The effect of iron and copper impurities on the wettability of sphalerite (110) surface.
Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R
2011-07-15
The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.
Nano-patterned superconducting surface for high quantum efficiency cathode
Hannon, Fay; Musumeci, Pietro
2017-03-07
A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lianhong; Meyers, T. P.; Pallardy, Stephen G.
2006-01-01
The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning,more » but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning identified in this paper provide a target for testing atmospheric general circulation models in their representation of land-atmosphere coupling.« less
Modeling of surface tension effects in venturi scrubbing
NASA Astrophysics Data System (ADS)
Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.
A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.
NASA Astrophysics Data System (ADS)
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
Effect of solution and leaf surface polarity on droplet spread area and contact angle.
Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M
2016-03-01
How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Physics of greenhouse effect and convection in warm oceans
NASA Technical Reports Server (NTRS)
Inamdar, A. K.; Ramanathan, V.
1994-01-01
Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective regions. The positive coupling between SST and the radiative warming of the surface by the water vapor greenhouse effect is also shown to exist on interannual time scales.
A closed form large deformation solution of plate bending with surface effects.
Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen
2017-01-04
We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.
Surface preparation effects on GTA weld shape in JBK-75 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.D.; Robertson, A.M.; Heiple, C.R.
1993-02-01
The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen themore » surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.« less
Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon
NASA Technical Reports Server (NTRS)
Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.
1997-01-01
The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.
Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.
Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan
2016-10-01
The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.
Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning
2016-03-01
The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface. Copyright © 2015 Elsevier B.V. All rights reserved.
Biofilm Surface Density Determines Biocide Effectiveness
Bas, Sara; Kramer, Mateja; Stopar, David
2017-01-01
High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones. PMID:29276508
Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.
1989-01-01
The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, andmore » increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.« less
How increasing CO2 leads to an increased negative greenhouse effect in Antarctica
NASA Astrophysics Data System (ADS)
Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas
2015-12-01
CO2 is the strongest anthropogenic forcing agent for climate change since preindustrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
Effect of Gravity on Surface Tension
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.
1998-01-01
Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.
Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin
2018-03-01
To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts
NASA Astrophysics Data System (ADS)
Zhang, N.
2017-12-01
Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.
Cowan, Rachel E.; Nash, Mark S.; Collinger, Jennifer L.; Koontz, Alicia M.; Boninger, Michael L.
2009-01-01
Objective To examine the impact of surface type, wheelchair weight, and rear axle position on older adult propulsion biomechanics. Design Crossover trial. Setting Biomechanics laboratory. Participants Convenience sample of 53 ambulatory older adults with minimal wheelchair experience (65−87y); men = 20, women = 33. Intervention Participants propelled 4 different wheelchair configurations over 4 surfaces; tile, low carpet, high carpet, and an 8% grade ramp (surface, chair order randomized). Chair configurations included: (1) unweighted chair with an anterior axle position, (2) 9.05kg weighted chair with an anterior axle position, (3) unweighted chair with a posterior axle position (Δ0.08m), and (4) 9.05kg weighted chair with a posterior axle position (Δ0.08m). Weight was added to a titanium folding chair, simulating the weight difference between very light and depot wheelchairs. Instrumented wheels measured propulsion kinetics. Main Outcome Measures Average self-selected velocity, push-frequency, stroke length, peak resultant and tangential force. Results Velocity decreased as surface rolling resistance or chair weight increased. Peak resultant and tangential forces increased as chair weight increased, surface resistance increased, and with a posterior axle position. The effect of a posterior axle position was greater on high carpet and the ramp. The effect of weight was constant, but more easily observed on high carpet and ramp. The effects of axle position and weight were independent of one another. Conclusion Increased surface resistance decreases self-selected velocity and increases peak forces. Increased weight decreases self-selected velocity and increases forces. Anterior axle positions decrease forces, more so on high carpet. Effects of weight and axle position are independent. Greatest reductions in peak forces occur in lighter chairs with anterior axle positions. PMID:19577019
Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079
NASA Astrophysics Data System (ADS)
Zhong, L. Q.; Liang, Y. L.; Hu, H.
2017-09-01
In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.
Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M
2011-11-01
The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the observed dependence of the extent of silicate oligomerization on I.
Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma
NASA Astrophysics Data System (ADS)
Coulon, J. F.; Tournerie, N.; Maillard, H.
2013-10-01
Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic Csbnd O and Cdbnd O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhancements in biologically effective ultraviolet radiation following volcanic eruptions
NASA Technical Reports Server (NTRS)
Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.
1992-01-01
A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.
Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.
Berman, A; Horovitz, T
2012-06-01
Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower Rbal with increasing roof height and a reduction in rate of decrease with increasing level of indirect radiation. Roof height as an Rbal attenuator declined with increasing indirect radiation level. The latter factor might be reduced by lowering roof surface radiation absorption and through roof heat transfer, as well as by use of shade structure elements to reduce indirect radiation in the shaded area. Radiant heat from the cow body surface may be reduced by lower cow density. Radiant heat attenuation may thus further elevate animal productivity in warm climates, with no associated operation costs. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shia, R.
2012-12-01
The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin
2016-10-01
The effects of turbulence-induced collision enhancement (TICE) on a heavy precipitation event that occurred on 21 September 2010 over the middle Korean Peninsula are examined. For this purpose, an updated bin microphysics scheme incorporating TICE for drop-drop and drop-graupel collisions is implemented into the Weather Research and Forecasting (WRF) model. The numerical simulation shows some differences in the strong precipitation system compared to the observations but generally captures well the important features of observed synoptic conditions, surface precipitation, and radar reflectivity. While the change in domain-averaged surface precipitation amount due to TICE is small and similar to that due to small initial perturbations, the spatial distribution of surface precipitation amount is somewhat altered due to TICE. The surface precipitation amount is increased due to TICE in the area where the largest surface precipitation occurred, but the effects of different flow realizations also contribute to the changes. TICE accelerates the coalescence between small cloud droplets, which induces a decrease in condensation and an increase in excess water vapor transported upward. This causes an increase in relative humidity with respect to ice at high altitudes, hence increasing the depositional growth of ice particles. Therefore, the ice mass increases due to TICE, and this increase induces the increases in riming and melting of ice particles. A series of these microphysical changes due to TICE are regarded as partially contributing to the increase in surface precipitation amount in some areas, hence inducing alterations in the spatial distribution of surface precipitation amount.
NASA Astrophysics Data System (ADS)
Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin
2017-06-01
The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.
Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions
Zulick, C.; Raymond, A.; McKelvey, A.; ...
2016-06-15
Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.
Zhou, Xiaorun; Lu, Taiping; Zhu, Yadan; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Yang, Yongzhen; Chen, Yongkang; Xu, Bingshe
2017-12-01
Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H 2 ) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H 2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H 2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H 2 proportion further increases, stress relaxation and H 2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Ye, Aiqian; Singh, Harjinder; Taylor, Michael W; Anema, Skelte G
2004-11-01
The changes in milk fat globules and fat globule surface proteins during concentration of whole milk using a pilot-scale multiple-effect evaporator were examined. The effects of heat treatment of milk at 95 degrees C for 20 s, prior to evaporation, on fat globule size and the milk fat globule membrane (MFGM) proteins were also determined. In both non-preheated and preheated whole milk, the size of milk fat globules decreased while the amount of total surface proteins at the fat globules increased as the milk passed through each effect of the evaporator. In non-preheated samples, the amount of caseins at the surface of fat globules increased markedly during evaporation with a relatively small increase in whey proteins. In preheated samples, both caseins and whey proteins were observed at the surface of fat globules and the amounts of these proteins increased during subsequent steps of evaporation. The major original MFGM proteins, xanthine oxidase, butyrophilin, PAS 6 and PAS 7, did not change during evaporation, however, PAS 6 and PAS 7 decreased during preheating. These results indicate that the proteins from the skim milk were adsorbed onto the fat globule surface when the milk fat globules were disrupted during evaporation.
Pustovit, Vitaliy N; Shahbazyan, Tigran V
2006-06-01
We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.
Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C
2013-02-28
This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.
NASA Astrophysics Data System (ADS)
Dongxue, Wu; Ping, Ma; Boting, Liu; Shuo, Zhang; Junxi, Wang; Jinmin, Li
2016-10-01
The effect of patterned sapphire substrate (PSS) on the top-surface (P-GaN-surface) and the bottom-surface (sapphire-surface) of the light output power (LOP) of GaN-based LEDs was investigated, in order to study the changes in reflection and transmission of the GaN-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of GaN-based LEDs, which are prepared on patterned sapphire substrates (PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates (CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-GaN interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency (LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design. Project supported by the National High Technology Program of China (No. Y48A040000) and the National High Technology Program of China (No. Y48A040000).
Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2009-06-01
Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy
NASA Astrophysics Data System (ADS)
Maryam, Siddra; Bashir, Farooq
2018-04-01
Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.
Effects of immobilization mask material on surface dose
Hadley, Scott W.; Kelly, Robin; Lam, Kwok
2005-01-01
This work investigates the increase in surface dose caused by thermoplastic masks used for patient positioning and immobilization. A thermoplastic mask is custom fit by stretching a heated mask over the patient at the time of treatment simulation. This mask is then used at treatment to increase the reproducibility of the patient position. The skin sparing effect of mega‐voltage X‐ray beams can be reduced when the patient's skin surface is under the mask material. The sheet of thermoplastic mask has holes to reduce this effect and is available from one manufacturer with two different sizes of holes, one larger than the other. This work investigates the increase in surface dose caused by the mask material and quantifies the difference between the two samples of masks available. The change in the dose buildup was measured using an Attix parallel plate chamber by measuring tissue maximum ratios (TMRs) using solid water. Measurements were made with and without the mask material on the surface of the solid water for 6‐MV and 15‐MV X‐ray beams. The effective thickness of equivalent water was estimated from the TMR curves, and the increase in surface dose was estimated. The buildup effect was measured to be equivalent to 2.2 mm to 0.6 mm for masks that have been stretched by different amounts. The surface dose was estimated to change from 16% and 12% for 6 MV and 15 MV, respectively, to 27% to 61% for 6 MV and 18% to 40% for 15 MV with the mask samples. PACS number: 87.53.Dq PMID:15770192
Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen
2011-01-01
A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460
NASA Technical Reports Server (NTRS)
Daud, T.; Cheng, L. J.
1981-01-01
The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.
NASA Astrophysics Data System (ADS)
Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.
2017-11-01
We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.
Yilbas, Bekir Sami; Ali, Haider; Al-Aqeeli, Naseer; Khaled, Mazen M; Said, Syed; Abu-Dheir, Numan; Merah, Necar; Youcef-Toumi, Kamal; Varanasi, Kripa K
2016-04-14
Owing to recent climate changes, dust storms are increasingly common, particularly in the Middle East region. Dust accumulation and subsequent mud formation on solid surfaces in humid environments typically have adverse effects on surface properties such as optical transmittance, surface texture, and microhardness. This is usually because the mud, which contains alkaline and ionic species, adheres strongly to the surface, often through chemical bonds, and is therefore difficult to remove. In this study, environmental dust and the after-effects of mud formed on a polycarbonate sheet, which is commonly used as a protective glass in photovoltaic cells. Ionic compounds (OH(-)) are shown to significantly affect the optical, mechanical, and textural characteristics of the polycarbonate surface, and to increase the adhesion work required to remove the dry mud from the polycarbonate surface upon drying. Such ability to modify characteristics of the polycarbonate surface could address the dust/mud-related limitations of superhydrophobic surfaces.
Yilbas, Bekir Sami.; Ali, Haider; Al-Aqeeli, Naseer; Khaled, Mazen M.; Said, Syed; Abu-Dheir, Numan; Merah, Necar; Youcef-Toumi, Kamal; Varanasi, Kripa K.
2016-01-01
Owing to recent climate changes, dust storms are increasingly common, particularly in the Middle East region. Dust accumulation and subsequent mud formation on solid surfaces in humid environments typically have adverse effects on surface properties such as optical transmittance, surface texture, and microhardness. This is usually because the mud, which contains alkaline and ionic species, adheres strongly to the surface, often through chemical bonds, and is therefore difficult to remove. In this study, environmental dust and the after-effects of mud formed on a polycarbonate sheet, which is commonly used as a protective glass in photovoltaic cells. Ionic compounds (OH−) are shown to significantly affect the optical, mechanical, and textural characteristics of the polycarbonate surface, and to increase the adhesion work required to remove the dry mud from the polycarbonate surface upon drying. Such ability to modify characteristics of the polycarbonate surface could address the dust/mud-related limitations of superhydrophobic surfaces. PMID:27076199
Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy
NASA Astrophysics Data System (ADS)
Srinath, M. K.; Ganesha Prasad, M. S.
2017-12-01
Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen's heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg's law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.
Observational determination of the greenhouse effect
NASA Technical Reports Server (NTRS)
Raval, A.; Ramanathan, V.
1989-01-01
Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.
Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process
NASA Astrophysics Data System (ADS)
Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang
2013-05-01
In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.
Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang
2017-01-01
The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494
The Effects of Some Surface Irregularities on Wing Drag
NASA Technical Reports Server (NTRS)
Drag, Manley
1939-01-01
The N.A.C.A. has conducted tests to provide more complete data than were previously available for estimating the effects of common surface irregularities on wing drag. The irregularities investigated included: brazier-head and countersunk rivets, spot welds, several types of sheet-metal joints, and surface roughness. Tests were also conducted to determine the over-all effect of manufacturing irregularities incidental to riveted aluminum alloy and to spot-welded stainless-steel construction. The tests were made in the 8-foot high speed wind tunnel at Reynolds Numbers up to 18,000,000. The results show that any of the surface irregularities investigated may increase wing drag enough to have important adverse effects on high-speed performance and economy. A method of estimating increases in wing drag caused by brazier-head rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints on a wing of 20-foot chord flying at 250 miles per hour are shown.
Al Kheraif, Abdulaziz Abdullah
2013-05-01
Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.
Ammonia sensing using arrays of silicon nanowires and graphene
NASA Astrophysics Data System (ADS)
Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, Chuanbo
2018-06-01
Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitivity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amplitude by a factor of ~7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs increases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffusion processes.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.
1973-01-01
An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.
Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M.
2017-12-01
We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Li, Q. H.; Wan, Q.; Wang, Y. G.; Wang, T. H.
2005-06-01
Positive temperature coefficient of resistance is observed on single Cd-doped ZnO nanowires. The current along the nanowire increases linearly with the bias and saturates at large biases. The conductance is greatly enhanced either by ultraviolet illumination or infrared illumination. However, the conductance decreases with increasing temperature, in contrast to the reported temperature behavior either for ZnO nanostructures or for CdO nanoneedles. The increase of the conductance under illumination is related to surface effect and the decrease with increasing temperature to bulk effect. These results show that Cd doping does not change surface effect but affects bulk effect. Such a bulk effect could be used to realize on-chip temperature-independent varistors.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
Zhang, Zhaoyan
2016-01-01
The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298
Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.
2016-01-01
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875
Pin stack array for thermoacoustic energy conversion
Keolian, Robert M.; Swift, Gregory W.
1995-01-01
A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.
NASA Astrophysics Data System (ADS)
Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon
2015-10-01
This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.
Mapping the impact of climate change on surface recession of carbonate buildings in Europe.
Bonazza, Alessandra; Messina, Palmira; Sabbioni, Cristina; Grossi, Carlota M; Brimblecombe, Peter
2009-03-01
Climate change is currently attracting interest at both research and policy levels. However, it is usually explored in terms of its effect on agriculture, water, industry, energy, transport and health and as yet has been insufficiently addressed as a factor threatening cultural heritage. Among the climate parameters critical to heritage conservation and expected to change in the future, precipitation plays an important role in surface recession of stone. The Lipfert function has been taken under consideration to quantify the annual surface recession of carbonate stone, due to the effects of clean rain, acid rain and dry deposition of pollutants. The present paper provides Europe-wide maps showing quantitative predictions of surface recession on carbonate stones for the 21st century, combining a modified Lipfert function with output from the Hadley global climate model. Chemical dissolution of carbonate stones, via the karst effect, will increase with future CO(2) concentrations, and will come to dominate over sulfur deposition and acid rain effects on monuments and buildings in both urban and rural areas. During the present century the rainfall contribution to surface recession is likely to have a small effect, while the increase in atmospheric CO(2) concentration is shown to be the main factor in increasing weathering via the karst effect.
Kim, Hyunsoo; Lee, Jungrae; Ok, Sunseong; Choe, Youngson
2012-01-05
We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis.
2012-01-01
We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis. PMID:22221320
[Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].
Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian
2011-07-01
A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.
The Effects of Surface Waviness and of Rib Stitching on Wing Drag
NASA Technical Reports Server (NTRS)
Hood, Manley J
1939-01-01
Surface waviness and rib stitching have been investigated as part of a series of tests to determine the effects on wing drag of common surface irregularities. The tests were made in the N.A.C.A. 8-foot high-speed wind tunnel at Reynolds Numbers up to 17,000,000. The results of the tests showed that the waviness common to airplane wings will cause no serious increase in drag unless the waviness exists on the forward part of the wing, where it may cause premature transition or premature compressibility effects. Waves 3 inches wide and 0.048 inch high, for example, increased the drag 1 percent when they covered the rear 67 percent of both surfaces and 10 percent when they covered the rear 92 percent. A single wave 3 inches wide and only 0.020 inch high at the 10.5-percent-chord point on the upper surface caused transition to occur on the wave and increased the drag 6 percent. Rib stitching increased the drag 7 percent when the rib spacing was 6 inches; the drag increment was proportional to the number of ribs for wider spacings. About one-third of the increase was due to premature transition at the forward ends of the stitching.
Evaluation of the surface roughness effect on suspended particle deposition near unpaved roads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Dongzi; Gillies, J. A.; Etyemezian, V.
2015-11-11
The downwind transport and deposition of suspended dust raised by a vehicle driving on unpaved roads was studied for four differently vegetated surfaces in the USA states of Kansas and Washington, and one barren surface in Nevada. A 10 m high tower adjacent to the source (z10 m downwind) and an array of multi-channel optical particle counters at three positions downwind of the source measured the flux of particles and the particle size distribution in the advecting dust plumes in the horizontal and vertical directions. Aerodynamic parameters such as friction velocity (u*) and surface roughness length (z0) were calculated frommore » wind speed measurements made on the tower. Particle number concentration, PM10 mass exhibited an exponential decay along the direction of transport. Coarse particles accounted for z95% of the PM10 mass, at least to a downwind distance of 200 m from the source. PM10 removed by deposition was found to increase with increasing particle size and increasing surface roughness under similar moderate wind speed conditions. The surface of dense, long grass (1.2 m high and complete surface cover) had the greatest reduction of PM10 among the five surfaces tested due to deposition induced by turbulence effects created by the rougher surface and by enhanced particle impaction/ interception effects to the grass blades.« less
Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
Li, Dayong; Jing, Dalei; Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2016-11-01
Surface nanobubbles, which are nanoscopic or microscopic gaseous domains forming at the solid/liquid interface, have a strong impact on the interface by changing the two-phase contact to a three-phase contact. Therefore, they are believed to affect the boundary condition and liquid flow. However, there are still disputes in the theoretical studies as to whether the nanobubbles can increase the slip length effectively. Furthermore, there are still no direct experimental studies to support either side. Therefore, an intensive study on the effective slip length for flows over bare surfaces with nanobubbles is essential for establishing the relation between nanobubbles and slip length. Here, we study the effect of nanobubbles on the slippage experimentally and theoretically. Our experimental results reveal an increase from 8 to 512 nm in slip length by increasing the surface coverage of nanobubbles from 1.7 to 50.8% and by decreasing the contact angle of nanobubbles from 42.8 to 16.6°. This is in good agreement with theoretical results. Our results indicate that nanobubbles could always act as a lubricant and significantly increase the slip length. The surface coverage, height, and contact angle are key factors for nanobubbles to reduce wall friction.
Effects of turbulence on warm clouds and precipitation with various aerosol concentrations
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2015-02-01
This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.
Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, Andrew Carl
The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuelsmore » on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.« less
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
Can increasing CO2 cool Antarctica?
NASA Astrophysics Data System (ADS)
Schmithuesen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter
2014-05-01
CO2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. Our investigations show, that for the high elevated areas of Antarctica the greenhouse effect (GHE) of CO2 is commonly around zero or even negative. This is based on the quantification of GHE as the difference between long-wave surface emission and top of atmosphere emission. We demonstrate this behaviour with the help of three models: a simple two-layer model, line-by-line calculations, and an ECMWF experiment. Additionally, in this region an increase in CO2 concentration leads to an instantaneous increased long-wave energy loss to space, which is a cooling effect on the earth-atmosphere system. However, short-wave warming by the weak absorption of solar radiation by CO2 are not taken into account here. The reason for this counter-intuitive behaviour is the fact that in the interior of Antarctica the surface is often colder than the stratosphere above. Radiation from the surface in the atmospheric window emitted to space is then relatively lower compared to radiation in the main CO2 band around 15 microns, which originates mostly from the stratosphere. Increasing CO2 concentration leads to increasing emission from the atmosphere to space, while blocking additional portions of surface emission. If the surface is colder than the stratosphere, this leads to additional long-wave energy loss to space for increasing CO2. Our findings for central Antarctica are in strong contrast to the generally known effect that increasing CO2 has on the long-wave emission to space, and hence on the Antarctic climate.
Effects of spoiler surfaces on the aeroelastic behavior of a low-aspect-ratio rectangular wing
NASA Technical Reports Server (NTRS)
Cole, Stanley R.
1990-01-01
An experimental research study to determine the effectiveness of spoiler surfaces in suppressing flutter onset for a low-aspect-ratio, rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The wing model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible beam was connected to the wing root and cantilever mounted to the wind-tunnel wall. The wing had a 1.5 aspect ratio based on wing semispan and a NACA 64A010 airfoil shape. The spoiler surfaces consisted of thin, rectangular aluminum plates that were vertically mounted to the wing surface. The spoiler surface geometry and location on the wing surface were varied to determine the effects of these parameters on the classical flutter of the wing model. Subsonically, the experiment showed that spoiler surfaces increased the flutter dynamic pressure with each successive increase in spoiler height or width. This subsonic increase in flutter dynamic pressure was approximately 15 percent for the maximum height spoiler configuration and for the maximum width spoiler configuration. At transonic Mach numbers, the flutter dynamic pressure conditions were increased even more substantially than at subsonic Mach numbers for some of the smaller spoiler surfaces. But greater than a certain spoiler size (in terms of either height or width) the spoilers forced a torsional instability in the transonic regime that was highly Mach number dependent. This detrimental torsional instability was found at dynamic pressures well below the expected flutter conditions. Variations in the spanwise location of the spoiler surfaces on the wing showed little effect on flutter. Flutter analysis was conducted for the basic configuration (clean wing with all spoiler surface mass properties included). The analysis correlated well with the clean wing experimental flutter results.
Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.
Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara
2012-10-01
Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C
2014-03-26
This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-02-01
Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Effects of sterilization processes on NiTi alloy: surface characterization.
Thierry, B; Tabrizian, M; Savadogo, O; Yahia, L
2000-01-01
Sterilization is required for using any device in contact with the human body. Numerous authors have studied device properties after sterilization and reported on bulk and surface modifications of many materials after processing. These surface modifications may in turn influence device biocompatibility. Still, data are missing on the effect of sterilization procedures on new biomaterials such as nickel-titanium (NiTi). Herein we report on the effect of dry heat, steam autoclaving, ethylene oxide, peracetic acid, and plasma-based sterilization techniques on the surface properties of NiTi. After processing electropolished NiTi disks with these techniques, surface analyses were performed by Auger electron spectroscopy (AES), atomic force microscopy (AFM), and contact angle measurements. AES analyses revealed a higher Ni concentration (6-7 vs. 1%) and a slightly thicker oxide layer on the surface for heat and ethylene oxide processed materials. Studies of surface topography by AFM showed up to a threefold increase of the surface roughness when disks were dry heat sterilized. An increase of the surface energy of up to 100% was calculated for plasma treated surfaces. Our results point out that some surface modifications are induced by sterilization procedures. Further work is required to assess the effect of these modifications on biocompatibility, and to determine the most appropriate methods to sterilize NiTi. Copyright 2000 John Wiley & Sons, Inc.
Albedo as a modulator of climate response to tropical deforestation
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Shukla, J.
1994-01-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.
Albedo as a modulator of climate response to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirmeyer, P.A.; Shukla, J.
1994-10-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less
NASA Technical Reports Server (NTRS)
Peterson, Victor L.
1959-01-01
An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.
NASA Astrophysics Data System (ADS)
Yu, Fengyi; Wei, Yanhong
2018-05-01
The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.
Regional patterns of the change in annual-mean tropical rainfall under global warming
NASA Astrophysics Data System (ADS)
Huang, P.
2013-12-01
Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W
2016-11-16
ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F 13 OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F 13 OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.
The Runaway Greenhouse Effect on Earth and other Planets
NASA Technical Reports Server (NTRS)
Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert
2001-01-01
Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the water vapor and clouds. "Additional information is contained in the original extended abstract."
Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee
2012-10-23
Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect was observed. On the other hand, the hexadecane drop is shown to wet the pillar surface and the side wall of the overhang. It then pins at the lower edge of the overhang structure. A plot of the thickness of the overhang as a function of the static, advancing, and receding contact angles and sliding angle of hexadecane reveals that static, advancing, and receding contact angles decrease and sliding angle increases as the thickness of the overhang increases. A larger overhang effect is observed with octane due to its lower surface tension. The robustness of the pillar array surface against external pressure induced wetting and abrasion was modeled. Surface Evolver simulation (with the hexadecane drop) indicates that wetting breakthrough pressure as high as ~70 kPa is achievable with 0.5-μm-diameter pillar array FOTS surfaces. Mechanical modeling shows that bending of the pillars is the key failure by abrasion, which can be avoided with a short pillar structure. The path to fabricate a superoleophobic surface that can withstand the external force equivalent of a gentle cleaning blade (up to ~30 kPa) without wetting and abrasion failure is discussed.
Jayne, Bruce C; Newman, Steven J; Zentkovich, Michele M; Berns, H Matthew
2015-12-01
Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive effects on the locomotion of three snake species with different body shapes. Unlike boa constrictors (Boa constrictor), corn snakes (Pantherophis guttatus) and brown tree snakes (Boiga irregularis) can both form ventrolateral keels, which are most pronounced in B. irregularis. Increasing peg height up to 10 mm elicited more of the lateral undulatory behaviour (sliding contact without gripping) rather than the concertina behaviour (periodic static gripping) and increased the speed of lateral undulation. Increased incline: (1) elicited more concertina locomotion, (2) decreased speed and (3) increased the threshold peg height that elicited lateral undulation. Boiga irregularis was the fastest species, and it used lateral undulation on the most surfaces, including a vertical cylinder with pegs only 1 mm high. Overall, B. constrictor was the slowest and used the most concertina locomotion, but this species climbed steep, smooth surfaces faster than P. guttatus. Our results illustrate how morphology and two different aspects of habitat structure can have interactive effects on organismal performance and behaviour. Notably, a sharper keel facilitated exploiting shorter protrusions to prevent slipping and provide propulsion, which became increasingly important as surface steepness increased. © 2015. Published by The Company of Biologists Ltd.
Acoustic mirror effect increases prey detection distance in trawling bats
NASA Astrophysics Data System (ADS)
Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
Acoustic mirror effect increases prey detection distance in trawling bats.
Siemers, Björn M; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called 'trawling behaviour'. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy
Rebecca Snell; Leslie H. Groom; Timothy G. Rials
2001-01-01
Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...
Memory of irrigation effects on hydroclimate and its modeling challenge
NASA Astrophysics Data System (ADS)
Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng
2018-06-01
Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.
Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill
2017-05-16
Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.
Effect of alkali treatment on surface morphology of titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my
2015-07-22
Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed usingmore » Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.« less
Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C
NASA Astrophysics Data System (ADS)
Sugawa, S.; Tsutsumi, N.; Oda, K.
2018-06-01
In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.
Single-bubble dynamics in pool boiling of one-component fluids.
Xu, Xinpeng; Qian, Tiezheng
2014-06-01
We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.
NASA Astrophysics Data System (ADS)
Peker, Mevlut Fatih
Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate the surface topography changes during long-run micro-stamping of BPPs, and establish relationships between surface roughness--corrosion resistance and surface roughness-contact resistance characteristics of BPPs. Formability levels of formed BPPs and repeatability characteristics of the process were investigated. In addition, blank thickness changes, von-Mises stress, plastic strain levels and distributions of micro-stamping process were determined via finite element analysis (FEA). Test results revealed that the surface roughness change for the stamping dies and BPPs was unsteady (no trend) due to the continuous change of surface topography (i.e. asperity deformation). Sub-micron range local plastic deformations on stamping dies led to surface topography changes on BPP in long-run manufacturing case. As surface defects trigger corrosion, the correlation between surface roughness and corrosion resistance of BPPs was found to be direct. Increasing number of surface irregularities (asperities) lowered contact surface area that resulted in increased contact resistance. ZrN coated BPPs, on the other hand, did not change surface roughness, however; it improved the protection of BPPs against corrosion significantly. In addition, ZrN coating increased the conductivity of BPPs and reduced the contact resistance between BPP and gas diffusion layer (GDL), at certain extent. As dimensional stability and repeatability was confirmed in forming of both uncoated and coated BPPs during the long run manufacturing, different formability levels were achieved for coated and uncoated samples. Lower channel height values were obtained for coated plates because of the different surface hardness of uncoated and coated plates. In tribological size effect part of study, micro stamping experiments using three different dies with distinct channel height values at different stamping force levels were performed. It was concluded that decrease in forming die dimensions led to increase in coefficient of friction as previously reported by other researchers as one of the consequences of tribological size effect. On the other hand, coefficient of friction values were not affected by the force levels used in the experiments and simulations, whereas plastic strain, equivalent stress, and formability levels were increased with increasing stamping force, as expected. In essence, this study proposed a methodology to investigate the long-run manufacturing effects on dimensional stability and surface characteristics of micro-stamped sheets. It also correlates these parameters to fuel cell performance measures such as interfacial contact and corrosion resistance.
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
NASA Astrophysics Data System (ADS)
Holman, Timothy D.; Boyd, Iain D.
2011-02-01
This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.
Adekalu, K O; Olorunfemi, I A; Osunbitan, J A
2007-03-01
Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.
NASA Astrophysics Data System (ADS)
Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan
2017-02-01
Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor
NASA Technical Reports Server (NTRS)
Moses, Jason J; Serovy, George, K
1951-01-01
A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.
Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Forman, Royce; Lyons, Jed
2006-01-01
The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.
Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro
2013-01-01
The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.
Physics at the surface of a star in Eddington-inspired Born-Infeld Gravity
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2014-03-01
We study phenomena happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI) gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational backreaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the effective equation of state of the particles or make the surface be unstable depending on its matter contents. The geodesic deviation equations take after Hooke's law, where its frequency squared is proportional to the scalar curvature at the surface. For a positive curvature, a particle collides with a probing wall more often and increases the pressure. With the increased pressure, the surface is no longer singular. For a negative curvature, the matters around the surface experience repulsions with infinite accelerations. Therefore, the EiBI gravity is saved from the pathology of a surface singularity.
NASA Astrophysics Data System (ADS)
Yuan, Guanghui; Zhang, Lei; Liang, Jiening; Cao, Xianjie; Guo, Qi; Yang, Zhaohong
2017-11-01
To assess the impacts of initial soil moisture (SMOIS) and the vegetation fraction (Fg) on the diurnal temperature range (DTR) in arid and semiarid regions in China, three simulations using the weather research and forecasting (WRF) model are conducted by modifying the SMOIS, surface emissivity and Fg. SMOIS affects the daily maximum temperature (Tmax) and daily minimum temperature (Tmin) by altering the distribution of available energy between sensible and latent heat fluxes during the day and by altering the surface emissivity at night. Reduced soil wetness can increase both the Tmax and Tmin, but the effect on the DTR is determined by the relative strength of the effects on Tmax and Tmin. Observational data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) and the Shapotou Desert Research and Experimental Station (SPD) suggest that the magnitude of the SMOIS effect on the distribution of available energy during the day is larger than that on surface emissivity at night. In other words, SMOIS has a negative effect on the DTR. Changes in Fg modify the surface radiation and the energy budget. Due to the depth of the daytime convective boundary layer, the temperature in daytime is affected less than in nighttime by the radiation and energy budget. Increases in surface emissivity and decreases in soil heating resulting from increased Fg mainly decrease Tmin, thereby increasing the DTR. The effects of SMOIS and Fg on both Tmax and Tmin are the same, but the effects on DTR are the opposite.
NASA Astrophysics Data System (ADS)
Collier, Terry Odell, III
Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface modified polyurethane materials to control macrophage adhesion indicates the complexity of macrophage adhesion and protein adsorption onto a surface. These studies have indicated components and adhesive mechanisms which can be utilized to create materials with enhanced resistance to macrophage adhesion and/or degradative abilities.
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang
2018-03-01
In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.
Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman
2016-01-01
Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.
Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman
2016-01-01
Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. Results: New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Conclusion: Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles. PMID:26843874
NASA Astrophysics Data System (ADS)
Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. Vahedi
2014-08-01
While the air-water interface over superhydrophobic surfaces decorated with hierarchical micro- or nanosized geometrical features have shown improved stability under elevated pressures, their underwater longevity—-the time that it takes for the surface to transition to the Wenzel state—-has not been studied. The current work is devised to study the effects of such hierarchical features on the longevity of superhydrophobic surfaces. For the sake of simplicity, our study is limited to superhydrophobic surfaces composed of parallel grooves with side fins. The effects of fins on the critical pressure—-the pressure at which the surface starts transitioning to the Wenzel state—-and longevity are predicted using a mathematical approach based on the balance of forces across the air-water interface. Our results quantitatively demonstrate that the addition of hierarchical fins significantly improves the mechanical stability of the air-water interface, due to the high advancing contact angles that can be achieved when an interface comes in contact with the fins sharp corners. For longevity on the contrary, the hierarchical fins were only effective at hydrostatic pressures below the critical pressure of the original smooth-walled groove. Our results indicate that increasing the length of the fins decreases the critical pressure of a submerged superhydrophobic groove but increases its longevity. Increasing the thickness of the fins can improve both the critical pressure and longevity of a submerged groove. The mathematical framework presented in this paper can be used to custom-design superhydrophobic surfaces for different applications.
Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie
2017-09-01
Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
Deforestation intensifies hot days
NASA Astrophysics Data System (ADS)
Stoy, Paul C.
2018-05-01
Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.
Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H
2018-05-01
Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju
2017-01-01
In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.
Simple model of surface roughness for binary collision sputtering simulations
NASA Astrophysics Data System (ADS)
Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2017-02-01
It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Design Criteria for Aggregate-Surfaced Roads and Airfields
1989-04-01
functional failure conditions and their effects are tabulated in Table 4. It indicates that many distress factors may act on the gravel surface to increase...displacements. Table 4 Major Distress Types of Low-Volume Roads Distress Factor Effect on ..... Dusting Safety, environment Surface looseness Safety, roughness...will be less than that assumed as the design objective. Frost Considerations 9. The detrimental effects of frost action in subsurface materials of
NASA Astrophysics Data System (ADS)
Ye, Zhou; Ellis, Michael W.; Nain, Amrinder S.; Behkam, Bahareh
2017-04-01
Microbial fuel cells (MFCs) are envisioned to serve as compact and sustainable sources of energy; however, low current and power density have hindered their widespread use. Introduction of 3D micro/nanostructures on the MFC anode is known to improve its performance by increasing the surface area available for bacteria attachment; however, the role of the feature size remains poorly understood. To delineate the role of feature size from the ensuing surface area increase, nanostructures with feature heights of 115 nm and 300 nm, both at a height to width aspect ratio of 0.3, are fabricated in a grid pattern on glassy carbon electrodes (GCEs). Areal current densities and bacteria attachment densities of the patterned and unpatterned GCEs are compared using Shewanella oneidensis Δbfe in a three-electrode bioreactor. The 115 nm features elicit a remarkable 40% increase in current density and a 78% increase in bacterial attachment density, whereas the GCE with 300 nm pattern does not exhibit significant change in current density or bacterial attachment density. The current density dependency on feature size is maintained over the entire 160 h experiment. Thus, optimally sized surface features have a substantial effect on current production that is independent of their effect on surface area.
Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation
NASA Astrophysics Data System (ADS)
Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu
2018-04-01
SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.
NASA Technical Reports Server (NTRS)
Heslin, T.; Heaney, J.; Harper, M.
1974-01-01
The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied.
Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.
Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert
2016-06-01
The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.
Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Selvaduray, Guna
2005-01-01
The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.
Ölçeroğlu, Emre; McCarthy, Matthew
2016-03-02
Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai
2018-03-01
Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir
Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less
Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes
NASA Technical Reports Server (NTRS)
Andre, M.; Ducloux, H.; Richaud, C.
1986-01-01
When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Prediction of large negative shaded-side spacecraft potentials
NASA Technical Reports Server (NTRS)
Prokopenko, S. M. L.; Laframboise, J. G.
1977-01-01
A calculation by Knott, for the floating potential of a spherically symmetric synchronous-altitude satellite in eclipse, was adapted to provide simple calculations of upper bounds on negative potentials which may be achieved by electrically isolated shaded surfaces on spacecraft in sunlight. Large (approximately 60 percent) increases in predicted negative shaded-side potentials are obtained. To investigate effective potential barrier or angular momentum selection effects due to the presence of less negative sunlit-side or adjacent surface potentials, these expressions were replaced by the ion random current, which is a lower bound for convex surfaces when such effects become very severe. Further large increases in predicted negative potentials were obtained, amounting to a doubling in some cases.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Climate mitigation from vegetation biophysical feedbacks during the past three decades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhenzhong; Piao, Shilong; Li, Laurent Z. X.
The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening). We isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. Furthermore, we found that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling frommore » increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (-29%) and decreased albedo (-6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, but, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.« less
NASA Astrophysics Data System (ADS)
Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer
2015-12-01
The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.
The humidity dependence of ozone deposition onto a variety of building surfaces
NASA Astrophysics Data System (ADS)
Grøntoft, Terje; Henriksen, Jan F.; Seip, Hans M.
Measurements of the dry deposition velocity of O 3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O 3 was found to decrease as more adsorbed water prevented direct contact of the O 3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O 3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.
Experimental study of surface integrity and fatigue life in the face milling of inconel 718
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Huang, Chuanzhen; Zou, Bin; Liu, Guoliang; Zhu, Hongtao; Wang, Jun
2018-06-01
The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.
NASA Astrophysics Data System (ADS)
Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.
2016-05-01
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.
NASA Astrophysics Data System (ADS)
Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf
2017-10-01
For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.
NASA Astrophysics Data System (ADS)
Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.
2018-03-01
Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.
Barstow, A; Bailey, J; Campbell, J; Harris, C; Weller, R; Pfau, T
2018-04-17
Both pleasure and competition horses regularly exercise on surfaces such as tarmac, gravel and turf during 'hacking'. Despite this, there is limited evidence relating to the effect of these surfaces upon foot-surface interaction. To investigate forelimb foot placement, hoof vibration and movement symmetry in pleasure horses on three commonly encountered hacking surfaces. Quantitative gait study in a convenience sample. Six horses regularly partaking in hacking exercise were ridden in walk and trot on all surfaces. Horses were equipped with one hoof-mounted, accelerometer and four body-mounted inertial measurement units (IMUs) to measure foot impact and movement symmetry. High-speed (400 FPS) video footage of foot-placement was acquired (dorsal, palmar, lateral views). Foot-impact and movement symmetry were analysed with a mixed effects model and Bowker symmetry tests for foot-placement analysis. Vibration power and frequency parameters increase as perceived surface firmness increases from grass, to gravel, to tarmac (P≤0.001). Vibration power parameters were consistently greater at trot compared with walk (P≤0.001), but the same was not true for vibration frequency (P≥0.2). Greatest movement asymmetry was recorded during grass surface trotting. No significant difference in foot-placement was detected between the three surfaces. This was a field study using three commonly encountered hacking surfaces. Surface properties change easily with water content and temperature fluctuations so care must be taken when considering other similar surfaces, especially at different times of the year. Six leisure horses were used so the results may not be representative of horses of all types. Vibration parameters generally increase as perceived surface firmness increases. Increasing speed alters vibration power but not frequency. Further investigations are required to determine the role that this may play in the development of musculoskeletal disease in horses. © 2018 EVJ Ltd.
Single-bubble dynamics in pool boiling of one-component fluids
NASA Astrophysics Data System (ADS)
Xu, Xinpeng; Qian, Tiezheng
2014-06-01
We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013), 10.1016/j.ijheatmasstransfer.2012.10.080]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.
NASA Astrophysics Data System (ADS)
Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.
2018-03-01
In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.
Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia
NASA Technical Reports Server (NTRS)
Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg
2016-01-01
The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.
Jonathan D. Carlisle; Wayne A. Geyer; J. W. Van Sambeek
2003-01-01
Effective weed control in young deciduous plantations is often prescribed to enhance survivability and growth (Bey and others 1975). Chemical weed control often employs broadcast, strip, and spot applications that markedly affect the ground surface area treated. Our study investigates the effect of four levels of treated surface area of a tank mix of glyphosate and...
Characteristics of the surface plasma wave in a self-gravitating magnetized dusty plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2015-11-15
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma slab are investigated. The dispersion relation is derived by using the low-frequency magnetized dusty dielectric function and the surface wave dispersion integral for the slab geometry. We find that the self-gravitating effect suppresses the frequency of surface dust ion-acoustic wave for the symmetric mode in the long wavelength regime, whereas it hardly changes the frequency for the anti-symmetric mode. As the slab thickness and the wave number increase, the surface wave frequency slowly decreases for the symmetric mode but increases significantly for the anti-symmetric mode. Themore » influence of external magnetic field is also investigated in the case of symmetric mode. We find that the strength of the magnetic field enhances the frequency of the symmetric-mode of the surface plasma wave. The increase of magnetic field reduces the self-gravitational effect and thus the self-gravitating collapse may be suppressed and the stability of dusty objects in space is enhanced.« less
NASA Astrophysics Data System (ADS)
Van Deynse, Annick; Morent, Rino; Leys, Christophe; De Geyter, Nathalie
2017-10-01
In this paper, ethanol vapor up to 50% is added to an argon, air or nitrogen dielectric barrier discharge at medium pressure to profoundly investigate the effect of ethanol addition on the surface modification of low density polyethylene (LDPE). Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements show that the ethanol vapor addition effect on the LDPE surface depends on the used carrier gas. Adding ethanol to an argon plasma has no significant effect on the wettability nor on the chemical composition of LDPE compared to a pure argon plasma treatment. Ethanol addition does however slightly increase the LDPE surface roughness. Addition of small amounts of ethanol vapor to an air plasma makes it possible to incorporate additional nitrogen and oxygen groups on the LDPE surface, resulting in an extra decrease of 11% in WCA value. Moreover, the LDPE surface roughness is slightly increased due to the ethanol vapor addition. The most significant effect of ethanol addition is however observed when nitrogen is used as carrier gas. After an N2/2% ethanol plasma treatment, an 85% reduction in WCA value to 8.5° is found compared to a pure N2 plasma treatment. This very hydrophilic LDPE surface is obtained due to a significantly high incorporation of oxygen and nitrogen groups on the surface with an O/C and N/C ratio reaching 32% and 53% respectively. FTIR measurements also reveal that the observed extremely high wettability of LDPE is not the result of plasma activation but is due to plasma polymerization effects occurring on the surface resulting into the deposition of a plasma polymer containing ketones, amides as well as Cdbnd N groups. In addition, ageing studies have also been conducted and these studies reveal that for all carrier gases, ethanol addition to the discharge gas significantly suppresses the ageing effect. All the above mentioned conclusions therefore indicate that ethanol vapor based plasmas can be an excellent tool to increase the surface energy of polymers.
Effect of surface deposits on electromagnetic propagation in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1991-01-01
A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens
2015-10-21
The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.
NASA Astrophysics Data System (ADS)
Kaboli, Shirin; McDermid, Joseph R.
2014-08-01
A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall, it was concluded that the fundamental mechanisms behind the microstructural development of solidified metallic zinc coatings have yet to be completely elucidated and require further investigation.
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1991-01-01
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.
NASA Astrophysics Data System (ADS)
Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen
2014-12-01
The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.
Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser
NASA Astrophysics Data System (ADS)
Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan
2018-03-01
Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.
Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.
Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki
2015-01-01
Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.
Ruffatto, Donald; Parness, Aaron; Spenko, Matthew
2014-01-01
This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392
Improving the surface metrology accuracy of optical profilers by using multiple measurements
NASA Astrophysics Data System (ADS)
Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan
2016-10-01
The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.
Nanostructured magnesium has fewer detrimental effects on osteoblast function.
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.
Nanostructured magnesium has fewer detrimental effects on osteoblast function
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891
Different Effects of Roughness (Granularity) and Hydrophobicity
NASA Astrophysics Data System (ADS)
Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael
2010-05-01
With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most superhydrophobic surfaces. There are some, however, that defeat even the snail's complex slime. Looking at these surfaces in more detail reveals that some superhydrophobic surfaces are much more resistant to the effects of surfactants than others. As mentioned above, overhanging structures, such as those found in granular materials are particularly effective at suspending liquids. This does not, however, always translate to them being more effective against surfactants, unfortunately, however, surfactants are not always as effective as we would like them to be, although drops do not skate across superhydrophobic surfaces they often do not penetrate into them fully either.
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing
2016-08-01
In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanah, Lilik, E-mail: lilikhasanah@upi.edu; Suhendi, Endi; Tayubi, Yuyu Rahmat
In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Krill, S L; Gupta, S L; Smith, T
1994-05-06
Lung surfactant-associated protein interaction with lipid matrices and the effects on lipid thermotropic phase behavior are areas of active research. Many studies limit the lipids to a single or two-component system. The current investigation utilizes a three-lipid component matrix (DPPC:POPG:palmitic acid) to investigate the impact of a synthetic surfactant protein B fragment (SP-B 53-78 DiACM) on the dynamic surface activity of the lipid admixture as measured by a Wilhelmy surface balance. Also, the modulation of the individual lipid acyl chain order by the peptide within the lipid matrix is studied through the use of thermal perturbation FTIR spectroscopy. The data clearly demonstrate a concentration-dependent effect of the peptide on the surface activity with an improvement in the dynamic surface tension diagram characteristics (decreased surface tension and increased collapse plateau) especially at low, 0.36 M%, peptide concentrations. These effects are diminished upon further addition of the peptide. FTIR spectral data demonstrate that the peptide addition results in a significant increase in the acyl chain order of the DPPC and POPG components as measured by the position of the methylene stretching vibrational bands. DPPC is most sensitive to the peptide presence, while the palmitic acid is least affected. The transition temperatures of the individual lipids are also increased with the addition of the peptide. The presence of POPG in the matrix achieves the surface activity similarly seen with natural lung surfactant relative to a DPPC/palmitic acid lipid matrix alone. Its presence increases the sensitivity of the DPPC acyl chains to the presence of the peptide. These effects on the chain order are most probably related to the increased acyl chain fluidity which POPG imparts to the lipid matrix because of the presence of the cis double bond. The phosphatidylglycerol headgroup also adds a negative charge to the lipid matrix which enhances the peptide-lipid interaction. Although the palmitic acid is minimally affected by the peptide, its presence, as suggested by surface balance measurements, results in the establishment of a stable lipid film with DPPC, capable of achieving low surface tension values.
Effect of sealer coating and storage methods on the surface roughness of soft liners.
Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat
2016-03-01
A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail
2018-06-01
Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.
NASA Astrophysics Data System (ADS)
Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang
2017-07-01
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
The salinity effect in a mixed layer ocean model
NASA Technical Reports Server (NTRS)
Miller, J. R.
1976-01-01
A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.
In vitro evaluation of biodegradable microspheres with surface-bound ligands.
Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark
2006-02-21
Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.
This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less
Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.
2016-01-01
The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.
Leading edge film cooling effects on turbine blade heat transfer
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1995-01-01
An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
Chen, C Q; Scott, W; Barker, T M
1999-01-01
Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.
Deep and surface learning in problem-based learning: a review of the literature.
Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David
2016-12-01
In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.
Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Pugal, David; Kim, Kwang
2014-03-01
This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.
NASA Technical Reports Server (NTRS)
Macmillan, Daniel S.; Han, Daesoo
1989-01-01
The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.
Mozhaev, V G; Weihnacht, M
2000-07-01
The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.
Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na
2011-08-01
This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.
Kinematic adaptations during running: effects of footwear, surface, and duration.
Hardin, Elizabeth C; van den Bogert, Antonie J; Hamill, Joseph
2004-05-01
Repetitive impacts encountered during locomotion may be modified by footwear and/or surface. Changes in kinematics may occur either as a direct response to altered mechanical conditions or over time as active adaptations. : To investigate how midsole hardness, surface stiffness, and running duration influence running kinematics. In the first of two experiments, 12 males ran at metabolic steady state under six conditions; combinations of midsole hardness (40 Shore A, 70 Shore A), and surface stiffness (100 kN x m, 200 kN x m, and 350 kN x m). In the second experiment, 10 males ran for 30 min on a 12% downhill grade. In both experiments, subjects ran at 3.4 m x s on a treadmill while 2-D hip, knee, and ankle kinematics were determined using high-speed videography (200 Hz). Oxygen cost and heart rate data were also collected. Kinematic adaptations to midsole, surface, and running time were studied. Stance time, stride cycle time, and maximal knee flexion were invariant across conditions in each experiment. Increased midsole hardness resulted in greater peak ankle dorsiflexion velocity (P = 0.0005). Increased surface stiffness resulted in decreased hip and knee flexion at contact, reduced maximal hip flexion, and increased peak angular velocities of the hip, knee, and ankle. Over time, hip flexion at contact decreased, plantarflexion at toe-off increased, and peak dorsiflexion and plantarflexion velocity increased. Lower-extremity kinematics adapted to increased midsole hardness, surface stiffness, and running duration. Changes in limb posture at impact were interpreted as active adaptations that compensate for passive mechanical effects. The adaptations appeared to have the goal of minimizing metabolic cost at the expense of increased exposure to impact shock.
NASA Astrophysics Data System (ADS)
Xi, S. B.; Lu, W. J.; Wu, H. Y.; Tong, P.; Sun, Y. P.
2012-12-01
The surface magnetic behavior of La0.8Ca0.2MnO3 nanoparticles was investigated. We observed irreversibility in high magnetic field. The surface spin-glass behavior as well as the high-field irreversibility is suppressed by increasing particle size while the freezing temperature TF does not change with particle size. The enhanced coercivity has been observed in the particles and we attributed it to the large surface anisotropy. We have disclosed a clear relationship between the particle size, the thickness of the shell, and the saturation magnetization of the particles. The large reduction of the saturation magnetization of the samples is found to be induced by the increase of nonmagnetic surface large since the thickness of the spin-disordered surface layer increases with a decrease in the particle size. Due to the reduction of the magnetization, the magnetocaloric effect (MCE) has been reduced by the decreased particle size since the nonmagnetic surface contributes little to the MCE. Based on the core-shell structure, large relative cooling powers RCP(s) of 180 J/kg and 471 J/kg were predicted for a field change of 2.0 T and 4.5 T, respectively, in the small particles with thin spin-glass layer.
NASA Astrophysics Data System (ADS)
Anisja, D. H.; Indrani, D. J.; Herda, E.
2017-08-01
Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.
Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my
The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.
Concentration and saturation effects of tethered polymer chains on adsorbing surfaces
NASA Astrophysics Data System (ADS)
Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander
2006-12-01
We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.
Shen, Jian-Wei; Chen, Yun; Yang, Guo-Li; Wang, Xiao-Xiang; He, Fu-Ming; Wang, Hui-Ming
2016-07-01
Storage in aqueous solution and ultraviolet (UV) photofunctionalization are two applicable methods to overcome the biological aging and increase the bioactivity of titanium. As information regarding the combined effects of storage medium and UV photofunctionalization has never been found in published literatures, this study focused on whether appropriate storage methods and UV photofunctionalization have synergistic effects on the biological properties of aged titanium surfaces. Titanium plates and discs were sandblasted and acid etched and then further prepared in five different modes as using different storage mediums (air or dH2 O) for 4 weeks and then with or without UV treatment. The surface characteristics were evaluated with scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. MC3T3-E1 cells were cultured on the surfaces, and cellular morphology, proliferation, alkaline phosphatase activity, and osteocalcin release were evaluated. The results showed that nanostructures were observed on water-stored titanium surfaces with a size of about 15 × 20 nm(2) . UV treatment was effective to remove the hydrocarbon contamination on titanium surfaces stored in either air or water. UV photofunctionalization further enhanced the already increased bioactivity of modSLA on initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin release. Overall, UV photofunctionalization was effective in further enhancing the already increased bioactivity by using dH2 O as storage medium, and the effect of UV treatment was much more overwhelming than that of the storage medium. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 932-940, 2016. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Shape dependence of slip length on patterned hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Chen, Min
2011-08-01
The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.
Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.
Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami
2017-08-20
The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karabeshkin, K. V., E-mail: yanikolaus@yandex.ru; Karaseov, P. A.; Titov, A. I.
2016-08-15
The depth distributions of structural damage induced in Si at room temperature by the implantation of P and PF{sub 4} with energies from 0.6 to 3.2 keV/amu are experimentally studied in a wide range of doses. It is found that, in all cases, the implantation of molecular PF{sub 4} ions forms practically single-mode defect distributions, with maximum at the target surface. This effect is caused by an increase in the generation of primary defects at the surface of the target. Individual cascades formed by atoms comprising molecule effectively overlap in the surface vicinity; this overlap gives rise to nonlinear processesmore » in combined cascades due to a high density of displacements in such cascades. Quantitative estimation of increase of effectiveness of point defect generation by PF{sub 4} ions in respect to P ions is done on the base of experimental data.« less
NASA Astrophysics Data System (ADS)
Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman
2018-02-01
Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.
Experimental study on soluble chemical transfer to surface runoff from soil.
Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei
2016-10-01
Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.
Parametric evaluation of ball milling of SiC in water
NASA Technical Reports Server (NTRS)
Kiser, J. D.; Herbell, T. P.; Freedman, M. R.
1985-01-01
A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santiago, Denise Ester O.; Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines; Pajarito, Bryan B.
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonitemore » decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.« less
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.
2002-01-01
The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.
Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors
NASA Astrophysics Data System (ADS)
Devynck, Mélanie; Tardy, Pascal; Wantz, Guillaume; Nicolas, Yohann; Vellutini, Luc; Labrugère, Christine; Hirsch, Lionel
2012-01-01
Surface modifications of the dielectric and the metal of pentacene-based field effect transistors using self-assembled monolayer (SAM) were studied. First, a low interfacial trap density and pentacene 2D-growth were favored by the nonpolar and low surface energy of octadecyltrichlorosilane-based SAM. This treatment leaded to increased mobility up to 0.4 cm2 V-1 s-1 and no observable hysteresis on transfer curves. Second, reduced hole injection barrier and contact resistance were achieved by fluorinated thiols deposited on gold contacts resulting in an increased mobility up to 0.6 cm2 V-1 s-1. Finally, a high mobility of 2.6 cm2 V-1 s-1 was achieved by cumulative effects of both treatments.
Evaluation of current techniques for isolation of chars as natural adsorbents
Chun, Y.; Sheng, G.; Chiou, C.T.
2004-01-01
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
Biocompatible, smooth, plasma-treated nickel-titanium surface--an adequate platform for cell growth.
Chrzanowski, W; Szade, J; Hart, A D; Knowles, J C; Dalby, M J
2012-02-01
High nickel content is believed to reduce the number of biomedical applications of nickel-titanium alloy due to the reported toxicity of nickel. The reduction in nickel release and minimized exposure of the cell to nickel can optimize the biocompatibility of the alloy and increase its use in the application where its shape memory effects and pseudoelasticity are particularly useful, e.g., spinal implants. Many treatments have been tried to improve the biocompatibility of Ni-Ti, and results suggest that a native, smooth surface could provide sufficient tolerance, biologically. We hypothesized that the native surface of nickel-titanium supports cell differentiation and insures good biocompatibility. Three types of surface modifications were investigated: thermal oxidation, alkali treatment, and plasma sputtering, and compared with smooth, ground surface. Thermal oxidation caused a drop in surface nickel content, while negligible chemistry changes were observed for plasma-modified samples when compared with control ground samples. In contrast, alkali treatment caused significant increase in surface nickel concentration and accelerated nickel release. Nickel release was also accelerated in thermally oxidized samples at 600 °C, while in other samples it remained at low level. Both thermal oxidation and alkali treatment increased the roughness of the surface, but mean roughness R(a) was significantly greater for the alkali-treated ones. Ground and plasma-modified samples had 'smooth' surfaces with R(a)=4 nm. Deformability tests showed that the adhesion of the surface layers on samples oxidized at 600 °C and alkali treatment samples was not sufficient; the layer delaminated upon deformation. It was observed that the cell cytoskeletons on the samples with a high nickel content or release were less developed, suggesting some negative effects of nickel on cell growth. These effects were observed primarily during initial cell contact with the surface. The most favorable cell responses were observed for ground and plasma-sputtered surfaces. These studies indicated that smooth, plasma-modified surfaces provide sufficient properties for cells to grow. © The Author(s), 2011.
Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge
2002-07-01
The present paper compares the transformation behaviour and mechanical properties of two orthodontic wires of close chemical compositions. The effects of surface topography and surface finish residues on the potentiodynamic corrosion behaviour and biocompatibility are also reported. The cytotoxicity tests were performed on both alloys in fibroblast cell cultures from human gingiva using the MTT test. It is shown that the surface finish and the amounts of surface finish residues affect dramatically the corrosion resistance. Bad surface finish results in lower corrosion resistance. The in vitro biocompatibility, though not affected to the extent of corrosion resistance, is also reduced as the surface roughness and the amounts of residues increase. This is thought to be due to surface effects on corrosion and metallic ions release.
Where does CO2 in Antarctica cool the atmosphere ?
NASA Astrophysics Data System (ADS)
Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas
2016-04-01
In a recent study we have shown that for the high altitude plateau in Antarctica CO2 causes a surplus in infrared emission to space compared to what is emitted from the surface. This corresponds to a negative greenhouse effect, and is due to the fact that for this region the surface is typically colder than the atmosphere above, opposite to the rest of the world. As a consequence, for this region an increase in CO2 leads to an increase in the energy loss to space, leading to an increase in the negative greenhouse effect. We now studied in more detail the radiative effect of CO2 and compared the results with available measurements from Antarctica. H. Schmithüsen, J. Notholt, G. Köngig-Langlo, T, Jung. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, in press, 2015. doi: 10.1002/2015GL066749.
Non-Lambertian effects on remote sensing of surface reflectance and vegetation index
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kaufman, Y. J.
1986-01-01
This paper discusses the effects of non-Lambertian reflection from a homogeneous surface on remote sensing of the surface reflectance and vegetation index from a satellite. Remote measurement of the surface characteristics is perturbed by atmospheric scattering of sun light. This scattering tends to smooth the angular dependence of non-Lambertian surface reflectances, an effect that is not present in the case of Lambertian surfaces. This effect is calculated to test the validity of a Lambertian assumption used in remote sensing. For the three types of vegetations considered in this study, the assumption of Lambertian surface can be used satisfactorily in the derivation of surface reflectance from remotely measured radiance for a view angle outside the backscattering region. Within the backscattering region, however, the use of the assumption can result in a considerable error in the derived surface reflectance. Accuracy also deteriorates with increasing solar zenith angle. The angular distribution of the surface reflectance derived from remote measurements is smoother than that at the surface. The effect of surface non-Lambertianity on remote sensing of vegetation index is very weak. Since the effect is similiar in the visible and near infrared part of the solar spectrum for the vegetations treated in this study, it is canceled in deriving the vegetation index. The effect of the diffuse skylight on surface reflectance measurements at ground level is also discussed.
Understanding recent climate change.
Serreze, Mark C
2010-02-01
The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.
Surface roughness effects in elastohydrodynamic contacts
NASA Technical Reports Server (NTRS)
Tripp, J. H.; Hamrock, B. J.
1985-01-01
Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.
S180 cell growth on low ion energy plasma treated TiO 2 thin films
NASA Astrophysics Data System (ADS)
Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna
2008-03-01
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Wang, Lu; Nie, Zhihua
Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Cheng, Xiaolin; Glass, Dennis C.
2012-06-05
The effect of surface hydration water on internal protein motion is of fundamental interest in molecular biophysics. Here, by decomposing the picosecond to nanosecond atomic motion in molecular dynamics simulations of lysozyme at different hydration levels into three components localized single-well diffusion, methyl group rotation, and nonmethyl jumps we show that the effect of surface hydration is mainly to increase the volume of the localized single-well diffusion. As a result, these diffusive motions are coupled in such a way that the hydration effect propagates from the protein surface into the dry core.
Effects of hydrogen treatment on ohmic contacts to p-type GaN films
NASA Astrophysics Data System (ADS)
Huang, Bohr-Ran; Chou, Chia-Hui; Ke, Wen-Cheng; Chou, Yi-Lun; Tsai, Chia-Lung; Wu, Meng-chyi
2011-06-01
This study investigated the effects of hydrogen (H 2) treatment on metal contacts to Mg-doped p-GaN films by Hall-effect measurement, current-voltage ( I- V) analyzer and X-ray photoemission spectra (XPS). The interfacial oxide layer on the p-GaN surface was found to be the main reason for causing the nonlinear I- V behavior of the untreated p-GaN films. The increased nitrogen vacancy (V N) density due to increased GaN decomposition rate at high-temperature hydrogen treatment is believed to form high density surface states on the surface of p-GaN films. Compared to untreated p-GaN films, the surface Fermi level determined by the Ga 2p core-level peak on 1000 °C H 2-treated p-GaN films lies about ˜2.1 eV closer to the conduction band edge (i.e., the surface inverted to n-type behavior). The reduction in barrier height due to the high surface state density pinned the surface Fermi level close to the conduction band edge, and allowed the electrons to easily flow over the barrier from the metal into the p-GaN films. Thus, a good ohmic contact was achieved on the p-GaN films by the surface inversion method.
Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser
NASA Astrophysics Data System (ADS)
Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.
2013-09-01
Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.
Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion.
Lee, Jung-Hwan; Jo, Jeong-Ki; Kim, Dong-Ae; Patel, Kapil Dev; Kim, Hae-Won; Lee, Hae-Hyoung
2018-04-01
Although polymethyl methacrylate (PMMA) is widely used as a dental material, a major challenge of using this substance is its poor antimicrobial (anti-adhesion) effects, which increase oral infections. Here, graphene-oxide nanosheets (nGO) were incorporated into PMMA to introduce sustained antimicrobial-adhesive effects by increasing the hydrophilicity of PMMA. After characterizing nGO and nGO-incorporated PMMA (up to 2wt%) in terms of morphology and surface characteristics, 3-point flexural strength and hardness were evaluated. The anti-adhesive effects were determined for 4 different microbial species with experimental specimens and the underlying anti-adhesive mechanism was investigated by a non-thermal oxygen plasma treatment. Sustained antimicrobial-adhesive effects were characterized with incubation in artificial saliva for up to 28 days. The typical nanosheet morphology was observed for nGO. Incorporating nGO into PMMA roughened its surface and increased its hydrophilicity without compromising flexural strength or surface hardness. An anti-adhesive effect after 1h of exposure to microbial species in artificial saliva was observed in nGO-incorporated specimens, which accelerated with increasing levels of nGO without significant cytotoxicity to oral keratinocytes. Plasma treatment of native PMMA demonstrated that the antimicrobial-adhesive effects of nGO incorporation were at least partially due to increased hydrophilicity, not changes in the surface roughness. A sustained antimicrobial-adhesive property against Candida albicans was observed in 2% nGO for up to 28 days. The presence of sustained anti-adhesion properties in nGO-incorporated PMMA without loading any antimicrobial drugs suggests the potential usefulness of this compound as a promising antimicrobial dental material for dentures, orthodontic devices and provisional restorative materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Surface tension of Nanofluid-type fuels containing suspended nanomaterials
2012-01-01
The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039
Measuring the greenhouse effect and radiative forcing through the atmosphere
NASA Astrophysics Data System (ADS)
Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel
2013-04-01
In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.
Droplet sliding on inclined superhydrophobic surfaces: the effect of anisotropic contact line
NASA Astrophysics Data System (ADS)
Jiang, Youhua; Cao, Lile; Guo, Zongqi; Choi, Chang-Hwan
2017-11-01
Although the effects of solid structures on droplet retention on superhydrophobic surfaces have been studied extensively, the investigation has been restricted to the sessile droplets on horizontal surfaces where the contact line motions are axisymmetric or isotropic (either advancing or receding). In the droplet retention on inclined surfaces, the contact line motions are asymmetric or anisotropic; the advancing and receding motions coexist. In this study, we investigate the correlation between the droplet boundary pinning and the surface morphology on inclined superhydrophobic surfaces. The evolution of the droplet contact angle and width show contrary behaviors between pillar- and pore-structured surfaces due to the distinctive microscopic contact line motions. Therefore, the visualizations of the contact line motions at different locations of the boundary on inclined superhydrophobic surfaces are performed and the averaged contact line density of the boundary is quantified. The result shows that the droplet retentive force monotonously increase with the increase in contact line density, regardless of the surface morphological types, dimensions, or the direction of contact line motion (advancing, receding, or both). The result indicates that the droplet retentive force on superhydrophobic surfaces is mainly determined by the contact line density, regardless of the isotropy of the contact line.
Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan
2008-05-01
Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Evolution of Fermi Surface Properties in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Endo, Motoki; Nakamura, Shintaro; Isshiki, Toshiyuki; Kimura, Noriaki; Nojima, Tsutomu; Aoki, Haruyoshi; Harima, Hisatomo; Kunii, Satoru
2006-11-01
We report the de Haas-van Alphen (dHvA) effect measurements of the Fermi surface properties in LaB6, CexLa1-xB6 (x = 0.1, 0.25, 0.5, 0.75, 1.0) and PrxLa1-xB6 (x = 0.25, 0.5, 0.75, 1.0) with particular attention to the spin dependence of the Fermi surface properties. The Fermi surface shape and dimension of CexLa1-xB6 change considerably with Ce concentration, while those of PrxLa1-xB6 change very slightly up to x = 0.75, and in PrB6 the Fermi surface splits into the up and down spin Fermi surfaces. The effective mass of CexLa1-xB6 increases considerably with Ce concentration and is nearly proportional to the number of Ce ions, whereas that of PrxLa1-xB6 increases slightly with Pr concentration. In CexLa1-xB6 the effective mass depends very strongly on field and increases divergently with decreasing field, while that of PrxLa1-xB6 increases slightly with decreasing field. The contribution to the dHvA signal from the conduction electrons of one spin direction diminishes with Ce concentration and appears to disappear somewhere around x = 0.25--0.5. A weak spin dependence is also found in PrxLa1-xB6. The behaviors of CexLa1-xB6 and PrxLa1-xB6 are compared to discuss the origin of the spin dependence of the Fermi surface properties.
Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B
The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Tai, Amos P. K.; Chen, Youfan; Pan, Yuepeng
2017-08-01
Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen - namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02-0.04 cm s-1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.
Measurement of surface effects on the rotational diffusion of a colloidal particle.
Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo
2011-03-15
A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Salicylate effects on proton gradient dissipation by isolated gastric mucosal surface cells.
Olender, E J; Woods, D; Kozol, R; Fromm, D
1986-11-01
The effects of salicylate were examined on Na+/H+ exchange by isolated gastric mucosal surface cells loaded with H+ and resuspended in a buffered medium. Choline salicylate (pH 7.4) increases the dissipation of an intracellular proton gradient which was measured using acridine orange. The exchange of extracellular Na+ with intracellular H+ by surface cells not only remains intact but also is enhanced upon exposure to salicylate. This was confirmed by cellular uptake of 22Na and titration of cellular H+ efflux. Salicylate increases Na+/H+ exchange via a pathway predominantly sensitive to amiloride. However, the data also suggest that salicylate dissipates an intracellular proton gradient by an additional mechanism. The latter is independent of extracellular Na+ and not due to a generalized increase in cellular permeability.
NASA Astrophysics Data System (ADS)
Jiang, Haihong
2005-11-01
The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.
NASA Technical Reports Server (NTRS)
Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.
2008-01-01
The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.
Ishiguro, Maki; Endo, Takashi
2014-02-01
The effects of alkali on hydrothermal-mechanochemical treatment (hydrothermal treatment combined with wet-milling) were examined with the aim of improving pretreatment of lignocellulosic biomass before enzymatic saccharification. After enzymatic saccharification, the highest glucose yield was obtained by autoclaving at 170°C in the presence of 20% NaOH per substrate weight. The wood fiber was unraveled into finer nanofibers by hydrothermal-mechanochemical treatment, thus increasing the specific surface area of the substrate from 11 to 132m(2)/g. Adding 20% NaOH to the treatment further increased the specific surface area of the already fibrillated substrate by 76% (232m(2)/g) due to lignin removal and ester bond cleavage between lignin and hemicellulose. This increase in specific surface area was closely related to the increase in enzymatic digestibility; therefore, NaOH addition may have enhanced the effect of hydrothermal-mechanochemical treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of dimethyl sulfoxide on dentin collagen.
Mehtälä, P; Pashley, D H; Tjäderhane, L
2017-08-01
Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Wada, Takahiro; Uo, Motohiro
2014-12-01
The objective of this study was to evaluate the effect of immersion time of restorative glass ionomer cements (GICs) and immersion duration in calcium chloride (CaCl2) solution on the surface hardness. Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were selected. Forty-eight specimens were randomly divided into two groups. Sixty minutes after being mixed, half of them were immersed in a 42.7wt% CaCl2 solution for 10, 30, or 60min (Group 1); the remaining specimens were immersed after an additional 1-week of storage (Group 2). The surface hardness of the specimens was measured and analyzed with two-way ANOVA and the Tukey HSD test (α=0.05). The surface compositions were examined using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The surface hardness of Group 1 significantly increased as the immersion duration in CaCl2 increased; that of Group 2 significantly increased only after 60-minute CaCl2 immersion. After CaCl2 immersion, the amounts of Ca increased as the immersion duration increased. The surface hardness after CaCl2 immersion significantly correlated with the amount of Ca in Group 1, but not in Group 2. The binding energy of the Ca2p peak was similar to that of calcium polyalkenoate. These findings indicated that the Ca ions from the CaCl2 solution created chemical bonds with the carboxylic acid groups in the cement matrix. Immersion of GICs in CaCl2 solution at the early stage of setting was considered to enhance the formation of the polyacid salt matrix; as a result, the surface hardness increased. Copyright © 2014. Published by Elsevier Ltd.
Study of surface modes on a vibrating electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Shao, Yifeng; Bociort, Florian; Urbach, H. Paul
2017-10-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
The effects of surface finish and grain size on the strength of sintered silicon carbide
NASA Technical Reports Server (NTRS)
You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.
1985-01-01
The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.
He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan
2014-01-01
This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.
Xia, Ling; Huang, Rong; Li, Yinta
2017-01-01
The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production. PMID:29045481
Monitoring the effects of land use/landcover changes on urban heat island
NASA Astrophysics Data System (ADS)
Gee, Ong K.; Sarker, Md Latifur Rahman
2013-10-01
Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to reduce UHI effects as soon as possible.
Increased dose near the skin due to electromagnetic surface beacon transponder.
Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent
2015-05-08
The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
Electron emission from tungsten surface induced by neon ions
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli
2014-04-01
The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".
Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface
NASA Astrophysics Data System (ADS)
Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel
2015-12-01
The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.
Does hydrophilicity of carbon particles improve their ice nucleation ability?
Lupi, Laura; Molinero, Valeria
2014-09-04
Carbonaceous particles account for 10% of the particulate matter in the atmosphere. Atmospheric oxidation and aging of soot modulates its ice nucleation ability. It has been suggested that an increase in the ice nucleation ability of aged soot results from an increase in the hydrophilicity of the surfaces upon oxidation. Oxidation, however, also impacts the nanostructure of soot, making it difficult to assess the separate effects of soot nanostructure and hydrophilicity in experiments. Here we use molecular dynamics simulations to investigate the effect of changes in hydrophilicity of model graphitic surfaces on the freezing temperature of ice. Our results indicate that the hydrophilicity of the surface is not in general a good predictor of ice nucleation ability. We find a correlation between the ability of a surface to promote nucleation of ice and the layering of liquid water at the surface. The results of this work suggest that ordering of liquid water in contact with the surface plays an important role in the heterogeneous ice nucleation mechanism.
Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C
2011-05-01
Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
Simulating root-induced rhizosphere deformation and its effect on water flow
NASA Astrophysics Data System (ADS)
Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.
2011-12-01
Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
NASA Astrophysics Data System (ADS)
Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.
2012-07-01
Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.
Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.
2017-12-01
Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.
Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S
2015-04-01
The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.
NASA Astrophysics Data System (ADS)
El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat
2011-12-01
In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.
Williamson, Rachel; Lachenbruch, Charlie; Vangilder, Catherine
2013-06-01
Underpads and layers of linens are frequently placed under patients who are incontinent, have other moisture-related issues, and/or are immobile and cannot reposition independently. Many of these patients are also at risk for pressure ulcers and placed on pressure-redistribution surfaces. The purpose of this study was to measure the effects of linens and incontinence pads on interface pressure. Interface sacral pressures were measured (mm Hg) using a mannequinlike pelvic indenter that has pressure transducers integrated into the unit and is covered with a soft flesh-like elastomer. The indenter was loaded to simulate a median-weight male (80 kg/176 lb), and the testing was performed at head-of bed (HOB) angles of 0°, 30°, and 45°. Two different surfaces, a high performance low-air-loss support (LAL) surface and a standard foam support surface, were used and covered with a fitted sheet (FS) only or a combination of the FS and various incontinence pads and transfer sheets. Linen combinations typically used for relatively immobile patients (n = 4), moisture management (n = 4), and moisture management and immobility (n = 1) were tested, as was the heavy use of linens/pads (nine layers, n = 1). All combinations were tested 10 times at HOB angles of 0°, 30°, and 45°. The highest pressure observed was recorded (peak pressure). Ninety five percent (95%) confidence interval (CI) surrounding the mean of the 10 trials for each combination was calculated using the t-distribution; differences between means for all surface combinations were determined using one-way ANOVA with follow-up Fisher Hayter test. Results indicated that each incontinence pad, transfer sheet, or combination of linens significantly increased the mean peak sacral pressure when compared to a single FS on both the low-air-loss surface and the foam surface, regardless of the head-of-bed angle. The magnitude of peak sacral interface pressure increase for the LAL surface at 30° head-of-bed angle was 20% to 64% depending on the linen combination. At 30°, the foam surface showed increases 6% to 29% (P <0.0001) compared with a FS baseline. If linens were wet, peak interface sacral pressures were equivalent to or less than pressures measured on the same pads when measured dry. The presence of linens on both surface types adversely affected the pressure redistribution capabilities of the surfaces; added layers increased pressure proportionally. The effect on interface pressure from the linen layers was more pronounced on the LAL than the foam surface. The study results illustrate that significant increases in peak interface pressure occur in a laboratory setting when linen layers are added to pressure redistribution surfaces. Results also indicated wetting incontinence pads on a support surface did not significantly increase interface pressure. Although additional preclinical and clinical studies are needed to guide practice, excessive linen usage for patients on therapeutic support surfaces should be discouraged.
Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi
2015-06-01
The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.
2011-08-01
Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.
NASA Technical Reports Server (NTRS)
Mesarwi, A.; Ignatiev, A.
1992-01-01
The oxidation of Al(x)Ga(1-x)As (x = 0.15, AlGaAs) was studied by AES and XPS at 350 C and different oxygen exposures (up to 5 x 10 exp 4 L). Also studied were the effects of yttrium overlayers (theta = 3 ML) on the oxidation of the AlGaAs surface. Substantial oxygen-induced Al surface segregation has been observed for both yttriated and nonyttriated AlGaAs surfaces which increased with increasing oxygen exposure. Also observed is a significant Y-enhanced oxidation of the AlGaAs surface. Oxidation of the yttriated AlGaAs surface was found to be a factor of 4 greater than that of the nonyttriated surface. Also, while oxidation of the nonyttriated AlGaAs yielded mainly Al2O(x) (x less than 3) and only little Ga2O3, the yttriated AlGaAs surface oxide layer was principally Ga2O3 and stoichiometric Al2O3. However, both the yttriated and nonyttriated surfaces were found to contain metallic As within the oxide layer.
Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces
NASA Technical Reports Server (NTRS)
Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve
2006-01-01
Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
NASA Astrophysics Data System (ADS)
Anil, K. C.; Vikas, M. G.; Shanmukha Teja, B.; Sreenivas Rao, K. V.
2017-04-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, graphite (Grp) reinforced Aluminium 8011 is synthesized by convention stir casting process and Surface finish & machinability of prepared composite is examined by using lathe tool dynamometer attached with BANKA Lathe by varying the machining parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, Roughness Average (Ra) of machined surfaces is measured by using Surface Roughness Tester (Mitutoyo SJ201). From the studies it is cleared that mechanical properties of a composites increases with addition of Grp and The cutting force were decreased with the reinforcement percentage and thus increases the machinability of composites and also results in increased surface finish.
NASA Astrophysics Data System (ADS)
Yang, Runhua; Yang, Lixin
2018-06-01
Plasma immersion ion implantation (PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases (SF6/O2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that with increasing ratio of mixed gases (SF6/O2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases (SF6/O2), which is in accordance with the change of the height of micro/nano structures.
Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers
NASA Astrophysics Data System (ADS)
Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong
2018-04-01
The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.
Evaporation from a sphagnum moss surface
D.S. Nichols; J.M. Brown
1980-01-01
Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...
Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix.
Zaeim, Davood; Sarabi-Jamab, Mahboobe; Ghorani, Behrouz; Kadkhodaee, Rassoul; Tromp, R Hans
2018-03-01
Acacia gum solution was employed as a carrier for electrospray-assisted drying of probiotic cells. To optimize the process, effect of gum concentration, thermal sterilization as a prerequisite for microbial studies, and surfactant addition on physical properties of feed solution was investigated. Increasing gum concentration from 20 to 40 wt.% led to a viscosity increase, whilst surface tension did not change meaningfully and electrical conductivity declined after an increasing trend up to 30 wt.% of the gum. Thermal sterilization increased the viscosity without any significant effect on the conductivity and surface tension. Surfactant addition reduced the surface tension and conductivity but the viscosity increased. Highly uniform particles were formed by electrospray-assisted drying of autoclaved 35 wt.% acacia gum solution containing 1 wt.% Tween 80. Thermal sterilization and surfactant addition improved electrospray-ability of acacia gum solution. Bacterial count showed that more than 96 percent of probiotic cells passed the process viably. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon
2018-05-02
This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.
Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan,S.; Ward, R.; Hexemer, A.
2006-01-01
Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.
Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Kusaka, T.; Maeda, C.
1985-01-01
The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying.
Noncontact measurement of vibration using airborne ultrasound.
Mater, O B; Remenieras, J P; Bruneel, C; Roncin, A; Patat, F
1998-01-01
A noncontact ultrasonic method for measuring the surface normal vibration of objects was studied. The instrument consists of a pair of 420 kHz ultrasonic air transducers. One is used to emit ultrasounds toward the moving surface, and the other receives the ultrasound reflected from the object under test. Two effects induce a phase modulation on the received signal. The first effect results from the variation of the round trip time interval tau required for the wavefront to go from the emitter to the moving surface and back to the receiver. This is the Doppler effect directly proportional to the surface displacement. The second effect results from the nonlinear parametric interactions of the ultrasonic beams (forward and backward) with the low frequency sound field emitted in the air by the vibrating surface. This latter phenomenon, which is a volume effect, is proportional to the velocity of the vibrating surface and increases with the distance between the transducers and the surface under test. The relative contribution of the Doppler and parametric effects are evaluated, and both have to be taken into account for ultrasonic interferometry in air.
Yamawaki, I; Taguchi, Y; Komasa, S; Tanaka, A; Umeda, M
2017-08-01
Diabetes mellitus (DM) is a common disease worldwide. Patients with DM have an increased risk of losing their teeth compared with other individuals. Dental implants are a standard of care for treating partial or full edentulism, and various implant surface treatments have recently been developed to increase dental implant stability. However, some studies have reported that DM reduces osseointegration and the success rate of dental implants. The purpose of this study was to determine the effects of high glucose levels for hard tissue formation on a nano-scale modified titanium surface. Titanium disks were heated at 600°C for 1 h after treatment with or without 10 m NaOH solution. All disks were incubated with type II DM rat bone marrow-derived mesenchymal stromal cells before exposure to one of four concentrations of glucose (5.5, 8.0, 12.0 or 24.0 mm). The effect of different glucose concentrations on bone marrow-derived mesenchymal stromal cell osteogenesis and inflammatory cytokines on the nano-scale modified titanium surface was evaluated. Alkaline phosphatase activity decreased with increasing glucose concentration. In contrast, osteocalcin production and calcium deposition were significantly decreased at 8.0 mm glucose, but increased with glucose concentrations over 8.0 mm. Differences in calcium/phosphate ratio associated with the various glucose concentrations were similar to osteocalcin production and calcium deposition. Inflammatory cytokines were expressed at high glucose concentrations, but the nano-scale modified titanium surface inhibited the effect of high glucose concentrations. High glucose concentration increased hard tissue formation, but the quality of the mineralized tissue decreased. Furthermore, the nano-scale modified titanium surface increased mineralized tissue formation and anti-inflammation, but the quality of hard tissue was dependent on glucose concentration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying
2009-08-01
By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.
Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.
Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan
2017-08-01
Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water storage capacities. The performance of both types stays limited to a maximum reduction of 2.4% compared to the baseline scenario, unless the coverage of vegetation and permeable surfaces is significantly increased as a 14.8% reduction is achieved by greening all roof surfaces. We conclude that the study provides empirical support for the effectiveness of urban green infrastructure as nature-based solution to stormwater regulation and assists planners and operators of sewage systems in selecting the most effective measures for implementation and estimation of their effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Lago, Angel; Acero, Rafael M; Fernández-del-Olmo, Miguel
2010-08-01
After repeated jumps over an elastic surface (e.g. a trampoline), subjects usually report a strange sensation when they jump again overground (e.g. they feel unable to jump because their body feels heavy). However, the motor and sensory effects of exposure to an elastic surface are unknown. In the present study, we examined the motor and perceptual effects of repeated jumps over two different surfaces (stiff and elastic), measuring how this affected maximal countermovement vertical jump (CMJ). Fourteen subjects participated in two counterbalanced sessions, 1 week apart. Each experimental session consisted of a series of maximal CMJs over a force plate before and after 1 min of light jumping on an elastic or stiff surface. We measured actual motor performance (height jump and leg stiffness during CMJ) and how that related to perceptual experience (jump height estimation and subjective sensation). After repeated jumps on an elastic surface, the first CMJ showed a significant increase in leg stiffness (P < or = 0.01), decrease in jump height (P < or = 0.01) increase in perceptual misestimation (P < or = 0.05) and abnormal subjective sensation (P < or = 0.001). These changes were not observed after repeated jumps on a rigid surface. In a complementary experiment, continuous surface transitions show that the effects persist across cycles, and the effects over the leg stiffness and subjective experience are minimized (P < or = 0.05). We propose that these aftereffects could be the consequence of an erroneous internal model resulting from the high vertical forces produced by the elastic surface.
Zhang, J S; Stanforth, R S; Pehkonen, S O
2007-02-01
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.
NASA Astrophysics Data System (ADS)
Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander
2017-10-01
Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.
Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin
2015-04-13
The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.
2018-02-01
Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.
Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath
2016-11-01
The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.
2017-12-01
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.
NASA Astrophysics Data System (ADS)
Hsu, Jin-Chen; Lin, Fan-Shun
2018-07-01
In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.
NASA Astrophysics Data System (ADS)
Kamgang, J. O.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L.; Briandet, R.
2009-04-01
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
Improvements for the stability of heavy-haul couplers with arc surface contact
NASA Astrophysics Data System (ADS)
Wu, Guosong; Wang, Huang; Yao, Yuan
2018-03-01
To investigate the stability mechanism of heavy-haul couplers with arc surface contact, the geometry and force analysis were conducted according to the friction circle theory. To improve the stability of the coupler, four improvements were proposed, which are increasing the secondary lateral stiffness of locomotives, adding a restoring bumpstop at the end of the coupler, increasing the arc surfaces radii and changing the clearance and stiffness of secondary lateral stopping block. A multi-body dynamics model with four heavy-haul locomotives and three detailed couplers were established to simulate the emergency braking. In addition, the coupler yaw instability was tested to investigate the effects of relevant parameters on the coupler stability. The results show that increasing the secondary lateral stiffness of locomotives, adding a bumpstop with a smaller bumpstop gap, increasing the arc surfaces radii, increasing the stiffness and decreasing the clearance of secondary lateral stopping block are conducive to improving the stability of the coupler with arc surface contact.
Defect Detectability Improvement for Conventional Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hill, Chris
2013-01-01
This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojacz, H., E-mail: rojacz@ac2t.at
2016-08-15
Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less
NASA Astrophysics Data System (ADS)
Maddox, W.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.
2008-03-01
We discuss recent progress in studies of an oxidized Cu(100) single crystal subjected to vacuum annealing over a temperature range from 293K to 1073K using positron annihilation induced Auger electron spectroscopy (PAES). The PAES measurements show a large monotonic increase in the intensity of the positron annihilation induced Cu M2,3 VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 573 K. The intensity then decreases monotonically as the annealing temperature is increased to 873 K. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption and surface reconstruction on localization of positron surface state wave functions and annihilation characteristics are analyzed. Possible explanations are provided for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.
Modification of carbon fiber surfaces via grafting with Meldrum's acid
NASA Astrophysics Data System (ADS)
Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang
2015-11-01
The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Long-range effect of ion irradiation on Cu surface segregation in a Cu sbnd Ni system
NASA Astrophysics Data System (ADS)
Zhang, Li; Tang, Guangze; Ma, Xinxin; Russell, F. Michael; Cao, Xingzhong; Wang, Baoyi; Zhang, Peng
2011-05-01
Ni films were deposited on one side of single crystal Cu substrate discs of 1.0 and 1.5 mm thickness. These discs were irradiated on the Cu side with argon ions. Evidence for enhanced Cu segregation at the Ni surface was found for both thicknesses. This effect decreased with increasing distance between the diffusion zone and the irradiated surface. Slow positron annihilation results indicate lower vacancy-like defects at the subsurface layer after Ar irradiation on the other surface of Cu disks. Such long-range effect is here interpreted on the basis of a particular type of mobile discrete breather called quodon.
The reciprocal relation between lightning and pollution and their impact over Kolkata, India.
Middey, Anirban; Chaudhuri, Sutapa
2013-05-01
Aerosol loading in the atmosphere can cause increased lightning flashes, and those lightning flashes produce NOX , which reacts in sun light to produce surface ozone. The present study deals with the effect of surface pollutants on premonsoon (April-May) lightning activity over the station Kolkata (22.65° N, 88.45° E). Seven-year (2004-2010) premonsoon thunderstorms data are taken for the study. Different parameters like aerosol optical depth and cloud top temperature from the Moderate Resolution Imaging Spectroradiometer satellite products along with lightning flash data from Tropical Rainfall Measuring Mission's (TRMM) Lightning Imaging Sensor are analyzed. Some surface pollution parameters like suspended particulate matter, particulate matter 10, nitrogen oxides (NOX), and surface ozone (O₃) data during the same period are taken account for clear understanding of their association with lightning activity. Heights of convective condensation level and lifting condensation level are collected from radiosonde observations to anticipate about cloud base. It is found that increased surface pollution in a near storm environment is related to increased lightning flash rate, which results in increased surface NOX and consequently increased surface ozone concentration over the station Kolkata.
Saint-Criq, Vinciane; Kim, Sung Hoon; Katzenellenbogen, John A.; Harvey, Brian J.
2013-01-01
Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells. PMID:24223826
Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments
Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.
1990-01-01
The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x
Ida; Matsuyama; Yamamoto
2000-07-01
Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Yu, Qi; Ma, Keming; Ding, Zhenfeng
2014-06-01
The mixed O2/Ar plasma was employed to enhance mechanical properties of the PBO/bismaleimide composite. The interlaminar shear strength was improved to 61.6 MPa or by 38.1%, but the composite brittleness increased. The plasma gas compositions exhibited notable effects on the interfacial adhesion strength. XPS results suggested that the mixed plasma presented higher activation effects on the surface chemical compositions than pure gas plasmas and a larger number of oxygen atoms and hydrophilic groups were introduced on the fiber surface due to the synergy effect, but the synergy effect was considerably performed only within the O2 percentage range of 40-60%. The fibers surface was increasingly etched with growing the O2 contents in the plasma, deteriorating the fibers tensile strength. SEM micrographs demonstrated that the composite shear fracture changed from debonding to cohesive failure in the matrices, and the improving mechanisms were discussed.
Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells
Norton, Kerri-Ann; Han, Zheyi; Popel, Aleksander S; Pandey, Niranjan B
2014-01-01
Angiogenesis, the formation of new blood vessels, is an essential step for cancer progression, but antiangiogenic therapies have shown limited success. Therefore, a better understanding of the effects of antiangiogenic treatments on endothelial cells is necessary. In this study, we evaluate the changes in cell surface vascular endothelial growth factor receptor (VEGFR) expression on endothelial cells in culture treated with the antiangiogenic tyrosine kinase inhibitor drug sunitinib, using quantitative flow cytometry. We find that proangiogenic VEGFR2 cell surface receptor numbers are increased with sunitinib treatment. This proangiogenic effect might account for the limited effects of sunitinib as a cancer therapy. We also find that this increase is inhibited by brefeldin A, an inhibitor of protein transport from the endoplasmic reticulum to the Golgi apparatus. The complex dynamics of cell surface VEGFRs may be important for successful treatment of cancer with antiangiogenic therapeutics. PMID:25228815
Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L
2006-05-28
Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.
Ruvoletto, M G; Tono, N; Carollo, D; Vilei, T; Trentin, L; Muraca, M; Marino, M; Gatta, A; Fassina, G; Pontisso, P
2004-03-01
A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.
Estimation of effective aerodynamic roughness with altimeter measurements
NASA Technical Reports Server (NTRS)
Menenti, M.; Ritchie, J. C.
1992-01-01
A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.
Torabi, Kianoosh; Rasaeipour, Sasan; Khaledi, Amir Alireza; Vojdani, Mahroo; Ghodsi, Safoura
2014-05-01
Pressing esthetic demands of good looking make people undergo bleaching procedures. However, the effect of bleaching agents on esthetic restorative materials with different surface preparations has been poorly studied. The aim of this study was to examine the effect of a homebleaching agent (carbamide peroxide: CP 38%) on the surface roughness of the polished fiber reinforced composite (FRC), overglazed, autoglazed, or polished ceramic samples. Twenty standardized cylindrical specimens were made of each of the following groups: over-glazed, autoglazed, polished porcelain and also FRC. The test specimens exposed to the CP 38%, 15 minutes, twice a day for 2 weeks according to the manufacturer's recommendation. Six samples from each group were selected randomly to form negative controls. Surface roughness measurements (Ra, micrometer) for baseline, test and control specimens were performed by use of a profilometer. Paired t-test, Mann-Whitney test, and Kruskal-Wallis test were used for statistical analyses. The data showed that bleaching with CP 38% significantly increased the surface roughness of all the test samples (p < 0.05). The type of surface preparation caused significant differences between the susceptibility of porcelain subgroups to bleaching (p < 0.05). The polished porcelain specimens showed the highest changes after bleaching. CP 38% significantly increases the surface roughness of the porcelains and FRC. The type of surface condition affects the amenability of the porcelain surface to the bleaching agent. Glazed porcelains were more resistant to roughness than the polished porcelains and also the composite. Roughening of porcelain and FRC occur following bleaching procedure. No special surface preparation of indirect esthetic restorative materials can completely preserve these materials from adverse effects of bleaching agents.
NASA Technical Reports Server (NTRS)
deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.
2006-01-01
A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.
Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate
ERIC Educational Resources Information Center
Science, 1971
1971-01-01
Mathematical models indicate increasing atmospheric carbon dioxide causes an increase in surface temperature at a decreasing rate, and the rate of temperature decrease caused by increasing aerosols increases with aerosol concentration. (AL)
Hyzy, Sharon; Olivares-Navarrete, Rene; Hutton, Daphne L.; Tan, Christian; Boyan, Barbara D.; Schwartz, Zvi
2013-01-01
Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration. PMID:23123301
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-05-01
The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ ¯ , are found for the nanovoids of different sizes. Below a critical ratio Δ¯ * , the melting occurs via SM and the melting temperature slightly reduces with an increase in Δ ¯ . Both S → SM and SM → M transformations have a jump-like character (excluding the case with the sharp void surface), causing small temperature hysteresis. However, the solid melts without SM for Δ ¯>Δ¯ * , and the melting temperature significantly increases with increasing Δ ¯ . The results for a nanovoid are compared with the melting/solidification of a nanoparticle, for which the melting temperatures, in contrast, are much lower than θe. A linear dependency of the melting temperatures with the inverse of the void radius is shown. The present study shows an unexplored way to control the melting from nanovoids by controlling the void size and the width and energy of the surface.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
Passivating Window/First Layer AR Coating for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.
2004-01-01
Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.
NASA Astrophysics Data System (ADS)
Shaw, David; West, Andrew; Bredin, Jerome; Wagenaars, Erik
2016-12-01
Plasma treatments are common for increasing the surface energy of plastics, such as polypropylene (PP), to create improved adhesive properties. Despite the significant differences in plasma sources and plasma properties used, similar effects on the plastic film can be achieved, suggesting a common dominant plasma constituent and underpinning mechanism. However, many details of this process are still unknown. Here we present a study into the mechanisms underpinning surface energy increase of PP using atmospheric-pressure plasmas. For this we use the effluent of an atmospheric-pressure plasma jet (APPJ) since, unlike most plasma sources used for these treatments, there is no direct contact between the plasma and the PP surface; the APPJ provides a neutral, radical-rich environment without charged particles and electric fields impinging on the PP surface. The APPJ is a RF-driven plasma operating in helium gas with small admixtures of O2 (0-1%), where the effluent propagates through open air towards the PP surface. Despite the lack of charged particles and electric fields on the PP surface, measurements of contact angle show a decrease from 93.9° to 70.1° in 1.4 s and to 35° in 120 s, corresponding to a rapid increase in surface energy from 36.4 mN m-1 to 66.5 mN m-1 in the short time of 1.4 s. These treatment effects are very similar to what is found in other devices, highlighting the importance of neutral radicals produced by the plasma. Furthermore, we find an optimum percentage of oxygen of 0.5% within the helium input gas, and a decrease of the treatment effect with distance between the APPJ and the PP surface. These observed effects are linked to two-photon absorption laser-induced fluorescence spectroscopy (TALIF) measurements of atomic oxygen density within the APPJ effluent which show similar trends, implying the importance of this radical in the surface treatment of PP. Analysis of the surface reveals a two stage mechanism for the production of polar bonds on the surface of the polymer: a fast reaction producing carboxylic acid, or a similar ketone, followed by a slower reaction that includes nitrogen from the atmosphere on the surface, producing amides from the ketones.
The surface stability of Cr 2O 3 (0 0 0 1)
Cao, Shi; Wu, Ning; Echtenkamp, William; ...
2015-05-28
The surface of chromia (Cr 2O 3) has a surface electronic structure distinct from the bulk and a packing density distinct from the bulk. More than a demarcation between the solid and the vacuum, the surface differs from the bulk of chromia, not just because of a partial occupancy of chromium sites, but also because of an increased number of unoccupied surface oxygen sites (vacancy sites), evident in angle-resolved core level photoemission. In spite of the structural differences that exist at the surface, there is, as yet, no evidence that these complications affect the surface Debye temperature beyond the mostmore » simple of assumptions regarding the lower coordination of the surface. Using low-energy electron diffraction (LEED), the effective surface Debye temperature (similar to 490 K) is found to be lower than the bulk (similar to 645 K) Debye temperature of Cr 2O 3(0 0 0 1). This surface effective Debye temperature, indicative of vibrations along the surface normal, uncorrected for anharmonic effects, has a value reduced from the effective bulk Debye temperature yet close to the value root 2 expected from a simple mean field argument.« less
NASA Astrophysics Data System (ADS)
Hou, X. D.; Jennett, N. M.
2017-11-01
Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.
Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C
2017-09-04
The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.
NASA Technical Reports Server (NTRS)
Howell, G. A.; Crosthwait, E. L.; Witte, M. C.
1981-01-01
A STOL fighter model employing the vectored-engine-over wing concept was tested at low speeds in the NASA/Ames 40 by 80-foot wind tunnel. The model, approximately 0.75 scale of an operational fighter, was powered by two General Electric J-97 turbojet engines. Limited pressure and thermal instrumentation were provided to measure power effects (chordwise and spanwise blowing) and control-surface-deflection effects. An indepth study of the pressure and temperature data revealed many flow field features - the foremost being wing and canard leading-edge vortices. These vortices delineated regions of attached and separated flow, and their movements were often keys to an understanding of flow field changes caused by power and control-surface variations. Chordwise blowing increased wing lift and caused a modest aft shift in the center of pressure. The induced effects of chordwise blowing extended forward to the canard and significantly increased the canard lift when the surface was stalled. Spanwise blowing effectively enhanced the wing leading-edge vortex, thereby increasing lift and causing a forward shift in the center of pressure.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Natarajan, M.
1981-01-01
The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.
NASA Technical Reports Server (NTRS)
Howard, F. G.; Strokowski, A. J.
1978-01-01
Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barin, G; Krungleviciute, V; Gutov, O
2014-07-07
We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range formore » different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.« less
NASA Technical Reports Server (NTRS)
Ferrari, J. R.; Lookingbill, T. R.; McCormick, B.; Townsend, P. A.; Eshleman, K. N.
2009-01-01
Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km2 watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.
Improvement of water management in a vapor feed direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi
Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.
A study of the effect of controlled drainage on surface runoff
USDA-ARS?s Scientific Manuscript database
There is uncertainty about the impact of drainage water management (DWM) on surface runoff, and concern that DWM may increase runoff. To examine this concern, water was applied by sprinkler irrigation to 8 plots which were individually equipped with instrumentation to measure both surface and subsur...
Mechanical properties of anodized coatings over molten aluminum alloy
Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...
2007-10-22
A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less
Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin
2017-06-01
This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P <.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P <.05). Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.
Noh, Hyo-Mi
2017-01-01
PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P<.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P<.05). CONCLUSION Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550
An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation
Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan
2013-01-01
Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Heeg, Jennifer
2006-01-01
This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.
NASA Technical Reports Server (NTRS)
Cimorelli, A. J.; House, F. B.
1974-01-01
The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.
NASA Astrophysics Data System (ADS)
Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.
2018-05-01
The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
SURFACE HARDENING OF TITANIUM BY TREATMENT IN MOLTEN BORAX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minkevich, A.N.; Shul'ga, Yu.N.
1957-01-01
The surface hardening of titanium and titanium alloys by treatment in molten borax was investigated. Commercial titanium, a titanium-tungsten alloy, and an aluminum-chromium-titanium alloy were used for the experiments. To prevent oxidation of the titanium and to protect the surface, electro-chemical protection was applied, the current density being 0.1 amp/cm/sup 2/ and the the specimens were coated with a thin layer of borax. The results showed that treatment in molten borax is an effective method of increasing surface hardness. However, the strength, mmalleabiltiy, and toughness of the hardness increase is discussed. (J.S.R.)
NASA Astrophysics Data System (ADS)
Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.
2017-05-01
The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.
Yan, Y H; Chan-Park, M B; Yue, C Y
2005-09-13
Surface modification of poly(dimethylsiloxane) (PDMS) was carried out via CF4 plasma treatment. The test PDMS used contains significant amounts of quartz and silica fillers, while the control material is the same PDMS with quartz removed by centrifugation. Fluorination accompanied with roughening was produced on both PDMS surfaces. With short plasma times (15 min or less), a macromolecular fluorocarbon layer was formed on the PDMS surfaces because of the dominant fluorination, leading to significant increase in F concentration, decrease of surface energy, and some roughening. With intermediate plasma times (15-30 min), dynamic balance between fluorination and ablation was achieved, leading to a plateau of the surface roughness, fluorine content, and [F-Si]/[F-C] ratio. At our longest investigated plasma time of 45 min, the plasma ablated the fluorinated covering layer on the PDMS surfaces, leading to significant increase in roughness and [F-Si]/[F-C] ratio and decrease of surface F concentration. The effect of additional quartz in the test PDMS on surface F concentration, [F-Si]/[F-C] ratio, and roughness was dramatic only when ablation was significant (i.e., 45 min). The obtained Teflon-like surface displays long-term stability as opposed to hydrophobic recovery of other plasma-treated PDMS surfaces to increase hydrophilicity. On the basis of the optimized plasma treatment time of 15 min, a microstructured PDMS mold was plasma treated and successfully used for multiple high-aspect-ratio (about 8) UV embossing of nonpolar polypropylene glycol diacrylate (PPGDA) resin.
Spradley, Jackson P; Pampush, James D; Morse, Paul E; Kay, Richard F
2017-05-01
Dirichlet normal energy (DNE) is a metric of surface topography that has been used to evaluate the relationship between the surface complexity of primate cheek teeth and dietary categories. This study examines the effects of different 3D mesh retriangulation protocols on DNE. We examine how different protocols influence the DNE of a simple geometric shape-a hemisphere-to gain a more thorough understanding than can be achieved by investigating a complex biological surface such as a tooth crown. We calculate DNE on 3D surface meshes of hemispheres and on primate molars subjected to various retriangulation protocols, including smoothing algorithms, smoothing amounts, target face counts, and criteria for boundary face exclusion. Software used includes R, MorphoTester, Avizo, and MeshLab. DNE was calculated using the R package "molaR." In all cases, smoothing as performed in Avizo sharply decreases DNE initially, after which DNE becomes stable. Using a broader boundary exclusion criterion or performing additional smoothing (using "mesh fairing" methods) further decreases DNE. Increasing the mesh face count also results in increased DNE on tooth surfaces. Different retriangulation protocols yield different DNE values for the same surfaces, and should not be combined in meta-analyses. Increasing face count will capture surface microfeatures, but at the expense of computational speed. More aggressive smoothing is more likely to alter the essential geometry of the surface. A protocol is proposed that limits potential artifacts created during surface production while preserving pertinent features on the occlusal surface. © 2017 Wiley Periodicals, Inc.
2008-06-01
escaping the clay and keeping its compacted conditions constant. Other stabilizing additives such as surfactants or cement and applications such as foamed ...not a local phenomenon. Once a crack is formed, increasing the width of the crack at the surface by additional shrinkage will also extend the depth...at the surface, increasing the width of the crack by additional shrinkage will drive the crack deeper into the soil mass, expos- ing new surfaces to
Chen, Weifeng; Ni, Jinzhi
2017-05-01
The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh
2017-11-01
In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.
Front gardens to car parks: changes in garden permeability and effects on flood regulation.
Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D
2014-07-01
This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia
NASA Technical Reports Server (NTRS)
Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.
2014-01-01
We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce surface latent heat fluxes via cooler land surface temperatures. Further refinements of our two-moment cloud microphysics scheme are needed for a more complete examination of the role of aerosol-convection interactions in the seasonal development of the SEA monsoon.
Ni, L; Cao, W; Zheng, W C; Zhang, Q; Li, B M
2015-11-01
The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efficiency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m(2), respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses. © 2015 Poultry Science Association Inc.
Ahn, Somin; Eom, Youngsub; Kang, Boram; Park, Jungboung; Lee, Hyung Keun; Kim, Hyo Myung; Song, Jong Suk
2018-05-01
To evaluate the effects of menthol-containing artificial tears on tear stimulation and ocular surface integrity in normal and dry eye rat models. A total of 54 male Lewis rats were used. The levels of tear secretion and tear MUC5AC concentrations were compared between the menthol-containing artificial tear-treated group (menthol group) and the vehicle-treated group (vehicle group). The groups were compared after a single instillation to evaluate the immediate effects, and after repeated instillation (five times a day for 5 days) to evaluate the longer-term effects. Tear lactate dehydrogenase (LDH) activity was measured to evaluate eye drop instillation-induced ocular surface damage. The effects of menthol-containing artificial tears were also evaluated in a dry eye rat model. After a single instillation of menthol-containing artificial tears, tear secretion increased from 4.37 (±0.75) mm at baseline to 7.37 (±1.60) mm. However, after repeated instillations, the effects of tear stimulation decreased. The tear MUC5AC concentration was significantly lower in the menthol group than in the vehicle group after a single instillation, but not after repeated instillation. However, the tear LDH concentration was significantly increased in the menthol group after repeated instillation. In the dry eye rat model, the extent of menthol-induced tear stimulation was reduced. Menthol-containing artificial tears increased tear secretion, but lowered the tear MUC5AC concentration. Menthol-induced tear stimulation was reduced after repeated instillation for 5 days and in the dry eye rat model. Conversely, repeated instillation of menthol-induced ocular surface damage, resulting in increased tear LDH activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Chandrasekaran, S.; Murugan, P., E-mail: murugan@cecri.res.in; Saravanan, P.
2015-04-07
First principles calculations are performed on 3d-transition metal atom deposited (0001) surface of SmCo{sub 5} to understand the magnetic properties and the improvement of Curie temperature (T{sub c}). Various atomic sites are examined to identify the energetically feasible adsorption of adatom and it is found that the void site of Co-rich (0001) SmCo{sub 5} surface is the most favourable one to deposit. The surface magnetic moments of various adatom deposited SmCo{sub 5} surfaces are larger than the clean surface except for Cu and Zn. Eventually, the surface exchange coupling of clean and adatom deposited surface is found to increase formore » Mn, Fe, Co, Ni, and Cu deposited surfaces and this improvement results in the increase in T{sub c} of SmCo{sub 5} slab.« less
NASA Astrophysics Data System (ADS)
Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.
2009-07-01
The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.
Surface morphology effects in a vibration based triboelectric energy harvester
NASA Astrophysics Data System (ADS)
Nafari, A.; Sodano, H. A.
2018-01-01
Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.
Alcock, Joseph P; Barbour, Michele E; Sandy, Jonathan R; Ireland, Anthony J
2009-08-01
The purpose of this research was to investigate the effects of decontamination and clinical exposure on the elastic moduli, hardness and surface roughness of two frequently used orthodontic archwires, namely 0.020in.x0.020in. heat activated (martensitic active) nickel titanium archwires and 0.019in.x0.025in. austenitic stainless steel archwires. This study was a prospective clinical trial in which 20 consecutive patients requiring an archwire change as part of their course of orthodontic fixed appliance therapy, had either a nickel titanium or stainless steel archwire fitted as deemed clinically necessary. The effect of clinical use was determined by comparing distal end cuts of the "as received" archwires before and after decontamination, with the same retrieved archwires following clinical use and decontamination. Hardness, elastic modulus and surface roughness were determined using an atomic force microscope (AFM) coupled with a nanoindenter. The results showed that the decontamination regimen and clinical use had no statistically significant effect on the nickel titanium archwires, but did have a statistically significant effect on the steel archwires. Decontamination of the steel wires significantly increased the observed surface hardness (p=0.01) and reduced the surface roughness (p=0.02). Clinical use demonstrated a statistically significant increase in the observed elastic modulus (p<0.001) and a decrease in surface roughness (p=0.001). At present it is difficult to predict the clinical significance of these statistically significant changes in archwire properties on orthodontic tooth movement.
D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J
2016-06-22
Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.
The clear-sky greenhouse effect sensitivity to a sea surface temperature change
NASA Technical Reports Server (NTRS)
Duvel, J. PH.; Breon, F. M.
1991-01-01
The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.
NASA Astrophysics Data System (ADS)
Martinello, Richard A.; Miller, Shelly L.; Fabian, M. Patricia; Peccia, Jordan
2018-02-01
Healthcare associated infections (HAI) affect approximately 1 of every 25 hospitalized patients, lead to substantial morbidity and mortality, degrade patient experience and are costly. Risks for HAI are multifactorial and it is known that microbial contamination of the healthcare environment increases risk for HAI. Portable ultraviolet-C (UVC) surface disinfection as an adjunct to standard hospital disinfection has been shown to decrease both surface microbial contamination and HAI. However, there remain significant gaps in the understanding of the efficient and effective application of UVC in healthcare. Specific barriers identified are: 1) the variability in size, shape, and surface materials of hospital rooms as well as the presence of medical devices and furniture, which impacts the amount of UVC energy delivered to surfaces and its disinfection efficiency; 2) the significant resources needed to acquire and efficiently use UVC equipment and achieve the desired patient benefits- a particular challenge for complex healthcare facilities with limited operating margins; and 3) the lack of implementation guidance and industry standard methods for measuring the UVC output and antimicrobial effects from the multiple commercial UVC options available. An improved understanding of the efficient and effective use of UVC surface disinfection in healthcare and the implementation of standard device industry metrics may lead to increased use and decrease the burden of HAI.
David H. Levinson; Christopher J. Fettig
2014-01-01
This chapter addresses the societal and the environmental impacts of climate change related to increasing surface temperatures on air quality and forest health. Increasing temperatures at and near the earthâs surface, due to both a warming climate and urban heat island effects, have been shown to increase ground-level ozone concentrations in cities across the U.S. In...
Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.
2016-01-01
The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353
The impact of boreal forest fire on climate warming
Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.
2006-01-01
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
The impact of boreal forest fire on climate warming.
Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S
2006-11-17
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin
This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Gordos, Matthew A; Franklin, Craig E; Limpus, Colin J
2004-08-01
This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus
NASA Astrophysics Data System (ADS)
Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei
2017-10-01
Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.
Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024
NASA Astrophysics Data System (ADS)
Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar
2014-02-01
Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.
Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike
2018-02-01
Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.
Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds
2012-09-30
almost complete decoupling of the wind field from the sea surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent Air-Sea Surface Fluxes
Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan
2017-07-15
The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...
2017-11-17
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai
2013-01-01
Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909
Effect of the size of silver nanoparticles on SERS signal enhancement
NASA Astrophysics Data System (ADS)
He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.
2017-08-01
The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.
Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2016-07-01
Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.
Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
Molecular dynamics study of oil adsorption on the rock surface in presence of silica nanoparticles
NASA Astrophysics Data System (ADS)
Salehzadeh, Jamal; Tohidi, Zahra; Jafari, Arezou
2018-01-01
Despite the increasing applications of nanoparticles in enhanced oil recovery (EOR), there is not enough information about the mechanisms and microscopic aspects of nanoparticles' effects. Therefore, in this research, molecular dynamics simulation is used to provide the molecular-scale insight for investigation of the silica nanoparticles effects on the oil adsorption on calcite surface for the first time. The surface interacts with the mixture of heptane and decane as the oil phase with mole ratio of 1/2 and silica nanoparticles are dispersed in distilled water with concentration of 7000 ppm. Based on the simulation results, by using nanoparticles surface adsorption behavior have been changed to hydrophilic and the oil molecules departed from the calcite. This result is based on the oil-calcite binding energy calculation which is decreased from 5224 kcal/mol to 3278 kcal/mol by using silica nanoparticles. In addition, calculation of radial distribution functions showed that after adding silica nanoparticles, the picks fall which means increasing in average distance between oil and calcite surface.
Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72
NASA Astrophysics Data System (ADS)
Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh
2017-11-01
Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.
Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation
NASA Astrophysics Data System (ADS)
Dutta, N. J.; Mohanty, S. R.; Buzarbaruah, N.; Ranjan, M.; Rawat, R. S.
2018-06-01
The effects of helium ion irradiation on the graphite surface are studied by employing a plasma focus device. The device emits helium ion pulse having energies in the range of a few keV to a few MeV and flux on the order of 1025 m-2 s-1 at 60 mm axial position from the anode tip. The field emission scanning electron microscopy confirms the formation of multi-modal spherical and elongated agglomerated structures on irradiated samples surface with increase in agglomerate size with increasing number of irradiation shots. The transient annealing in each irradiation was not enough to cause the Oswald ripening or sintering of particles into bigger particle or crystal size but only resulted in clustering. The atomic force micrographs reveal an increase in average surface roughness with increasing ion irradiation. The Raman study demonstrates increase in disordered D peak along with reduced crystallite size (La) with increasing number of irradiation shots.
Joseph B. Fontaine; Daniel C. Donato; John L. Campbell; Jonathan G. Martin; Beverley E. Law
2010-01-01
Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely implemented management practice in many forest types. A common hypothesis is that removal of fire-killed trees increases surface temperatures due to loss of shade and increased solar radiation, thereby influencing vegetation establishment and possibly stand development. Six...
Graphene Nanoplatelet Reinforced Tantalum Carbide
2015-08-27
testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are
Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao
2016-01-01
A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762
Zhao, Qiangzhong; Liu, Daolin; Long, Zhao; Yang, Bao; Fang, Min; Kuang, Wanmei; Zhao, Mouming
2014-05-15
The effect of sucrose ester (SE) concentration on interfacial tension and surface dilatational modulus of SE and sodium caseinate (NaCas)-SE solutions were investigated. The critical micelle concentration (CMC) of SE was presumed to be 0.05% by measuring interfacial tension of SE solution. The interfacial tension of NaCas-SE solution decreased with increased SE concentration. A sharp increase in surface dilatational modulus of NaCas solution was observed when 0.01% SE was added and a decline was occurred at higher SE level. The influence of SE concentration on droplet size and confocal micrograph, surface protein concentration, ζ-potential and rheological properties of oil-in-water (O/W) emulsions prepared with 1% NaCas was also examined. The results showed that addition of SE reduced droplet size and surface protein concentration of the O/W emulsions. The ζ-potential of the O/W emulsions increased initially and decreased afterward with increased SE concentration. All the O/W emulsions exhibited a shear-thinning behaviour and the data were well-fitted into the Herschel-Bulkley model. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Wei, Jun
2016-09-01
Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.
Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M
2018-06-20
The current study evaluated the effects of autoclave polymerization both with and without glass fiber (GF) reinforcement on the surface roughness and hardness of acrylic denture base material. Ninety disc specimens (30×2.5 mm) were prepared from Vertex resin and divided according to polymerization techniques into a water bath, short and long autoclave polymerization groups. Tested groups were divided into three subgroups according to the GF concentration (0, 2.5, and 5 wt%). Profilometer and Vickers hardness tests were performed to measure surface roughness and hardness. ANOVA and Tukey-Kramer multiple comparison tests analyzed the results, and p≤0.05 was considered statistically significant. Autoclave polymerization significantly decreased the surface roughness and increased the hardness of acrylic resin without GF reinforcement (p<0.05). However, 5 wt% GF addition significantly increased surface roughness and decreased hardness of the autoclave polymerized denture base resin (p<0.05). Surface properties of Polymethyl methacrylate (PMMA) denture base material improved with autoclave polymerization and negatively affected with GFs addition.
Effect of SMAT on microstructural and mechanical properties of AA2024
NASA Astrophysics Data System (ADS)
Tadge, Prashant; Sasikumar, C.
2016-05-01
In recent days surface mechanical attrition treatment (SMAT) had attracted the attention of researchers as it produces a nano-crystalline surface with improved mechanical properties. In the present study Al-4%Cu alloy used in automobile and aerospace application is subjected to surface mechanical attrition treatment using steel shots. The microstructural changes introduced on the surface of the Al alloy was investigated using Scanning Electron Microscopy (SEM). The secondary phases formed during the SMAT process is been investigated using EDX and XRD analysis. The effects of SMAT on the mechanical properties were analyzed using a tensile testing. The SMA treatment had resulted in severe plastic deformation of the surface, thereby yielded a nanocrystalline surface with a grain size of 30 to 50 nm. Further, it is also found that the SMAT produced ultra nanocrystalline particles of Cu2Al dispersed uniformly into α-Al matrix. These microstructural changes had resulted in considerable change in the mechanical properties of these alloys. The tensile strength of these alloys had increased from ˜212 MPa to 303 MPa while the fracture toughness increased up to 28% in 10 minutes of SMAT.
The Effect of Cutting Speed in Metallic Glass Grinding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serbest, Erdinc; Bakkal, Mustafa; Karipcin, Ilker
2011-01-17
In this paper, the effects of the cutting speed in metallic glass grinding were investigated in dry conditions. The results showed that grinding forces decrease as grinding energy increase with the increasing cutting speeds. The present investigations on ground surface and grinding chips morphologies -shows that material removal and surface formation of the BMG are mainly due to the ductile chip deformation and ploughing as well as brittle fracture of some particles from the edges of the tracks. The roughness values obtained with the Cubic Boron Nitride wheels are acceptable for the grinding operation.
Effects of the contamination environment on surfaces and materials
NASA Technical Reports Server (NTRS)
Maag, Carl R.
1989-01-01
In addition to the issues that have always existed, demands are being placed on space systems for increased contamination prevention/control. Optical surveillance sensors are required to detect low radiance targets. This increases the need for very low scatter surfaces in the optical system. Particulate contamination levels typically experienced in today's working environments/habits will most likely compromise these sensors. Contamination (molecular and particulate) can also affect the survivability of space sensors in both the natural and hostile space environments. The effects of di-octyl phthalate (DOP) on sensors are discussed.
Mitigating the surface urban heat island: Mechanism study and sensitivity analysis
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-08-01
In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.
Setterbo, J J; Fyhrie, P B; Hubbard, M; Upadhyaya, S K; Stover, S M
2013-01-01
Racetrack surface is a risk factor for Thoroughbred racehorse injury and death that can be engineered and managed. To investigate the relationship between surface and injury, the mechanical behaviour of dirt and synthetic track surfaces must be quantified. To compare dynamic properties of a dirt and a synthetic surface in situ using a track-testing device designed to simulate equine hoof impact; and to determine the effects of impact velocity, impact angle and repeated impact on dynamic surface behaviour. A track-testing device measured force and displacement during impact into a dirt and a synthetic surface at 3 impact velocities (1.91, 2.30, 2.63 m/s), 2 impact angles (0°, 20° from vertical), and 2 consecutive impacts (initial, repeat). Surfaces were measured at 3 locations/day for 3 days. The effects of surface type, impact velocity, impact angle and impact number on dynamic surface properties were assessed using analysis of variance. Synthetic surface maximum forces, load rates and stiffnesses were 37-67% of dirt surface values. Surfaces were less stiff with lower impact velocities, angled impacts and initial impacts. The magnitude of differences between dirt and synthetic surfaces increased for repeat impacts and higher impact velocities. The synthetic surface was generally softer than the dirt surface. Greatly increased hardness for repeat impacts corroborates the importance of maintenance. Results at different impact velocities suggest that surface differences will persist at higher impact velocities. For both surfaces it is clearly important to prevent horse exposure to precompacted surfaces, particularly during high-speed training when the surface has already been trampled. These data should be useful in coordinating racetrack surface management with racehorse training to prevent injuries. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Sishodia, R. P.; Shukla, S.
2017-12-01
India, a global leader in groundwater use (250 km3/yr), is experiencing groundwater depletion. There has been a 130-fold increase in number of irrigation wells since 1960. Anticipated future increase in groundwater demand is likely to exacerbate the water availability in the semi-arid regions of India. Depending on the direction of change, future climate change may either worsen or enhance the water availability. This study uses an integrated hydrologic modeling approach (MIKE SHE MIKE 11) to compare and combine the effects of future (2040-2069) increased groundwater withdrawals and climate change on surface and groundwater flows and availability for an agricultural watershed in semi-arid south India. Modeling results showed that increased groundwater withdrawals in the future resulted in reduced surface flows (25%) and increased frequency and duration (90 days/yr) of well drying. In contrast, projected future increase in rainfall (7-43%) under the changed climate showed increased groundwater recharge (15-67%) and surface flows (9-155%). Modeling results suggest that the positive effects of climate change may enhance the water availability in this semi-arid region of India. However, in combination with increased withdrawals, climate change was shown to increase the well drying and reduce the water availability especially during dry years. A combination of management options such as flood to drip conversion, energy subsidy reductions and water storage can support increased groundwater irrigated area in the future while mitigating the well drying. A cost-benefit analysis showed that dispersed water storage and flood to drip conversion can be highly cost-effective in this semi-arid region. The study results suggest that the government and management policies need to be focused towards an integrated management of demand and supply to create a sustainable food-water-energy nexus in the region.
Cleaning of optical surfaces by excimer laser radiation
NASA Astrophysics Data System (ADS)
Mann, K.; Wolff-Rottke, B.; Müller, F.
1996-04-01
The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.
NASA Astrophysics Data System (ADS)
Guo, Hao; Yang, Shufeng; Li, Jingshe; Zhao, Mengjing; Chen, Zhengyang; Zhang, Xueliang; Li, Jikang
2018-05-01
An innovative approach involving chemical modification of the surface of MgO nanoparticles (NPs) for steelmaking and application of NPs to carbon structural steel has been investigated. The results show that the inclusions in the test steels were completely converted to MgAl2O4 spinel or MnS complex inclusions. The mean inclusion size decreased with increasing NP content from 0.01% to 0.03%, but increased at 0.05% because of NP aggregation. Addition of NPs increased the amount of intragranular ferrite and prevented polygonal ferrite formation, thereby enhancing the impact toughness. Impact tests showed that the dimple fractures in steel with 0.05% NP content were deeper than those in the other samples because the MgAl2O4 inclusions were larger. The surface-modified MgO NPs had a major effect on the inclusion characteristics and microstructure of carbon structural steel.
Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive
NASA Astrophysics Data System (ADS)
Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei
2018-03-01
The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.
Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.
Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei
2016-09-28
The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.
Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg
NASA Technical Reports Server (NTRS)
Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng
1994-01-01
The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.
Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.
1997-01-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.
1997-03-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.
Effects of roughness and compressibility of flooring on cow locomotion.
Rushen, J; de Passillé, A M
2006-08-01
We examined the effects of roughness and degree of compressibility of flooring on the locomotion of dairy cows. We observed 16 cows walking down specially constructed walkways with materials that differed in surface roughness and degree of compressibility. Use of a commercially available soft rubber flooring material decreased slipping, number of strides, and time to traverse the corridor. These effects were most apparent at difficult sections of the corridor, such as at the start, at a right-angle turn, and across a gutter. Covering the walkway with a thin layer of slurry increased frequency of slipping, number of strides, and time taken to traverse the walkway. Effects of adding slurry were not overcome by increasing surface roughness or compressibility. Placing more compressible materials under a slip-resistant material reduced the time and number of steps needed to traverse the corridor but did not reduce slips, and the effects on cow locomotion varied nonlinearly with the degree of compressibility of the floor. Use of commercially available rubber floors improved cow locomotion compared with concrete floors. However, standard engineering measures of the floor properties may not predict effects of the floor on cow behavior well. Increasing compressibility of the flooring on which cows walk, independently of the roughness of the surface, can improve cow locomotion.
Morphology studies of hydrophobic silica on filter surface prepared via spray technique
NASA Astrophysics Data System (ADS)
Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran
2017-08-01
This study investigated the effect of the hydrophobic surface treatment effect of air filter performance by using silica aerogel powder as an additive by using spray coating techniques. The membrane characterization tests were carried out on a filter prepared from different additive concentration. Studies on the cross-section and the distribution of particles on the membrane were carried out using a scanning electron microscope (SEM), and the surface morphology was investigated by x-ray spectroscopy (EDS). The results are shown by SEM and EDS that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide
2017-07-01
Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1977-01-01
It was found that ion beam texturing of silicon surfaces can be used to increase the effective surface area of MOS capacitors. There is, however, a problem with low dielectric breakdown. Preliminary work was begun on the fabrication of ion implanted resistors on textured surfaces and the potential improvement of wire bond strength by bonding to a textured surface. In the area of ion beam sputtering, the techniques for sputtering PVC were developed. A PVC target containing valinomycin was used to sputter an ion selective membrane on a field effect transistor to form a potassium ion sensor.
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
Schierz, A; Zänker, H
2009-04-01
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.
Observed Reduction In Surface Solar Radiation - Aerosol Forcing Versus Cloud Feedback?
NASA Astrophysics Data System (ADS)
Liepert, B.
The solar radiation reaching the ground is a key parameter for the climate system. It drives the hydrological cycle and numerous biological processes. Surface solar radi- ation revealed an estimated 7W/m2 or 4% decline at sites worldwide from 1961 to 1990. The strongest decline occurred at the United States sites with 19W/m2 or 10%. Increasing air pollution and hence direct and indirect aerosol effect, as we know today can only explain part of the reduction in solar radiation. Increasing cloud optical thick- ness - possibly due to global warming - is a more likely explanation for the observed reduction in solar radiation in the United States. The analysis of surface solar radiation data will be shown and compared with GCM results of the direct and indirect aerosol effect. It will be argued that the residual declines in surface solar radiation is likely due to cloud feedback.
Altering surface fluctuations by blending tethered and untethered chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. K.; Akgun, B.; Jiang, Z.
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
Altering surface fluctuations by blending tethered and untethered chains
Lee, J. K.; Akgun, B.; Jiang, Z.; ...
2017-10-16
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
Satellite monitoring of sea surface pollution
NASA Technical Reports Server (NTRS)
Fielder, G.; Telfer, D. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R.L., E-mail: ruiliangliu@126.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn; Wu, Y.Q.
2010-01-15
The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surfacemore » layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.« less
Surface and Bulk Effects of K in Highly Efficient Cu1-xKxInSe2 Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher; Mansfield, Lorelle M; Ramanathan, Kannan
To advance knowledge of the beneficial effects of K in Cu(In,Ga)(Se,S)2 (CIGS) photovoltaic (PV) absorbers, recent Cu-K-In-Se phase growth studies have been extended to PV performance. First, the effect of distributing K throughout bulk Cu1-xKxInSe2 absorbers at low K/(K+Cu) compositions (0 = x = 0.30) was studied. Efficiency, open-circuit voltage (VOC), and fill factor (FF) were greatly enhanced for x ~ 0.07, resulting in an officially-measured 15.0%-efficient solar cell, matching the world record CuInSe2 efficiency. The improvements were a result of reduced interface and bulk recombination, relative to CuInSe2 (x ~ 0). However, higher x compositions had reduced efficiency, short-circuitmore » current density (JSC), and FF due to greatly increased interface recombination, relative to the x ~ 0 baseline. Next, the effect of confining K at the absorber/buffer interface at high K/(K+Cu) compositions (0.30 = x = 0.92) was researched. Previous work showed that these surface layer growth conditions produced CuInSe2 with a large phase fraction of KInSe2. After optimization (75 nm surface layer with x ~ 0.41), these KInSe2 surface samples exhibited increased efficiency (officially 14.9%), VOC, and FF as a result of decreased interface recombination. The KInSe2 surfaces had features similar to previous reports for KF post-deposition treatments (PDTs) used in world record CIGS solar cells - taken as indirect evidence that KInSe2 can form during these PDTs. Both the bulk and surface growth processes greatly reduced interface recombination. However, the KInSe2 surface had higher K levels near the surface, greater lifetimes, and increased inversion near the buffer interface, relative to the champion bulk Cu1-xKxInSe2 absorber. These characteristics demonstrate that K may benefit PV performance by different mechanisms at the surface and in the absorber bulk.« less
[Comparison of two powder-stream systems for tooth polishing].
Leckel, M; Lenz, P; Gilde, H
1989-06-01
The effect of two airpolishing systems on the surface roughness of polished ceramic test pieces was compared and evaluated using standardized procedures. Test pieces resembling enamel in hardness were treated with these air-polishing systems. Using a Perthometer surface roughness was found to increase significantly. Thus the possible effects of airpolishing systems on the enamel surface should be considered. Efficiency of extrinsic stain removal was studied by SEM and documented. Photographic techniques provided information on the homogeneity of the sodium bicarbonate spray.
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2014-02-01
The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.
Griffiths, Peter C; Paul, Alison; Fallis, Ian A; Wellappili, Champa; Murphy, Damien M; Jenkins, Robert; Waters, Sarah J; Nilmini, Renuka; Heenan, Richard K; King, Stephen M
2007-10-15
The physical properties of weak polyelectrolytes may be tailored via hydrophobic modification to exhibit useful properties under appropriate pH and ionic strength conditions as a consequence of the often inherently competing effects of electrostatics and hydrophobicity. Pulsed-gradient spin-echo NMR (PGSE-NMR), electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS) surface tension, fluorescence, and pH titration have been used to examine the solution conformation and aggregation behavior of a series of hydrophobically modified hyperbranched poly(ethylene imine) (PEI) polymers in aqueous solution, and their interaction with sodium dodecylsulfate (SDS). PGSE-NMR gave a particularly insightful picture of the apparent molecular weight distribution. The presence of the hydrophobes led to a lower effective charge on the polymer at any given pH, compared to the (parent) nonmodified samples. Analysis of the SANS data showed that the propensity to form highly elliptical or rod-like aggregates at higher pHs, reflecting both the changes in protonation behavior induced by the hydrophobic modification and an hydrophobic interaction, but that these structures were disrupted with decreasing pH (increasing charge). The parent samples were not surface active yet the hydrophobically modified samples show pronounced surface activity and the presence of small hydrophobic domains. The surface activity increased with an increase in the degree of modification. On addition of SDS, the onset of the formation of polymer/surfactant complexes was insensitive to the degree of modification with the resultant PEI/SDS complexes resembling the size and shape of simple SDS micelles. Indeed, the presence of the SDS effectively nullifies the effects of the hydrophobe. Hydrophobic modification is therefore a viable option to tailor pH dependent properties, whose effects may be removed by the presence of surfactant.
Jiang, Nan; Du, Pinggong; Qu, Weidong; Li, Lin; Liu, Zhonghao; Zhu, Songsong
For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO 2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO 2 -modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO 2 -modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO 2 -nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone.
Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.
Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A
2016-06-01
Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Jiang, Nan; Du, Pinggong; Qu, Weidong; Li, Lin; Liu, Zhonghao; Zhu, Songsong
2016-01-01
For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO2-nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone. PMID:27695328
Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.
Khachikian, Crist S; Harmon, Thomas C
2002-01-01
This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.
Dynamics of spider glue adhesion: effect of surface energy and contact area
NASA Astrophysics Data System (ADS)
Amarpuri, Gaurav; Chen, Yizhou; Blackledge, Todd; Dhinojwala, Ali
Spider glue is a unique biological adhesive which is humidity responsive such that the adhesion continues to increase upto 100% relative humidity (RH) for some species. This is unlike synthetic adhesives that significantly drop in adhesion with an increase in humidity. However, most of adhesion data reported in literature have used clean hydrophilic glass substrate, unlike the hydrophobic, and charged insect cuticle surface that adheres to spider glue in nature. Previously, we have reported that the spider glue viscosity changes over five orders of magnitude with humidity. Here, we vary the surface energy and surface charge of the substrate to test the change in Larnioides cornutus spider glue adhesion with humidity. We find that an increase in both surface energy and surface charge density increases the droplet spreading and there exists an optimum droplet contact area where adhesion is maximized. Moreover, spider glue droplets act as reusable adhesive for low energy hydrophobic surface at the optimum humidity. These results explain why certain prey are caught more efficiently by spiders in their habitat. The mechanism by which spider species tune its glue adhesion for local prey capture can inspire new generation smart adhesives.
Yu, Jiaguo; Qi, Lifang; Cheng, Bei; Zhao, Xiufeng
2008-12-30
Tungsten trioxide hollow microspheres were prepared by immersing SrWO4 microspheres in a concentrated HNO3 solution, and then calcined at different temperatures. The prepared tungsten oxide samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, differential thermal analysis-thermogravimetry, UV-visible spectrophotometry, scanning electron microscopy, N2 adsorption/desorption measurements. The photocatalytic activity of the samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, on the contrary, Brunauer-Emmett-Teller-specific surface areas decreased. However, pore volume and porosity increased firstly, and then decreased. Increasing calcination temperatures resulted in the changes of surface morphology of hollow microspheres. The un-calcined and 300 degrees C-calcined samples showed higher photocatalytic activity than other samples. At 400 degrees C, the photocatalytic activity decreased greatly due to the decrease of specific surface areas. At 500 degrees C, the photocatalytic activity of the samples increased again due to the junction effect of two phases.
Acicular photomultiplier photocathode structure
Craig, Richard A.; Bliss, Mary
2003-09-30
A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.
Porcelain-metal bonding: part I. Effects of repeated baking process.
Nagasawa, S; Yoshida, T; Mizoguchi, H; Ito, M; Oshida, Y
2001-01-01
A plurality of repeated porcelain-baking procedures are normally practiced in order to achieve the final adjustment metal-porcelain restorations. By increasing the number of baking cycles, the undesired internal strain would be built-up, causing the reduction of mechanical properties and deterioration of color characteristics. However the extensive studies on such deterioration have not been done. In this study, effects of numbers (up to 10 times) of repeated baking cycles on baking shrinkage, surface roughness, bend strength, color changes and internal microstructure were investigated when opaque, body and enamel was individually applied or when a triple-player comprising of these three porcelains was repeatedly applied. It was concluded that (1) the bend strengths increased by increasing baking cycles, (2) the average surface roughness decreased by increasing number of baking procedures, (3) changes in color characteristics was very small in the Vintage halo porcelain system, and (4) since the pores entrapped in the porcelain remained even by increasing baking cycles, it is recommended to remove the surface pores before forming the next layer when handling the high viscous opaque porcelain.
Uchino, Yuichi; Woodward, Ashley M; Argüeso, Pablo
2016-12-01
Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effective dilution of surfactants due to thinning of the soap film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Mandre, Shreyas; Kim, Ildoo
2017-11-01
A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.
Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J
2009-09-01
In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
NASA Astrophysics Data System (ADS)
Zadorozhny, Alexander; Dyominov, Igor
It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone changes. The enhanced evaporation from the ocean increases noticeably a water vapour abundance in the stratosphere that decreases global total ozone and retards the expected recovery of the ozone layer. In polar latitudes, additional stratospheric water vapour increase due to greenhouse effect noticeably strengthens the impact of anthropogenic greenhouse gases on ozone through modification of polar stratospheric clouds and retards the expected recovery of the ozone, too. In the Northern hemisphere, the delay of the ozone recovery is about 5 years, in the Southern hemisphere the delay is about 2 years.
Khudus, Muhammad I M Abdul; Lee, Timothy; Horak, Peter; Brambilla, Gilberto
2015-04-01
We investigate the effect of intrinsic surface roughness associated to frozen thermal oscillations from the fiber fabrication process on the efficiency of third-harmonic generation via intermodal phase matching in silica nanofibers. Already a periodic wave with roughness of 0.2 nm reduces the efficiency by roughly 50% in a 1-mm optical nanofiber, with the divergence growing quadratically with distance. The surface wave period does not exhibit a large impact on the efficiency, due to averaging effects. However, both the location of the surface waves with respect to the phase matching radius as well as the surface wave amplitude have substantial effect on the efficiency, with the former presenting the possibility of transferring the power back to the pump wavelength. Simulations with a realistic superposition of random surface waves indicate that the conversion efficiency increases only for a few mm of propagation and reaches a maximum of less than 1%.
Özdemir, Hatice; Özdoğan, Alper
2018-01-30
The aim of this study was to investigate that heat treatments with different numbers applied to superstructure porcelain whether effects microstructure and mechanical properties of lithium disilicate ceramic (LDC). Eighty disc-shaped specimens were fabricated from IPS e.max Press. Specimens were fired at heating values of porcelain in different numbers and divided four groups (n=5). Initial Vickers hardness were measured and X-ray diffraction (XRD) analysis was performed. Different surface treatment were applied and then Vickers hardness, surface roughness and environmental scanning electron microscopy (ESEM) analysis were performed. Data were analyzed with Varyans analysis and Tukey HSD test (α=0.05). Initial hardness among groups was no significant different (p>0.05), but hardness and surface roughness after surface treatments were significant different (p<0.05). Lithium disilicate (LD) peaks decrease depended on firing numbers. ESEM observations showed that firing number and surface treatments effect microstructure of LDC. Increasing firing numbers and surface treatments effect the microstructure of LDC.
NASA Astrophysics Data System (ADS)
Park, Il Song; Bae, Tae Sung; Seol, Kyeong Won
2006-10-01
Titanium is widely used as an implant material due to its good mechanical properties and the excellent biocompatibility of the oxide film on the surface. To modify the unstable oxide surface of pure titanium, plasma electrolytic oxidation was applied in this study. The electrolyte used for anodizing was a mixture of GP (glycerophosphate disodium salt) and CA (calcium acetate). In addition, a hydrothermal treatment was performed to precipitate a calcium phosphate crystal on the titanium oxide layer for bioactivity. The effect of the CA concentration of the electrolyte on the surface of titanium was investigated, with CA concentrations at 0.1 M, 0.2 M, and 0.3 M. A high concentration of CA results in a low breakdown voltage; hence many large micropores were formed on the anodized surface. Moreover, the size of the HA crystals was more minute in proportion to the increasing concentration of CA. The crystal phase of titanium dioxide was mainly anatase, and a rutile phase was also observed. As the size and/or amount of HA crystals increased, the surface roughness increased. However, the surface roughness could be decreased by fully and uniformly covering the surface with HA crystals. The corrosion resistance in the saline solution was increased by anodic spark oxidation. In addition, it was slightly increased by a hydrothermal treatment. It is considered that a more stable and thicker titanium oxide layer is formed by anodic oxidation and a hydrothermal treatment.
Effects of surface active agents on DNAPL migration and distribution in saturated porous media.
Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun
2016-11-15
Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Corrosion of Mg alloy AZ91D in the presence of living cells.
Seuss, F; Seuss, S; Turhan, M C; Fabry, B; Virtanen, S
2011-11-01
Mg and Mg alloys are of interest for biodegradable implants as they readily corrode in biological fluids, and dissolved Mg ions are nontoxic. Even though it is well known that Mg dissolution leads to pH increase in the surroundings, the effect of the corrosion-induced alkalization on the biological environment has not been studied in detail. We therefore explored the interactions between corrosion-induced pH increase and cell growth on Mg alloy AZ91D surface. Cell adhesion and spreading on the alloy surface is unimpeded initially. However, with time a large fraction of cells de-adhere. We attribute this to the observed increase of the pH in the cell culture medium in the process of alloy dissolution. Cytotoxicity tests with HeLa cells grown on glass surfaces confirm that cell death increases with increasing alkalinity of the cell culture medium. We also show that a the cells that adhere on the Mg alloy surface act as a corrosion-blocking surface layer. In consequence, a slower pH increase in the medium takes place when the alloy surface is covered with cells. Electrochemical impedance spectroscopy measurements (EIS) verify that a cell layer slows down the corrosion process. 2011 Wiley Periodicals, Inc.
Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.
1990-01-01
Hydrologic effects of mining and reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at unmined agricultural watersheds. The presence or absence of a large final-cut lake in the reclaimed watershed greatly influences the hydrologic systems and the effects of mining and reclamation. Surface coal mining and reclamation can decrease base flow, annual runoff, and peak flow rates; increase the variability of flow and recharge to the bedrock; reestablish the premining relation between surface- and ground-water divides; and lower the water table in upland areas.
NASA Astrophysics Data System (ADS)
Klamerus-Iwan, Anna; Błońska, Ewa
2018-04-01
The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.
Why mushrooms form gills: efficiency of the lamellate morphology
FISCHER, Mark W. F.; MONEY, Nicholas P.
2009-01-01
Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of freestanding lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. PMID:20965062
NASA Astrophysics Data System (ADS)
Ayasse, A.; Thorpe, A. K.; Roberts, D. A.; Aubrey, A. D.; Dennison, P. E.; Thompson, D. R.; Frankenberg, C.
2016-12-01
Atmospheric methane has been increasing since the industrial revolution and is thought to be responsible for about 25% of global radiative forcing (Hofman et al., 2006; Montzka et al., 2011). Given the importance of methane to global climate, it is essential that we identify methane sources to better understand the proportion of emissions coming from various sectors. Recently the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has proven to be a valuable instrument for mapping methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). However, it is important to determine how land cover and albedo affect the ability of AVIRIS-NG to detect methane. This study aims to quantify the effect these surface properties have on detection. To do so we are using a synthetic AVIRIS-NG image that has multiple land cover types, albedos, and methane concentrations and applying the Cluster Tunes Matched Filter (CTMF) algorithm (Funk et al. 2001, Thorpe et al., 2013) to detect methane enhancements within the image. CTMF results are compared to the surface properties to characterize how different surface properties affect detection. We will also evaluate the effect of surface properties with examples of methane plumes observed from oil fields and manure ponds in the San Joaquin Valley of California, two important methane sources (Figure 1). Initial results suggest that darker surfaces, such as water absent sun glint, will make detecting the methane signal challenging, while bright surfaces such as dry soils produce a much clearer signal. Characterizing the effect of surface properties on methane detection is of increasing importance given the application of this technology will likely expand to map methane across a diverse range of emission sources. Figure 1. AVIRIS-NG image acquired Apr. 29, 2015. True color image with a superimposed methane plume from a manure pond. Bright surfaces, such as the dirt road, provide a better surface for retrievals than dark surfaces, such as the vegetation.
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
Efficient needle plasma actuators for flow control and surface cooling
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata
2015-07-01
We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.
NASA Astrophysics Data System (ADS)
Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.
Preferential cooling of hot extremes from cropland albedo management
Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao
2014-01-01
Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872
Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.
Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton
2016-05-15
Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Radiative and Physiological Effects of Increased CO2: How Does This Interaction Affect Climate?
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari
2011-01-01
Several climate models indicate that in a 2xCO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation downregulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2xCO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous 2xCO2 simulations. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.
NASA Astrophysics Data System (ADS)
Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.
2015-04-01
Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.
2012-01-01
A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486
NASA Astrophysics Data System (ADS)
Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.
2011-01-01
Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.
2018-01-01
This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.
NASA Astrophysics Data System (ADS)
Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.
2014-12-01
Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.
Effects of toothbrush hardness on in vitro wear and roughness of composite resins.
Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi
2013-11-01
To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p < 0.05). Abrasion of the composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra < 0.3 µm). VEN specimens showed increased numbers of pinhole defects when brushed with hard toothbrushes, surfaces of VEP were uniformly abraded without level differences between the prepolymerized fillers and the glass filler-loaded matrix, VED showed large glass fillers protruding over the main filler-loaded matrix portion under each condition. Abrasion and surface roughness of composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.; Liou, K. N.; Lee, W. -L.
2012-01-01
A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m -2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up tomore » 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m -2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m -2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. Finally, the hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.« less
Ground Motion Synthetics For Spontaneous Versus Prescribed Rupture On A 45(o) Thrust Fault
NASA Astrophysics Data System (ADS)
Gottschämmer, E.; Olsen, K. B.
We have compared prescribed (kinematic) and spontaneous dynamic rupture propaga- tion on a 45(o) dipping thrust fault buried up to 5 km in a half-space model, as well as ground motions on the free surface for frequencies less than 1 Hz. The computa- tions are carried out using a 3D finite-difference method with rate-and-state friction on a planar, 20 km by 20 km fault. We use a slip-weakening distance of 15 cm and a slip- velocity weakening distance of 9.2 cm/s, similar to those for the dynamic study for the 1994 M6.7 Northridge earthquake by Nielsen and Olsen (2000) which generated satis- factory fits to selected strong motion data in the San Fernando Valley. The prescribed rupture propagation was designed to mimic that of the dynamic simulation at depth in order to isolate the dynamic free-surface effects. In this way, the results reflect the dy- namic (normal-stress) interaction with the free surface for various depths of burial of the fault. We find that the moment, peak slip and peak sliprate for the rupture breaking the surface are increased by up to 60%, 80%, and 10%, respectively, compared to the values for the scenario buried 5 km. The inclusion of these effects increases the peak displacements and velocities above the fault by factors up 3.4 and 2.9 including the increase in moment due to normal-stress effects at the free surface, and up to 2.1 and 2.0 when scaled to a Northridge-size event with surface rupture. Similar differences were found by Aagaard et al. (2001). Significant dynamic effects on the ground mo- tions include earlier arrival times caused by super-shear rupture velocities (break-out phases), in agreement with the dynamic finite-element simulations by Oglesby et al. (1998, 2000). The presence of shallow low-velocity layers tend to increase the rup- ture time and the sliprate. In particular, they promote earlier transitions to super-shear velocities and decrease the rupture velocity within the layers. Our results suggest that dynamic interaction with the free surface can significantly affect the ground motion for faults buried less than 1-3 km. We therefore recommend that strong ground motion for these scenarios be computed including such dynamic rupture effects.
Influence of Laser Shock Texturing on W9 Steel Surface Friction Property
NASA Astrophysics Data System (ADS)
Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye
2017-09-01
To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.
NASA Astrophysics Data System (ADS)
Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan
2017-12-01
In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermalmore » plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.« less
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.
We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less
Thomas, Brian C; Neale, Patrick J; Snyder, Brock R
2015-03-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei
2016-08-01
Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.
connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)
NASA Astrophysics Data System (ADS)
Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.
2013-12-01
This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol
2015-10-01
We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
NASA Astrophysics Data System (ADS)
Farag, O. F.
2018-06-01
Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.
NASA Astrophysics Data System (ADS)
Ruiz-Agudo, Encarnación; Putnis, Christine V.; Wang, Lijun; Putnis, Andrew
2011-07-01
The mechanisms by which background electrolytes modify the kinetics of non-equivalent step propagation during calcite growth were investigated using Atomic Force Microscopy (AFM), at constant driving force and solution stoichiometry. Our results suggest that the acute step spreading rate is controlled by kink-site nucleation and, ultimately, by the dehydration of surface sites, while the velocity of obtuse step advancement is mainly determined by hydration of calcium ions in solution. According to our results, kink nucleation at acute steps could be promoted by carbonate-assisted calcium attachment. The different sensitivity of obtuse and acute step propagation kinetics to cation and surface hydration could be the origin of the reversed geometries of calcite growth hillocks (i.e., rate of obtuse step spreading < rate of acute step spreading) observed in concentrated (ionic strength, IS = 0.1) KCl and CsCl solutions. At low IS (0.02), ion-specific effects seem to be mainly associated with changes in the solvation environment of calcium ions in solution. With increasing electrolyte concentration, the stabilization of surface water by weakly paired salts appears to become increasingly important in determining step spreading rate. At high ionic strength (IS = 0.1), overall calcite growth rates increased with increasing hydration of calcium in solution (i.e., decreasing ion pairing of background electrolytes for sodium-bearing salts) and with decreasing hydration of the carbonate surface site (i.e., increasing ion pairing for chloride-bearing salts). Changes in growth hillock morphology were observed in the presence of Li +, F - and SO42-, and can be interpreted as the result of the stabilization of polar surfaces due to increased ion hydration. These results increase our ability to predict crystal reactivity in natural fluids which contain significant amounts of solutes.
The effect of skin moisture on the density distribution of OH and O close to the skin surface
NASA Astrophysics Data System (ADS)
Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.
2018-03-01
OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.
NASA Astrophysics Data System (ADS)
Cong, Wang; Xu, Lingdi; Li, Ang
2017-10-01
Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .
Morphology of jack pine and tamarack needles in dense stands.
Terry F. Strong; J. Zavitkovski
1978-01-01
Effects of position in the crown on needle morphology and surface area were studied. Needle length, surface area, and dry weight increased and specific needs area decreased from the lower to the upper third of the crown.
Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect
ERIC Educational Resources Information Center
Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.
2004-01-01
Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.
Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B
NASA Technical Reports Server (NTRS)
Holden, Michael S.
1994-01-01
This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the transpiration-cooled panels. The regions of shockwave/boundary layer interaction examined in these studies were induced by oblique shocks generated with a sharp, flat plate, inclined to the freestream at angles of 5 degrees, 7.5 degrees, and 10 degrees. It was found that, in the absence of an incident shock, transpiration cooling was a very effective method for reducing both the heat transfer and the skin friction loads on the surface. The helium coolant was found to be significantly more effective than nitrogen, because of its low molecular weight and high specific heat. The studies of shock-wave/transpiration-cooled surface interaction demonstrated that the interaction region between the incident shock and the low-momentum transpiration-cooled boundary layer did not result in a significant increase in the size of attached or separated interaction regions, and did not result in significant flowfield distortions above the interaction region. The increase in heating downstream of the shock-impingement point could easily be reduced to the values without shock impingement by a relatively small increase in the transpiration cooling in this region. Surprisingly, this increase in cooling rate did not result in a significant increase in size of the region ahead of the incident shock or create a significantly enlarged interaction region with a resultant increase in the distortion level in the inviscid flow. Thus, transpiration cooling appears to be a very effective technique to cool the internal surfaces of scramjet engines, where shocks in the engine would induce large local increases in wall heating and create viscous/inviscid interactions that could significantly disturb the smooth flow through the combustor. However, if hydrogen is used as the coolant, burning upstream of shock impingement might result in localized hot spots. Clearly, further research is needed in this area.
Ward, Keeran; Xi, Jingshu; Stuckey, David C
2015-12-01
The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.
1993-10-01
X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.
Blanking Method with Aid of Scrap to Reduce Tensile Residual Stress on Sheared Edge
NASA Astrophysics Data System (ADS)
Yasutomi, T.; Yonemura, S.; Yoshida, T.; Mizumura, M.; Hiwatashi, S.
2017-09-01
A simple shearing method to reduce tensile residual stress on a sheared edge is highly desired in the automotive industry because this type of stress deteriorates the fatigue property of automotive parts. In this study, the effect of a coining method with a shearing scrap material on a sheared edge was investigated. The scrap part of a sheared plate has a fracture surface shape similar to that of the product part since these parts are generated by separation of a single plate with crack propagation. Therefore, it is possible to impose plastic strain over the entire fracture surface by using the scrap part as a coining tool. Effectiveness of this method was investigated for high-tensile-strength steel. Using this method, the tensile residual stress on the sheared surface was significantly reduced and work hardening was slightly increased. The effects of shearing clearance and coining stroke were also investigated. Tensile residual stress decreased as the coining stroke increased; however, it saturated at a certain stroke. The stroke at which tensile residual stress saturated was relatively small at a large clearance. In particular, the amount of plastic deformation on fracture surface increased when coining stroke became large. These tendencies could be explained by the conditions of contact, which were investigated using finite element analysis.
Grain size effect on Lcr elastic wave for surface stress measurement of carbon steel
NASA Astrophysics Data System (ADS)
Liu, Bin; Miao, Wenbing; Dong, Shiyun; He, Peng
2018-04-01
Based on critical refraction longitudinal wave (Lcr wave) acoustoelastic theory, correction method for grain size effect on surface stress measurement was discussed in this paper. Two fixed distance Lcr wave transducers were used to collect Lcr wave, and difference in time of flight between Lcr waves was calculated with cross-correlation coefficient function, at last relationship of Lcr wave acoustoelastic coefficient and grain size was obtained. Results show that as grain size increases, propagation velocity of Lcr wave decreases, one cycle is optimal step length for calculating difference in time of flight between Lcr wave. When stress value is within stress turning point, relationship of difference in time of flight between Lcr wave and stress is basically consistent with Lcr wave acoustoelastic theory, while there is a deviation and it is higher gradually as stress increasing. Inhomogeneous elastic plastic deformation because of inhomogeneous microstructure and average value of surface stress in a fixed distance measured with Lcr wave were considered as the two main reasons for above results. As grain size increasing, Lcr wave acoustoelastic coefficient decreases in the form of power function, then correction method for grain size effect on surface stress measurement was proposed. Finally, theoretical discussion was verified by fracture morphology observation.
NASA Astrophysics Data System (ADS)
Xiang, Bo; Zhang, Jun
2018-01-01
For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.
Observed increase in local cooling effect of deforestation at higher latitudes
Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei Zhao
2011-01-01
Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedoâsea ice feedback. This feedback is crucial in the model predictions; without it...
Kaidonis, J A
2012-08-01
Non-carious tooth surface loss or tooth wear is becoming an increasingly significant factor affecting the long-term health of the dentition. The adverse effects of tooth wear are becoming increasingly apparent both in young persons and, as more people retain their teeth, into old age. This situation challenges the preventive and restorative skills of dental practitioners.
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
Rentzia, A; Coleman, D C; O'Donnell, M J; Dowling, A H; O'Sullivan, M
2011-02-01
This study investigated the antibacterial efficacy and effect of 0.55% ortho-phthalaldehyde (Cidex OPA(®)) and 0.5% sodium hypochlorite (NaOCl) on the dimensional accuracy and surface quality of gypsum casts retrieved from an irreversible hydrocolloid impression material. A simulated clinical cast and technique was developed to compare the dimensional accuracy and surface quality changes of the test gypsum casts with controls. Dimensional accuracy measurements were completed between fixed points using a travelling microscope under low angle illumination at a magnification of ×3. Surface quality changes of "smooth" and "rough" areas on the cast were evaluated by means of optical profilometry. The efficacy of the disinfection procedures against Pseudomonas aeruginosa was evaluated by determining the number of colony forming units (cfu) recovered after disinfection of alginate discs inoculated with 1×10⁶cfu for defined intervals. The dimensional accuracy of the gypsum casts was not significantly affected by the disinfection protocols. Neither disinfectant solution nor immersion time had an effect on the surface roughness of the "smooth" area on the cast, however, a significant increase in surface roughness was observed with increasing immersion time for the "rough" surface. Complete elimination of viable Pseudomonas aeruginosa cells from alginate discs was obtained after 30 and 120 s immersion in Cidex OPA(®) and NaOCl, respectively. Immersion of irreversible hydrocolloid impressions in Cidex OPA(®) for 30 s was proved to be the most effective disinfection procedure. Copyright © 2010 Elsevier Ltd. All rights reserved.
Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A
2009-04-01
A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.
Pore channel surface modification for enhancing anti-fouling membrane distillation
NASA Astrophysics Data System (ADS)
Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua
2018-06-01
Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
George, Michael; Mussone, Paolo G.; Abboud, Zeinab; Bressler, David C.
2014-09-01
The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.
Güleç, Hacı Ali
2013-04-01
The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Abu-Eittah, Manal R; Mandour, Mona H
2011-10-01
This in vitro investigation studied the effect of three hydrogen peroxide (HP) concentrations (30%, 35%, 38% v/v) at two time intervals (1 and 2 hours) on the corrosion behavior and surface topography of a dental ceramic. A total of 62 Vitadur Alpha discs were constructed following manufacturer instructions. Specimens were divided into four main groups (n = 8). Group 1 (control): specimens were immersed in 4% acetic acid for 18 hours at 80°C. Groups 2, 3, and 4: specimens were immersed in 30%, 35%, and 38% HP concentrations, respectively. Each of the three groups was divided into two subgroups (a and b) according to the immersion time (1 and 2 hours, respectively). Specimens of subgroup a were further immersed in 4% acetic acid for 18 hours at 80°C and were designated as subgroup c. The corrosion behavior of the ceramic specimens were tested by solution analysis using the atomic absorption method, weight loss percent, and corrosion rate. Surface topography was investigated by surface roughness (Ra) measurements and scanning electron microscopy (SEM). Results were statistically analyzed. There was a significant increase for ions leached with the increase in time of immersion for all ions at 35% and 38% HP, while at 30% HP, ions of K(+) , Al(3+) , and Si(4+) did not increase significantly with time. The results also showed that at a fixed time of immersion, all ions released were dependent on the increase of HP concentration except for Al(3+) ions (p < 0.05). The combined treatment of specimens with HP followed by acetic acid had a significant effect on the increase of ions leached (p < 0.05). The surface roughness values for all specimens increased significantly with time of immersion as well as with the increase in concentration of HP (p < 0.05). These results were confirmed with SEM. The amount of released ions is directly proportional to HP concentration and time of immersion. Specimens exposed to both HP and acetic acid showed increased weight loss and a higher corrosion rate than those exposed to acetic acid only. Surface roughness values were time and HP concentration dependent. © 2011 by The American College of Prosthodontists.
Effects of urban tree canopy loss on land surface temperature magnitude and timing
Arthur Elmes; John Rogan; Christopher Williams; Samuel Ratick; David Nowak; Deborah Martin
2017-01-01
Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this...
NASA Astrophysics Data System (ADS)
Beheshti, M.; Zabihiazadboni, M.; Ismail, M. C.; Kakooei, S.; Shahrestani, S.
2018-03-01
Optimal conditions to increase life time of casting parts have been investigated by applying various cycles of heat treatment and shot peening on Hadfield steel surface. Metallographic and SEM microstructure examinations were used to determine the effects of shot peen, austenitizing time and temperature simultaneously. The results showed that with increasing austenitizing time and temperature of casting sample, carbides resolved in austenite phase and by further increase of austenitizing temperature and time, the austenite grain size becomes larger. Metallographic images illustrated that shot peening on Hadfield steel surface; Austenite - Martensite transformation has not occurred, but its matrix hardened through twining formation process.
NASA Astrophysics Data System (ADS)
Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.
2009-10-01
Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.
NASA Astrophysics Data System (ADS)
Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.
2018-03-01
The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
NASA Astrophysics Data System (ADS)
Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.
2018-06-01
The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.
NASA Technical Reports Server (NTRS)
Mottard, Elmo J.
1959-01-01
A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.
Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
NASA Astrophysics Data System (ADS)
Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun
2017-04-01
A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
NASA Astrophysics Data System (ADS)
Li, Jing; Jiang, Yiwei; Xia, Xiangao; Hu, Yongyun
2018-03-01
Previously, it was widely documented that an overall decrease in surface solar radiation occurred in China at least until 2005, in contrast to the general background of ‘global brightening’. Increased anthropogenic aerosol emissions were speculated to be the source of the reduction. In this study, we extend the trend analysis to the most recent decade from 2005-2015 and find that surface solar radiation has shifted from ‘dimming’ to ‘brightening’ over East China, with the largest increase over the northeast and southeast parts. Meanwhile, satellite and ground observation both indicate a reduction in aerosol optical depth (AOD) during the same period, whereas no significant trends in cloud amount show up. Detailed analysis using co-located radiation and aerosol observation at the XiangHe station in North China suggests that both AOD and single scattering albedo (SSA) changes contribute to the radiation trends. AOD reduction contributes to the increase of direct solar radiation, also decreasing the diffuse radiation, while the increase of SSA serves to increase the diffuse fraction. Simple calculations using a radiative transfer model confirm that the two effects combined explain changes in the global solar radiation and its components effectively. Our results have implications for potential climate effects with the reduction of China’s aerosol emissions, and the necessity to monitor aerosol composition in addition to its loading.
In-Situ Observation of Nano-Oxide Formation in Magnetic Thin Films
NASA Astrophysics Data System (ADS)
McCallum, Andrew; Russek, Stephen
2004-03-01
Exposure of a metal surface in a spin valve structure to oxygen creates a nano-oxide layer, or NOL, on that surface. Inclusion of NOLs into spin valve structures has been shown by many researchers to lower the resistance and increase the giant magnetoresistance effect. Four point in-situ conductance measurements were made during the deposition and oxidation of Co layers. These measurements show an initial decrease in conductance followed by an increase in conductance, due to a specularity increase of at least 0.10. RHEED measurements taken simultaneously with conductance measurements show the formation an amorphous oxide while the specularity increases. With further exposure of oxygen to the surface a CoO structure with a (111) texture forms. Magnetoconductance measurements during the oxidation of the free layer of bottom pinned spin valves show increases in the GMR of the spin valves. Estimates of the change in specularity and Co layer thickness were determined from the change in conductance and the change in magnetoconductance. Also determined from the magnetoconductance measurements was an increase in the coercivity of the free layer with oxidation. Adding Co onto the oxide had a strong effect on the coercivity and coupling between free and pinned layers.
Bolin, Lisa L; Chandhasin, Chandtip; Lobelle-Rich, Patricia A; Albritton, Lorraine M; Levy, Laura S
2011-05-13
Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.
NASA Astrophysics Data System (ADS)
Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.
2016-02-01
"Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.
Roles of additives and surface control in slurry atomization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, S.C.
1990-01-01
This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar
The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less
Effects of Surface Wettability on the Porosity and Wickability of Frost
NASA Astrophysics Data System (ADS)
Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan
2017-11-01
The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).
NASA Astrophysics Data System (ADS)
Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng
2017-12-01
Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.
Holland, L.E.
1986-01-01
Short-term impacts of commercial barge traffic on fish eggs, larvae, young-of-the-year (age-0) fishes, and small adults in the main channel of the upper Mississippi River were examined. Barge passages caused significant changes in the distribution of eggs and larvae in the study area. The mean catch of ichthyoplankton was reduced in both surface and bottom waters for 90 min after passage of vessels downstream. The effects of upstream traffic on catch ranged from nil in surface or bottom samples to short-term increases in surface samples immediately after passage. No consistent effect on the catch of age-0 or small adult fishes in surface or bottom trawls was evident.
Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys
Celik, Fuat E.; Mavrikakis, Manos
2015-01-12
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less
Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, Fuat E.; Mavrikakis, Manos
2015-10-01
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less
Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys
NASA Astrophysics Data System (ADS)
Celik, Fuat E.; Mavrikakis, Manos
2015-10-01
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.
Competition between surface adsorption and folding of fibril-forming polypeptides
NASA Astrophysics Data System (ADS)
Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.
2015-02-01
Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].
Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn
2018-05-23
Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Francisco Sánchez-Royo, Juan
2012-12-01
The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.
Incorporation of multiple cloud layers for ultraviolet radiation modeling studies
NASA Technical Reports Server (NTRS)
Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.
1994-01-01
Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.
Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion.
Malik, Muhammad Arif; Xiao, Shu; Schoenbach, Karl H
2012-03-30
Comparative studies revealed that surface plasmas developing along a solid-gas interface are significantly more effective and energy efficient for remediation of toxic pollutants in air than conventional plasmas propagating in air. Scaling of the surface plasma reactors to large volumes by operating them in parallel suffers from a serious problem of adverse effects of the space charges generated at the dielectric surfaces of the neighboring discharge chambers. This study revealed that a conductive foil on the cathode potential placed between the dielectric plates as a shield not only decoupled the discharges, but also increased the electrical power deposited in the reactor by a factor of about forty over the electrical power level obtained without shielding and without loss of efficiency for NO removal. The shield had no negative effect on efficiency, which is verified by the fact that the energy costs for 50% NO removal were about 60 eV/molecule and the energy constant, k(E), was about 0.02 L/J in both the shielded and unshielded cases. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hikiji, R.
2018-01-01
The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.
AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic
NASA Astrophysics Data System (ADS)
Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.
2001-10-01
The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.