gr(+) cells). Increments obtained during clinical or subclinical rejection did not differ from those obtained during CMV infection (median, 27 Gr(+) cells; range, 6 to 212 Gr(+) cells). With the exclusion of specimens obtained during CMV infection, the sensitivity of Gr determination in FNAB specimens for the diagnosis of acute rejection (either clinical or subclinical) was 70%, and specificity, 69%. In FNAB specimens obtained during clinical and subclinical acute rejection episodes after liver transplantation, increased numbers of Gr-expressing cells were present; in the absence of CMV infection, their quantification provides a measure for rejection activity with

  17. Swertianlarin, isolated from Swertia mussotii Franch, increases detoxification enzymes and efflux transporters expression in rats

    PubMed Central

    Feng, Xin-Chan; Du, Xiaohuang; Chen, Sheng; Yue, Dongmei; Cheng, Ying; Zhang, Liangjun; Gao, Yu; Li, Shaoxue; Chen, Lei; Peng, Zhihong; Yang, Yong; Luo, Weizao; Wang, Rongquan; Chen, Wensheng; Chai, Jin

    2015-01-01

    Swertianlarin, isolated from Swertia mussotii Franch and Enicostemma axillare, has hepatoprotective effects against cholestasis in rat models of hepatotoxicity. However, the underlying molecular mechanism is not clear. We then treated rats with swertianlarin for 7 d and then measured serum liver injury markers, lipids, and bile salts, as well as the expression of bile acid synthesis and detoxification enzymes (e.g. Cyp7a1 and Cyp3a), membrane influx and efflux transporters (e.g. Ntcp and Mrp3), nuclear receptors (e.g. Pxr and Fxr/Shp) and transcriptional factors (e.g. Nrf2 and Hnf3β) in the liver. We found a significant induction of the expression of the basolateral efflux transporters Mrp3 and Mrp4 and canalicular transporter Mdr1 in rats treated with swertianlarin, compared with the controls (1.9-fold and 2.2-fold, P < 0.005, and 3.4-fold, P < 0.05, respectively). The expression of detoxification enzymes Cyp3a, Ugt2b, Sult2a1 and Gsta1 in rats treated with swertianlarin was significantly higher than that in controls (3.7-fold, 2.8-fold, 2.1-fold, and 1.7-fold, respectively, all P < 0.05). Expression of the synthetic enzyme, Cyp8b1, was higher in rats treated with swertianlarin than that in controls (1.8-fold at mRNA level and 3.4-flod at protein level, P < 0.05). Elevated serum levels of the conjugated bile acids, taurocholic acid and taurodeoxycholic acid, and a reduction in levels of serum ALP, unconjugated bile acid αMCA, and TG were observed (all P < 0.05). In conclusion, swertianlarin significantly up-regulates hepatic bile acid detoxification enzymes and efflux transporters in rats, which can increase the water solubility of hydrophobic bile acids and elimination of conjugated bile acids. PMID:25755705

  18. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas.

    PubMed

    Takenaga, K; Nakanishi, H; Wada, K; Suzuki, M; Matsuzaki, O; Matsuura, A; Endo, H

    1997-12-01

    The S100A4 gene (also known as pEL98/mts1/p9Ka/18A2/42A/calvasculin /FSP1/CAPL) encoding an S100-related calcium-binding protein is implied to be involved in the invasion and metastasis of murine tumor cells. In the present study, the expression of S100A4 in human colorectal adenocarcinoma cell lines (SW837, LoVo, DLD-1, HT-29, SW480, SW620, WiDr, and Colo201) and surgically resected neoplastic tissues was examined to investigate whether S100A4 plays a role in the invasion and metastasis of human tumor cells. Northern blot analysis using total RNA isolated from the adenocarcinoma cell lines revealed that five of the eight cell lines expressed substantial amounts of S100A4 mRNA. Normal colon fibroblasts (CCD-18Co) expressed little of the RNA. Using surgically resected specimens, it seemed that the amount of S100A4 mRNA in adenomas was nearly equal to that in normal colonic mucosa, whereas adenocarcinomas expressed a significantly higher amount of the RNA than did the adjacent normal colonic mucosa. Immunohistochemical analysis using formalin-fixed paraffin-embedded surgical specimens and monoclonal anti-S100A4 antibody demonstrated that none of 12 adenoma specimens were immunopositive, whereas 8 of 18 (44%) focal carcinomas in carcinoma in adenoma specimens and 50 of 53 (94%) adenocarcinoma specimens were immunopositive. Interestingly, the incidence of immunopositive cells increased according to the depth of invasion, and nearly all of the carcinoma cells in 14 metastases in the liver were positive. These results suggest that S100A4 may be involved in the progression and the metastatic process of human colorectal neoplastic cells. PMID:9815629

  19. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion

    PubMed Central

    Whitt, Jason D.; Keeton, Adam B.; Gary, Bernard D.; Sklar, Larry A.; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A.

    2016-01-01

    Abstract ATP-binding cassette (ABC) transpo rters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the non­steroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemother­apeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxoru­bicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxor­ubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxoru­bicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intra­cellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.

  20. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells.

    PubMed

    Gunes, Aysim; Iscan, Evin; Topel, Hande; Avci, Sanem Tercan; Gumustekin, Mukaddes; Erdal, Esra; Atabey, Nese

    2015-08-01

    Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.

  1. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression.

    PubMed

    Aubert, Grégory; Mansuy, Virginie; Voirol, Marie-Jeanne; Pellerin, Luc; Pralong, François P

    2011-03-01

    Metformin demonstrates anorectic effects in vivo and inhibits neuropeptide Y expression in cultured hypothalamic neurons. Here we investigated the mechanisms implicated in the modulation of feeding by metformin in animals rendered obese by long-term high-fat diet (diet-induced obesity [DIO]) and in animals resistant to obesity (diet resistant [DR]). Male Long-Evans rats were kept on normal chow feeding (controls) or on high-fat diet (DIO, DR) for 6 months. Afterward, rats were treated 14 days with metformin (75 mg/kg) or isotonic sodium chloride solution and killed. Energy efficiency, metabolic parameters, and gene expression were analyzed at the end of the high-fat diet period and after 14 days of metformin treatment. At the end of the high-fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic neuropeptide Y expression than DR or control rats, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pretreatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. These data identify the hypothalamic ObRb as a gene modulated after metformin treatment and suggest that the anorectic effects of the drug are potentially mediated via an increase in the central sensitivity to leptin. Thus, they provide a rationale for novel therapeutic approaches associating leptin and metformin in the treatment of obesity.

  2. The expression of S100P increases and promotes cellular proliferation by increasing nuclear translocation of β-catenin in endometrial cancer.

    PubMed

    Guo, Luyan; Chen, Shuqin; Jiang, Hongye; Huang, Jiaming; Jin, Wenyan; Yao, Shuzhong

    2014-01-01

    There is increasing evidence suggesting that S100P has a significant role in cancer, and is associated with poor clinical outcomes. The expression of S100P mRNA and protein in endometrial cancer and normal endometrium tissues was detected by real-time quantitative RT-PCR and immunohistochemistry. Moreover, we reduced the expression of S100P in HEC-1A and Ishikawa endometrial cancer cell lines by siRNA transfection. Based on the reduced S100P mRNA expression, we measured the effects of S100P on cellular proliferation by the cell-counting kit-8. Nuclear β-catenin protein level was detected by western blotting. Cyclin D1 and c-myc mRNA expression regulated by β-catenin was detected by real-time quantitative RT-PCR. We found that the expression of S100P mRNA and protein increased in endometrial cancer tissues compared with the normal endometrium. Local S100P expression progressively increased from pathologic differenciation grade 1 to 3. After reducing the S100P expression, the cellular proliferation ability, nuclear β-catenin protein level, cyclin D1 and c-myc mRNA levels reduced. It indicated that S100P could promote cell proliferation by increasing nuclear translocation of β-catenin. The expression of S100P mRNA and protein in endometrial cancer significantly increased and is associated with pathologic differenciation grade. S100P may promote endometrial cell proliferation by increasing nuclear translocation of β-catenin.

  3. Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2.

    PubMed

    Sonalker, Prajakta A; Tofovic, Stevan P; Bastacky, Sheldon I; Jackson, Edwin K

    2008-05-01

    1. Because chronic activation of the renal sympathetic nervous system promotes sodium and water retention, it is conceivable that long-term exposure of the kidney to the sympathetic neurotransmitter noradrenaline upregulates the expression of key renal epithelial transport systems. 2. To test this hypothesis, we used immunoblotting of renal cortical and medullary tissue to investigate the abundance of major transport systems expressed along the renal tubule in response to long-term (15 days) infusions of noradrenaline (600 ng/min) in rats. 3. Mean arterial blood pressure and heart rate were significantly elevated in rats receiving chronic infusions of noradrenaline (128 +/- 10 mmHg and 492 +/- 16 b.p.m., respectively) compared with animals treated with saline only (89 +/- 3 mmHg and 376 +/- 14 b.p.m., respectively). 4. Chronic infusions of noradrenaline also increased the protein abundance of the cortical Na(+)/H(+) exchanger isoform 3 (NHE-3; 2.5-fold; P = 0.0142), the cortical sodium-bicarbonate cotransporter NBC-1 (2.5-fold; P = 0.0067), the bumetanide-sensitive sodium-potassium-chloride cotransporter BSC-1/NKCC2 in the inner stripe of outer medulla (threefold; P = 0.0020) and aquaporin-2 in the inner medulla (twofold; P = 0.0039). 5. In contrast, noradrenaline did not significantly affect expression of the thiazide-sensitive Na(+)-Cl(-) cotransporter in the cortex, Na(+)/K(+)-ATPase-alpha(1) in the cortex and inner stripe of the outer or inner medulla, the inwardly rectifying K(+) channel (ROMK-1) in the inner stripe of the outer medulla or aquaporin-1 in the cortex or inner medulla. Noradrenaline did significantly, but modestly (less than twofold), increase aquaporin-1 in the inner stripe of the outer medulla. 6. We conclude that noradrenaline-induced increases in the expression of NHE-3, NBC-1, BSC-1 and aquaporin-2 are likely to play an important role in the regulation of salt and water transport by noradrenaline in the kidney and may explain, at least in

  4. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  5. An unexpected increase in restraint duration alters the expression of stress response habituation

    PubMed Central

    Kearns, Rachael R.; Spencer, Robert L.

    2013-01-01

    While habituation develops to a repeated psychological stressor, manipulating certain parameters of the stress challenge experience may lead to dishabituation of the stress response. In this experiment, we investigated whether the behavioral, endocrine, and neural responses (c-fos mRNA immediate early gene expression) to a psychological stressor (restraint) differ when the duration of the stressor given on the test day violates expectations based on prior stress experience. Rats experienced 10 min of daily restraint on Days 1-4 followed by challenge with either the same duration (10 min) or a longer duration (30 min) of restraint on Day 5. Rats’ behavior was video recorded during the Day 5 restraint episode, and trunk blood and brain tissue were collected 30 min following restraint onset. Struggling behavior was manually scored as active attempts to escape the restraint device. Rats who experienced the same duration of repeated restraint showed a significant decrease of plasma corticosterone (CORT) compared to the 10 min acute restraint group (habituation). In addition, these rats showed decreased active struggling over repeated restraint trials. Conversely, the rats showed an increased CORT response (dishabituation) when they experienced a longer duration of restraint on Day 5 than they had previously. These rats showed a habituated behavioral response during the first 10 min of restraint, however struggling behavior increased once the duration of restraint exceeded the expected duration (with a peak at 12 min). This peak in struggling behavior did not occur during 30 min acute restraint, indicating that the effect was related to memory of previous restraint experience and not due to a longer duration of restraint. In contrast, these animals showed habituated c-fos mRNA expression in the paraventricular nucleus (PVN), lateral septum (LS), and medial prefrontal cortex (mPFC) in response to the increased stressor duration. Thus, there was dissociation between c

  6. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  7. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-04-08

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  8. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    PubMed Central

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a “tetraploid-dihaploid-tetraploid” series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003–2007) to reach levels of 85–90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  9. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  10. Single Nucleotide Polymorphisms that Increase Expression of the GTPase RAC1 are Associated with Ulcerative Colitis

    PubMed Central

    Muise, Aleixo M; Walters, Thomas; Xu, Wei; Shen-Tu, Grace; Guo, Cong-Hui; Fattouh, Ramzi; Lam, Grace Y; Wolters, Victorien M; Bennitz, Joshua; Van Limbergen, Johan; Renbaum, Paul; Kasirer, Yair; Ngan, Bo-Yee; Turner, Dan; Denson, Lee A; Sherman, Philip M; Duerr, Richard H; Cho, Judy; Lees, Charlie W; Satsangi, Jack; Wilson, David C; Paterson, Andrew D; Griffiths, Anne M; Glogauer, Michael; Silverberg, Mark S; Brumell, John H

    2011-01-01

    Background & Aims RAC1 is a GTPase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases (IBD) are associated with dysregulation of immune defenses. We studied the role of RAC1 in IBD using human genetic and functional studies and animal models of colitis. Methods We used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms (SNPs) in a discovery cohort; findings were confirmed in 2 additional cohorts. RAC1 mRNA expression was examined from peripheral blood cells of patients. Colitis was induced in mice with conditional disruption of Rac1 in phagocytes by administration of dextran sulphate sodium (DSS). Results We observed a genetic association between RAC1 with ulcerative colitis (UC) in a discovery cohort, 2 independent replication cohorts, and in combined analysis for the SNPs rs10951982 (Pcombined UC = 3.3 × 10–8, odds ratio [OR]=1.43 [1.26–1.63]) and rs4720672 (Pcombined UC=4.7 × 10–6, OR=1.36 [1.19–1.58]). Patients with IBD who had the rs10951982 risk allele had increased expression of RAC1, compared to those without this allele. Conditional disruption of Rac1 in macrophage and neutrophils of mice protected them against DSS-induced colitis. Conclusion Studies of human tissue samples and knockout mice demonstrated a role for the GTPase RAC1 in the development of UC; increased expression of RAC1 was associated with susceptibility to colitis. PMID:21684284

  11. An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer.

    PubMed

    Bu, Dawei; Tomlinson, Gail; Lewis, Cheryl M; Zhang, Cindy; Kildebeck, Eric; Euhus, David M

    2006-10-01

    XRCC1 coordinates the activities of DNA polymerase-beta and DNA ligase for base excision repair of oxidative DNA damage. In addition, there is some evidence that XRCC1 is a negative regulator of apoptosis. Single nucleotide polymorphisms in XRCC1 have been inconsistently associated with breast cancer risk. We evaluated XRCC1 gene expression in breast cancer cell lines and carcinogen-induced apoptosis in benign breast epithelial cells in relation to XRCC1 genotypes. XRCC1 IVS10+141G>A was associated with increased expression of XRCC1 mRNA and protein, and reduced apoptosis in response to benzo-[a]-pyrene or ionizing radiation, but XRCC1 R399Q was not. These genotypes were also assessed in a clinic-based sample that included 190 breast cancer patients with a family history of breast cancer and 95 controls with no family history of breast cancer. Heterozygous XRCC1 IVS10+141G>A was associated with an increased breast cancer risk (O.R. = 1.7, 95% C.I. 1.016-2.827, P = 0.04) as was homozygous XRCC1 IVS10+141G>A (O.R. = 4.7, 95% C.I. 1.028-21.444, P = 0.03). XRCC1 R399Q was not associated with breast cancer (O.R. 1.00, 95% C.I. 0.61-1.64). The XRCC1 IVS10+141G>A locus is centered in a sequence that is nearly identical to the consensus binding site for the PLAG1 transcription factor. XRCC1 IVS10+141G>A is an intronic polymorphism that is associated with XRCC1 expression, apoptosis and familial breast cancer. It may occur within an intronic regulatory sequence. PMID:16596326

  12. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X

    PubMed Central

    Wang, Jianle; Syrett, Camille M.; Kramer, Marianne C.; Basu, Arindam; Atchison, Michael L.; Anguera, Montserrat C.

    2016-01-01

    Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naïve T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity. PMID:27001848

  13. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses.

    PubMed

    Wang, Zhi; Li, Hongbing; Ke, Qingbo; Jeong, Jae Cheol; Lee, Haeng-Soon; Xu, Bingcheng; Deng, Xi-Ping; Lim, Yong Pyo; Kwak, Sang-Soo

    2014-11-01

    In this study, we generated and evaluated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SN plants) to develop plants with enhanced tolerance to various abiotic stresses. We selected two SN plants (SN4 and SN7) according to the expression levels of AtNDPK2 and the enzyme activity of NDPK in response to methyl viologen (MV)-mediated oxidative stress treatment using leaf discs for further characterization. SN plants showed enhanced tolerance to high temperature, NaCl, and drought stress on the whole-plant level. When the plants were subjected to high temperature treatment (42 °C for 24 h), the non-transgenic (NT) plants were severely wilted, whereas the SN plants were not affected because they maintained high relative water and chlorophyll contents. The SN plants also showed significantly higher tolerance to 250 mM NaCl and water stress treatment than the NT plants. In addition, the SN plants exhibited better plant growth through increased expression of auxin-related indole acetic acid (IAA) genes (MsIAA3, MsIAA5, MsIAA6, MsIAA7, and MsIAA16) under normal growth conditions compared to NT plants. The results suggest that induced overexpression of AtNDPK2 in alfalfa will be useful for increasing biomass production under various abiotic stress conditions.

  14. Both harmful and (some) helpful behaviours from others are associated with increased expression of schizotypal traits.

    PubMed

    Badcock, Johanna C; Panton, Kirsten; Cohen, Alex; Badcock, David R

    2016-05-30

    Negative treatment from others is related to elevated levels of trait schizotypy, signifying increased risk for psychosis, but associations with helpful behaviour have been much less studied. Using the Stereotype Content Model we tested the hypothesis that passive and active forms of help would be associated with increased and decreased expression of schizotypy, respectively. Schizotypal traits were assessed in students (N=631) using positive (Perceptual Aberration) and negative (Social Anhedonia) subscales of the Wisconsin Schizotypy Scales-Brief. Experiences of active (intentional) and passive (less deliberative) harm and help were assessed with the Behaviour from Intergroup Affect and Stereotypes Treatment Scale. As predicted, the results showed that experiences of passive help from others were associated with a 2-3 fold increase in scores on schizotypy scales, whilst reports of active help tended to be associated with a decrease in scores on these scales. Results also showed that increased reports of active and passive harm were associated with elevated scores on negative and positive schizotypy subscales, consistent with prior research. These findings, bridging research on social stereotyping and schizotypal personality, challenge the assumption that helpful behaviour from others is always beneficial for individuals with schizotypal traits who are at increased risk for psychosis. PMID:27058156

  15. A Single Oral Administration of Theaflavins Increases Energy Expenditure and the Expression of Metabolic Genes

    PubMed Central

    Kudo, Naoto; Arai, Yasunori; Suhara, Yoshitomo; Ishii, Takeshi; Nakayama, Tsutomu; Osakabe, Naomi

    2015-01-01

    Theaflavins are polyphenols found in black tea, whose physiological activities are not well understood. This study on mice evaluated the influence of a single oral administration of theaflavins on energy metabolism by monitoring the initial metabolic changess in skeletal muscle and brown adipose tissue (BAT). Oxygen consumption (VO2) and energy expenditure (EE) were increased significantly in mice treated with theaflavin rich fraction (TF) compared with the group administered vehicle alone. There was no difference in locomotor activity. Fasting mice were euthanized under anesthesia before and 2 and 5, 20-hr after treatment with TF or vehicle. The mRNA levels of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in BAT were increased significantly 2-hr after administration ofTF. The levels of UCP-3 and PGC-1α in the gastrocnemius muscle were increased significantly 2 and 5-hr after administration of TF. The concentration of phosphorylated AMP-activated protein kinase (AMPK) 1α was also increased significantly in the gastrocnemius 2 and 5-hr after treatment with TF. These results indicate that TF significantly enhances systemic energy expenditure, as evidenced by an increase in expression of metabolic genes. PMID:26375960

  16. A Single Oral Administration of Theaflavins Increases Energy Expenditure and the Expression of Metabolic Genes.

    PubMed

    Kudo, Naoto; Arai, Yasunori; Suhara, Yoshitomo; Ishii, Takeshi; Nakayama, Tsutomu; Osakabe, Naomi

    2015-01-01

    Theaflavins are polyphenols found in black tea, whose physiological activities are not well understood. This study on mice evaluated the influence of a single oral administration of theaflavins on energy metabolism by monitoring the initial metabolic changess in skeletal muscle and brown adipose tissue (BAT). Oxygen consumption (VO2) and energy expenditure (EE) were increased significantly in mice treated with theaflavin rich fraction (TF) compared with the group administered vehicle alone. There was no difference in locomotor activity. Fasting mice were euthanized under anesthesia before and 2 and 5, 20-hr after treatment with TF or vehicle. The mRNA levels of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in BAT were increased significantly 2-hr after administration ofTF. The levels of UCP-3 and PGC-1α in the gastrocnemius muscle were increased significantly 2 and 5-hr after administration of TF. The concentration of phosphorylated AMP-activated protein kinase (AMPK) 1α was also increased significantly in the gastrocnemius 2 and 5-hr after treatment with TF. These results indicate that TF significantly enhances systemic energy expenditure, as evidenced by an increase in expression of metabolic genes. PMID:26375960

  17. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology

    PubMed Central

    Chapuis, J; Hansmannel, F; Gistelinck, M; Mounier, A; Van Cauwenberghe, C; Kolen, K V; Geller, F; Sottejeau, Y; Harold, D; Dourlen, P; Grenier-Boley, B; Kamatani, Y; Delepine, B; Demiautte, F; Zelenika, D; Zommer, N; Hamdane, M; Bellenguez, C; Dartigues, J-F; Hauw, J-J; Letronne, F; Ayral, A-M; Sleegers, K; Schellens, A; Broeck, L V; Engelborghs, S; De Deyn, P P; Vandenberghe, R; O'Donovan, M; Owen, M; Epelbaum, J; Mercken, M; Karran, E; Bantscheff, M; Drewes, G; Joberty, G; Campion, D; Octave, J-N; Berr, C; Lathrop, M; Callaerts, P; Mann, D; Williams, J; Buée, L; Dewachter, I; Van Broeckhoven, C; Amouyel, P; Moechars, D; Dermaut, B; Lambert, J-C

    2013-01-01

    Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology. PMID:23399914

  18. LPS-induced dental pulp inflammation increases expression of ionotropic purinergic receptors in rat trigeminal ganglion.

    PubMed

    Chen, Yangxi; Zhang, Li; Yang, Jingwen; Zhang, Lu; Chen, Zhi

    2014-09-10

    Severe toothache can be caused by dental pulp inflammation. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in primary afferent neurons. This study aims to investigate the involvement of P2X receptors in the sensitization of the trigeminal ganglion (TG) caused by dental pulp inflammation. Lipopolysaccharides were unilaterally applied to the pulp of the upper molar of the rat to induce dental pulp inflammation. Increased expression of c-fos, a marker of neuronal activity, was induced in V1-V2 division, indicating the activation of TG neurons. The expressions of P2X2, P2X3, and P2X5 were also increased in the V1-V2 division of TG, primarily in small-sized and medium-sized neurons. Markers of glutamatergic afferents, VGluT1, and GABAergic afferents, GAD67, were induced by lipopolysaccharides and coexpressed with P2X in small-sized TG neurons. The present findings suggest that the P2X2, P2X3, and P2X5 receptors are upregulated as part of the sensitization produced by dental pulp inflammation. PMID:25055139

  19. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    PubMed Central

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. PMID:27486320

  20. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  1. Huqi San-Evoked Rat Colonic Anion Secretion through Increasing CFTR Expression

    PubMed Central

    Xue, Xiaowei; Shi, Zhengming; Wang, Wen; Yu, Xiaotong; Feng, Ping; Zhang, Min; Wang, Xuejiang; Xu, Jingdong

    2015-01-01

    Huqi San (HQS) is a Chinese herbal preparation of eight medicinal herbs that promote diuresis, detoxification, blood circulation, and cholestasis. Defects in transporter expression and function can cause cholestasis and jaundice. However, the mechanism of the cholestasis underlying HQS effects, especially on the gastrointestinal tract ion secretion, has not been elucidated. Real-time RT-PCR and Western blotting were used to study the expression and localization of cystic fibrosis transmembrane conductance regulator (CFTR) and α-ENaC in rat alimentary tract, and then the effect of HQS on the ion transport in rat distal colon mucosa was investigated using the short-circuit current (ISC) technique. The results showed that pretreatment with HQS significantly enhanced mRNA transcripts and protein content of CFTR in liver and distal colon but not α-ENaC in alimentary organs. HQS increases ISC and decreases the transepithelial resistance. Pretreatment with epithelial Na+ channel blocker did not affect the ISC responses elicited by HQS, but removal of extracellular Cl− or pretreatment with Cl− channel or Na+-K+-2Cl− cotransporter blocker inhibited HQS-elicited ISC responses. These findings demonstrated that HQS, RA, and RP can stimulate Cl− secretion in the distal colon by increasing the mRNA transcripts and protein content of CFTR in liver and distal colon. PMID:26290673

  2. COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus

    PubMed Central

    Kreiss, C; Birder, L A; Kiss, S; VanBibber, M M; Bauer, A J

    2003-01-01

    Background and aims: Cyclooxygenase 2 (COX-2) and prostaglandins (PGs) participate in the pathogenesis of inflammatory postoperative ileus. We sought to determine whether the emerging neuronal modulator COX-2 plays a significant role in primary afferent activation during postoperative ileus using spinal Fos expression as a marker. Methods: Rats, and COX-2+/+ and COX-2−/− mice underwent simple intestinal manipulation. The effect of intestinal manipulation on Fos immunoreactivity (IR) in the L5-S1 spinal cord, in situ circumference, and postoperative leucocytic infiltrate of the intestinal muscularis was measured. Postoperative PGE2 production was measured in peritoneal lavage fluid. The dependence of these parameters on COX-2 was studied in pharmacological (DFU, Merck- Frosst, selective COX-2 inhibitor) and genetic (COX-2−/− mice) models. Results: Postoperative Fos IR increased 3.7-fold in rats and 2.2-fold in mice. Both muscularis leucocytic infiltrate and the circumference of the muscularis increased significantly in rats and COX-2+/+ mice postoperatively, indicating dilating ileus. Surgical manipulation markedly increased PGE2 levels in the peritoneal cavity. DFU pretreatment and the genetic absence of COX-2−/− prevented dilating ileus, and leucocytic infiltrate was diminished by 40% with DFU and by 54% in COX-2−/− mice. DFU reversed postsurgical intra- abdominal PGE2 levels to normal. Fos IR after intestinal manipulation was attenuated by approximately 50% in DFU treated rats and in COX-2−/− mice. Conclusions: Postoperatively, small bowel manipulation causes a significant and prolonged increase in spinal Fos expression, suggesting prolonged primary afferent activation. COX-2 plays a key role in this response. This activation of primary afferents may subsequently initiate inhibitory motor reflexes to the gut, contributing to postoperative ileus. PMID:12631664

  3. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice.

    PubMed

    Chandler, Joshua D; Wongtrakool, Cherry; Banton, Sophia A; Li, Shuzhao; Orr, Michael L; Barr, Dana Boyd; Neujahr, David C; Sutliff, Roy L; Go, Young-Mi; Jones, Dean P

    2016-07-01

    Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma.

  4. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice.

    PubMed

    Chandler, Joshua D; Wongtrakool, Cherry; Banton, Sophia A; Li, Shuzhao; Orr, Michael L; Barr, Dana Boyd; Neujahr, David C; Sutliff, Roy L; Go, Young-Mi; Jones, Dean P

    2016-07-01

    Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma. PMID:27401458

  5. Perfluorooctane sulfonate increased hepatic expression of OAPT2 and MRP2 in rats.

    PubMed

    Yu, Wen-Guang; Liu, Wei; Liu, Li; Jin, Yi-He

    2011-06-01

    The toxicity of perfluorooctane sulfonate (PFOS), a persistent organic compound, is of great concern. Several studies have reported that PFOS decreases circulating thyroid hormone (TH) concentrations. However, the mechanisms involved remain to be determined. Female rats were exposed to (1) vehicle; (2) PFOS (0.2, 1.0, and 3.0 mg/kg); (3) propylthiouracil (PTU, 10 mg/kg); or (4) PTU (10 mg/kg) + PFOS (3.0 mg/kg) by gavage once a day for 5 consecutive days. Parameters including contents of total T4 (TT4) and total T3 (TT3) in both serum and bile, serum concentrations of transthyretin and thyroglobulin, as well as transcripts of transporters involved in hepatic uptake and efflux of T4 were determined in control and PFOS-exposed groups. TT4 and TT3 were also analyzed in PTU and PTU + PFOS groups in order to reflect the different hormone effects between PFOS, PTU, and PFOS + PTU. Results showed that serum TT4 and TT3 decreased, while bile TT4 and TT3 remained stable following PFOS exposure. Exposure to 3.0 mg/kg of PFOS significantly enhanced hepatic organic anion transporter OATP2 mRNA expression (1.43 times of control). Treatment with PFOS increased hepatic expression of multidrug resistance--associated protein MRP2, approximately 1.80 and 1.69 times of control in 1.0 and 3.0 mg/kg groups, respectively. Spearman's correlation coefficients revealed that MRP2 mRNA expression correlated well with serum TT4 level (r = -0.528, P = 0.012). Serum thyroglobulin and transthyretin levels remained stable. Serum TT3, bile TT4, and bile TT3 were significantly different between PFOS and PTU groups. No significant differences of TT4 and TT3 in both serum and bile were observed between PTU and PTU + PFOS (P > 0.05). In conclusion, PFOS increased hepatic expression of OAPT2, which could possibly enhance hepatic uptake and metabolism of T4 in rats. PFOS-induced TT4 deficiency is mainly due to the extrathyroidal metabolism of T4, which is probably different from the classic goitrogen

  6. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients

    PubMed Central

    Gu, Xiaobin; Gao, Xian-Shu; Xiong, Wei; Guo, Wei; Han, Linjun; Bai, Yun; Peng, Chuan; Cui, Ming; Xie, Mu

    2016-01-01

    Purpose Accumulating studies have investigated the prognostic and clinical significance of programmed death ligand-1 (PD-L1) expression in patients with hepatocellular carcinoma (HCC); however, the results were conflicting and inconclusive. We conducted a meta-analysis to combine controversial data to precisely evaluate this issue. Methods Relevant studies were thoroughly searched on PubMed, Web of Science, and Embase until April 2016. Eligible studies were evaluated by selection criteria. Hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the prognostic role of PD-L1 for overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS). Odds ratio (OR) with 95% CI were selected to assess the relationship between PD-L1 and clinicopathological features of HCC patients. Publication bias was tested using Begg’s funnel plot. Results A total of seven studies published from 2009 to 2016 were included for meta-analysis. The data showed that high PD-L1 expression was correlated to shorter OS (HR =2.09, 95% CI: 1.66–2.64, P<0.001) as well as poor DFS/RFS (HR =2.3, 95% CI: 1.46–3.62, P<0.001). In addition, increased PD-L1 expression was also associated with tumor differentiation (HR =1.51, 95% CI: 1–2.29, P=0.05), vascular invasion (HR =2.16, 95% CI: 1.43–3.27, P<0.001), and α-fetoprotein (AFP; HR =1.46, 95% CI: 1–2.14, P=0.05), but had no association with tumor stage, tumor size, hepatitis history, sex, age, or tumor multiplicity. No publication bias was found for all analyses. Conclusion This meta-analysis revealed that overexpression of PD-L1 was predictive for shortened OS and DFS/RFS in HCC. Furthermore, increased PD-L1 expression was associated with less differentiation, vascular invasion, and AFP elevation. PMID:27536144

  7. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer

    PubMed Central

    Morris, Patrick G.; Hudis, Clifford A.; Giri, Dilip; Morrow, Monica; Falcone, Domenick J.; Zhou, Xi Kathy; Du, Baoheng; Brogi, Edi; Crawford, Carolyn B.; Kopelovich, Levy; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2011-01-01

    Obesity is a risk factor for the development of hormone receptor-positive breast cancer in postmenopausal women and has been associated with an increased risk of recurrence and reduced survival. In humans, obesity causes subclinical inflammation in visceral and subcutaneous adipose tissue, characterized by necrotic adipocytes surrounded by macrophages forming crown-like structures (CLS). Recently, we found increased numbers of CLS, activation of the NF-κB transcription factor and elevated aromatase levels and activity in the mammary glands of obese mice. These preclinical findings raised the possibility that the obesity→inflammation axis is important for the development and progression of breast cancer. Here, our main objective was to determine if the findings in mouse models of obesity translated to women. Breast tissue was obtained from 30 women who underwent breast surgery. CLS of the breast (CLS-B) were found in nearly 50% (14 of 30) of patient samples. The severity of breast inflammation, defined as the CLS-B index, correlated with both body mass index (P<0.001) and adipocyte size (P=0.01). Increased NF-κB binding activity and elevated aromatase expression and activity were found in the inflamed breast tissue of overweight and obese women. Collectively, our results suggest that the obesity→inflammation→aromatase axis is present in the breast tissue of most overweight and obese women. The presence of CLS-B may be a biomarker of increased breast cancer risk or poor prognosis. PMID:21622727

  8. Increased dietary sodium alters Fos expression in the lamina terminalis during intravenous angiotensin II infusion.

    PubMed

    Bealer, Steven L; Metcalf, Cameron S; Heyborne, Ryan

    2007-03-01

    These studies examined the effects of increased dietary sodium on expression of Fos, the protein product of c-fos, in forebrain structures in the rat following intravenous infusion with angiotensin II (AngII). Animals were provided with either tap water (Tap) or isotonic saline solution (Iso) as their sole drinking fluid for 3-5 weeks prior to testing. Rats were then implanted with catheters in a femoral artery and vein. The following day, the conscious, unrestrained animals received iv infusion of either isotonic saline (Veh), AngII, or phenylephrine (Phen) for 2 h. Blood pressure and heart rate were monitored continuously throughout the procedure. Brains were subsequently processed for evaluation of Fos-like immunoreactivity (Fos-Li IR) in the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO), and the median preoptic nucleus (MnPO). Fos-Li IR was significantly increased in the SFO and OVLT of animals consuming both Tap and Iso following AngII, but not Phen, compared to Veh infusions. Furthermore, Fos-Li IR in the MnPO was increased following AngII infusion in rats consuming a high sodium diet, but not in animals drinking Tap. These data suggest that increased dietary sodium sensitizes the MnPO neurons to excitatory input from brain areas responding to circulating AngII.

  9. Expression of Umbelopsis ramanniana DGAT2A in Seed Increases Oil in Soybean1[OA

    PubMed Central

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M.C.; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-01-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed. PMID:18633120

  10. Reduced expression of 15-hydroxy prostaglandin dehydrogenase in chorion during labor is associated with decreased PRB and increased PRA and GR expression.

    PubMed

    Li, Yuan; He, Ping; Sun, Qianqian; Liu, Jie; Gao, Lu; You, Xingji; Gu, Hang; Ni, Xin

    2013-05-01

    The chorion laeve controls the levels of active prostaglandins within the uterus by NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH). The expression of PGDH in chorion is modulated by glucocorticoids and progesterone. In this study, we investigated glucocorticoid receptor (GR) and progesterone receptor A and B (PRA and PRB) in the regulation of PGDH expression in chorion, and we determined whether reduced PGDH expression in chorion during labor is associated with the changes in GR and PR expression by real-time RT-PCR and Western blot analysis. Dexamethasone (DEX) inhibited PGDH expression whereas progesterone stimulated PGDH expression in chorionic trophoblasts. DEX suppressed PGDH expression in GR overexpression and PR knockdown cells. The inhibitory effect of DEX did not occur in GR knockdown cells. Progesterone inhibited PGDH in GR overexpression and PR knockdown cells and it stimulated PGDH in PRB overexpression cells whereas it suppressed PGDH in PRA overexpression cells. Knockdown of c-Jun resulted in a loss of progesterone- and DEX-induced effects. PGDH was down-regulated in chorion tissues during labor. PRB was decreased whereas PRA and GR were increased in chorion during labor. Glucocorticoids inhibit PGDH expression via GR in chorionic trophoblasts. Progesterone enhances PGDH expression through PRB, whereas it inhibits PGDH expression via GR and PRA. Decreased PGDH expression is associated with increased GR and PRA, although decreased PRB, in chorion during labor.

  11. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  12. PD-1 expression on Melan-A-reactive T cells increases during progression to metastatic disease.

    PubMed

    Krönig, Holger; Julia Falchner, Kathrin; Odendahl, Marcus; Brackertz, Bettina; Conrad, Heinke; Muck, Dieter; Hein, Rüdiger; Blank, Christian; Peschel, Christian; Haller, Bernhard; Schulz, Stephan; Bernhard, Helga

    2012-05-15

    Programmed death 1 (PD-1) is known as an important factor for the development of tolerogenicity. This has been proven in chronic viral infections and different tumor models. To address the role of PD-1 and its ligand programmed death ligand 1 (PD-L1) in different stages of malignant melanoma, we investigated peripheral blood and tumor tissues in regard to overall survival (OS) and prognostic relevance. One hundred samples of peripheral blood mononuclear cells from HLA-A2(+) patients with malignant melanoma (Stages I-IV) were analyzed in seven color FACS combined with multimer analyses for the immunodominant epitope of Melan-A (peptide A2/Melan-A(p26-35mod) ). Corresponding formalin-fixed paraffin-embedded tissues of primary tumor and distant organ metastases from 37 cases were analyzed by immunohistochemistry for Melan-A, PD-L1 and PD-1 expression. Compared to the total CD8(+) T cell population, PD-1 expression by A2/Melan-A(+) CD8(+) T cells was over-represented in melanoma stages III and IV (p < 0.001). Although elevation of PD-1(+) Melan-A(+) CD8(+) T cells had no significant influence on OS, a positive correlation was observed between PD-L1 expression on melanoma cells and OS (p = 0.05). Correlation of advanced tumor stage with increased A2/Melan-A-multimer(+) PD-1(+) T cells in the peripheral blood suggest that blocking of PD-1 could have therapeutic potential in advanced stage melanoma.

  13. Vitellogenin family gene expression does not increase Drosophila lifespan or fecundity.

    PubMed

    Ren, Yingxue; Hughes, Kimberly A

    2014-01-01

    One of the most striking patterns in comparative biology is the negative correlation between lifespan and fecundity observed in comparisons among species. This pattern is consistent with the idea that organisms need to allocate a fixed energy budget among competing demands of growth, development, reproduction and somatic maintenance. However, exceptions to this pattern have been observed in many social insects, including ants, bees, and termites.  In honey bees ( Apis mellifera), Vitellogenin ( Vg), a yolk protein precursor, has been implicated in mediating the long lifespan and high fecundity of queen bees. To determine if Vg-like proteins can regulate lifespan in insects generally, we examined the effects of expression of Apis Vg and Drosophila CG31150 (a Vg-like gene recently identified as cv-d) on Drosophila melanogaster lifespan and fecundity using the RU486-inducible GeneSwitch system. For all genotypes tested, overexpression of Vg and CG31150 decreased Drosophila lifespan and did not affect total or age-specific fecundity. We also detected an apparent effect of the GeneSwitch system itself, wherein RU486 exposure (or the GAL4 expression it induces) led to a significant increase in longevity and decrease in fecundity in our fly strains. This result is consistent with the pattern reported in a recent meta-analysis of Drosophila aging studies, where transgenic constructs of the UAS/GAL4 expression system that should have no effect (e.g. an uninduced GeneSwitch) significantly extended lifespan in some genetic backgrounds. Our results suggest that Vg-family genes are not major regulators of Drosophila life history traits, and highlight the importance of using appropriate controls in aging studies. PMID:25110583

  14. Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures

    PubMed Central

    Li, Yan; Popko, Jonathan; Krogh, Kelly A.

    2013-01-01

    Neurons adapt to seizure activity structurally and functionally to attenuate hyperactive neural circuits. Homer proteins provide a scaffold in the postsynaptic density (PSD) by binding to ligands through an EVH1 domain and to other Homer proteins by a coiled-coil domain. The short Homer isoform 1a (H1a) has a ligand-binding domain but lacks a coiled-coil domain and thus acts in a dominant-negative manner to uncouple Homer scaffolds. Here, we show that treating rat hippocampal cultures with bicuculline and 4-aminopyridine (Bic+4-AP) evoked epileptiform activity and synchronized Ca2+ spiking, measured with whole cell current-clamp and fura-2-based digital imaging; Bic+4-AP increased H1a mRNA through the activation of metabotropic glutamate receptor 5 (mGluR5). Treatment with Bic+4-AP for 4 h attenuated burst firing and induced synapse loss. Synaptic changes were measured using a confocal imaging-based assay that quantified clusters of PSD-95 fused to green fluorescent protein. Treatment with an mGluR5 antagonist blocked H1a expression, synapse loss, and burst attenuation. Overexpression of H1a inhibited burst firing similar to Bic+4-AP treatment. Furthermore, knockdown of H1a using a short hairpin RNA (shRNA) strategy reduced synapse loss and burst attenuation induced by Bic+4-AP treatment. Thus an epileptiform stimulus applied to hippocampal neurons in culture induced burst firing and H1a expression through the activation of mGluR5; a 4-h exposure to this stimulus resulted in synapse loss and burst attenuation. These results suggest that H1a expression functions in a negative-feedback manner to reduce network excitability by regulating the number of synapses. PMID:23274309

  15. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  16. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  17. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. PMID:23205714

  18. Increased expression of angiogenic factors in cultured human brain arteriovenous malformation endothelial cells.

    PubMed

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong; Zhang, Jie; Yang, Xiaoyu; Xu, Feng

    2014-09-01

    To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.

  19. Increasing TRPV4 expression restores flow-induced dilation impaired in mesenteric arteries with aging.

    PubMed

    Du, Juan; Wang, Xia; Li, Jie; Guo, Jizheng; Liu, Limei; Yan, Dejun; Yang, Yunyun; Li, Zhongwen; Zhu, Jinhang; Shen, Bing

    2016-01-01

    The flow-stimulated intracellular Ca(2+) concentration ([Ca(2+)]i) rise in endothelial cells is an important early event leading to flow-induced blood vessel dilation. Transient receptor potential vanilloid subtype 4 (TRPV4), a Ca(2+)-permeable cation channel, facilitates the flow-stimulated [Ca(2+)]i rise. To determine whether TRPV4 is involved in age-related flow-induced blood vessel dilation impairment, we measured blood vessel diameter and nitric oxide (NO) levels and performed Ca(2+) imaging, immunoblotting, and immunostaining assays in rats. We found that the flow-induced and TRPV4 activator 4α-PDD-induced dilation of mesenteric arteries from aged rats were significantly decreased compared with those from young rats. The flow- or 4α-PDD-induced [Ca(2+)]i rise was also markedly reduced in primary cultured mesenteric artery endothelial cells (MAECs) from aged rats. Immunoblotting and immunostaining results showed an age-related decrease of TRPV4 expression levels in MAECs. Additionally, the 4α-PDD-induced NO production was significantly reduced in aged MAECs. Compared with lentiviral GFP-treated aged rats, lentiviral vector delivery of TRPV4 increased TRPV4 expression level in aged MAECs and restored the flow- and 4α-PDD-induced vessel dilation in aged mesenteric arteries. We concluded that impaired TRPV4-mediated Ca(2+) signaling causes endothelial dysfunction and that TRPV4 is a potential target for clinical treatment of age-related vascular system diseases. PMID:26947561

  20. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

  1. Increased PAC-1 expression among patients with multiple myeloma on concurrent thalidomide and warfarin.

    PubMed

    Abdullah, Wan Z; Roshan, Tariq M; Hussin, Azlan; Zain, Wan S W Md; Abdullah, Dzarr

    2013-12-01

    Treatment with thalidomide is associated with vascular thrombosis. The effect of thalidomide on platelet activation is unclear, although the use of aspirin is justified for thromboprophylaxis. A study on platelet activation markers was done among multiple myeloma patients receiving thalidomide therapy with warfarin as thromboprophylaxis. Strict criteria and procedure were set to avoid misinterpretation of platelet activation other than due to the thalidomide's effect. Blood specimen pre and post thalidomide therapy were used for flow cytometric analysis. Platelet surface P-selectin, CD62P expression and PAC-1 (antibody that recognizes conformational change of the GPIIb/IIIa complex) were examined by using three-colour flowcytometer. Increased expression marker for PAC-1 was observed after 4 weeks of thalidomide treatment (P < 0.05) indicating one aspect of platelet activation activity seen in these patients. The mechanism of thrombosis by thalidomide is probably multifactorial and one of them is likely through platelet activation. Further study on the affected pathway/s in the platelet activation process would confirm the exact mechanism of thalidomide-induced thrombosis and potential extended usage of this drug in future.

  2. Prolonged CD154 Expression on Pediatric Lupus CD4 T Cells Correlates with Increased CD154 Transcription, Increased NFAT Activity, and Glomerulonephritis

    PubMed Central

    Mehta, Jay; Genin, Anna; Brunner, Michael; Scalzi, Lisabeth V; Mishra, Nilamadhab; Beukelman, Timothy; Cron, Randy Q

    2010-01-01

    Objective To assess CD154 expression in pediatric lupus and explore a transcriptional mechanism explaining dysregulated CD154 expression. Methods Cell surface CD154 expression was examined, pre- and post-activation, on peripheral blood CD4 T cells from 29 children with lupus and matched controls by flow cytometry. CD154 expression was correlated with clinical features, laboratory parameters, and treatments received. Increased CD154 expression on lupus CD4 T cells was correlated with CD154 message and transcription rates by real-time RT-PCR and nuclear run-on assays, respectively. NFAT transcriptional activity and NFAT mRNA levels in lupus CD4 T cells were explored by reporter gene analysis and real-time RT-PCR, respectively. Results CD154 surface protein levels were increased 1.44-fold on lupus CD4 T cells compared to controls at one day post-activation ex vivo. This increase correlated clinically with the presence of nephritis and elevated erythrocyte sedimentation rate. Increased CD154 protein also correlated with increased CD154 mRNA levels and rates of CD154 transcription, particularly at later time-points post-T cell activation. Reporter gene analyses revealed a trend for increased NFAT, but decreased AP-1 and similar NFκB, activity in lupus CD4 T cell compared to controls. Moreover, NFAT1 and, in particular, NFAT2 mRNA levels were notably increased in lupus CD4 T cells compared to controls. Conclusion Following activation, cell surface CD154 is increased on pediatric lupus CD4 T cells compared to controls, and this correlates with the presence of nephritis, increased CD154 transcription rates, and NFAT activity. These results suggest that NFAT/calcineurin inhibitors, such as tacrolimus and cyclosporine, may be beneficial in treating lupus nephritis. PMID:20506525

  3. Increased expression of adenylylcyclase type VI proportionately increases β-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes

    PubMed Central

    Gao, Meihua; Ping, Peipei; Post, Steven; Insel, Paul A.; Tang, Ruoying; Hammond, H. Kirk

    1998-01-01

    Cellular content of cAMP generated by activation of adenylylcyclase (AC; EC 4.6.1.1) is a key determinant of functional responsiveness in the heart and other tissues. We have tested two hypotheses regarding the relationship between AC content and β-adrenergic receptor (βAR)-mediated signal transduction in cardiac myocytes. First, that AC content limits adrenergic signal transduction, and, second, that increased AC, independent of (βAR) number and G-protein content, yields a proportional increase in βAR-mediated transmembrane signaling. We used recombinant adenovirus to increase AC isoform VI (ACVI) expression in neonatal cardiac myocytes. Cells that overexpressed ACVI responded to agonist stimulation with marked increases in cAMP production in proportion to protein expressed. In parallel experiments performed on cells transfected with lacZ (control) or ACVI, [3H]forskolin binding, used to assess AC protein expression, was amplified 6-fold, while βAR-stimulated cAMP production from these cells was increased 7-fold. No changes in βAR number, or in the heterotrimeric GTP-binding proteins, Gαs or Gαi2, were observed. Previous studies indicate that increased cardiac expression of βAR or Gαs does not yield proportional increases in transmembrane adrenergic signaling. In contrast, the current data demonstrate that increased ACVI expression provides a proportional increase in β-adrenergic signal transduction. Our results show that the amount of AC sets a limit on transmembrane β-adrenergic signaling. We speculate that similar functional responses are possible in other cell types in which AC plays an important physiological role. PMID:9448281

  4. Increased Expression of the dsRNA-Activated Protein Kinase PKR in Breast Cancer Promotes Sensitivity to Doxorubicin

    PubMed Central

    Bennett, Richard L.; Carruthers, Aubrey L.; Hui, Teng; Kerney, Krystal R.; Liu, Xiangfei; May, W. Stratford

    2012-01-01

    It has been reported that the expression and activity of the interferon-inducible, dsRNA-dependent protein kinase, PKR, is increased in mammary carcinoma cell lines and primary tumor samples. To extend these findings and determine how PKR signaling may affect breast cancer cell sensitivity to chemotherapy, we measured PKR expression by immunohistochemical staining of 538 cases of primary breast cancer and normal tissues. Significantly, PKR expression was elevated in ductal, lobular and squamous cell carcinomas or lymph node metastases but not in either benign tumor specimens or cases of inflammation compared to normal tissues. Furthermore, PKR expression was increased in precancerous stages of mammary cell hyperplasia and dysplasia compared to normal tissues, indicating that PKR expression may be upregulated by the process of tumorigenesis. To test the function of PKR in breast cancer, we generated MCF7, T-47D and MDA-MB-231 breast cancer cell lines with significantly reduced PKR expression by siRNA knockdown. Importantly, while knockdown of PKR expression had no effect on cell proliferation under normal growth conditions, MCF7, T-47D or MDA-MB-231 cells with reduced PKR expression or treated with a small molecule PKR inhibitor were significantly less sensitive to doxorubicin or H2O2-induced toxicity compared to control cells. In addition, the rate of eIF2α phosphorylation following treatment with doxorubicin was delayed in breast cancer cell lines with decreased PKR expression. Significantly, treatment of breast cancer lines with reduced PKR expression with either interferon-α, which increases PKR expression, or salubrinal, which increases eIF2α phosphorylation, restored doxorubicin sensitivity to normal levels. Taken together these results indicate that increased PKR expression in primary breast cancer tissues may serve as a biomarker for response to doxorubicin-containing chemotherapy and that future therapeutic approaches to promote PKR expression

  5. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  6. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  7. Ectopic expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes increased resistance to bacteria.

    PubMed

    Lorenc-Kukuła, Katarzyna; Jafra, Sylwia; Oszmiański, Jan; Szopa, Jan

    2005-01-26

    The principal goal of this paper was to investigate the significance of anthocyanin 5-O-glucosyltransferase (5-UGT) for potato tuber metabolism. The ectopic expression of a 5-UGT cDNA in the tuber improved the plant's defense against pathogen infection. The resistance of transgenic lines against Erwinia carotovora subsp. carotovora was about 2-fold higher than for nontransformed plants. In most cases the pathogen resistance was accompanied by a significant increase in tuber yield. To investigate the molecular basis of transgenic potato resistance, metabolic profiling of the plant was performed. In tuber extracts, the anthocyanin 3,5-O-substituted level was significantly increased when compared to that of the control plant. Of six anthocyanin compounds identified, the highest quantity for pelargonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid and peonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid was detected. A significant increase in starch and a decrease in sucrose level in transgenic tubers have been detected. The level of all other metabolites (amino acids, organic acids, polyamines, and fatty acids) was quite the same as in nontransformants. The plant resistance to bacterial infection correlates with anthocyanin content and sucrose level. The properties of recombinant glucosyltransferase were analyzed in in vitro experiments. The enzyme kinetics and its biochemical properties were similar to those from other sources.

  8. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis

    PubMed Central

    Shang, Shaobin; Harton, Marisa; Tamayo, Marcela Henao; Shanley, Crystal; Palanisamy, Gopinath S.; Caraway, Megan; Chan, Edward D.; Basaraba, Randall J.; Orme, Ian M.; Ordway, Diane J.

    2011-01-01

    SUMMARY There is increasing evidence that clinical isolates of Mycobacterium tuberculosis that belong to the W-Beijing genotype of newly emerging strains are often of very high virulence when tested in small animal models, including the mouse and guinea pig. In this report we provide further evidence to support this contention, and show that two W-Beijing strains are of very high virulence when introduced by low dose aerosol into out-bred guinea pigs. In addition to severe lung pathology, each of these infections was associated with large influxes of activated CD4 and CD8 T cells into the lungs. Large influxes of macrophages were also observed, but the fraction of these showing evidence of activation by Class-II expression was relatively low. A progressive increase in neutrophils was also seen, with highest levels accumulating in the lungs of the W-Beijing infected animals. In the case of these two infections mRNA levels for TH1 cytokines was elevated early, but these then declined, and were replaced by increasing levels of message encoding for Foxp3, IL-10, and TGFβ. These observations support the hypothesis that W-Beijing strains are potent inducers of regulatory T cells, and that this event may enhance survival and transmission of these bacilli. PMID:21737349

  9. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell

    PubMed Central

    2011-01-01

    Background NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE2 in tumour progression thus appears complex and multipurpose. Methods To gain understanding into the role of PGE2 in colon cancer, we focused on the activity of PGE2 in apoptosis in colon cancer cell lines. Results We observed that an increase in intracellular PGE2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE2 intracellular concentration, either by PGE2 microinjection or by the pharmacological inhibition of PGE2 exportation and enzymatic degradation. Conclusions We present here a new sight onto PGE2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs. PMID:21524287

  10. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice

    PubMed Central

    Luong, Richard; Yu, Eun-Jeong; He, Yongfeng; Gonzalgo, Mark L.; Sun, Zijie

    2016-01-01

    Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC) than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development. PMID:26862755

  11. Increased Gal-9 and Tim-3 expressions during liver damage in a murine malarial model.

    PubMed

    Xiao, Siyu; Liu, Jinfeng; Huang, Shiguang; Lu, Fangli

    2016-02-01

    Malaria has been one of the most devastating tropical parasite infectious diseases popular around the world. Severe malaria is characterized by multiple organ dysfunctions, especially liver damage. However, the mechanisms of malarial liver injury remain to be better clarified. In this study, Kunming mice inoculated intraperitoneally (i.p.) with 10(6) Plasmodium berghei ANKA (PbANKA)-infected red blood cells (iRBCs) were investigated at days 5, 10, 15, and 20 post-infection (p.i.) to elucidate the profiles of T-cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of liver injury. The histopathology of livers and spleens from PbANKA-infected mice were observed, the parasite burdens of the livers and spleens using quantitative real-time PCR (qRT-PCR), Tim-3- and Gal-9-positive cells in the livers and spleens using immunohistochemical staining, and the mRNA levels of Tim-3, Gal-9, and cytokines in both the livers and spleens using qRT-PCR were examined. Our results showed that parasite burdens in the livers and spleens were significantly increased with time after PbANKA infection. Histological scores of both the liver and spleen tissues were significantly increased with time; the numbers of Tim-3- and Gal-9-positive cells were significantly increased in both the livers and spleens using immunohistochemical staining, and the mRNA levels of Tim-3 and Gal-9 in the livers and spleens were also significantly increased after infection. Our data suggests that the increase of Tim-3/Gal-9 expressions may play an important role in the liver damage during P. berghei infection.

  12. Angiotensin II increases the permeability and PV-1 expression of endothelial cells.

    PubMed

    Bodor, Csaba; Nagy, János Péter; Végh, Borbála; Németh, Adrienn; Jenei, Attila; MirzaHosseini, Shahrokh; Sebe, Attila; Rosivall, László

    2012-01-01

    Angiotensin II (ANG II), the major effector molecule of the renin-angiotensin system (RAS), is a powerful vasoactive mediator associated with hypertension and renal failure. In this study the permeability changes and its morphological attributes in endothelial cells of human umbilical vein (HUVECs) were studied considering the potential regulatory role of ANG II. The effects of ANG II were compared with those of vascular endothelial growth factor (VEGF). Permeability was determined by 40 kDa FITC-Dextran and electrical impedance measurements. Plasmalemmal vesicle-1 (PV-1) mRNA levels were measured by PCR. Endothelial cell surface was studied by atomic force microscopy (AFM), and caveolae were visualized by transmission electron microscopy (TEM) in HUVEC monolayers. ANG II (10(-7) M), similarly to VEGF (100 ng/ml), increased the endothelial permeability parallel with an increase in the number of cell surface openings and caveolae. AT1 and VEGF-R2 receptor blockers (candesartan and ZM-323881, respectively) blunted these effects. ANG II and VEGF increased the expression of PV-1, which could be blocked by candesartan or ZM-323881 pretreatments and by the p38 mitogem-activated protein (MAP) kinase inhibitor SB-203580. Additionally, SB-203580 blocked the increase in endothelial permeability and the number of surface openings and caveolae. In conclusion, we have demonstrated that ANG II plays a role in regulation of permeability and formation of cell surface openings through AT1 receptor and PV-1 protein synthesis in a p38 MAP kinase-dependent manner in endothelial cells. The surface openings that increase in parallel with permeability may represent transcellular channels, caveolae, or both. These morphological and permeability changes may be involved in (patho-) physiological effects of ANG II. PMID:22012329

  13. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  14. Increased Expression of Regulatory T Cells and Down-Regulatory Molecules in Lepromatous Leprosy

    PubMed Central

    Palermo, Maria L.; Pagliari, Carla; Trindade, Maria Angela B.; Yamashitafuji, Tania M.; Duarte, Alberto José S.; Cacere, Camila R.; Benard, Gil

    2012-01-01

    T regulatory cells (Tregs) play an important role in the mechanism of host's failure to control pathogen dissemination in severe forms of different chronic granulomatous diseases, but their role in leprosy has not yet been elucidated; 28 newly diagnosed patients (16 patients with lepromatous leprosy and 12 patients with tuberculoid leprosy) and 6 healthy Mycobacterium leprae-exposed individuals (contacts) were studied. Tregs were quantified by flow cytometry (CD4+ CD25+ Foxp3+) in peripheral blood mononuclear cells stimulated in vitro with a M. leprae antigenic preparation and phytohemagglutinin as well as in skin lesions by immunohistochemistry. The lymphoproliferative (LPR), interleukin-10 (IL-10), and interferon-γ (IFN-γ) responses of the in vitro-stimulated peripheral blood mononuclear cells and the in situ expression of IL-10, transforming growth factor-β (TGF-β), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) were also determined. We show that M. leprae antigens induced significantly lower LPR but significantly higher Treg numbers in lepromatous than tuberculoid patients and contacts. Mitogen-induced LPR and Treg frequencies were not significantly different among the three groups. Tregs were also more frequent in situ in lepromatous patients, and this finding was paralleled by increased expression of the antiinflammatory molecules IL-10 and CTLA-4 but not TGF-β. In lepromatous patients, Tregs were intermingled with vacuolized hystiocyte infiltrates all over the lesion, whereas in tuberculoid patients, Tregs were rare. Our results suggest that Tregs are present in increased numbers, and they may have a pathogenic role in leprosy patients harboring uncontrolled bacillary multiplication but not in those individuals capable of limiting M. leprae growth. PMID:22556091

  15. Increased expression of regulatory T cells and down-regulatory molecules in lepromatous leprosy.

    PubMed

    Palermo, Maria L; Pagliari, Carla; Trindade, Maria Angela B; Yamashitafuji, Tania M; Duarte, Alberto José S; Cacere, Camila R; Benard, Gil

    2012-05-01

    T regulatory cells (Tregs) play an important role in the mechanism of host's failure to control pathogen dissemination in severe forms of different chronic granulomatous diseases, but their role in leprosy has not yet been elucidated; 28 newly diagnosed patients (16 patients with lepromatous leprosy and 12 patients with tuberculoid leprosy) and 6 healthy Mycobacterium leprae-exposed individuals (contacts) were studied. Tregs were quantified by flow cytometry (CD4+ CD25+ Foxp3+) in peripheral blood mononuclear cells stimulated in vitro with a M. leprae antigenic preparation and phytohemagglutinin as well as in skin lesions by immunohistochemistry. The lymphoproliferative (LPR), interleukin-10 (IL-10), and interferon-γ (IFN-γ) responses of the in vitro-stimulated peripheral blood mononuclear cells and the in situ expression of IL-10, transforming growth factor-β (TGF-β), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) were also determined. We show that M. leprae antigens induced significantly lower LPR but significantly higher Treg numbers in lepromatous than tuberculoid patients and contacts. Mitogen-induced LPR and Treg frequencies were not significantly different among the three groups. Tregs were also more frequent in situ in lepromatous patients, and this finding was paralleled by increased expression of the antiinflammatory molecules IL-10 and CTLA-4 but not TGF-β. In lepromatous patients, Tregs were intermingled with vacuolized hystiocyte infiltrates all over the lesion, whereas in tuberculoid patients, Tregs were rare. Our results suggest that Tregs are present in increased numbers, and they may have a pathogenic role in leprosy patients harboring uncontrolled bacillary multiplication but not in those individuals capable of limiting M. leprae growth. PMID:22556091

  16. Increased Cytochrome P4502E1 Expression and Altered Hydroxyeicosatetraenoic Acid Formation Mediate Diabetic Vascular Dysfunction

    PubMed Central

    Schäfer, Andreas; Galuppo, Paolo; Fraccarollo, Daniela; Vogt, Christian; Widder, Julian D.; Pfrang, Julia; Tas, Piet; Barbosa-Sicard, Eduardo; Ruetten, Hartmut; Ertl, Georg; Fleming, Ingrid; Bauersachs, Johann

    2010-01-01

    OBJECTIVE We investigated the mechanisms underlying vascular endothelial and contractile dysfunction in diabetes as well as the effect of HMR1766, a novel nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC). RESEARCH DESIGN AND METHODS Two weeks after induction of diabetes by streptozotocin, Wistar rats received either placebo or HMR1766 (10 mg/kg twice daily) for another 2 weeks; thereafter, vascular function was assessed. RESULTS Endothelial function and contractile responses were significantly impaired, while vascular superoxide formation was increased in the aortae from diabetic versus healthy control rats. Using RNA microarrays, cytochrome P4502E1 (CYP2E1) was identified as the highest upregulated gene in diabetic aorta. CYP2E1 protein was significantly increased (16-fold) by diabetes, leading to a reduction in levels of the potent vasoconstrictor 20-hydroxy-eicosatetraenoic acid (20-HETE). Induction of CYP2E1 expression in healthy rats using isoniazide mimicked the diabetic noncontractile vascular response while preincubation of aortae from STZ-diabetic rats in vitro with 20-HETE rescued contractile function. Chronic treatment with the sGC activator HMR1766 improved NO sensitivity and endothelial function, reduced CYP2E1 expression and superoxide formation, enhanced 20-HETE levels, and reversed the contractile deficit observed in the diabetic rats that received placebo. CONCLUSIONS Upregulation of CYP2E1 is essentially involved in diabetic vascular dysfunction. Chronic treatment with the sGC activator HMR1766 reduced oxidative stress, decreased CYP2E1 levels, and normalized vasomotor function in diabetic rats. PMID:20522591

  17. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats.

    PubMed

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this 'ghrelin-Sirt1 system' may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  18. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats

    PubMed Central

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this ‘ghrelin-Sirt1 system’ may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  19. Changes in granulosa cells' gene expression associated with increased oocyte competence in bovine.

    PubMed

    Nivet, Anne-Laure; Vigneault, Christian; Blondin, Patrick; Sirard, Marc-André

    2013-06-01

    One of the challenges in mammalian reproduction is to understand the basic physiology of oocyte quality. It is believed that the follicle status is linked to developmental competence of the enclosed oocyte. To explore the link between follicles and competence in cows, previous research at our laboratory has developed an ovarian stimulation protocol that increases and then decreases oocyte quality according to the timing of oocyte recovery post-FSH withdrawal (coasting). Using this protocol, we have obtained the granulosa cells associated with oocytes of different qualities at selected times of coasting. Transcriptome analysis was done with Embryogene microarray slides and validation was performed by real-time PCR. Results show that the major changes in gene expression occurred from 20 to 44  h of coasting, when oocyte quality increases. Secondly, among upregulated genes (20-44  h), 25% were extracellular molecules, highlighting potential granulosa signaling cascades. Principal component analysis identified two patterns: one resembling the competence profile and another associated with follicle growth and atresia. Additionally, three major functional changes were identified: (i) the end of follicle growth (BMPR1B, IGF2, and RELN), involving interactions with the extracellular matrix (TFPI2); angiogenesis (NRP1), including early hypoxia, and potentially oxidative stress (GFPT2, TF, and VNN1) and (ii) apoptosis (KCNJ8) followed by iii) inflammation (ANKRD1). This unique window of analysis indicates a progressive hypoxia during coasting mixed with an increase in apoptosis and inflammation. Potential signaling pathways leading to competence have been identified and will require downstream testing. This preliminary analysis supports the potential role of the follicular differentiation in oocyte quality both during competence increase and decrease phases.

  20. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia.

    PubMed

    Jaspers, Richard T; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P; van der Laarse, Willem J

    2014-01-01

    Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus. PMID:25063194

  1. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    PubMed Central

    Jaspers, Richard T.; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P.; van der Laarse, Willem J.

    2014-01-01

    ABSTRACT Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus. PMID:25063194

  2. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia.

    PubMed

    Jaspers, Richard T; Testerink, Janwillem; Della Gaspera, Bruno; Chanoine, Christophe; Bagowski, Christophe P; van der Laarse, Willem J

    2014-07-25

    Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  3. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression

    PubMed Central

    HWANG, TSANN-LONG; CHANGCHIEN, TZU-TSUNG; WANG, CHEE-CHAN; WU, CHI-MING

    2014-01-01

    Claudin-4 is a member of a large family of transmembrane proteins known as claudins, which are essential for the formation and maintenance of tight junctions. Our previous studies have revealed that claudin-4 proteins are overexpressed in metastatic gastric cancer. To clarify the roles of claudin-4 in gastric cancer metastasis, human gastric adenocarcinoma (AGS) cells constitutively expressing wild-type claudin-4 were generated. Expression of claudin-4 in AGS cells was found to increase cell invasion and migration, as measured by Boyden invasion chamber assays. Moreover, the claudin-4-expressing AGS cells were found to have increased matrix metalloproteinase (MMP)-2 and -9 expression, indicating that claudin-mediated increased invasion may be mediated through the activation of the MMP protein. Overall, the results suggest that claudin-4 overexpression may promote gastric cancer metastasis through the increased invasion of gastric cancer cells. PMID:25120725

  4. Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    PubMed Central

    Tadema, Henko; Abdulahad, Wayel H.; Stegeman, Coen A.; Kallenberg, Cees G. M.; Heeringa, Peter

    2011-01-01

    Introduction Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. Methods Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. Results In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4+ monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. Conclusions In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation. PMID:21915309

  5. INCREASED LIVER PATHOLOGY IN HEPATITIS C VIRUS TRANSGENIC MICE EXPRESSING THE HEPATITIS B VIRUS X PROTEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was id...

  6. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    PubMed

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors. PMID:25281278

  7. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  8. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain.

    PubMed

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R; Killinger, Bryan A

    2015-10-14

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum.

  9. Increased Expression of Alpha-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering After Endocytosis

    PubMed Central

    Nemani, Venu M.; Lu, Wei; Berge, Victoria; Nakamura, Ken; Onoa, Bibiana; Lee, Michael K.; Chaudhry, Farrukh A.; Nicoll, Roger A.; Edwards, Robert H.

    2011-01-01

    Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology. PMID:20152114

  10. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum.

    PubMed

    Larkin, Philip J; Miller, James A C; Allen, Robert S; Chitty, Julie A; Gerlach, Wayne L; Frick, Susanne; Kutchan, Toni M; Fist, Anthony J

    2007-01-01

    Only plants of the Papaver genus (poppies) are able to synthesize morphinan alkaloids, and cultivation of P. somniferum, opium poppy, remains critical for the production and supply of morphine, codeine and various semi-synthetic analgesics. Opium poppy was transformed with constitutively expressed cDNA of codeinone reductase (PsCor1.1), the penultimate step in morphine synthesis. Most transgenic lines showed significant increases in capsule alkaloid content in replicated glasshouse and field trials over 4 years. The morphinan alkaloid contents on a dry weight basis were between 15% and 30% greater than those in control high-yielding genotypes and control non-transgenic segregants. Transgenic leaves had approximately 10-fold greater levels of Cor transcript compared with non-transgenic controls. Two cycles of crossing of the best transgenic line into an elite high-morphine genotype resulted in significant increases in morphine and total alkaloids relative to the elite recurrent parent. No significant changes in alkaloid profiles or quantities were observed in leaf, roots, pollen and seed.

  11. Increased gastrin gene expression provides a physiological advantage to mice under hypoxic conditions.

    PubMed

    Laval, Marie; Baldwin, Graham S; Shulkes, Arthur; Marshall, Kathryn M

    2015-01-15

    Hypoxia, or a low concentration of O2, is encountered in humans undertaking activities such as mountain climbing and scuba diving and is important pathophysiologically as a limiting factor in tumor growth. Although data on the interplay between hypoxia and gastrins are limited, gastrin expression is upregulated by hypoxia in gastrointestinal cancer cell lines, and gastrins counterbalance hypoxia by stimulating angiogenesis in vitro and in vivo. The aim of this study was to determine if higher concentrations of the gastrin precursor progastrin are protective against hypoxia in vivo. hGAS mice, which overexpress progastrin in the liver, and mice of the corresponding wild-type FVB/N strain were exposed to normoxia or hypoxia. Iron status was assessed by measurement of serum iron parameters, real-time PCR for mRNAs encoding critical iron regulatory proteins, and Perls' stain and atomic absorption spectrometry for tissue iron concentrations. FVB/N mice lost weight at a faster rate and had higher sickness scores than hGAS mice exposed to hypoxia. Serum iron levels were lower in hGAS than FVB/N mice and decreased further when the animals were exposed to hypoxia. The concentration of iron in the liver was strikingly lower in hGAS than FVB/N mice. We conclude that increased circulating concentrations of progastrin provide a physiological advantage against systemic hypoxia in mice, possibly by increasing the availability of iron stores. This is the first report of an association between progastrin overexpression, hypoxia, and iron homeostasis.

  12. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    PubMed

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.

  13. Prolactin inhibits the increased cytokine gene expression in Kupffer cells following haemorrhage.

    PubMed

    Zhu, X H; Zellweger, R; Ayala, A; Chaudry, I H

    1996-02-01

    Kupffer cells are an important source of proinflammatory cytokines and contribute to the systemic inflammatory response observed following haemorrhagic shock. The systemic release of cytokines, such as TNF-alpha, IL-1 beta, IL-6, etc., has been associated with the decreased host immune and organ dysfunction following hypotension. Studies indicate that anterior pituitary hormone prolactin (PRL) plays an important role in the regulation of lymphocyte proliferation and macrophage function in vivo, as well as in vitro. However, it is not known what effects PRL administration has on Kupffer cells proinflammatory mediator release following haemorrhage. Therefore, it was the aim of this study to determine the effect of in vivo PRL administration on cytokine gene expression in Kupffer cells after haemorrhage. To study this, C3H/HeN male mice were bled to and maintained at a mean arterial pressure of 35 mmHg for 60 minutes, then resuscitated with shed blood, and segregated into two groups: one group was treated with PRL (100 micrograms/25 g body weight subcutaneously) while the other group received saline-vehicles. This was followed with lactated Ringer's solution (2 x the volume of shed blood). Two hours thereafter, the animals were sacrificed, Kupffer cells were isolated and stimulated with or without 10 micrograms/ml LPS for 1 hour. Total RNA was extracted and cytokine mRNA was detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results demonstrated that haemorrhage markedly increased the level of mRNA for IL-1 beta, IL-6, TGF-beta and TNF-beta in Kupffer cells. However, in vivo PRL treatment significantly decreased the cytokine gene expression in Kupffer cells following haemorrhage. This indicates that PRL may be useful in blunting the systemic inflammatory response associated with cell and organ depression following shock.

  14. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass.

    PubMed

    Clark, D L; Clark, D I; Beever, J E; Dilger, A C

    2015-05-01

    A SNP (IGF2 G3072A) within intron 3 of disrupts a binding site for the repressor zinc finger BED-type containing 6 (ZBED6), leading to increased carcass lean yields in pigs. However, the relative contributions of prenatal as opposed to postnatal increased IGF2 expression are unclear. As muscle fiber number is set at birth, prenatal and neonate skeletal muscle development is critical in determining mature growth potential. Therefore, the objectives of this study were to determine the contributions of hyperplasia and hypertrophy to increased muscle mass and to delineate the effect of the mutation on the expression of myogenic genes during prenatal and postnatal growth. Sows (IGF2 A/A) were bred to a single heterozygous (IGF2 A/G) boar. For fetal samples, sows were euthanized at 60 and 90 d of gestation (d60 and d90) to obtain fetuses. Male and female offspring were also euthanized at birth (0d), weaning (21d), and market weight of approximately 130 kg (176d). At each sampling time, the LM, psoas major (PM), and semitendinosus (ST) muscles were weighed. Samples of the LM were used to quantify the expression of IGF family members, myogenic regulatory factors (MRF), myosin heavy chain isoforms, and growth factors, myostatin, and . Liver samples were used to quantify and expression. At 176d, weights of LM, PM, and ST muscles were all increased approximately 8% to 14% (P < 0.01) in pigs with paternal A (A(Pat)) alleles compared with those with paternal G (G(Pat)) alleles. Additionally, total muscle fiber number in the ST at 176d tended to be greater (P = 0.10), whereas muscle fiber cross-sectional area tended to be reduced ( P= 0.08) in A(Pat) pigs compared with G(Pat) pigs. In addition to the expected 2.7- to 4.5-fold increase (P ≤ 0.02) in expression in the LM in A(Pat) compared with G(Pat) pigs at postnatal sampling times (21d and 176d), IGF2 expression was also increased (P ≤ 0.06) 1.4- to 1.5-fold at d90 of gestation and at birth. At d90, expression of myogenic

  15. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  16. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  17. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression

    PubMed Central

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A.; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact. PMID:27594842

  18. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression.

    PubMed

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact. PMID:27594842

  19. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression

    PubMed Central

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A.; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact.

  20. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    SciTech Connect

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini; Germack, Renee; Rosenthal, Nadia; Santini, Maria Paola

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  1. A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene.

    PubMed Central

    Sutherland, H G; Martin, D I; Whitelaw, E

    1997-01-01

    Enhancer elements have been shown to affect the probability of a gene establishing an active transcriptional state and suppress the silencing of reporter genes in cell lines, but their effect in transgenic mice has been obscured by the use of assays that do not assess expression on a cell-by-cell basis. We have examined the effect of a globin enhancer on the variegation of lacZ expression in erythrocytes of transgenic mice. Mice carrying lacZ driven by the alpha-globin promoter exhibit beta-galactosidase (beta-Gal) expression in only a very small proportion of embryonic erythrocytes. When the transgenic construct also contains the (alphaHS-40 enhancer, which controls expression of the alpha-globin gene, expression is seen in a high proportion of embryonic erythrocytes, although there are variations between transgenic lines which can be attributed to different sites of integration. Analysis of beta-Gal expression levels suggests that expressing cells in lines carrying only the alpha-globin promoter express as much beta-Gal as those in which the transgene also contains alphaHS-40. A marked decline in transgene expression occurs as mice age, which is mainly due to a decrease in the proportion of cells expressing the transgene. Thus, a globin enhancer can act to suppress variegation of a linked transgene; this result is consistent with a model in which enhancers act to establish and maintain an active domain without directly affecting the transcriptional rate. PMID:9032288

  2. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-01-01

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥ 3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication. PMID:26223214

  3. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure

    PubMed Central

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J.; Yang, Jin; Donti, Taraka R.; Harmancey, Romain; Vasquez, Hernan G.; Graham, Brett H.; Bellen, Hugo J.; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  4. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure.

    PubMed

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J; Yang, Jin; Donti, Taraka R; Harmancey, Romain; Vasquez, Hernan G; Graham, Brett H; Bellen, Hugo J; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  5. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion

    PubMed Central

    Lee, Chien-Chang; Wang, Hsuan-Mao; Chou, Tzung-Hsin; Wu, Meng-Che; Hsueh, Kuang-Lung; Chen, Shyr-Chyr

    2016-01-01

    Background Therapeutic hypothermia during operation decreases postoperative intra-abdominal adhesion formation. We sought to determine the most appropriate duration of hypothermia, and whether hypothermia affects the expression of tissue plasminogen activator (tPA). Methods 80 male BALB/c mice weighing 25–30 g are randomized into one of five groups: adhesion model with infusion of 15°C saline for 15 minutes (A); 30 minutes (B); 45 minute (C); adhesion model without infusion of cold saline (D); and sham operation without infusion of cold saline (E). Adhesion scores and tPA levels in the peritoneum fluid levels were analyzed on postoperative days 1, 7, and 14. Results On day 14, the cold saline infusion groups (A, B, and C) had lower adhesion scores than the without infusion of cold saline group (D). However, only group B (cold saline infusion for 30 minutes) had a significantly lower adhesion scores than group D. Also, group B was found to have 3.4 fold, 2.3 fold, and 2.2 fold higher levels of tPA than group D on days 1, 7, and 14 respectively. Conclusions Our results suggest that cold saline infusion for 30 minutes was the optimum duration to decrease postoperative intra-abdominal adhesion formation. The decrease in the adhesion formations could be partly due to an increase in the level of tPA. PMID:27583464

  6. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-07-30

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥ 3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication.

  7. Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion

    SciTech Connect

    Yuen Hengwai; Ziober, Amy F.; Gopal, Pallavi; Nasrallah, Ilya; Falls, Erica M.; Meneguzzi, Guerrino; Ang, Hwee-Quan; Ziober, Barry L. . E-mail: bziober@mail.med.upenn.edu

    2005-09-10

    Laminin-5 (Ln-5) is expressed in several human carcinomas and hypothesized to contribute to tumor invasion. To understand the role of Ln-5 in human cancers, we stably delivered small interfering RNAs (siRNAs) directed against the Ln-5 {gamma}2 chain into JHU-022-SCC cells (022), a non-invasive oral squamous cell carcinoma (OSCC) cell line which secretes Ln-5. Lysates from {gamma}2 siRNA cells (022-si{gamma}2) had nearly undetectable levels of the {gamma}2 chain while the {alpha}3 and {beta}3 subunits of Ln-5 remained unchanged compared to parental and control. In conditioned medium from 022-si{gamma}2 cells, the {gamma}2 chain and the Ln-5 heterotrimer were barely detectable, similar to an invasive OSCC cell line. Conditioned medium from 022-si{gamma}2 cells contained less {alpha}3 and {beta}3 subunits than both parental and control. Although the proliferation and adhesive properties of the 022-si{gamma}2 cells remained similar to parental and control cells, 022-si{gamma}2 cells showed increased detachment and a fibroblastic morphology similar to invasive cells. Moreover, migration, in vitro invasion, and in vivo tumorigenicity were enhanced in 022-si{gamma}2 cells. Our results suggest that the Ln-5 {gamma}2 chain regulates the secretion of the {alpha}3 and {beta}3 subunits. More importantly, suppression of Ln-5 results in a phenotype that is representative of invasive tumor cells.

  8. Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Mercier, Pierre-Luc; Chagnon, Madeleine; Derome, Nicolas; Fournier, Valérie

    2015-01-01

    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChE) activity in honey bees at sublethal doses. High AChE levels may therefore act as a biomarker of exposure to neonicotinoids. This two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoid-treated seeds), and maintained for the duration of corn sowing. As determined by Real Time qPCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication. PMID:26223214

  9. CDX2 increases SLC7A7 expression and proliferation of pig intestinal epithelial cells

    PubMed Central

    Li, Xiang-guang; Xu, Gao-feng; Zhai, Zhen-ya; Gao, Chun-qi; Yan, Hui-chao; Xi, Qian-yun; Guan, Wu-tai; Wang, Song-bo; Wang, Xiu-qi

    2016-01-01

    Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a “homeobox” DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells. PMID:27121315

  10. Increased expression of cytokines, soluble cytokine receptors, soluble apoptosis ligand and apoptosis in dengue.

    PubMed

    Arias, Julia; Valero, Nereida; Mosquera, Jesús; Montiel, Milagros; Reyes, Eduardo; Larreal, Yraima; Alvarez-Mon, Melchor

    2014-03-01

    Several studies have been performed to determine biomarkers that define the risk factors to developing severe forms of dengue. In this study, the levels of TNF-α, IL-6, IL-1, IL-17, soluble interleukin-1 receptor like 1 protein (sST2), soluble TNF-related apoptosis-inducing ligand (sTRAIL), IL-12 and soluble receptors for TNF (sTNF-RI and sTNF-RII) were determined by ELISA in dengue patients and monocyte/macrophage cultures. Dengue was classified as dengue without warning symptoms (DNWS), with warning symptoms (DWWS) and severe dengue (SD). High values of IL-6, sTNFRI, sTNFRII and sST2 were observed in DWWS and/or SD and IL-12 and sTRAIL in DNWS. TNF-α and IL-17 were increased not associated to the disease severity. High production of TNF-α, IL-1β, IL-12, IL-17, sST2 and sTRAIL and apoptosis expression were observed in dengue monocyte/macrophage cultures. This study shows that beneficial or deleterious biomarkers can be present in dengue regardless the disease severity and that monocytes may be in part the source of studied molecules.

  11. Acute stress increases neuropsin mRNA expression in the mouse hippocampus through the glucocorticoid pathway.

    PubMed

    Harada, Akiko; Shiosaka, Sadao; Ishikawa, Yasuyuki; Komai, Shoji

    2008-05-01

    Stress affects synaptic plasticity and may alter various types of behaviour, including anxiety or memory formation. In the present study, we examined the effects of acute stress (1 h restraint with or without tail-shock) on mRNA levels of a plasticity-related serine protease neuropsin (NP) in the hippocampus using semiquantitative RT-PCR and in situ hybridization. We found that NP mRNA expression was dramatically increased shortly after exposure to the acute restraint tail-shock stress and remained at high level for at least 24 h. The level of NP mRNA would be correlated to the elevated plasma concentration of the glucocorticoid corticosterone (CORT) and to the stress intensity. Application of CORT either onto primary cultured hippocampal neurons (5 nM) or in vivo to adrenalectomized (ADX) mice (10 mg/kg B.W., s.c.) mimicked the effect of stress and significantly elevated NP mRNA. These results suggest that the upregulation of NP mRNA after stress is CORT-dependent and point to a role for neuropsin in stress-induced neuronal plasticity.

  12. Increased gastrin gene expression provides a physiological advantage to mice under hypoxic conditions.

    PubMed

    Laval, Marie; Baldwin, Graham S; Shulkes, Arthur; Marshall, Kathryn M

    2015-01-15

    Hypoxia, or a low concentration of O2, is encountered in humans undertaking activities such as mountain climbing and scuba diving and is important pathophysiologically as a limiting factor in tumor growth. Although data on the interplay between hypoxia and gastrins are limited, gastrin expression is upregulated by hypoxia in gastrointestinal cancer cell lines, and gastrins counterbalance hypoxia by stimulating angiogenesis in vitro and in vivo. The aim of this study was to determine if higher concentrations of the gastrin precursor progastrin are protective against hypoxia in vivo. hGAS mice, which overexpress progastrin in the liver, and mice of the corresponding wild-type FVB/N strain were exposed to normoxia or hypoxia. Iron status was assessed by measurement of serum iron parameters, real-time PCR for mRNAs encoding critical iron regulatory proteins, and Perls' stain and atomic absorption spectrometry for tissue iron concentrations. FVB/N mice lost weight at a faster rate and had higher sickness scores than hGAS mice exposed to hypoxia. Serum iron levels were lower in hGAS than FVB/N mice and decreased further when the animals were exposed to hypoxia. The concentration of iron in the liver was strikingly lower in hGAS than FVB/N mice. We conclude that increased circulating concentrations of progastrin provide a physiological advantage against systemic hypoxia in mice, possibly by increasing the availability of iron stores. This is the first report of an association between progastrin overexpression, hypoxia, and iron homeostasis. PMID:25394662

  13. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    SciTech Connect

    Dudek, E.J. Illinois Inst. of Tech., Chicago, IL . Dept. of Biology); Peak, J.G.; Peak, M.J. ); Roth, R.M. . Dept. of Biology)

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs.

  14. Precise digit use increases the expression of handedness in Colombian spider monkeys (Ateles fusciceps rufiventris).

    PubMed

    Nelson, Eliza L; Boeving, Emily R

    2015-12-01

    Decades of research on the hand use patterns of nonhuman primates can be aptly summarized by the following phrase: measurement matters. There is a general consensus that simple reaching is a poor indicator of handedness in most species, while tasks that constrain how the hands are used elicit individual, and in some cases, population-level biases. The TUBE task has become a popular measure of handedness, although there is variability in its administration across studies. The goal of this study was to investigate whether TUBE performance is affected by tube diameter, with the hypothesis that decreasing tube diameter would increase task complexity, and therefore the expression of handedness. We predicted that hand preference strength, but not direction, would be affected by tube diameter. We administered the TUBE task using a 1.3 cm tube to Colombian spider monkeys, and compared their performance to a previous study using a larger 2.5 cm diameter tube. Hand preference strength increased significantly on the smaller diameter tube. Hand preference direction was not affected. Notably, spider monkeys performed the TUBE task using a single digit, despite the longstanding view that this species has poor dexterity. We encourage investigators who use the TUBE task to carefully consider the diameter of the tube used in testing, and to report digit use consistently across studies. In addition, we recommend that researchers who cannot use the TUBE task try to incorporate the key features from this task into their own species appropriate measures: bimanual coordination and precise digit use. PMID:26339782

  15. ErbB2 Signaling Increases Androgen Receptor Expression in Abiraterone-Resistant Prostate Cancer

    PubMed Central

    Gao, Shuai; Ye, Huihui; Gerrin, Sean; Wang, Hongyun; Sharma, Ankur; Chen, Sen; Patnaik, Akash; Sowalsky, Adam G.; Voznesensky, Olga; Han, Wanting; Yu, Ziyang; Mostaghel, Elahe A.; Nelson, Peter S.; Taplin, Mary-Ellen; Balk, Steven P.; Cai, Changmeng

    2016-01-01

    Purpose ErbB2 signaling appears to be increased and may enhance AR activity in a subset of CRPC, but agents targeting ErbB2 have not been effective. This study was undertaken to assess ErbB2 activity in abiraterone-resistant prostate cancer (PCa), and determine whether it may contribute to androgen receptor (AR) signaling in these tumors. Experimental Design AR activity and ErbB2 signaling were examined in the radical prostatectomy specimens from a neoadjuvant clinical trial of leuprolide plus abiraterone, and in the specimens from abiraterone-resistant CRPC xenograft models. The effect of ErbB2 signaling on AR activity was determined in two CRPC cell lines. Moreover, the effect of combination treatment with abiraterone and an ErbB2 inhibitor was assessed in a CRPC xenograft model. Results We found that ErbB2 signaling was elevated in residual tumor following abiraterone treatment in a subset of patients, and was associated with higher nuclear AR expression. In xenograft models, we similarly demonstrated that ErbB2 signaling was increased and associated with AR reactivation in abiraterone-resistant tumors. Mechanistically, we show that ErbB2 signaling and subsequent activation of the PI3K/AKT signaling stabilizes AR protein. Furthermore, concomitantly treating CRPC cells with abiraterone and an ErbB2 inhibitor, lapatinib, blocked AR reactivation and suppressed tumor progression. Conclusions ErbB2 signaling is elevated in a subset of abiraterone-resistant prostate cancer patients and stabilizes AR protein. Combination therapy with abiraterone and ErbB2 antagonists may be effective for treating the subset of CRPC with elevated ErbB2 activity. PMID:26936914

  16. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits.

    PubMed

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-01-01

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions.

  17. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits

    PubMed Central

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-01-01

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions. PMID:26135081

  18. Amphetamine Withdrawal Differentially Increases the Expression of Organic Cation Transporter 3 and Serotonin Transporter in Limbic Brain Regions

    PubMed Central

    Solanki, Rajeshwari R.; Scholl, Jamie L.; Watt, Michael J.; Renner, Kenneth J.; Forster, Gina L.

    2016-01-01

    Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal. We also determined whether changes in transporter expression were confined to these regions. Male rats received amphetamine or saline for two weeks followed by 24 hours or two weeks of withdrawal, with transporter expression measured using Western immunoblot. OCT3 and SERT expression increased in the CeA at both withdrawal timepoints. In the vHipp, OCT3 expression increased only at 24 hours of withdrawal, with an equivalent pattern seen in the dorsomedial hypothalamus. No changes were evident in any other regions sampled. These regionally specific changes in limbic OCT3 and SERT expression may partially contribute to the serotonergic imbalance and negative affect during amphetamine withdrawal. PMID:27478387

  19. Increased pheromone cCF10 expression in Enterococcus faecalis biofilm formed by isolates from renal transplant patients.

    PubMed

    Jarzembowski, Tomasz; Daca, Agnieszka; Bryl, Ewa; Wiśniewska, Katarzyna; Gołębiewska, Justyna; Dębska-Ślizień, Alicja; Rutkowski, Bolesław; Witkowski, Jacek

    2012-12-01

    Renal transplant recipients are at a high risk of developing infectious complications even caused by commensal bacteria. This is because of various physiological non-immunological, and immunological protective mechanisms are not fully efficient in RTx patients. Therefore, rapid and precise diagnostic tools are essential in this particular group of patients. We aimed to develop simple and sensitive protocol Flow-Fish for the study of gene expression in enterococci and to compare expression of genes involved in virulence regulation in biofilm and planktonic form of Enterococcus faecalis. Proper optimization of the method was demonstrated with analysis of dehydrogenase gene expression. According to expectation reduction of the dehydrogenase gene expression was observed in biofilm. Furthermore, expression of studied gene was higher in clinical than in commensal strains. We have also found that in contrast to dehydrogenase gene, pheromone cCF10 gene expression increasing then clinical strains formed biofilm.

  20. Increased protein kinase A type Iα regulatory subunit expression in parathyroid gland adenomas of patients with primary hyperparathyroidism.

    PubMed

    Hibi, Yatsuka; Kambe, Fukushi; Imai, Tsuneo; Ogawa, Kimio; Shimizu, Yoshimi; Shibata, Masahiro; Kagawa, Chikara; Mizuno, Yutaka; Ito, Asako; Iwase, Katsumi

    2013-01-01

    Protein kinase A (PKA) regulatory subunit type Iα (RIα) is a major regulatory subunit that functions as an inhibitor of PKA kinase activity. We have previously demonstrated that elevated RIα expression is associated with diffuse-to-nodular transformation of hyperplasia in parathyroid glands of renal hyperparathyroidism. The aim of the current study was to determine whether or not RIα expression is increased in adenomas of primary hyperparathyroidism (PHPT), because monoclonal proliferation has been demonstrated in both adenomas and nodular hyperplasia. Surgical specimens comprising 22 adenomas and 11 normal glands, obtained from 22 patients with PHPT, were analyzed. Western blot and immunohistochemical analyses were employed to evaluate RIα expression. PKA activities were determined in several adenomas highly expressing RIα. RIα expression was also separately evaluated in chief and oxyphilic cells using the "Allred score" system. Expression of proliferating cell nuclear antigen (PCNA), a proliferation marker, was also immunohistochemically examined. Western blot analysis revealed that 5 out of 8 adenomas highly expressed RIα, compared with normal glands. PKA activity in adenomas was significantly less than in normal glands. Immunohistochemical analysis further demonstrated high expression of RIα in 20 out of 22 adenomas. In adenomas, the greater RIα expression and more PCNA positive cells were observed in both chief and oxyphilic cells. The present study suggested that high RIα expression could contribute to monoclonal proliferation of parathyroid cells by impairing the cAMP/PKA signaling pathway. PMID:23197043

  1. Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens

    PubMed Central

    Kozulin, Peter; Megaw, Pam L.; Morgan, Ian G.

    2010-01-01

    Purpose To examine in detail the time-course of changes in Zif268, Egr-1, NGFI-A, and Krox-24 (ZENK) and pre-proglucagon (PPG) RNA transcript levels in the chick retina during periods of increased ocular growth induced by form-deprivation and negative-lens wear. To further elucidate the role of ZENK in the modulation of ocular growth, we investigated the effect of intravitreal injections of the muscarinic antagonist atropine and the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (ADTN), both of which block the development of experimental myopia, on the expression of ZENK in eyes fitted with negative-lenses. Methods Myopia was induced by fitting translucent diffusers or −10D polymethyl methacrylate (PMMA) lenses over one eye of the chicken. At times from 1 h to 10 days after fitting of the diffusers or negative lenses, retinal RNA transcript levels of the selected genes were determined by semi-quantitative real-time reverse transcriptase polymerase chain reaction (RT–PCR). For the pharmacology experiments, −10D lenses were fitted over the left eye of chicks for a period of 1h. Intravitreal injections of atropine (10 μl–25 mM), ADTN (10 μl–10 mM), or a vehicle solution were made immediately before fitting of the lenses. Results ZENK RNA transcript levels were rapidly and persistently down-regulated following the attachment of the optical devices over the eye. With a delay relative to ZENK, PPG transcript levels were also down-regulated. Induced changes in gene expression were similar for both form-deprivation and negative-lens wear. When atropine or ADTN were administered immediately before lens attachment, the rapid down-regulation in ZENK RNA transcript levels normally seen following 1 h of negative-lens wear was not seen, and ZENK transcript levels rose above those values seen in control eyes. However, injection of atropine or ADTN into untreated eyes had no effect on ZENK transcript levels. Conclusions Both form

  2. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    PubMed

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes. PMID:26449458

  3. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway.

    PubMed

    Nijenhuis, Tom; Sloan, Alexis J; Hoenderop, Joost G J; Flesche, Jan; van Goor, Harry; Kistler, Andreas D; Bakker, Marinka; Bindels, Rene J M; de Boer, Rudolf A; Möller, Clemens C; Hamming, Inge; Navis, Gerjan; Wetzels, Jack F M; Berden, Jo H M; Reiser, Jochen; Faul, Christian; van der Vlag, Johan

    2011-10-01

    The transient receptor potential channel C6 (TRPC6) is a slit diaphragm-associated protein in podocytes involved in regulating glomerular filter function. Gain-of-function mutations in TRPC6 cause hereditary focal segmental glomerulosclerosis (FSGS), and several human acquired proteinuric diseases show increased glomerular TRPC6 expression. Angiotensin II (AngII) is a key contributor to glomerular disease and may regulate TRPC6 expression in nonrenal cells. We demonstrate that AngII regulates TRPC6 mRNA and protein levels in cultured podocytes and that AngII infusion enhances glomerular TRPC6 expression in vivo. In animal models for human FSGS (doxorubicin nephropathy) and increased renin-angiotensin system activity (Ren2 transgenic rats), glomerular TRPC6 expression was increased in an AngII-dependent manner. TRPC6 expression correlated with glomerular damage markers and glomerulosclerosis. We show that the regulation of TRPC6 expression by AngII and doxorubicin requires TRPC6-mediated Ca(2+) influx and the activation of the Ca(2+)-dependent protein phosphatase calcineurin and its substrate nuclear factor of activated T cells (NFAT). Accordingly, calcineurin inhibition by cyclosporine decreased TRPC6 expression and reduced proteinuria in doxorubicin nephropathy, whereas podocyte-specific inducible expression of a constitutively active NFAT mutant increased TRPC6 expression and induced severe proteinuria. Our findings demonstrate that the deleterious effects of AngII on podocytes and its pathogenic role in glomerular disease involve enhanced TRPC6 expression via a calcineurin/NFAT positive feedback signaling pathway. PMID:21839714

  4. Increased levels of prolactin receptor expression correlate with the early onset of lupus symptoms and increased numbers of transitional-1 B cells after prolactin treatment

    PubMed Central

    2012-01-01

    Background Prolactin is secreted from the pituitary gland and other organs, as well as by cells such as lymphocytes. Prolactin has an immunostimulatory effect and is associated with autoimmune diseases that are characterised by abnormal B cell activation, such as systemic lupus erythematosus (SLE). Our aim was to determine if different splenic B cell subsets express the prolactin receptor and if the presence of prolactin influences these B cell subsets and correlates with development of lupus. Results Using real-time PCR and flow cytometry, we found that different subsets of immature (transitional) and mature (follicular, marginal zone) B cells express different levels of the prolactin receptor and are differentially affected by hyperprolactinaemia. We found that transitional B cells express the prolactin receptor at higher levels compared to mature B cells in C57BL/6 mice and the lupus-prone MRL/lpr and MRL mouse strains. Transitional-1 (T1) B cells showed a higher level of prolactin receptor expression in both MRL/lpr and MRL mice compared to C57BL/6 mice. Hyperprolactinaemia was induced using metoclopramide, which resulted in the development of early symptoms of SLE. We found that T1 B cells are the main targets of prolactin and that prolactin augments the absolute number of T1 B cells, which reflects the finding that this B cell subpopulation expresses the highest level of the prolactin receptor. Conclusions We found that all B cell subsets express the prolactin receptor but that transitional B cells showed the highest prolactin receptor expression levels. Hyperprolactinaemia in mice susceptible to lupus accelerated the disease and increased the absolute numbers of T1 and T3 B cells but not of mature B cells, suggesting a primary effect of prolactin on the early stages of B cell maturation in the spleen and a role of prolactin in B cell differentiation, contributing to SLE onset. PMID:22404893

  5. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    PubMed

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.

  6. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  7. Increased aquaglyceroporin 9 expression disrupts arsenic resistance in human lung cancer cells.

    PubMed

    Miao, Zhi-Feng; Chang, Eddy Essen; Tsai, Feng-Yuan; Yeh, Szu-Ching; Wu, Chia-Fang; Wu, Kuen-Yuh; Wang, Chien-Jen; Tsou, Tsui-Chun

    2009-03-01

    Resistance to chemotherapy is one of the major problems in treatment responses of lung cancer. This study explored the mechanism underlying the arsenic resistance of lung cancer. Four lung cancer cells with different proliferation activity were characterized for cytotoxicity, arsenic influx/efflux, and arsenic effects on intracellular glutathione and 8-hydroxy-2'-deoxyguanosine (8-OHdG) production. Our data revealed that relative proliferation potency of these cells was H1299>A549>CL3>H1355. Moreover, A549, H1299, and H1355 were markedly resistant to As(2)O(3) with IC50 approximately 100 microM, whereas CL3 was sensitive to As(2)O(3) with IC50 approximately 11.8 microM. After treatment with the respective As(2)O(3) at IC50, arsenic influx/efflux activity in CL3 was comparable to those in the other three arsenic-resistant cells. However, differences in glutathione levels and 8-OHdG production were also detected either before or after arsenic treatment, indicating that a certain degree of variation in anti-oxidative systems and/or 8-OHdG repair activity existed in these cell lines. By transfection of an aquaglyceroporin 9 (AQP9) gene, we showed that increased AQP9 expression significantly enhanced arsenic uptake and disrupted arsenic resistance of A549. The present study strongly suggests that membrane transporters responsible for arsenic uptake, such as AQP9, may play a critical role in development of arsenic resistance in human lung cancer cells.

  8. Increased expression of extracellular proteins as a hallmark of human endothelial cell in vitro senescence.

    PubMed

    Hampel, B; Fortschegger, K; Ressler, S; Chang, M W; Unterluggauer, H; Breitwieser, A; Sommergruber, W; Fitzky, B; Lepperdinger, G; Jansen-Dürr, P; Voglauer, R; Grillari, J

    2006-05-01

    A convenient way to study processes of aging in distinct human tissues consists of a molecular analysis of cells from the tissue in question, that were explanted and grown in vitro until they reach senescence. Using human umbilical vein endothelial cells (HUVEC), we have established an in vitro senescence model for human endothelial cells. A major hallmark of HUVEC in vitro senescence is the increased frequency of apoptotic cell death, which occurs as a determining feature of HUVEC senescence. Senescent endothelial cells are also found in vivo in atherosclerotic lesions, suggesting that the presence of such cells may contribute to the development of vascular pathology. To elucidate mechanisms underlying endothelial cell senescence and age-associated apoptosis, gene expression analyses were carried out. In these experiments, we observed the up-regulation of genes coding for extracellular proteins in senescent HUVEC. In particular, a significant upregulation of interleukin-8, VEGI, and the IGF-binding proteins 3 and 5 was observed. Upregulation of these genes was confirmed by both RT-PCR and Western blot. In the case of interleukin-8, a roughly 50-fold upregulation of the protein was also found in cellular supernatants. The extracellular proteins encoded by these genes are well known for their ability to modulate the apoptotic response of human cells, and in the case of interleukin-8, clear links to the establishment of atherosclerotic lesions have been defined. The results described here support a new model, where changes in the secretome of human endothelial cells contribute to vascular aging and vascular pathology. PMID:16626901

  9. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma.

    PubMed

    Liu, Hao; Shen, Zhenbin; Wang, Zhenglin; Wang, Xuefei; Zhang, Heng; Qin, Jing; Qin, Xinyu; Xu, Jiejie; Sun, Yihong

    2016-02-18

    Clinical significance of 2,3-dioxygenase (IDO) has been studied in types of tumors, but the role that IDO played in gastric adenocarcinoma (GAC) is still unclear. Here, we aim to investigate the prognostic value of IDO expression in patients with GAC. We examined intratumoral IDO expression in retrospectively enrolled 357 patients with GAC undergoing gastrectomy at Zhongshan Hospital of Fudan University in 2008 by immunohistochemical staining. The Kaplan-Meier method and Cox regression models were used to evaluate the prognostic value of IDO expression and its association with clinical pathological factors. We generated a predictive nomogram by integrating IDO expression with the TNM staging system for overall survival of GAC patients. High expression of intratumoral IDO predicted a dismal outcome. Intratumoral IDO expression gave a further discrimination for the prognosis of GAC patients. By Cox multivariate analysis, IDO expression was defined as an independent prognosticator. The generated nomogram performed well in predicting the 3- and 5-year overall survival of GAC patients. Conclusively, IDO is a potential prognostic biomarker for overall survival of patients with GAC after gastrectomy.

  10. Increased Expression of CSF-1 Associates With Poor Prognosis of Patients With Gastric Cancer Undergoing Gastrectomy.

    PubMed

    Liu, Hao; Zhang, Heng; Shen, Zhenbin; Lin, Chao; Wang, Xuefei; Qin, Jing; Qin, Xinyu; Xu, Jiejie; Sun, Yihong

    2016-03-01

    Clinical significance of diametrically polarized tumor-associated macrophages in gastric cancer has been elucidated in our previous study, whereas the role of cytokines that orchestrate tumor-associated macrophages polarization in gastric cancer remains elusive. The study aims to evaluate the prognostic value of colony-stimulating factor-1 expression in patients with gastric cancer. We examined the colony-stimulating factor-1 expression in tumor tissues by immunohistochemical staining in retrospectively enrolled 365 patients with gastric cancer undergoing gastrectomy at Zhongshan Hospital during 2008. Kaplan-Meier analysis and Cox regression models were used to evaluate the prognostic value of colony-stimulating factor-1 expression and its association with clinicopathological factors. A predictive nomogram by integrating colony-stimulating factor-1 expression with the TNM staging system was generated for overall survival evaluation of the patients. High colony-stimulating factor-1 expression predicted an unfavorable outcome in gastric cancer. The colony-stimulating factor-1 expression in tumor tissue could give a further discrimination for the prognosis of gastric cancer patients. Cox multivariate analysis identified the colony-stimulating factor-1 expression as an independent prognostic factor. The generated nomogram performed well in predicting the 3- and 5-year overall survival of gastric cancer patients.T he colony-stimulating factor-1 is a potential independent adverse prognosticator for gastric cancer patients, which could be integrated with the tumor-associated macrophages staging system to improve the predictive accuracy for overall survival, especially in advanced tumors.

  11. Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression

    PubMed Central

    Nukuda, A; Sasaki, C; Ishihara, S; Mizutani, T; Nakamura, K; Ayabe, T; Kawabata, K; Haga, H

    2015-01-01

    Abnormally stiff substrates have been shown to trigger cancer progression. However, the detailed molecular mechanisms underlying this trigger are not clear. In this study, we cultured T84 human colorectal cancer cells on plastic dishes to create a stiff substrate or on collagen-I gel to create a soft substrate. The stiff substrate enhanced the expression of matrix metalloproteinase-7 (MMP-7), an indicator of poor prognosis. In addition, we used polyacrylamide gels (2, 67 and 126 kPa) so that the MMP-7 expression on the 126-kPa gel was higher compared with that on the 2-kPa gel. Next, we investigated whether yes-associated protein (YAP) affected the MMP-7 expression. YAP knockdown decreased MMP-7 expression. Treatment with inhibitors of epidermal growth factor receptor (EGFR) and myosin regulatory light chain (MRLC) and integrin-α2 or integrin-β1 knockdown downregulated MMP-7 expression. Finally, we demonstrated that YAP, EGFR, integrin-α2β1 and MRLC produced a positive feedback loop that enhanced MMP-7 expression. These findings suggest that stiff substrates enhanced colorectal cancer cell viability by upregulating MMP-7 expression through a positive feedback loop. PMID:26344692

  12. A Large U3 Deletion Causes Increased In Vivo Expression from a Nonintegrating Lentiviral Vector

    PubMed Central

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-01-01

    The feasibility of employing nonintegrating lentiviral vectors has been demonstrated by recent studies showing the ability of nonintegrating lentiviral vectors to maintain transgene expression in vitro and in vivo. Furthermore, HIV-1 vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. Here we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector’s U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained. PMID:18797449

  13. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector.

    PubMed

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-12-01

    The feasibility of using nonintegrating lentiviral vectors has been demonstrated by recent studies showing their ability to maintain transgene expression both in vitro and in vivo. Furthermore, human immunodeficiency virus-1 (HIV-1) vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date, a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. In this study, we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector's U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained.

  14. Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection

    PubMed Central

    2012-01-01

    The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3) and its ligand, galectin-9 (Gal-9), are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV)-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection. PMID:22621175

  15. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease.

    PubMed

    Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2013-09-01

    The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.

  16. In vitro culture decreases the expression of TGF(beta), Hsp47 and type I procollagen and increases the expression of CTGF in avian tendon explants.

    PubMed

    Halper, J; Griffin, A; Hu, W; Jung, C; Zhang, J; Pan, H; Kisaalita, W S; Foutz, T L; Frazier, K S

    2005-03-01

    Weight-bearing tendons in many species, including humans, chickens and horses, are prone to failure, in many cases without a discernible cause. The normal function of the tendon depends on the proper assembly of fibrils of type I collagen, the main structural component of the tendon. We studied the effect of in vitro culture, temperature (37 degrees C vs. 43 degrees C) and wounding on the expression of mRNAs for several collagen regulators, transforming growth factor beta (TGF(beta)), heat shock protein 47 (Hsp47) and connective tissue growth factor (CTGF), in chicken embryonic gastrocnemius tendon explants. The expression of mRNAs for TGF(beta) and Hsp47, a chaperone of collagen assembly, remained strong during the first day of in vitro culture, but then it decreased, slightly more at higher temperature. Additional injury in selected tendons had no significant effect on the levels of TGF(beta) and Hsp47 mRNAs. Likewise, the level of immunostained type I procollagen also decreased with the length of culture. The expression of CTGF gradually increased from 0 at the time of tendon removal with the duration of culture to strong after three days of culture when the expression of TGF(beta) and Hsp47 was low. We conclude that in vitro culture over the period of several days rather than an increase in temperature or additional wounding decreases the expression of TGF(beta), Hsp47 and type I procollagen and increases the expression of CTGF.

  17. HSV-2-Driven Increase in the Expression of α4β7 Correlates with Increased Susceptibility to Vaginal SHIVSF162P3 Infection

    PubMed Central

    Goode, Diana; Truong, Rosaline; Villegas, Guillermo; Calenda, Giulia; Guerra-Perez, Natalia; Piatak, Michael; Lifson, Jeffrey D.; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa; Martinelli, Elena

    2014-01-01

    The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission. PMID:25521298

  18. Maternal High-Fat Feeding Increases Placental Lipoprotein Lipase Activity by Reducing SIRT1 Expression in Mice

    PubMed Central

    Qiao, Liping; Guo, Zhuyu; Bosco, Chris; Guidotti, Stefano; Wang, Yunfeng; Wang, Mingyong; Parast, Mana; Schaack, Jerome; Hay, William W.; Moore, Thomas R.

    2015-01-01

    This study investigated how maternal overnutrition and obesity regulate expression and activation of proteins that facilitate lipid transport in the placenta. To create a maternal overnutrition and obesity model, primiparous C57BL/6 mice were fed a high-fat (HF) diet throughout gestation. Fetuses from HF-fed dams had significantly increased serum levels of free fatty acid and body fat. Despite no significant difference in placental weight, lipoprotein lipase (LPL) protein levels and activity were remarkably elevated in placentas from HF-fed dams. Increased triglyceride content and mRNA levels of CD36, VLDLr, FABP3, FABPpm, and GPAT2 and -3 were also found in placentas from HF-fed dams. Although both peroxisome proliferator–activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α protein levels were significantly increased in placentas of the HF group, only PPARγ exhibited a stimulative effect on LPL expression in cultured JEG-3 human trophoblasts. Maternal HF feeding remarkably decreased SIRT1 expression in placentas. Through use of an SIRT1 activator and inhibitor and cultured trophoblasts, an inhibitory effect of SIRT1 on LPL expression was demonstrated. We also found that SIRT1 suppresses PPARγ expression in trophoblasts. Most importantly, inhibition of PPARγ abolished the SIRT1-mediated regulatory effect on LPL expression. Together, these results indicate that maternal overnutrition induces LPL expression in trophoblasts by reducing the inhibitory effect of SIRT1 on PPARγ. PMID:25948680

  19. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial

    PubMed Central

    Beulens, J. W. J.; Kersten, S.; Hendriks, H. F. J.

    2008-01-01

    Aims/hypothesis To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods In a randomised, open-label, crossover trial conducted in the Netherlands, 36 apparently healthy postmenopausal women who were habitual alcohol consumers, received 250 ml white wine (∼25 g alcohol/day) or 250 ml of white grape juice (control) daily during dinner for 6 weeks. Randomisation to treatment allocation occurred according to BMI. Insulin sensitivity and ADIPOQ mRNA and plasma adiponectin levels were measured at the end of both periods. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). Levels of ADIPOQ mRNA in subcutaneous adipose tissue were determined by RT-PCR. Results All subjects completed the study. Six weeks of white wine consumption reduced fasting insulin (mean ± SEM 40.0 ± 3.4 vs 46.5 ± 3.4 pmol/l; p < 0.01) and HOMA-IR (1.42 ± 0.13 vs 1.64 ± 0.13; p = 0.02) compared with 6 weeks of grape juice consumption. ADIPOQ mRNA levels (1.09 ± 0.15 vs 0.98 ± 0.15; p = 0.04) and plasma levels of total (13.1 ± 0.8 vs 12.0 ± 0.8 μg/ml; p < 0.001) and high molecular weight (HMW) adiponectin (9.9 ± 1.2 vs 8.8 ± 1.2 μg/ml; p = 0.02) significantly increased after alcohol compared with juice consumption. Changes in ADIPOQ mRNA levels correlated with changes in plasma levels of total adiponectin (ρ = 0.46; p < 0.01). Both fasting triacylglycerol (8.2%; p = 0.04) and LDL-cholesterol levels (7.8%; p < 0.0001) decreased, whereas HDL-cholesterol increased (7.0%; p < 0.0001) after prolonged moderate alcohol intake. No notable adverse effects were reported. Conclusions/interpretation Moderate alcohol consumption for 6 weeks improves insulin sensitivity, adiponectin

  20. Cocaine treatment increases expression of a 40 kDa catecholamine-regulated protein in discrete brain regions.

    PubMed

    Sharan, Niki; Chong, Victor Z; Nair, Venugopalan D; Mishra, Ram K; Hayes, Robert J; Gardner, Eliot L

    2003-01-01

    Previous reports from our laboratory have described brain-specific catecholamine-regulated proteins, which bind dopamine and related catecholamines. Evidence from the molecular cloning of a 40 kDa catecholamine-regulated protein (CRP40) revealed that CRP40 is dopamine-inducible and has properties similar to those of the 70 kDa heat shock protein (HSP70) family. The present study investigates the effects of acute and chronic cocaine treatment on CRP40 expression in the striatum, nucleus accumbens, prefrontal cortex, and medulla. Acute treatment with cocaine increased CRP40 expression in the nucleus accumbens and striatum, whereas chronic treatment with cocaine increased CRP40 expression in the nucleus accumbens only. Neither of these treatments affected CRP40 levels in the prefrontal cortex or medulla. In addition, pretreatment with the spin-trapping agent alpha-phenyl-tert-butylnitrone did not attenuate cocaine-induced expression of CRP40, suggesting that the observed increases in CRP40 levels were not caused by free radicals. On the other hand, pretreatment with anisomycin, a protein synthesis inhibitor, blocked the cocaine-induced expression of CRP40. Thus, protein synthesis may be involved in the observed CRP40 level increases. Furthermore, neither acute nor chronic cocaine treatment affected levels of inducible or constitutively expressed HSP70, which indicates a specificity of cocaine's effects on CRP40. Since cocaine has been shown to increase extracellular dopamine levels, these findings suggest that increased expression of CRP40 is associated with high extracellular levels of dopamine (or its metabolites). Elevated levels of CRP40 could play a protective role for dopamine neurons in response to increased oxidative stress that has been shown to be induced by cocaine and that can lead to apoptosis and neurodegeneration. PMID:12422371

  1. Increased expression of TLR2 in CD4(+) T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications.

    PubMed

    Liu, Yu; Liao, Jieyue; Zhao, Ming; Wu, Haijing; Yung, Susan; Chan, Tak Mao; Yoshimura, Akihiko; Lu, Qianjin

    2015-09-01

    The innate immune system has been shown to play an important pathologic role in systemic lupus erythematosus (SLE). TLR2, a PRR, recognizes exogenous PAMPs, and endogenous damage-associated molecular patterns and has been implicated in the initiation and maintenance of the perpetuated inflammatory reactions in autoimmune diseases. Here, we report increased expression of TLR2 in CD4(+) and CD8(+) T cells, CD19(+) B cells, and CD14(+) monocytes from SLE patients. Conventional treatment, such as hydroxychloroquine and corticosteroids, showed no effect on TLR2 expression in CD4(+) T cells from SLE patients. In vitro stimulation of TLR2 in CD4(+) T cells from SLE patients increased CD40L and CD70 expression, as well as secretion of IL-6, IL-17A, IL-17F, and TNF-α, while Foxp3 transcription decreased. This effect was reversed by TLR2 siRNA. Moreover, TLR2 activation upregulated H3K4 tri-methylation and H4 acetylation levels while downregulated H3K9 tri-methylation level in the IL-17A promoter region. In addition, it also increased H4 acetylation levels and decreased H3K9 tri-methylation levels in the IL-17F promoter region. In summary, our findings demonstrate that increased expression of TLR2 contributes to immune reactivity and promotes IL-17A and IL-17F expression through histone modifications in SLE.

  2. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.

    PubMed Central

    Marra, F.; DeFranco, R.; Grappone, C.; Milani, S.; Pastacaldi, S.; Pinzani, M.; Romanelli, R. G.; Laffi, G.; Gentilini, P.

    1998-01-01

    Monocyte chemotactic protein (MCP)-1 is a chemoattractant and activator for circulating monocytes and T lymphocytes. We investigated MCP-1 protein and gene expression during chronic liver disease at different stages, using immunohistochemistry and in situ hybridization, respectively. In normal liver, a modest expression of MCP-1 was confined to few peri-sinusoidal cells and to bile duct epithelial cells. During chronic hepatitis, MCP-1 immunostaining and gene expression were evident in the inflammatory infiltrate of the portal tract. In tissue from patients with active cirrhosis, MCP-1 expression was clearly up-regulated and was present in the portal tract, in the epithelial cells of regenerating bile ducts, and in the active septa surrounding regenerating nodules. A combination of in situ hybridization for MCP-1 and immunohistochemistry showed that activated stellate cells and monocyte/macrophages contribute to MCP-1 expression in vivo together with bile duct epithelial cells. Comparison of serial sections of liver biopsies from patients with various degrees of necro-inflammatory activity showed that infiltration of the portal tracts with monocytes/macrophages is directly correlated with the expression of MCP-1. These data expand previous in vitro studies showing that secretion of MCP-1 may contribute to the formation and maintenance of the inflammatory infiltrate observed during chronic liver disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9466568

  3. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS.

  4. Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features

    PubMed Central

    Ross, J. L.; Tartaglia, N.; Merry, D. E.; Dalva, M.; Zinn, A. R.

    2016-01-01

    The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social-emotional difficulties, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y-linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners’ DSM-IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism-related behaviors and ADHD. Expression of NLGN4Y , a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted. PMID:25558953

  5. Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host antiapoptotic factors.

    PubMed

    Binnicker, Matthew J; Williams, Richard D; Apicella, Michael A

    2004-11-01

    Infection of human urethral epithelial cells (UECs) with Neisseria gonorrhoeae increases the transcription of several host antiapoptotic genes, including bfl-1, cox-2, and c-IAP-2. In order to identify the bacterial factor(s) responsible for eliciting these changes, the transcriptional status of apoptotic machinery was monitored in UECs challenged with certain gonococcal membrane components. Initially, we observed that infection of UECs with gentamicin-killed gonococci increased the expression of the antiapoptotic Bcl-2 family member, bfl-1. This observation indicated that viable, replicating bacteria are not required for induction of antiapoptotic gene expression. Confirming this observation, treatment of UECs with purified gonococcal membrane increased the expression of bfl-1, cox-2, and c-IAP-2. This finding suggested that a factor or multiple factors present in the outer membrane (OM) are responsible for altering UEC antiapoptotic gene expression. Interestingly, treatment of UECs with gonococcal porin IB (PorB IB), a major constituent of the OM, significantly increased the transcription of bfl-1, cox-2, and c-IAP-2. The upregulation of these genes by PorB IB was determined to be dependent on NF-kappaB activation, as inhibiting NF-kappaB blocked induced expression of these genes. This work demonstrates the altered expression of host apoptotic factors in response to gonococcal PorB IB and supports a model whereby UEC cell death may be modulated as a potential mechanism of bacterial survival and proliferation. PMID:15501771

  6. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  7. Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation.

    PubMed

    Halder, Debasish; Park, Ji Hyun; Choi, Mi Ran; Chai, Jin Choul; Lee, Young Seek; Mandal, Chanchal; Jung, Kyoung Hwa; Chai, Young Gyu

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down-regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow-up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer-specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH-induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals.

  8. Increased CD11/CD18 expression on the peripheral blood leucocytes of patients with HIV disease: relationship to disease severity.

    PubMed Central

    Palmer, S; Hamblin, A S

    1993-01-01

    In HIV disease increased adhesion between leucocytes themselves and between leucocytes and endothelium may contribute to cell loss and viral spread. Using a novel method for the preparation of blood leucocytes for flow cytometry, we report increased expression of leucocyte adhesion molecules (LeuCAMs) (CD11/CD18) on peripheral blood leucocytes of patients with HIV disease compared with normal controls. Patients were divided into two groups on the basis of CD4 T lymphocyte numbers (those with > 0.5 x 10(9)/l and those with < 0.2 x 10(9)/l), and assessed for p24 antigen expression, viral load and serum tumour necrosis factor (TNF) levels as well as LeuCAM expression. Patients with < 0.2 x 10(9)/lCD4 cells had more p24 antigen and more HIV infectious virus and more serum TNF than those with > 0.5 x 10(9)/l. Whilst the percentages of only monocytes and polymorphs expressing CD11b were significantly increased in patients with the least CD4 cells, the density of LeuCAMs, expressed as mean fluorescence intensity (MFI), was significantly increased on all leucocytes, with the most significant increases being seen on patients with the fewest CD4 T cells. Our findings are consistent with leucocyte activation by a soluble factor, although we could find no correlation between levels of TNF and LeuCAM expression. The increased expression of adhesion molecules on peripheral blood leucocytes could play a role in the cellular extravasation and aggregation seen in HIV disease. PMID:8103716

  9. Nitric oxide increases gene expression of Ca(2+)-ATPase in myocardial and skeletal muscle sarcoplasmic reticulum: physiological implications.

    PubMed

    Malyshev, I Y; Aymasheva, N P; Malenyuk, E B; Manukhina, E B; Khaspekov, G L; Mikoyan, V D; Kubrina, L N; Vanin, A F

    2000-01-01

    The aim of the study was to verify the hypothesis that NO-dependent regulation of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) gene expression can play an important role in prevention of calcium overload under the influence of detrimental factors. It was shown that 2 hours after the administration of the NO donor dinitrosyl iron complex (DNIC), the gene expression of myocardial SERCA was increased by 20% as compared to the control. In skeletal muscles, the maximum increase in SERCA expression was observed in 6 hours and amounted to 156% as compared with the initial value. Simultaneously DNIC enhanced the resistance of isolated heart and the organism as a whole to damaging effects of intracellular calcium overload induced by post-ischemic reperfusion or vigorous exercise, respectively. The results obtained confirm the existence of NO-dependent activation of SERCA expression and the important role of this mechanism in restriction of calcium overload. PMID:11208357

  10. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells.

    PubMed

    Cho, Si Young; Park, Pil Joon; Shin, Hyun Jung; Kim, Young-Kyung; Shin, Dong Wook; Shin, Eui Seok; Lee, Hyoung Ho; Lee, Byeong Gon; Baik, Joo-Hyun; Lee, Tae Ryong

    2007-04-01

    Adiponectin is an adipocyte-specific secretory hormone that can increase insulin sensitivity and promote adipocyte differentiation. Administration of adiponectin to obese or diabetic mice reduces plasma glucose and free fatty acid levels. Green tea polyphenols possess many pharmacological activities such as antioxidant, anti-inflammatory, antiobesity, and antidiabetic activities. To investigate whether green tea polyphenols have an effect on the regulation of adiponectin, we measured expression and secretion levels of adiponectin protein after treatment of each green tea polyphenols in 3T3-L1 adipocytes. We found that (-)-catechin enhanced the expression and secretion of adiponectin protein in a dose- and time-dependent manner. Furthermore, treatment of (-)-catechin increased insulin-dependent glucose uptake in differentiated adipocytes and augmented the expression of adipogenic marker genes, including PPARgamma, CEBPalpha, FAS, and SCD-1, when (-)-catechin was treated during adipocyte differentiation. In search of the molecular mechanism responsible for inducible effect of (-)-catechin on adiponectin expression, we found that (-)-catechin markedly suppresses the expression of Kruppel-like factor 7 (KLF7) protein, which has recently been reported to inhibit the expression of adiponectin and other adipogenesis related genes, including leptin, PPARgamma, C/EBPalpha, and aP2 in adipocytes. KLF7 is a transcription factor in adipocyte and plays an important role in the pathogenesis of type 2 diabetes. Taken together, these data suggest that the upregulation of adiponectin protein by (-)-catechin may involve, at least in part, suppression of KLF7 in 3T3-L1 cells.

  11. Increased expression of FERM domain-containing 4A protein is closely associated with the development of rectal cancer

    PubMed Central

    FAN, YONGTIAN; LI, DECHUAN; QIAN, JUN; LIU, YONG; FENG, HAIYANG; LI, DECHUAN

    2016-01-01

    The aim of the present study was to detect the expression levels of FERM domain-containing 4A (FRMD4A) in rectal cancer tissues and peripheral blood and to investigate the correlation between FRMD4A and cancer development. A total of 78 consecutive patients were enrolled in this study. Thirty healthy individuals were used as the control group. The expression of FRMD4A in rectal cancer and the corresponding normal adjacent tissues was detected by immunohistochemistry and western blotting. The expression of FRMD4A mRNA in peripheral blood was detected by reverse transcription-quantitative polymerase chain reaction. The expression of FRMD4A in rectal cancer tissues was found to be negatively correlated with the degree of differentiation, depth of invasion and Dukes' stage. A negative correlation was identified between FRMD4A and epithelial cadherin expression. The expression of FRMD4A in the peripheral blood of patients with rectal cancer was significantly increased compared with that in the control group (P<0.05). Expression of FRMD4A in the peripheral blood in the patients with lymph node metastasis was significantly increased compared with that in the patients without lymph node metastasis (P<0.05). These results indicate that the expression of FRMD4A is significantly increased in rectal cancer tissues and the peripheral blood of patients with rectal cancer, and the expression levels of FRMD4A are closely associated with differentiation, invasion of rectal cancer and Dukes' stage. In conclusion, the findings of the present study suggest that FRMD4A may be used as a target for the diagnosis and treatment of rectal cancer. PMID:26893625

  12. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration.

    PubMed

    Suszyńska-Zajczyk, Joanna; Luczak, Magdalena; Marczak, Lukasz; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), antioxidant defenses (Sod1, Prdx2, DJ-1), energy metabolism (Atp5d, Ak1, Pgam-B), and iron metabolism (Fth) showed differential expression in Blmh-null brains only in hyperhomocysteinemic animals; (4) most proteins regulated by the Blmh-/- genotype were also regulated by high-Met diet, albeit in the opposite direction; and (5) the differentially expressed proteins play important roles in neural development, learning, plasticity, and aging and are linked to neurodegenerative diseases, including AD. Taken together, our findings suggest that Blmh interacts with diverse cellular processes from energy metabolism and anti-oxidative defenses to cell cycle, cytoskeleton dynamics, and synaptic plasticity essential for normal brain homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in AD.

  13. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    PubMed

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. PMID:24365744

  14. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor.

    PubMed

    Brasch, J; Mörig, A; Neumann, B; Proksch, E

    2014-03-01

    In superficial tinea and pityriasis versicolor, the causative fungi are for the most part confined to the stratum corneum which is barely reached by leukocytes. Therefore, a role of non-cellular components in the epidermal antifungal defence was suggested. To investigate the presence of such factors in these infections, the expression of human beta defensins 2 and 3 (hBD-2, hBD-3), RNase 7, psoriasin, toll-like receptors 2, 4 and 9 (TLR2, TLR4 and TLR9) and dectin 2 was analysed by use of immunostainings in skin biopsies. We found that hBD2, hBD3, psoriasin, RNase7, TLR2 and TLR4 were significantly more often expressed in distinct layers of lesional epidermis as compared with uninfected epidermis. In both infections but not in normal skin, hBD2 and hBD3 were commonly expressed within the stratum corneum and in the stratum granulosum. Similarly, psoriasin was seen more often in the upper skin layers of both infections as compared with normal skin. No significant differences between normal and infected skin were found for the expression of TLR9 and dectin 2. Our findings clearly show the expression of specific antimicrobial proteins and defence-related ligands in superficial tinea as well as in pityriasis versicolor, suggesting that these factors contribute to fungal containment.

  15. Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters

    PubMed Central

    Yun, J-P; Miao, J; Chen, G G; Tian, Q-H; Zhang, C-Q; Xiang, J; Fu, J; Lai, P B S

    2007-01-01

    Nucleophosmin (NPM, B23, numatrin, NO38) is an abundant nucleolar phosphoprotein involved in multiple cellular functions. Previous evidence indicates that high-level expression of NPM causes uncontrolled cell growth and suggests that NPM may have oncogenic potential. In this study, we examined NPM expression in 103 paired cases of hepatocellular carcinoma (HCC), 12 cases of hepatic focal nodular hyperplasia, 17 cases of liver tissue adjacent to a hepatic haemangioma, and series of array tissues from normal human organs and malignancies using a monoclonal antibody against NPM and reverse transcription–PCR techniques, Western blot analysis, immunohistochemistry, and immunocytofluorescence. Our data indicated that NPM expression was significantly higher in HCC than in the non-malignant hepatocytes (P<0.001). Nucleophosmin was weakly expressed in hepatocytes from a 5-month-old embryo and in stationary hepatocytes of healthy adults. Moreover, enhanced expression of NPM in HCC correlated with the level of PCNA (R2=0.5639) and with the clinical prognostic parameters such as serum alpha fetal protein level, tumour pathological grading, and liver cirrhosis (P<0.05). Our results suggest that NPM may play an important role in the progression of tumorigenesis and that NPM may serve as a potential marker for HCC. PMID:17245342

  16. EVE (external variance estimation) increases statistical power for detecting differentially expressed genes.

    PubMed

    Wille, Anja; Gruissem, Wilhelm; Bühlmann, Peter; Hennig, Lars

    2007-11-01

    Accurately identifying differentially expressed genes from microarray data is not a trivial task, partly because of poor variance estimates of gene expression signals. Here, after analyzing 380 replicated microarray experiments, we found that probesets have typical, distinct variances that can be estimated based on a large number of microarray experiments. These probeset-specific variances depend at least in part on the function of the probed gene: genes for ribosomal or structural proteins often have a small variance, while genes implicated in stress responses often have large variances. We used these variance estimates to develop a statistical test for differentially expressed genes called EVE (external variance estimation). The EVE algorithm performs better than the t-test and LIMMA on some real-world data, where external information from appropriate databases is available. Thus, EVE helps to maximize the information gained from a typical microarray experiment. Nonetheless, only a large number of replicates will guarantee to identify nearly all truly differentially expressed genes. However, our simulation studies suggest that even limited numbers of replicates will usually result in good coverage of strongly differentially expressed genes.

  17. A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling.

    PubMed

    Kienhuis, A S; Wortelboer, H M; Maas, W J; van Herwijnen, M; Kleinjans, J C S; van Delft, J H M; Stierum, R H

    2007-08-01

    A rapid decline of cytochrome P450 (CYP450) enzyme activities remains a drawback of rat hepatocyte-based in vitro cultures. Consequently, judgment of the toxic potential of compounds that need bioactivation by CYP450s may not be adequate using this model. In the present study, an improved hepatocyte-based in vitro system was developed with special focus on metabolic competence. Therefore, a mixture of CYP450 inducers, phenobarbital, dexamethasone and beta-naphthoflavone, was added to culture medium of sandwich-cultured rat hepatocytes. The resulting modified model was evaluated by comparing its genome-wide expression profiles with liver and a standard model without the inducer mixture. Metabolic capacity for CYP450 enzymes showed that the modified model resembled more closely the in vivo situation. Gene expression results revealed large differences between in vivo and both in vitro models. The slight differences between the two sandwich models were predominantly represented by gene expression changes in CYP450s. Importantly, in the modified model, expression ratios of the phase I and the majority of phase II genes more closely resembled liver in vivo. The CYP450 enzyme activities corresponded with gene expression data. In conclusion, for toxicological applications using sandwich-cultured hepatocytes, the modified model may be preferred. PMID:17336492

  18. IS1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa.

    PubMed

    Aubert, Daniel; Naas, Thierry; Nordmann, Patrice

    2003-09-01

    The integron-borne bla(VEB-1) gene encodes an extended-spectrum beta-lactamase. This gene was associated mostly with IS1999 and rarely with an additional IS2000 element in Pseudomonas aeruginosa isolates from Thailand, whereas IS1999 was only very rarely associated with bla(VEB-1) in Enterobacteriaceae. Expression experiments and promoter study identified promoter sequences in IS1999 that increased the expression of VEB-1 in P. aeruginosa.

  19. Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas

    PubMed Central

    Sæbø, Mona; Skjelbred, Camilla Furu; Nexø, Bjørn Andersen; Wallin, Håkan; Hansteen, Inger-Lise; Vogel, Ulla; Kure, Elin H

    2006-01-01

    Background The majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation. Methods We have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas. Results Comparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10-5) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively. Conclusion Our results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas. PMID:16914027

  20. H. pylori-Eradication Therapy Increases RUNX3 Expression in the Glandular Epithelial Cells in Enlarged-Fold Gastritis.

    PubMed

    Suzuki, Masayuki; Suzuki, Hidekazu; Minegishi, Yuriko; Ito, Kosei; Nishizawa, Toshihiro; Hibi, Toshifumi

    2010-05-01

    Helicobacter pylori (HP)-eradication therapy increases Runt domain transcription factor 3 (RUNX3) expression in the glandular epithelial cells in enlarged-fold gastritis. The aim of this study is to evaluate expression of the RUNX3 protein, the product of a gastric tumor suppression gene, and mutagenic oxidative stress in human gastric mucosal specimens obtained from patients with HP-induced enlarged-fold gastritis. Methods. RUNX3 expression was immunohistochemically scored and the degree of the mucosal oxidative stress was directly measured by the chemiluminescense (ChL) assay in the biopsy specimens. Results. RUNX3 expression was detected in the gastric epithelial cells. HP-eradication significantly increased RUNX3 expression in the glandular epithelium of the corpus, however, no change was observed in those of the antrum. A fourfold higher mucosal ChL value was observed in the corpus as compared with that in the antrum. HP-eradication significantly decreased the mucosal ChL values in both portions of the stomach to nearly undetectable levels. Conclusion. The glandular epithelium is exposed to a high level of carcinogenic oxidative stress and shows low levels of expression of the tumor suppressive molecule, RUNX3; however, this expression was restored after HP-eradication, suggesting the high risk of carcinogenesis associated with HP-induced enlarged-fold gastritis of the corpus.