Science.gov

Sample records for increased electrical resistivity

  1. A study of the deposition of carbide coatings on graphite fibers. [to increase electrical resistance

    NASA Technical Reports Server (NTRS)

    Suplinskas, R. J.; Henze, T. W.

    1979-01-01

    The chemical vapor deposition of boron carbide and silicon carbide on graphite fibers to increase their electrical resistance was studied. Silicon carbide coatings were applied without degradation of the mechanical properties of the filaments. These coatings typically added 1000 ohms to the resistance of a filament as measured between two mercury pools. When SiC-coated filaments were oxidized by refluxing in boiling phosphoric acid, average resistance increased by an additional 1000 ohms; in addition resistance increases as high as 150 K ohms and breakdown voltages as high as 17 volts were noted. Data on boron carbide coatings indicated that such coatings would not be effective in increasing resistance, and would degrade the mechanical properties.

  2. Increasing resistivity of electrically conductive ceramics by insulating grain boundary phase.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru

    2014-02-26

    Increasing resistivity of electrically conductive nonoxide ceramics was investigated by insulating conductive pathways through conductive grains in a sintered body by addition of an insulating grain boundary phase, which was produced by the reaction of sintering additives in liquid phase sintering. When SiC was hot pressed with an additive of 10 vol % of Al2O3 and Y2O3, the resistivity decreased as sintering temperature increased owing to contact between SiC grains during densification. However, by hot pressing at 1750°C, a high resistivity of greater than 1 × 10(11) Ω cm was achieved because of the penetration of an insulating grain boundary phase between the SiC grains. It is possible to fabricate high-resistivity SiC ceramics without losing their excellent mechanical properties by introduction of an insulating grain boundary phase, the volume of which is approximately 1/7 that of the insulating phase incorporated in conventional ceramic composites.

  3. Fluoride-added Pr-Fe-B die-upset magnets with increased electrical resistivity

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Gabay, A. M.; Liu, J. F.; Hadjipanayis, G. C.

    2009-04-01

    This work reports the effect of NdF3, DyF3, and CaF2 additions on the electrical resistivity and magnetic properties of Pr-Fe-B hot-pressed and die-upset permanent magnets. Composite magnets were synthesized from ground Pr14.5Fe79.5B6 melt-spun ribbons blended with 5wt% of fluoride fine powders and consolidated by hot pressing at 650°C, followed by die upsetting at 800°C. While CaF2 is stable at the processing temperatures, the rare earth atoms separate from their fluorides to a certain degree with the assistance of the Pr-rich phase from the magnet matrix. Addition of fluorides increased the resistivity of the hot-pressed specimens by more than 200%. The resistivity of the die-upset specimens measured perpendicularly to the direction of the applied pressure, which is also the direction of magnetization, is, however, only slightly increased compared to the magnet counterparts without the fluoride addition. The intrinsic coercivity of Pr14.5Fe79.5B6 die-upset specimens is increased from 14.5kOe to 15.3, 17.1, and 17.7kOe for the addition of CaF2, DyF3, and NdF3, respectively, at a slight expense of the residual flux.

  4. Electrical Methods: Resistivity Methods

    EPA Pesticide Factsheets

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  5. Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression

    USGS Publications Warehouse

    King, C.-Y.; Luo, G.

    1990-01-01

    Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures. ?? 1990 Birkha??user Verlag.

  6. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Gordeev, A.

    2004-01-01

    The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes in which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptation reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H + ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumulation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiments on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the

  7. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Gordeev, A.

    The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes on which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptational reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H+ ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumu lation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiment on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the

  8. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Berk, Julian; Walder, Ken; Berk, Michael; Tye, Susannah J

    2016-08-01

    The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.

  9. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  10. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  11. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  12. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  13. Increasing wear resistance of copper friction pair with electrically-conductive tribological Cu-Mo-S coatings

    NASA Astrophysics Data System (ADS)

    Zharkov, S. Yu.; Sergeev, V. P.; Fedorischeva, M. V.; Sergeev, O. V.; Kalashnikov, M. P.

    2016-11-01

    The composite solid lubricant Cu-Mo-S coating was produced by pulse magnetron sputtering system. The electrical resistivity of deposited Cu-Mo-S coatings was (22.8±3) × 10-8 Ohm×m. Cu-Mo-S coatings decrease the wear rate of the copper friction pair by 38 times. The decrease in the wear rate occurs owing to the formation of a transferred film on the counterface.

  14. Increasing Model Complexity: Unit Testing and Validation of a Coupled Electrical Resistive Heating and Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2016-12-01

    Geoenvironmental models are becoming increasingly sophisticated as they incorporate rising numbers of mechanisms and process couplings to describe environmental scenarios. When combined with advances in computing and numerical techniques, these already complicated models are experiencing large increases in code complexity and simulation time. Although, this complexity has enabled breakthroughs in the ability to describe environmental problems, it is difficult to ensure that complex models are sufficiently robust and behave as intended. Many development tools used for testing software robustness have not seen widespread use in geoenvironmental sciences despite an increasing reliance on complex numerical models, leaving many models at risk of undiscovered errors and potentially improper validations. This study explores the use of unit testing, which independently examines small code elements to ensure each unit is working as intended as well as their integrated behaviour, to test the functionality and robustness of a coupled Electrical Resistive Heating (ERH) - Macroscopic Invasion Percolation (MIP) model. ERH is a thermal remediation technique where the soil is heated until boiling and volatile contaminants are stripped from the soil. There is significant interest in improving the efficiency of ERH, including taking advantage of low-temperature co-boiling behaviour which may reduce energy consumption. However, at lower co-boiling temperatures gas bubbles can form, mobilize and collapse in cooler areas, potentially contaminating previously clean zones. The ERH-MIP model was created to simulate the behaviour of gas bubbles in the subsurface and to evaluate ERH during co-boiling1. This study demonstrates how unit testing ensures that the model behaves in an expected manner and examines the robustness of every component within the ERH-MIP model. Once unit testing is established, the MIP module (a discrete gas transport algorithm for gas expansion, mobilization and

  15. Electrical Resistivity Measurements: a Review

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  16. Mild Electrical Stimulation Increases Stress Resistance and Suppresses Fat Accumulation via Activation of LKB1-AMPK Signaling Pathway in C. elegans

    PubMed Central

    Matsuyama, Shingo; Moriuchi, Masataka; Suico, Mary Ann; Yano, Shuichiro; Morino-Koga, Saori; Shuto, Tsuyoshi; Yamanaka, Kunitoshi; Kondo, Tatsuya; Araki, Eiichi; Kai, Hirofumi

    2014-01-01

    Electrical current at physiological strength has been applied as a therapeutic approach for various diseases. Several of our works showed that mild electrical stimulation (MES) at 0.1-ms pulse width has positive impact on organisms. But despite the growing evidence of the beneficial effects of MES, its effects on individual animals and the molecular underpinnings are poorly understood and rarely studied. Here, we examined the effects of MES on individual animal and its mechanisms by mainly using Caenorhabditis elegans, a powerful genetic model organism. Interestingly, MES increased stress resistance and suppressed excess fat accumulation in wild-type N2 worms but not in AMPK/AAK-2 and LKB1/PAR-4 mutant worms. MES promoted the nuclear localization of transcription factors DAF-16 and SKN-1 and consequently increased the expression of anti-stress genes, whereas MES inhibited the nuclear localization of SBP-1 and suppressed the expression of lipogenic genes. Moreover, we found that MES induced the activation of LKB1/PAR4-AMPK/AAK2 pathway in C. elegans and in several mammalian cell lines. The mitochondrial membrane potential and cellular ATP level were slightly and transiently decreased by MES leading to the activation of LKB1-AMPK signaling pathway. Together, we firstly and genetically demonstrated that MES exerts beneficial effects such as stress resistance and suppression of excess fat accumulation, via activation of LKB1-AMPK signaling pathway. PMID:25490091

  17. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  18. R & D increases electricity markets

    SciTech Connect

    Sussman, S.S.

    1995-10-01

    As the electric utility industry moves increasingly toward open competition, sharing of information among utilities will become more restrictive. Today, the spirit of cooperation seens to be faltering, due to each companies` concerns about revealing potentially sensitive information which could be exploited by a utility`s competitors. This situation raises a serious question regarding the future of cooperative R&D. One area of R&D that will benefit all electric energy providers is that which will create new or larger markets for electricity. An R&D consortia can also help to satisfy some rather generic needs of its competitive members. Members of competitive industries have quickly and economically developed market-building technologies through their support of R&D consortium. It is very likely that as the electric utility industry undergoes restructuring, collaborative R&D will continue to produce mutually beneficial technologies. The realities of competition will require the electric R&D consortia to adjust the processes used to plan and manage R&D projects.

  19. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  20. Electrical contact resistance in filaments

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Zhou, Zhengping; Zhou, Wang-Min

    2012-05-01

    Electrical contact resistance (ECR) influences the electrochemical performance of porous electrodes made of stacked discrete materials (e.g., carbon nanotubes, nanofibers, etc.) for use in supercapacitors and rechargeable batteries. This study establishes a simple elasticity-conductivity model for the ECR of filaments in adhesive contact. The elastic deformation and size of electrical contact zone of the filaments are determined by using an adhesive contact model of filaments, and the ECR of adhesive filaments is obtained in explicit form. Dependencies of the ECR upon the filament geometries, surface energy, and elasticity are examined.

  1. Electrical resistivity of thin bismuth films

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Katyal, O. P.

    1990-05-01

    The effect of the film thickness of a bismuth film deposited on glass substrate on its electrical resistivity was investigated for films from 41 to 225 nm thickness, in the temperature range 77-350 K. Results show that the electrical resistivity decreases with increasing temperature and that, for films 98.3 and 225.9 nm thick there exists a minimum (between 260 and 350 K) in resistivity at some temperature, Tc. This minimum shifts toward higher temperature for thinner samples, and lies above 350 K. The thickness dependence of the bismuth film resistivity, obtained at 77, 150, and 300 K, can be explained by a modified Fuchs model, which takes into account the thickness dependence of carrier density.

  2. Repeatable change in electrical resistance of Si surface by mechanical and electrical nanoprocessing.

    PubMed

    Miyake, Shojiro; Suzuki, Shota

    2014-01-01

    The properties of mechanically and electrically processed silicon surfaces were evaluated by atomic force microscopy (AFM). Silicon specimens were processed using an electrically conductive diamond tip with and without vibration. After the electrical processing, protuberances were generated and the electric current through the silicon surface decreased because of local anodic oxidation. Grooves were formed by mechanical processing without vibration, and the electric current increased. In contrast, mechanical processing with vibration caused the surface to protuberate and the electrical resistance increased similar to that observed for electrical processing. With sequential processing, the local oxide layer formed by electrical processing can be removed by mechanical processing using the same tip without vibration. Although the electrical resistance is decreased by the mechanical processing without vibration, additional electrical processing on the mechanically processed area further increases the electrical resistance of the surface.

  3. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  4. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  5. Determination of electrical resistivity of dry coke beds

    SciTech Connect

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  6. Determination of Electrical Resistivity of Dry Coke Beds

    NASA Astrophysics Data System (ADS)

    Eidem, P. A.; Tangstad, M.; Bakken, J. A.

    2008-02-01

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500 °C to 1600 °C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450 °C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  7. Measurement of electrical resistance after nerve injuries of the hand.

    PubMed

    Egyed, B; Eory, A; Veres, T; Manninger, J

    1980-10-01

    The authors measured electrical resistance of skin to define the sensory loss. A significant increase of the skin resistance was observed in the zone of sensory loss, as compared with the skin surfaces of normal innervation. The sensory map, sweating map (ninhydrine test) and the skin resistance map were also compared by the authors. The main advantages of the electrical skin resistance test are that it is a quantitative one, and takes less time than the other methods.

  8. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneit

    USDA-ARS?s Scientific Manuscript database

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. T...

  9. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  10. Measuring Electrical Resistivity Of Compacted Powder

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Slightly modified micrometer used in conjunction with special cup to measure electrical resistance of specimen of powder as function of packing fraction. Powder pressed between anvils of micrometer, which make electrical contact with specimen. Device used in manufacturing batteries to determine effective electrical conductivities of powders loaded into plastic sheets to make battery substrates. Coupled with good mathematical description of expected conductivity of particulate composite as function of packing density. Also serves as tool for evaluating conductivity of dispersed phase, as well as evaluating electrical resistances of interparticle contacts.

  11. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  12. Chronic lead exposure reduces junctional resistance at an electrical synapse.

    PubMed

    Audesirk, G; Audesirk, T

    1984-01-01

    Both acute and chronic lead exposure have been found to inhibit transmission at chemical synapses, possibly by interfering with inward calcium current. We have found that chronic lead exposure slightly reduces input resistance and greatly reduces the junctional resistance between two strongly electrically coupled neurons in the pond snail Lymnaea stagnalis. The net effect is to increase the strength of electrical coupling. A reduction in gap junctional resistance would also be expected to increase the flow of small molecules between cells. However, Lucifer Yellow injections did not reveal dye-coupling between the cells. Lead exposure also increases the capacitance of the neurons.

  13. Electro-dewatering of activated sludge: Electrical resistance analysis.

    PubMed

    Conrardy, Jean-Baptiste; Vaxelaire, Jean; Olivier, Jérémy

    2016-09-01

    The significant risk of ohmic heating and the high electric energy consumption at terminal stages of the dewatering are two problems that hamper the development of the electro-dewatering (EDW) technology. In the future prospect of studying these two issues, it is important to provide and analyse quantitative data relative to the behavior of the electric resistance in EDW. It was the main goal of this study. It showed that the electric resistance of the complete system (cake + filter cloth) depended on the cake dryness. It increased sharply when the solids content exceeded around 45%.The solids loading also influenced the apparent resistance at the beginning of the process. The electric resistance of the filter cloth represented about 20% of the total resistance. It remained relatively constant over the process except at the terminal stage where it generally increased sharply. The use of conductive filter, such as metallic cloth, enabled to decrease the electric resistance and reduce the energy consumption of the process. The electric resistance decreased across the cake from the anode to the cathode. This behavior may be explained by several phenomena such as the ions migration and their interaction with the solid, the decrease of dry solids content from the anode to the cathode and the gas presence at the anode (due to electrolysis reaction).

  14. The electrical resistivities of nanostructured aluminium films at low temperatures

    NASA Astrophysics Data System (ADS)

    Sun, Lijun; Dai, Fei; Zhang, Jicheng; Luo, Jiangshan; Xie, Chunping; Li, Jun; Lei, Haile

    2017-10-01

    The electrical resistivities of nanostructured aluminum (nano-Al) films grown onto quartz substrates were measured from 8 K to 300 K by the four-point probe method. The nano-Al films show a temperature (T)-dependent electrical resistivity in the form of T 4 and T 3, different from that of the coarse-grained bulk Al. The T 4 item increases with increasing the film thickness while the T 3 item is just vice versa to indicate the effect of grain boundaries and surfaces on the intrinsic resistivity becomes weak with increasing the film thickness. The residual electrical resistivity in nano-Al films is further revealed to be the 2–3 orders magnitude larger than the one in the coarse-grained bulk Al and decays with increasing the film thickness. The background mechanism is deduced to result from the scattering of electrons by the grain boundaries and surfaces.

  15. The extracellular electrical resistivity in cell adhesion.

    PubMed

    Gleixner, Raimund; Fromherz, Peter

    2006-04-01

    The interaction of cells in a tissue depends on the nature of the extracellular matrix. The electrical properties of the narrow extracellular space are unknown. Here we consider cell adhesion mediated by extracellular matrix protein on a solid substrate as a model system. We culture human embryonic kidney (HEK293) cells on silica coated with fibronectin and determine the electrical resistivity in the cell-solid junction rhoJ=rJdJ by combining measurements of the sheet resistance rJ and of the distance dJ between membrane and substrate. The sheet resistance is obtained from phase fluorometry of the voltage-sensitive dye ANNINE-5 by alternating-current stimulation from the substrate. The distance is measured by fluorescence interference contrast microscopy. We change the resistivity of the bath in a range from 66 Omega cm to 750 Omega cm and find that the sheet resistance rJ is proportionally enhanced, but that the distance is invariant around dJ=75 nm. In all cases, the resulting resistivity rhoJ is indistinguishable from the resistivity of the bath. A similar result is obtained for rat neurons cultured on polylysine. On that basis, we propose a "bulk resistivity in cell adhesion" model for cell-solid junctions. The observations suggest that the electrical interaction between cells in a tissue is determined by an extracellular space with the electrical properties of bulk electrolyte.

  16. Anisotropic electric surface resistance of Cu(110)

    SciTech Connect

    Otto, A.; Lilie, P.; Dumas, P.; Hirschmugl, C.; Pilling, M.; Williams, Gwyn P.

    2007-08-01

    The electric surface resistance is measured without contacts by grazing incidence of p-polarized infrared (IR) radiation for the adsorbates CO and C{sub 2}H{sub 4}, which settle on top of the close packed atomic ridges of Cu(110) in the <1, -1, 0> direction. Surface resistance has only been observed for the IR electric currents in this direction. This can be explained by the assumption that IR induced currents in the <001> direction can only flow in the second and deeper layers of Cu(110). Therefore, in this direction, there is no friction with the adsorbates and hence no surface resistance.

  17. Electrical resistance of carbon-nanofiber concrete

    NASA Astrophysics Data System (ADS)

    Gao, Di; Sturm, Mariel; Mo, Y. L.

    2009-09-01

    Concrete is the most widely used construction material, and carbon nanofibers have many advantages in both mechanical and electrical properties such as high strength, high Young's modulus and high conductivity. In this paper, the mechanical and electrical properties of concrete containing carbon nanofibers (CNF) are experimentally studied. The test results indicate that the compressive strength and per cent reduction in electrical resistance while loading concrete containing CNF are much greater than those of plain concrete. Finally, a reasonable concentration of CNF is obtained for use in concrete which not only enhances compressive strength, but also improves the electrical properties required for strain monitoring, damage evaluation and self-health monitoring of concrete.

  18. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  19. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  20. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  1. Electrical resistivity survey in eastern Jeju Island

    NASA Astrophysics Data System (ADS)

    Jung, H.

    2010-12-01

    Electrical resistivity survey was conducted to acquire basic geological layer information for regional hydrogeologic application by our own developed system in eastern Jeju island. The system mainly consists of a stand-alone TX(transmitter) module, of which the excitation current into the earth has been increased very much using a portable AC generator instead of batteries, a digital stacking RX(receiver), and a pair of programmable synchronization clock modules to achieve the initial synchronization between TX and RX. The waveform of the excitation current into the earth at transmitter side is double bipolar, and the power is 1000V-1A or 800V-5A with a portable AC generator. At the receiver part controlled through a notebook PC's serial port, the operator can observe the exact waveform and the averaged value with 24-bit A/D resolution and gain 1-10-100. The small portable synchronization clocks, operated by 12V/2A sealed battery, provides the precise basic measurement cycles and initial triggering. The control and measurement software which acquires the earth resistivity data was developed user-interactively. The system was field-tested in eastern part of Jeju Island with dipole spacing a=300m and 600m, to n=10, and stations=43, by the array of which the exploration depth has been increased to about 2,400 m. By the developed portable system we could conduct very easy and fast field work and acquire very satisfactory data. The inversion of measured data gave us the useful information about the sub-surface resistivity structure to about 2,400 m depth along a 13km survey profile. Further study will be focused on simultaneous multi receiver data acquisition system.

  2. Pedotransfer functions in soil electrical resistivity estimation

    USDA-ARS?s Scientific Manuscript database

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  3. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  4. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  5. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  6. Electrical resistivity of Au-ZnO nanocomposite films

    SciTech Connect

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V.

    2013-04-14

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (f{sub c} = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 {mu}{Omega} cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  7. Electrical resistivity of Au-ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V.

    2013-04-01

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (fc = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 μΩ cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  8. Increasing Efficiency by Maximizing Electrical Output

    DTIC Science & Technology

    2016-08-01

    Undetermined Carbon benefit Carbon savings of non- fossil fuel based electrical generation Electrical output; standard CO2 emission from average...electricity generation activity using fossil fuels >100 tons of carbon emissions avoided annually Achievable carbon reduction on par with output...create the comparable amount of electricity. • Metric: Carbon savings of non- fossil fuel based electrical generation. • Data: Electrical output

  9. Invariant electrical resistivity of Co along the melting boundary

    NASA Astrophysics Data System (ADS)

    Ezenwa, Innocent C.; Secco, Richard A.

    2017-09-01

    The Earth's core is comprised mainly of Fe and Ni with some light alloying element(s) and the electrical resistivity behavior of these elements is an important property for characterizing geodynamo action, determining energy sources, and for understanding core thermal evolution. Knowledge of the electrical resistivity of solid and liquid transition metals with electronic structures similar to Fe reinforces our understanding of core properties. The electrical resistivity of high purity Co has been measured at pressures up to 5 GPa in a large volume press and at temperatures up to 100 K above the melting temperature. The results demonstrate that resistivity of Co is invariant along the melting boundary. This is interpreted in terms of the antagonistic effects of P-induced reduction in the amplitude of lattice vibrations tending to decrease resistivity, and the P-induced shift of the Fermi level closer to the d-resonance which tends to increase resistivity. We calculated the electronic thermal conductivity of Co using the Wiedemann-Franz law and show that it increases with pressure both in the solid and liquid states and decreases with temperature in the solid and increases in the liquid state. The pressure dependences of electrical resistivity and electronic thermal conductivity calculated from equations involving bulk modulus and the Gruneisen parameter are in reasonable agreement with values measured in this study. The constant resistivity of Co along its melting boundary found in our study portends similar behavior for its electronic structural analog, Fe. This prediction suggests that the electronic thermal conductivity of Fe at Earth's inner core boundary could be similar to its 1 atm value at the melting point. Using this value of thermal conductivity for the inner core boundary would admit thermal convection as an energy source for the geodynamo prior to the birth of the inner core.

  10. Electrical resistance of a capillary endothelium

    PubMed Central

    1981-01-01

    The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes. PMID:7241087

  11. Estimating soil suction from electrical resistivity

    NASA Astrophysics Data System (ADS)

    Piegari, E.; Di Maio, R.

    2013-09-01

    Soil suction and resistivity strongly depend on the degree of soil saturation and, therefore, both are used for estimating water content variations. The main difference between them is that soil suction is measured using tensiometers, which give point information, while resistivity is obtained by tomography surveys, which provide distributions of resistivity values in large volumes, although with less accuracy. In this paper, we have related soil suction to electrical resistivity with the aim of obtaining information about soil suction changes in large volumes, and not only for small areas around soil suction probes. We derived analytical relationships between soil matric suction and electrical resistivity by combining the empirical laws of van Genuchten and Archie. The obtained relationships were used to evaluate maps of soil suction values in different ashy layers originating in the explosive activity of the Mt Somma-Vesuvius volcano (southern Italy). Our findings provided a further example of the high potential of geophysical methods in contributing to more effective monitoring of soil stress conditions; this is of primary importance in areas where rainfall-induced landslides occur periodically.

  12. A GIS Method for Analyzing Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Hazzard, S. C.; Mutiti, S.; Berry, L. E.; GCSU Hydrogeologists

    2011-12-01

    Shallow electrical resistivity methods provide a relatively easy and cost-effective way of mapping the subsurface in wetland environments. Traditional ways of analyzing these data include curve matching, analytical methods, and pseudosections, which resemble geologic cross sections. Psuedosections and Three Dimensional (3D) results can be obtained from specialized software, such as RES3DINV or EarthImager. In recent years, ArcGIS has become very popular in environmental studies, but not as popular in electrical resistivity data analysis. In a previous study, we demonstrated that ArcGIS can be used in electrical resistivity analysis. The objective of this project was to assess the performance and accuracy of ArcGIS in analyzing 3D-wetland resistivity data. The study area used for this analysis was located at the Oconee River Greenway, in Milledgeville, Georgia. The area of focus was Alice Basin, which is one of the small basins in the Greenway wetland area. Within the wetland, we observed significant subsurface flow that transported water between basins and from the wetland into nearby Fishing Creek. This subsurface flow is typically restricted to a high permeability layer, and is responsible for most of the water loss within the wetland. To better understand how this wetland functions, electrical resistivity profiling was used to map the subsurface and the extent of the high permeability layer. The data were collected with an ULTRA MiniRes resistivity meter, using the dipole-dipole electrode configuration. We then developed an easy GIS-method for analyzing these data in 3D, and compared the results with those from the specialized resistivity software, RES3DINV. The top layer outputs for both programs were compared to visual observations and soils in the field. The spline interpolation technique in ArcGIS produced a superior match to the observed data, than results from RES3DINV. However, results for the lower layers were similar between the two programs. An

  13. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  14. Mechanism for detecting NAPL using electrical resistivity imaging.

    PubMed

    Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark

    2017-08-19

    The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrical Resistivity of Alkaline Earth Elements.

    DTIC Science & Technology

    1976-12-01

    CHI CINDAS REPORT 42 December 1976 DTIC Q Prepared for ELECTE 3 DEFENSE SUPPLY AGENCY JUN 0’’ 983 , U. S. Department of Defense 4 Alexandria...OF REPORT A PEOD COVERED Electrical Resistivity of Alkaline Earth Elements State-of-the-Art Report 6. PERFORMING ORG. REPORT NUMBER CINDAS Report 42 7...TASKAREA & WORK UNIT NUMBERS Thermophysical and Electronic Properties Information Analysis Center, CINDAS /Purdue Univ., 2595 Yeager Rd., W. Lafayette, IN

  16. An introduction to electrical resistivity in geophysics

    NASA Astrophysics Data System (ADS)

    Herman, Rhett

    2001-09-01

    Physicists are finding that the skills they have learned in their training may be applied to areas beyond traditional physics topics. One such field is that of geophysics. This paper presents the electrical resistivity component of an undergraduate geophysics course at Radford University. It is taught from a physics perspective, yet the application of the theory to the real world is the overriding goal. The concepts involved in electrical resistivity studies are first discussed in a general sense, and then they are studied through the application of the relevant electromagnetic theory. Since geology majors comprise the bulk of the students in this class, the math used is only that which is typically required of geology majors. The final results are given in a form that practicing geophysicists may use in the field. A method is presented for constructing an inexpensive apparatus for measuring electrical resistivity in both a tabletop laboratory setting and in the field. This apparatus is truly "plug and play" since its assembly and use requires only the most basic knowledge of electronics. This apparatus is tested in a tabletop laboratory setting as well as in two field surveys.

  17. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  18. Electrical resistance tomography experiments at the Oregon Graduate Institute

    NASA Astrophysics Data System (ADS)

    Daily, W.; Ramirez, A.; LaBrecque, D.; Barber, W.

    1995-04-01

    Three controlled experiments were conducted at the Oregon Graduate Institute (OGI) with the purpose of evaluating electrical resistance tomography for imaging underground processes associated with in-situ site assessment and remediation. The OGI facilities are unique: a double-wall tank 10 m square and 5 m deep, filled with river bottom sediments and instrumented for geophysical and hydrological studies. At this facility, liquid contaminants could be released into the confined soil at a scale sufficiently large to represent real-world physical phenomena. In the first test, images of electrical resistivity were made before and during a controlled spill of gasoline into a sandy soil. The primary purpose was to determine if electrical resistivity images could detect the hydrocarbon in either the vadose or saturated zone. Definite changes in electrical resistivity were observed in both the vadose and saturated soils. The effects were an increase in resistivity of as much as 10% above pre-release values. A single resistive anomaly was imaged, directly below the release point, principally within the vadose zone but extending below the phreatic surface. The anomaly remained identifiable in tomograms taken two days after the release ended with clear indications of lateral spreading along the water table. The second test involved electrical resistance measurements before, during, and after air sparging in a saturated soil. The primary purpose was to determine if the electrical images could be used to detect and delineate the extent of the zone influenced by sparging. The images showed an increase of about 20% in resistivity over background values within the sparged zone and the extent of the imaged zone agreed with that inferred from other information. Electrical resistivity tomography measurements were made under a simulated oil storage tank in the third test. Comparison of images taken before and during separate releases of brine and water showed effects of changes

  19. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  20. Nondestructive evaluation of composite materials by electrical resistance measurement

    NASA Astrophysics Data System (ADS)

    Mei, Zhen

    This dissertation investigates electrical resistance measurement for nondestructive evaluation of carbon fiber (CF) reinforced polymer matrix composites. The method involves measuring the DC electrical resistance in either the longitudinal or through thickness direction. The thermal history and thermal properties of thermoplastic/CF composites were studied by longitudinal and through-thickness resistance measurements. The resistance results were consistent with differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) results. The resistance measurements gave more information on the melting of the polymer matrix than TMA. They were more sensitive to the glass transition of the polymer matrix than DSC. The through-thickness resistance decreased as autohesion progressed. The activation energy of autohesion was 21.2 kJ/mol for both nylon-6 and polyphenylene sulfide (PPS)/CF composites. Adhesive bonding and debonding were monitored in real-time by measurement of the through-thickness resistance between the adherends in an adhesive joint during heating and subsequent cooling. Debonding occurred during cooling when the pressure or temperature during prior bonding was not sufficiently high. A long heating time below the melting temperature (T m) was found to be detrimental to subsequent PPS adhesive joint development above Tm, due to curing reactions below Tm and consequent reduced mass flow response above Tm. A high heating rate (small heating time) enhanced the bonding more than a high pressure. The longitudinal resistance measurement was used to investigate the effects of temperature and stress on the interface between a concrete substrate and its epoxy/CF composite retrofit. The resistance of the retrofit was increased by bond degradation, whether the degradation was due to heat or stress. The degradation was reversible. Irreversible disturbance in the fiber arrangement occurred slightly as thermal or load cycling occurred, as indicated by the

  1. Delineation of graves using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.

    2016-03-01

    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  2. Cone-based electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Pidlisecky, Adam

    Determining the 3-D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, I have developed a minimally invasive technology that provides information about the 3-D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), integrates the existing technologies of resistivity cone penetration testing (RCPT) with electrical resistivity tomography. Development of this tool included the creation of new software and modeling algorithms, the design of field equipment, field testing, and processing and interpretation of the resulting data. I present a 2.5-D forward modeling algorithm that incorporates an effective correction for the errors caused by boundary effects and source singularities. The algorithm includes an optimization technique for acquiring the Fourier coefficients required for the solution. A 3-D inversion algorithm is presented that has two major improvements over existing algorithms. First, it includes a 3-D version of the boundary correction/source singularity correction developed for the 2.5-D problem. Second, the algorithm can handle any type of acquisition geometry; this was a requirement for the development of C-bert. C-bert involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer and at the surface to measure the resultant potential field. In addition to these measurements, we obtain the standard suite of RCPT data, including high resolution resistivity logs. The RCPT data can be used to generate a realistic

  3. Polycrystalline configurations that maximize electrical resistivity

    NASA Astrophysics Data System (ADS)

    Nesi, Vincenzo; Milton, Graeme W.

    A lower bound on the effective conductivity tensor of polycrystalline aggregates formed from a single basic crystal of conductivity σ was recently established by Avellaneda. Cherkaev, Lurie and Milton. The bound holds for any basic crystal, but for isotropic aggregates of a uniaxial crystal, the bound is achieved by a sphere assemblage model of Schulgasser. This left open the question of attainability of the bound when the crystal is not uniaxial. The present work establishes that the bound is always attained by a rather large class of polycrystalline materials. These polycrystalline materials, with maximal electrical resistivity, are constructed by sequential lamination of the basic crystal and rotations of itself on widely separated length scales. The analysis is facilitated by introducing a tensor S = 0( 0I + σ) -1 where 0 > 0 is chosen so that Tr S = 1. This tensor s is related to the electric field in the optimal polycrystalline configurations.

  4. Electrical Resistance Tomography imaging of concrete

    SciTech Connect

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-15

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  5. The Extracellular Electrical Resistivity in Cell Adhesion

    PubMed Central

    Gleixner, Raimund; Fromherz, Peter

    2006-01-01

    The interaction of cells in a tissue depends on the nature of the extracellular matrix. The electrical properties of the narrow extracellular space are unknown. Here we consider cell adhesion mediated by extracellular matrix protein on a solid substrate as a model system. We culture human embryonic kidney (HEK293) cells on silica coated with fibronectin and determine the electrical resistivity in the cell-solid junction \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\rho}_{{\\mathrm{J}}}=r_{{\\mathrm{J}}}d_{{\\mathrm{J}}}\\end{equation*}\\end{document} by combining measurements of the sheet resistance \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}r_{{\\mathrm{J}}}\\end{equation*}\\end{document} and of the distance \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}d_{{\\mathrm{J}}}\\end{equation*}\\end{document} between membrane and substrate. The sheet resistance is obtained from phase fluorometry of the voltage-sensitive dye ANNINE-5 by alternating-current stimulation from the substrate. The distance is measured by fluorescence interference contrast microscopy. We change the resistivity of the bath in a range from \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}66\\hspace{.167em}{\\Omega}\\hspace{.167em

  6. Ethanologenic bacteria with increased resistance to furfural

    DOEpatents

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  7. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  8. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    PubMed

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer.

  9. Evaluation of pozzolanic activity by the electric resistance measurement method

    SciTech Connect

    Tashiro, Chuichi; Ikeda, Ko . Dept. of Advanced Materials Science and Engineering); Inoue, Yoshihiro )

    1994-01-01

    Measurements of electric resistance and amount of consumption of portlandite were carried out in accelerated curing conditions by preparing pastes of Fine Ceraments, fly ash, silica fume, kaolin, acid clay, zeolite and quartz activated with portlandite. Electric resistances of reactive pozzolans showed sharp rises except that of kaolin, whereas that of inactive material, quartz, showed no sharp rise. Electric resistances are proportional to the consumptions of portlandite except for fly ashes. The electric resistance measurement method combined with portlandite consumption measurement is useful to the rapid evaluation of pozzolanic activity.

  10. Monitoring an underground steam injection process using electrical resistance tomography

    SciTech Connect

    Ramirez, A.; Daily, W.; Owen, E.; Chesnut, D. ); LaBrecque, D. )

    1993-01-01

    We used electrical resistance tomography (ERT) to map the subsurface distribution of a steam flood as a function of time as part of a prototype environmental restoration process performed by the Dynamic Underground Stripping Project. We evaluated the capability of ERT to monitor changes in the soil resistivity during the steam injection process using a dipole-dipole measurement technique to measure the bulk electrical resistivity distribution in the soil mass. The injected steam caused changes in the soil's resistivity because the steam displaced some of the native pore water, increased the pore water and soil temperatures and changed the ionic content of the pore water. We could detect the effects of steam invasion by mapping changes in the soil resistivity as a function of space and time. The ERT tomographs are compared with induction well logs, formation temperature logs and lithologic logs. These comparisons suggest that the ERT tomographs mapped the formation regions invaded by the steam flood. The data also suggest that steam invasion was limited in vertical extent to a gravel horizon at depth of approximately 43 m. The tomographs show that with time, the steam invasion zone extended laterally to all areas monitored by the ERT technique.

  11. Electrical resistance tomography used to monitor subsurface steam injection

    SciTech Connect

    Ramirez, A.; Daily, W.; Owen, E.; Chesnut, D.; LaBrecque, D.

    1992-04-01

    We used electrical resistance tomography (ERT) to map the subsurface distribution of a steam flood as function of time as part of a prototype environmental restoration process performed by the Dynamic Underground Stripping Project. We evaluated the capability of ERT to monitor changes in the soil resistivity during the steam injection process using a dipole-dipole measurement technique to measure the bulk electrical resistivity distribution in the soil mass. The injected steam caused changes in the soil`s resistivity because the steam displaced some of the native pore water, increased the pore water and soil temperatures and changed the ionic content of the pore water. We could detect the effects of steam invasion by mapping changes in the soil resistivity as a function of space and time. The ERT tomographs are compared with induction well logs, formation temperature logs and lithologic logs. These comparisons suggest that the ERT tomographs mapped the formation regions invaded by the steam flood. The data also suggest that steam invasion was limited in vertical extent to a gravel horizon at depth of approximately 43 m. The tomographs show that with time, the steam invasion zone extended laterally to all areas monitored by the ERT technique.

  12. TUTORIAL: Electrical resistance: an atomistic view

    NASA Astrophysics Data System (ADS)

    Datta, Supriyo

    2004-07-01

    This tutorial article presents a 'bottom-up' view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remarkably, no serious quantum mechanics is needed to understand electrical conduction through something really small, except for unusual things like the Kondo effect that are seen only for a special range of parameters. This article starts with energy level diagrams (section 2), shows that the broadening that accompanies coupling limits the conductance to a maximum of q2/h per level (sections 3, 4), describes how a change in the shape of the self-consistent potential profile can turn a symmetric current-voltage characteristic into a rectifying one (sections 5, 6), shows that many interesting effects in molecular electronics can be understood in terms of a simple model (section 7), introduces the non-equilibrium Green function (NEGF) formalism as a sophisticated version of this simple model with ordinary numbers replaced by appropriate matrices (section 8) and ends with a personal view of unsolved problems in the field of nanoscale electron transport (section 9). Appendix A discusses the Coulomb blockade regime of transport, while appendix B presents a formal derivation of the NEGF equations. MATLAB codes for numerical examples are listed in appendix C. (The appendices are available in the online version only.)

  13. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  14. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  15. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  16. Electrical resistivity of radiation disordered oxide BaNb sub 4 O sub 6

    SciTech Connect

    Davydov, S.A.; Goshchitskii, B.N.; Karkin, A.E.; Mirmelstein, A.V.; Voronin, V.I.; Parkhomenko, V.D. ); Zubkov, V.G.; Perelyaev, V.N.; Berger, I.F.; Kontzevaya, I.A. )

    1990-07-01

    The effect of radiation disorder on the electrical resistivity of the metallic non-superconducting BaNb{sub 4}O{sub 6} oxide has been investigated. It is shown that variation of electrical resistivity {rho} of this compound under disorder is typical of metallic systems, i.e. residual resistivity increases linearly with defect concentration while the temperature dependence of {rho} changes slightly. Such a behavior qualitatively differs from the previously observed unusual behavior of HTSC with similar crystal structure.

  17. Soil spatial heterogeneity effect on soil electrical resistivity

    USDA-ARS?s Scientific Manuscript database

    Electrical resistivity (ER) is growing in popularity due to its ease of use and because of its non-invasive techniques, which are used to reveal and map soil heterogeneity. The objective of this work was to evaluate how differing soil properties affect the electric resistivity and to observe these e...

  18. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  19. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    PubMed Central

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  20. Vertical electrical resistivity sounding (VERS) of tundra and forest tundra soils of Yamal region

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Kostecki, Jakub; Abakumov, Evgeny

    2017-01-01

    The aim of the study was to determine electrical resistivity peculiarities of tundra and forest tundra soils and soil-permafrost layers of the Yamal region. Measurements of electrical resistivity of soil and permafrost strata were performed with a portable device LandMapper (to a depth of 300-500 cm). These measurements allow determination of the values of apparent electrical resistivity of soils and permafrost at different depths and determination of the depths of the permafrost table on each key plot. It was found that there are several trends in vertical distribution of apparent electrical resistivity values. The first trend is a monotonous increase in electrical resistivity values to the depth. It may be explained by the increasing electrical resistivity within the soil depth in relation to the increase in permafrost density. The second trend is a sharp decrease replaced by a gradual increase in electrical resistivity values caused by changing of non-frozen friable debris to frozen massive crystalline rock. These differences were related to the type of landscape: flat lowlands composed of friable grounds underlain by permafrost or friable grounds with permafrost underlain by a rock crystalline layer.

  1. Increasing Efficiency by Maximizing Electrical Output

    DTIC Science & Technology

    2016-07-27

    Rankine Cycle, ORCA, energy efficiency. Unclassified Unclassified UU UL Ted Eveleth 518-372-2608 x103 51 Page Intentionally Left Blank This report...12 Figure 12. RE Energy Facility on Ft. Drum...18 Figure 15. RE Energy Efficiencies and Electrical Power over Time

  2. Thermal-electrical properties and resistance stability of silver coated yarns

    NASA Astrophysics Data System (ADS)

    Li, Yafang; Liu, Hao; Li, Xiaojiu

    2017-03-01

    Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.

  3. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  4. Cyclic electric field stress on bipolar resistive switching devices

    NASA Astrophysics Data System (ADS)

    Schulman, A.; Acha, C.

    2013-12-01

    We have studied the effects of accumulating cyclic electrical pulses of increasing amplitude on the non-volatile resistance state of interfaces made by sputtering a metal (Au, Pt) on top of the surface of a cuprate superconductor YBa2Cu3O7-δ. We have analyzed the influence of the number of applied pulses N on the relative amplitude of the remnant resistance change between the high (RH) and the low (RL) state [(α=(RH-RL)/RL] at different temperatures (T). We show that the critical voltage (Vc) needed to produce a resistive switching (RS, i.e., α >0) decreases with increasing N or T. We also find a power law relation between the voltage of the pulses and the number of pulses Nα0 required to produce a RS of α =α0. This relation remains very similar to the Basquin equation used to describe the stress-fatigue lifetime curves in mechanical tests. This points out to the similarity between the physics of the RS, associated with the diffusion of oxygen vacancies induced by electrical pulses, and the propagation of defects in materials subjected to repeated mechanical stress.

  5. Venous resistance increases during rat anaphylactic shock.

    PubMed

    Cui, Sen; Shibamoto, Toshishige; Zhang, Wei; Takano, Hiromichi; Kurata, Yasutaka

    2008-06-01

    Anaphylactic shock is a sudden, life-threatening allergic reaction associated with severe hypotension. The increased venous resistance accounts for the anaphylactic hypotension in anesthetized dogs. However, the change in peripheral vascular resistances during anaphylactic hypotension in other animals such as rats is not known. We measured the mean circulatory filling pressure using the mechanical occlusion method of inflation of the right atrial balloon along with systemic arterial pressure (Psa), central venous pressure, and portal venous pressure. Cardiac output was also measured with the thermodilution method. From these hemodynamic variables, we calculated the total peripheral and venous (Rv) resistances during anaphylactic hypotension in anesthetized rats. These hemodynamic variables were compared with those in the hemorrhagic shock. After an intravenous injection of 0.6 mg antigen ovalbumin in sensitized rats, Psa decreased from 119 +/- 4 to 43 +/- 2 mmHg, cardiac output decreased from 84.5 +/- 5.7 to 37.8 +/- 2.1 mL min, central venous pressure decreased from 0.9 +/- 0.1 to 0.1 +/- 0.1 mmHg, and mean circulatory filling pressure also decreased from 6.0 +/- 0.2 to 5.2 +/- 0.3 mmHg. Thus, the Rv increased from 0.06 +/- 0.05 to 0.15 +/- 0.02 mmHg mL(-1) min(-1), but total peripheral resistance did not significantly change. Portal venous pressure also increased from 5.6 +/- 0.5 to 21.5 +/- 0.9 mmHg. Hematocrit markedly increased from the baseline values of 43% +/- 1% to 55% +/- 1% at 15 min after antigen. During hemorrhagic shock, Psa decreased in the manner similar to anaphylactic shock; however, Rv did not significantly change, and portal venous pressure decreased. In conclusion, in rat anaphylactic shock, a substantial increase in Rv presumably due to hepatic venoconstriction may decrease venous return, resulting in systemic hypotension.

  6. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils

    NASA Astrophysics Data System (ADS)

    Hong, Hyun Uk; Lee, Jong Bong; Choi, Ho Jin

    2009-02-01

    The optimization of electric resistance welding (ERW) conditions was studied to improve the resistance to hydrogen induced cracking (HIC) at the bondline in small diameter API X60 ERW pipes fabricated with slit coils. The results show that HIC is initiated preferentially at the elongated Si, Mn and Al-rich oxide inclusions, normally known as a penetrator on the bondline. However, no evidence was found of any centerline segregation effect. The HIC ratio increases with the fraction of penetrators at the bondline, regardless of the degrees of center segregation. Furthermore, for a satisfactory level of HIC resistance, the fraction of penetrators must be less than 0.03 % and most of the penetrators should be circular-shaped. The design of experimental (DOE) method was used to determine the optimum ERW condition for minimization of the penetrator ratio. Finally, guideline is suggested for the optimum ERW condition for achieving excellent HIC resistance.

  7. Increasing Importance of Material Electrical Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Vaughn, Jason

    2000-01-01

    The electrical properties of materials have always been important for spacecraft in charging environments. However, in recent years consideration of interactions of materials and systems with the plasma environment has become more and more important in spacecraft design. This has primarily been driven by independent factors including increase in power and high voltage power systems, operation of tethered satellites, and science requirements for electrostatic clean spacecraft. Increased need for power has led to increased operating voltages for spacecraft. The Upper Atmospheric Research Satellite (UARS) was one of the first to operate at near 100 V solar array potential and demonstrate that the spacecraft floated nearly the entire voltage negative of the ionospheric plasma. The high voltage, 160 V, of the solar arrays on the International Space Station (ISS) led to the requirement to have a plasma contactor to control structure potential relative to the local plasma. Issues such as sputtering, dielectric breakdown, capacitive energy storage in the structure, space debris impact induced arcs and other arcing mechanisms had to be addressed. Recently commercial satellites, driven to higher voltages for efficiency, have experienced arcing problems which led to severe, permanent power degradation. The first tethered satellite, Tethered Satellite System (TSS), was deployed from the Space Shuttle. A conductive coating was developed which provided a low resistivity and also the required solar absorptivity and emittance. Other tether systems are being designed which will have similar requirements but also long life and "bare tether" designs are also being built for flight experiments. The wire requires an electrically conductive coating with proper thermal control properties, which a bare wire doesn't possess. Increasing sophistication of scientific instruments and measurements which scientists want to make have led to increasing requirements for conducting thermal control

  8. Increasing Importance of Material Electrical Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Vaughn, Jason

    2000-01-01

    The electrical properties of materials have always been important for spacecraft in charging environments. However, in recent years consideration of interactions of materials and systems with the plasma environment has become more and more important in spacecraft design. This has primarily been driven by independent factors including increase in power and high voltage power systems, operation of tethered satellites, and science requirements for electrostatic clean spacecraft. Increased need for power has led to increased operating voltages for spacecraft. The Upper Atmospheric Research Satellite (UARS) was one of the first to operate at near 100 V solar array potential and demonstrate that the spacecraft floated nearly the entire voltage negative of the ionospheric plasma. The high voltage, 160 V, of the solar arrays on the International Space Station (ISS) led to the requirement to have a plasma contactor to control structure potential relative to the local plasma. Issues such as sputtering, dielectric breakdown, capacitive energy storage in the structure, space debris impact induced arcs and other arcing mechanisms had to be addressed. Recently commercial satellites, driven to higher voltages for efficiency, have experienced arcing problems which led to severe, permanent power degradation. The first tethered satellite, Tethered Satellite System (TSS), was deployed from the Space Shuttle. A conductive coating was developed which provided a low resistivity and also the required solar absorptivity and emittance. Other tether systems are being designed which will have similar requirements but also long life and "bare tether" designs are also being built for flight experiments. The wire requires an electrically conductive coating with proper thermal control properties, which a bare wire doesn't possess. Increasing sophistication of scientific instruments and measurements which scientists want to make have led to increasing requirements for conducting thermal control

  9. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  10. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  11. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  12. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  13. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  14. Electrical Stimulation for Drug-Resistant Epilepsy

    PubMed Central

    Chambers, A; Bowen, JM

    2013-01-01

    Objective The objective of this analysis was to evaluate the effectiveness of deep brain stimulation (DBS) and vagus nerve stimulation (VNS) for the treatment of drug-resistant epilepsy in adults and children. Data Sources A literature search was performed using MEDLINE, EMBASE, the Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 2007 until December 2012. Review Methods Systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies (in the absence of RCTs) of adults or children were included. DBS studies were included if they specified that the anterior nucleus of thalamus was the area of the brain stimulated. Outcomes of interest were seizure frequency, health resource utilization, and safety. A cost analysis was also performed. Results The search identified 6 studies that assessed changes in seizure frequency after electrical stimulation: 1 RCT on DBS in adults, 4 RCTs on VNS in adults, and 1 RCT on VNS in children. The studies of DBS and VNS in adults found significantly improved rates of seizure frequency, but the study of VNS in children did not find a significant difference in seizure frequency between the high and low stimulation groups. Significant reductions in hospitalizations and emergency department visits were found for adults and children who received VNS. No studies addressed the use of health resources for patients undergoing DBS. Five studies reported on adverse events, which ranged from serious to transient for both procedures in adults and were mostly transient in the 1 study of VNS in children. Limitations We found no evidence on DBS in children or on health care use related to DBS. The measurement of seizure frequency is self-reported and is therefore subject to bias and issues of compliance. Conclusions Based on evidence of low to moderate quality, both DBS and VNS seemed to reduce seizure frequency in adults. In children, VNS did not appear to be as

  15. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    NASA Astrophysics Data System (ADS)

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet

    2017-03-01

    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  16. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    NASA Astrophysics Data System (ADS)

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet

    2017-06-01

    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  17. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    PubMed

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil

  18. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  19. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    NASA Astrophysics Data System (ADS)

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.

    2012-07-01

    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  20. Thermal conductivity and electrical resistivity of porous materials

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1972-01-01

    Process for determining thermal conductivity and electrical resistivity of porous materials is described. Characteristics of materials are identified and used in development of mathematical models. Limitations of method are examined.

  1. Improvement of electrical resistivity tomography for leachate injection monitoring

    SciTech Connect

    Clement, R.; Descloitres, M.; Guenther, T.; Oxarango, L.; Morra, C.

    2010-03-15

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.

  2. Improvement of electrical resistivity tomography for leachate injection monitoring.

    PubMed

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights

  3. Building Better Electrodes for Electrical Resistivity and Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Adkins, P. L.; La Brecque, D. J.

    2007-12-01

    In the third year of a project to understand and mitigate the systematic noise in resistivity and induced polarization measurements, we put a significant effort into understanding and developing better electrodes. The simple metal electrodes commonly used for both transmitting and receiving of electrical geophysical data are likely the Achilles" heal of the resistivity method. Even stainless steel, a commonly used electrode material because of its durability, showed only average results in laboratory tests for electrode noise. Better results have been found with non-polarizing metal-metal salt electrodes, which are widely used as surface electrodes and in IP surveys. But although they produce small measurement errors, they are not durable enough for in-situ borehole resistivity surveys, and often contain compounds that are toxic to the environment. They are also very seldom used as transmitters. In laboratory studies, we are exploring other materials and configurations for low-noise compound electrodes that will be nontoxic, inexpensive, and durable and can be used as both transmitters and receivers. Testing of the electrical noise levels of electrodes is an arduous task involving repeated measurements under varying conditions at field scales. Thus it is important to find methods of sorting out likely candidates from the mass of possible electrode configurations and construction methods. Testing of electrode impedance versus current density appears to provide simple criteria for predicting the suitability of electrodes. The best electrodes show relatively low overall contact impedance, relatively small changes in impedance with increased current density, and relatively small changes in impedance with time. Furthermore it can be shown that resistivity and induced polarization performance of electrodes is strongly correlated, so that methods of finding electrodes with low impedance and good direct current performance usually provide better quality induced

  4. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  5. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  6. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  7. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  8. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  9. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  10. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  11. Four-terminal electrical testing device. [initiator bridgewire resistance

    NASA Technical Reports Server (NTRS)

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)

    1987-01-01

    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  12. Study of electrical resistivity of lithium-indium thin films

    NASA Astrophysics Data System (ADS)

    Chandra, Gyanesh; Katyal, O. P.

    1984-12-01

    Experimental results are presented on the electrical resistivity of lithium-indium films. The resistivity has been studied as a function of temperature (150-300 K), thickness of the films (570-3300 Å) and concentration of Li (11.0-58.7 at. %). The resistivity is observed to be minimum for samples having a Li concentration of 25 and 50 at. %. In general, resistivity varies linearly with temperature but resistivity versus temperature plot shows two distinct regions which have different slopes, i.e., dρ/dT. The role of lithium in indium-lithium films is discussed.

  13. Protein Acetylation in Procaryotes Increases Stress Resistance

    PubMed Central

    Ma, Qun; Wood, Thomas K.

    2011-01-01

    Acetylation of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we demonstrate that acetylation enables the reference bacterium Escherichia coli to withstand environmental stress. Specifically, the bacterium reaches higher cell densities and becomes more resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB as well as by overproducing YfiQ and CobB. Furthermore, we show that the increase in oxidative stress resistance with acetylation is due to the induction of catalase activity through enhanced katG expression. We also found that two-component system proteins CpxA, PhoP, UvrY, and BasR are associated with cell catalase activity and may be responsible as the connection between bacterial acetylation and the stress response. This is the first demonstration of a specific environmental role of acetylation in prokaryotes. PMID:21703240

  14. Protein acetylation in prokaryotes increases stress resistance.

    PubMed

    Ma, Qun; Wood, Thomas K

    2011-07-15

    Acetylation of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we demonstrate that acetylation enables the reference bacterium Escherichia coli to withstand environmental stress. Specifically, the bacterium reaches higher cell densities and becomes more resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB as well as by overproducing YfiQ and CobB. Furthermore, we show that the increase in oxidative stress resistance with acetylation is due to the induction of catalase activity through enhanced katG expression. We also found that two-component system proteins CpxA, PhoP, UvrY, and BasR are associated with cell catalase activity and may be responsible as the connection between bacterial acetylation and the stress response. This is the first demonstration of a specific environmental role of acetylation in prokaryotes. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Electrically Conductive, Heat-Resistant Paint

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Mell, R. J.

    1987-01-01

    Improved, sprayable, thermal- and electrostatic-discharge-control coating for titanium possesses excellent adhesion and high resistance to both vibration and thermal shock. Coating is improved formulation of one described in "High-Temperature Coatings for Titanium" (NPO-16222).

  16. 76 FR 17577 - Increased Scope of Coverage for Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... Part 431 RIN 1904-AC28 Increased Scope of Coverage for Electric Motors AGENCY: Office of Energy... rulemaking to set energy conservation standards for electric motors. Specifically, DOE seeks information to... supporting the inclusion of these motor types, DOE will consider including these motor types in the...

  17. Monitoring strain and damage in multi-phase composite materials using electrical resistance methods

    NASA Astrophysics Data System (ADS)

    Grammatikos, S. A.; Gkikas, G.; Paipetis, A.

    2011-04-01

    The variation of the electrical properties of fiber reinforced polymers when subjected to load offer the ability of strain and damage monitoring. This is performed via electrical resistance and electrical potential measurements. On the other hand Carbon Nanotubes (CNTs) have proved to be an efficient additive to polymers and matrices of composites with respect to structural enhancement and improvement of the electrical properties. The induction of CNTs increases the conductivity of the matrix, transforming it to an antistatic or a conducting phase. The key issue of the structural and electrical properties optimization is the dispersion quality of the nano-scale in the polymer phase. Well dispersed CNTs provide an electrical network within the insulating matrix. If the fibers are conductive, the CNT network mediates the electrical anisotropy and reduces the critical flaw size that is detectable by the change in conductivity. Thus, the network performs as an inherent sensor in the composite structure, since every invisible crack or delamination is manifested as an increase in the electrical resistance. The scope of this work is to further exploit the information provided by the electrical properties with a view to identify strain variation and global damage via bulk resistance measurements. The aforementioned techniques were employed to monitor, strain and damage in fiber reinforced composite laminates both with and without conductive nanofillers.

  18. Increased electrical conductivity of peptides through annealing process

    NASA Astrophysics Data System (ADS)

    Namgung, Seok Daniel; Lee, Jaehun; Choe, Ik Rang; Sung, Taehoon; Kim, Young-O.; Lee, Yoon-Sik; Nam, Ki Tae; Kwon, Jang-Yeon

    2017-08-01

    Biocompatible biologically occurring polymer is suggested as a component of human implantable devices since conventional inorganic materials are apt to trigger inflammation and toxicity problem within human body. Peptides consisting of aromatic amino acid, tyrosine, are chosen, and enhancement on electrical conductivity is studied. Annealing process gives rise to the decrease on resistivity of the peptide films and the growth of the carrier concentration is a plausible reason for such a decrease on resistivity. The annealed peptides are further applied to an active layer of field effect transistor, in which low on/off current ratio (˜10) is obtained.

  19. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous

  20. Electrical resistivity of iron at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Deng, L.; Seagle, C.; Fei, Y.; Shahar, A.

    2011-12-01

    Knowledge of thermal conductivity of iron under high-pressure and temperature conditions is crucial to understand the heat transport and the thermal evolution of planetary interior. However, measurements of thermal conductivity at high pressure and temperature are challenging and experimental data are limited. In this study, we report the measured electrical resistivity of iron at high pressure and temperature. The data are then translated to thermal conductivity through Wiedemann-Franz law. A four-probe method was employed to measure the resistances of a cylindrical wire during heating cycles at high pressure. Experiments at 5, 7 and 13 GPa were performed on an iron wire sample by using a multi-anvil apparatus at the Geophysical Laboratory. At 5, 7 and 13 GPa, the measured electrical resistivity of iron at room temperature are 9.06 mΩ-cm (bcc phase), 8.85 mΩ-cm (bcc phase) and 12.72 mΩ-cm (hcp phase), respectively. The results are in a good agreement with reported room-temperature data. The kinks in electrical resistivity associated with the phase transitions of iron were clearly observed in each run. At 5 and 7 GPa, kinks in the electrical resistivity can be noticed at 677 oC and 652 oC, respectively, due to the bcc to fcc phase transition. At 5 GPa and 1687 oC, melting led to a discontinuous change in electrical resistivity. The temperature dependence of the electrical resistivity for bcc, fcc, and hcp iron are well constrained from these measurements. The hcp iron displays the strongest temperature dependence compared with that of the bcc and fcc phases. Our results provide critical thermodynamic parameters to constrain heat transport in the planetary cores.

  1. Construction Of Electrical Resistivity Images For Medical Diagnosis

    NASA Astrophysics Data System (ADS)

    Barber, D. C.; Brown, B. H.

    1987-01-01

    The electrical resistivity of various tissues is known to cover a wide range of values and images of resistivity distribution within a patient should show good contrast and may prove to have some diagnostic use. Data on the internal distribution of resistivity within a patient may be obtained by applying current between electrodes attached to the patient and measuring the voltage developed across the surface of the patient. After collection of a complete set of data a tomographic image of resistivity may be constructed using a filtered back-projection algorithm. Some likely clinical uses are in the assessment of respiratory function and cardiopulmonary dynamics.

  2. Change Of Electrical Resistivity Depending On Water Saturation Of The Concrete Samples

    NASA Astrophysics Data System (ADS)

    Sabbaǧ, Nevbahar; Uyanık, Osman

    2016-04-01

    In this study, the changes of electrical apparent resistivity values depending on the water saturation of cubic concrete samples which designed according to different strength were investigated. For this purpose, 3 different concrete design as poor, middle and good strength 150x150x150mm dimensions 9 for each design cubic samples were prepared. After measuring the weight of the prepared samples, in oven were dried at 105 ° C for 24 hours and then the dry weights were measured. Then the samples were placed into the curing pool and saturated weight of the samples were measured in specific time periods during the 90 day take out from the curing pool and the water content were calculated at each stage of these processes. The water content of the samples were obtained during 90 days specific points in time and as well as electrical apparent resistivity method of the different surfaces of the samples the potential difference measurements made by electrical resistivity method and electrical apparent resistivity values of the samples were calculated. Depending on time obtained from this study with respect to time curves of the water content and the apparent resistivity values were constructed. Results showed that the electrical apparent resistivity values increased depends on the water content. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete, cubic sample, Resistivity, water content, time

  3. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    NASA Astrophysics Data System (ADS)

    Riegler, W.

    2016-11-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of `bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  4. Investigations of discontinuous permafrost using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni

    2016-04-01

    We have used electrical resistivity tomography (ERT) extensively over the past five years to examine frozen ground characteristics at natural and disturbed sites within the discontinuous permafrost zones of northern Canada. Examples of pure research include investigations to delimit permafrost patch size, to examine changes in permafrost conditions at altitudinal treeline, and to assess permafrost thickness in palsa bogs. Applied research has included hazard mapping where ERT, in association with boreholes, has been used to characterize permafrost conditions in different terrain units at Yukon communities as part of planning for climate change adaptation. ERT has also been used to examine temporal change through repeated surveys at sites equipped with permanent arrays. Rapid change is occurring at sites which were subject to recent forest fire in the Northwest Territories. Gradual reductions in average resistivity at sites along the Alaska Highway in Yukon and northern British Columbia indicate progressive increases in unfrozen moisture while ground temperatures at the same sites have increased only very slightly. We conclude that ERT should become a standard technique for the investigation of discontinuous permafrost sites and should be incorporated as a monitoring technique within international programs such as the Global Terrestrial Network for Permafrost.

  5. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  6. Simultaneous electrical resistivity and mass uptake measurements in bromine intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1986-01-01

    Changes in mass and electrical resistivity of several types of pitch-based and vapor-grown graphite fibers were monitored during reaction with bromine. The observed threshold pressure dependent reaction suggested that the fibers were intercalated. In the fully brominated compound, the mass was increased by 44 percent and the resistivity was improved by a factor of 17. In the residue compound, the mass was increased by 22 percent and the resistivity was improved by a factor of 5. Fibers possessing different degrees of graphitization had surprisingly similar changes in both mass and resistivity.

  7. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.

  8. Electrical resistivity measurements in the Neillsville area, Wisconsin

    USGS Publications Warehouse

    Spicer, H. Cecil; Edwards, George J.

    1955-01-01

    Sixty-eight electrical depth profiles were completed in the vicinity of Neillsville, Wis. to obtain information on the water-bearing beds in the glacial moraine and consolidated sedimentary rocks in the area. No productive aquifers were found but the best areas for test drilling are described. The basic theory and interpretation procedures, together with a short description of field methods on electrical resistivity measurements are also presented.

  9. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  10. Observation of infiltration experiments with time lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Altfelder, Sven; Günther, Thomas; Duijnisveld, Wilhelmus; Grissemann, Christoph

    2010-05-01

    analysed quantitatively. For the first experiment this calculation shows one day after the infiltration about 40% of the infiltrated water being lost to the groundwater. For the second experiment the quantitative interpretation takes into account the increased conductivity of the infiltrating tracer solution compared to the pore water of the vadose zone before infiltration. Another infiltration experiment is done on Loess. Due to the low infiltration rate only about 9l of water could be infiltrated within about 3 h (38mm/h). The time lapse ERT clearly reveals the water remaining close to surface and no sign of resistivity change due to the infiltration is observed to penetrate deeper than 30cm. At this depth the plough pan seems to inhibit the infiltration. The analysis shows the high sensitivity of the ERT method. Although the original water content is quite high and therefore the resistivity changes due to water content changes are small (the flat part of the Archie function) the time lapse ERT inversion depicts the changes of resistivity quite clearly. The experiments show the advantages of ERT measurements to observe the infiltration process in real time. However, the interpretation of such measurements still poses difficulties mainly due to the limited resolution and the ill posedness of the inversion problem of electrical resistivity tomography (ERT). These problems are investigated further in order to advance the applicability of the method to infiltration problems showing signs of preferential flow.

  11. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  12. Electrical resistivity investigations at the Olkaria geothermal field, Kenya

    SciTech Connect

    Bhogal, P.S.

    1980-09-01

    The bipole-dipole, Schlumberger and in line dipole-dipole electrical resistivity configurations were used to delineate the Olkaria geothermal reservoir with the view to site boreholes for the production of electric power using the geopressurized hot water. The dipole-dipole resistivity data provided the least ambiguous and most usable data for assessing the resource. Deep drilling into two of the anomalies outlined by this survey has proved the existence of high-temperature reservoirs and a 15MW power station is under construction.

  13. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles

    NASA Astrophysics Data System (ADS)

    Taheri, Peyman; Hsieh, Scott; Bahrami, Majid

    2011-08-01

    Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections, i.e., roughness and out-of-flatness, and acts as an ohmic resistance at the electrode-collector joints. A custom-designed testbed is developed to conduct a systematic experimental study. ECR is measured at separable bolted electrode connections of a sample Li-ion battery, and a straightforward analysis to evaluate the relevant energy loss is presented. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered Li-ion battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. Consequently, a heat flow can be initiated from the electrodes towards the internal battery structure, which results in a considerable temperature increase and onset of thermal runaway. At sever conditions, heat generation due to ECR might cause serious safety issues, sparks, and even melting of the electrodes.

  14. Direct correlation between ferrite microstructure and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Cernik, R. J.; Freer, R.; Leach, C.; Mongkolkachit, C.; Barnes, P.; Jacques, S.; Pile, K.; Wander, A.

    2007-05-01

    Variations in the composition and microstructure of Mn-Zn soft ferrites have been directly correlated with spatial variations in electrical resistivity, which were both observed to occur on a length scale of approximately 500 μm. Tomographic energy dispersive diffraction imaging (TEDDI) was used to determine the nonsystematic change in the lattice parameter across the sample volume (8.48±0.05 Å) at a spatial resolution of 50 μm. We have used a microprobe contact technique to measure the local electrical resistivity (˜35 Ω cm) and density functional theory to model the band structure. The band structure calculations directly utilized the experimentally measured lattice parameters from the TEDDI measurements and were in good agreement with the measured resistivity. The mean band gap shrinkage was found to be 0.02 eV. This value for Eg was found to account well for the observed 10-20 Ω cm resistivity variations.

  15. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  16. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  17. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  18. Contribution of 3-D electrical resistivity tomography for landmines detection

    NASA Astrophysics Data System (ADS)

    Metwaly, M.; El-Qady, G.; Matsushima, J.; Szalai, S.; Al-Arifi, N. S. N.; Taha, A.

    2008-12-01

    Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic) landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR), and metal detector (MD) techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT) technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  19. Impact of increased electric vehicle use on battery recycling infrastructure

    SciTech Connect

    Vimmerstedt, L.; Hammel, C.; Jungst, R.

    1996-12-01

    State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

  20. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    NASA Astrophysics Data System (ADS)

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore

    2017-04-01

    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  1. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  2. Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors

    PubMed Central

    2011-01-01

    Abstract Experimental evidence has made it clear that the size of an object can have an effect on its properties. The electrical resistivity of a thin film will become larger as the thickness of that film decreases in size. Furthermore, the electrical resistivity will also increase as the temperature increases. To help understand these relationships, a model is presented, and equations are obtained to help understand the mechanisms responsible for these properties and to give insight into the underlying physics between these parameters. Comparisons are made between experimental data and values generated from the theoretical equations derived from the model. All of this analysis provides validation for the theoretical model. Therefore, since the model is accurate, it provides insight into the underlying physics that relates electrical resistivity to temperature and film thickness. PACS 73.61.At; 73.50.Bk; 72.15.Eb; 72.10.d; 63.20.kd. PMID:22192792

  3. Electrical Resistivity Changes in Saturated Rock under Stress.

    PubMed

    Brace, W F; Orange, A S

    1966-09-23

    Electrical resistivity of water-saturated crystalline rock such as granite, diabase, dunite, or quartzite changes by an order of magnitude prior to fracture of the rock in compression. The effect observed even under high confining pressure is due to formation of open cracks which first appear at one-third to two-thirds the fracture stress.

  4. Health Monitoring of TPS Structures by Measuring Their Electrical Resistance

    NASA Astrophysics Data System (ADS)

    Preci, Arianit; Herdrich, Georg; Steinbeck, Andreas; Auweter-Kurtz, Monika

    Health Monitoring in aerospace applications becomes an emerging technology leading to the development of systems capable of continuously monitoring structures for damage with minimal human intervention. A promising sensing method to be applied on hot structures and thermal protection systems is the electrical resistance measurement technique, which is barely investigated up to now. This method benefits from the advantageous characteristics of self-monitoring materials, such as carbon fiber-reinforced materials. By measuring the variation of the electrical resistance of these materials information on possibly present mechanical damage can be derived. In order to set up a database on electric properties of relevant materials under relevant conditions and to perform a proof-of-concept for this health monitoring method a facility has been laid out, which allows for the measurement of the electrical resistance of thermal protection system relevant materials at temperatures up to 2000°C. First preliminary measurements of the surface resistance of a graphite sample have been performed and are presented. It has been proven necessary to make some modifications to the setup. Therefore, the remaining measurements with graphite and C/C-SiC samples are subject of further investigation which will be performed in the future.

  5. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    PubMed

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  6. Using electrical resistance probes for moisture determination in switchgrass windrows

    USDA-ARS?s Scientific Manuscript database

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...

  7. Electrical resistance of complex two-dimensional structures of loops

    NASA Astrophysics Data System (ADS)

    Gomes, M. A. F.; Hora, R. R.; Brito, V. P.

    2011-06-01

    This work presents a study of the dc electrical resistance of a recently discovered hierarchical two-dimensional system which has a complex topology consisting of a distribution of disordered macroscopic loops with no characteristic size and a distribution of several types of contacts between loops. In addition to its intrinsic interest in the important context of low-dimensional systems and crumpled systems, the structures under study are of relevance in a number of areas including soft condensed matter and packing of DNA in viral capsids. In the particular case discussed here, the loops are made of layers of graphite with a height of tens of nanometers deposited on a substrate of cellulose. Experiments with these systems indicate an anomalous electrical resistance of sub-diffusive type. The results reported here are explained with scaling arguments and computer simulation. A comparison with the dc electrical properties of percolation clusters is made, and some other experimental issues as future prospects are commented.

  8. Electric Crosstalk Effect in Valence Change Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Wang, Hong; Wu, Shiwei; Song, Fang; Wang, Zhan; Gao, Haixia; Ma, Xiaohua

    2017-08-01

    Electric crosstalk phenomenon in valence change resistive switching memory (VCM) is systematically investigated. When a voltage is applied on the VCM device, an electric field is formed in the isolated region between the devices, which causes the oxygen vacancies in conductive filaments (CFs) to drift apart, leading to a consequent resistance degradation of the neighboring devices. The effects of distance between memory cells, electrodes widths and physical dimensions of CFs on the memory performance are investigated in this work. Furthermore, the strategies to mitigate electric crosstalk effects are developed. According to the simulation results, the crosstalk phenomenon can become more severe as the distance between memory cells or the electrode width decreases. In order to optimize the device performance, it is helpful to control the location of the break points of CFs in the device close to the top electrode. Alternatively, taking the integration density into account, switching materials with a small field accelerated parameter can also contribute to obtaining a stable performance.

  9. Seasonal Variations in Subsurface Electrical Resistivity in a Floodplain Aquifer

    NASA Astrophysics Data System (ADS)

    Esker, A.; Marshall, S. T.

    2015-12-01

    In an attempt to create a three-dimensional model of a floodplain aquifer along the New River in western North Carolina, we have collected numerous DC electrical resistivity profiles over the course of six years. Unfortunately, the electrical resistivity of geologic materials can be partially controlled by temperature and water content which both vary temporally. To determine the extent to which resistivity data is affected by temporal variations at our site, we conducted multiple DC electrical resistivity surveys collected at the same location at various times of the year to quantify changes in the resistivity patterns. We use a Wenner array that offers a large signal to noise ratio, but relatively few data points, and a Dipole-Dipole array that produces more data, but is more sensitive to noise. For each data acquisition date, we measure the depth to water at seven boreholes parallel to the survey to determine if any of the collected resistivity surveys can be independently used to detect the water table and if any changes affect subsurface resistivities. We created a stacked model of all surveys of the same array type, and compare to each survey to qualitatively and quantitatively identify changes in the subsurface patterns. Results indicate there are few major changes in the qualitative subsurface patterns with time. RMS errors between the stacked model and different surveys range from 56 to 201 Ohm-m and percent differences range from 5.84% to 21.50%. The surveys with largest RMS errors correspond to days that had a significant change of water table level from the static level. Our preliminary results suggest that so long as surveys are collected during similar water table conditions, data from multiple years should yield similar results. Furthermore, the subsurface resistivity values and GPR surveys do not clearly delineate the water table levels, suggesting that near surface geophysical methods many not be able to detect the water table at our site.

  10. Research on nonlinear feature of electrical resistance of acupuncture points.

    PubMed

    Wei, Jianzi; Mao, Huijuan; Zhou, Yu; Wang, Lina; Liu, Sheng; Shen, Xueyong

    2012-01-01

    A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P < 0.01). The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P < 0.05 ~ P < 0.001). And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P < 0.05 ~ P < 0.001), while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P < 0.05 ~ P < 0.01). These results show that the phenomenon of low skin resistance does not exist to all acupuncture points.

  11. Research on Nonlinear Feature of Electrical Resistance of Acupuncture Points

    PubMed Central

    Wei, Jianzi; Mao, Huijuan; Zhou, Yu; Wang, Lina; Liu, Sheng; Shen, Xueyong

    2012-01-01

    A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P < 0.01). The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P < 0.05 ~ P < 0.001). And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P < 0.05 ~ P < 0.001), while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P < 0.05 ~ P < 0.01). These results show that the phenomenon of low skin resistance does not exist to all acupuncture points. PMID:23346191

  12. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape

  13. Variations of electric field and electric resistivity of air caused by dust motion

    NASA Astrophysics Data System (ADS)

    Seran, E.; Godefroy, M.; Renno, N.; Elliott, H.

    2013-08-01

    report results of a field campaign conducted in the Nevada desert with a suite of electric field instruments consisting of a field mill (FM) and a short dipole antenna (SDA). Furthermore, we show that a combination of the measurements of these two instruments allows the estimation of the electric resistivity of air, an important quantity that is extremely difficult to measure near the Earth's surface. The electric resistivity of air is found to vary between 1.5 · 1013 and 6 · 1013 Ω m and to correlate with changes in electric field. Vertical DC electric fields with amplitudes up to 6 kV m-1 were observed to correspond to clouds of dust blowing through the measurement site. Enhanced DC and AC electric fields are measured during periods when horizontal wind speed exceeds 7 m s-1, or around twice the background value. We suggest that low-frequency emissions, below ~200 Hz, are generated by the motion of electrically charged particles in the vicinity of the SDA electrode and propose a simple model to reproduce the observed spectra. According to this model, the spectral response is controlled by three parameters, (i) the speed of the charged particles, (ii) the charge concentration, and (iii) the minimum distance between the particle and the electrode. In order to explain the electric fields measured with the FM sensors at different heights, we developed a multilayer model that relates the electric field to the charge distribution. For example, a nonlinear variation of the electric field observed by the FM sensors below 50 cm is simulated by a near-surface layer of tens of centimeters that is filled with electrically charged particles that carry a predominantly negative charge in the vicinity of the soil. The charge concentration inside this layer is estimated to vary between 1012 and 5 · 1013 electrons m-3.

  14. Electrical Resistivity Measurement of Cu and Zn on the Pressure-Dependent Melting Boundary

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Ezenwa, I.; Yong, W.

    2016-12-01

    Understanding how the core cools through heat conduction and modelling the geodynamo requires knowledge of the thermal and electrical conductivity of solid and liquid Fe and its relevant alloys at high pressures. It has been proposed that electrical resistivity of a pure metal is constant along its P-dependent melting boundary (Stacey and Anderson, PEPI, 2001). If confirmed, this invariant behavior could serve as a practical tool for low P studies to assess electrical resistivity of Earth's core. Since Earth's inner core boundary (ICB) is a melting boundary of mainly Fe, measurements of electrical resistivity of Fe at the melting boundary, under any P, would serve as a proxy for the resistivity at the ICB. A revised treatment (Stacey and Loper, PEPI, 2007) accounted for s-d scattering in transition metals with unfilled d-bands and limited the proposal to metals with electrons of the same type in filled d-band metals. To test this proposal, we made high P, T measurements of electrical resistivity of d-band filled Cu and Zn in solid and liquid states. Experiments were carried out in a 1000 ton cubic anvil press up to 5 GPa and 300K above melting temperatures. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was used to remove any bias voltage measurement using thermocouple legs. Electron microprobe analyses were used to check the compositions of the recovered samples. The expected resistivity decrease with P and increase with T were found and comparisons with 1atm data are in very good agreement. Within the error of measurement, the resistivity values of Cu decrease along the melting boundary while Zn appears to support the hypothesis of constant resistivity along the melting boundary.

  15. Towards a Global Permafrost Electrical Resistivity Survey (GPERS) database

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni G.; Douglas, Thomas; Hauck, Christian

    2017-04-01

    Hundreds, and perhaps thousands, of Electrical Resistivity Tomography (ERT) surveys have been undertaken over the past two decades in permafrost areas in North America, Europe, and Asia. Two main types of ERT configurations have been conducted: galvanic surveys using metallic rods as conductors and capacitive-coupled surveys using towed cable arrays. ERT surveys have been carried out in regions with mountain permafrost, lowland permafrost, and coastal saline permafrost, and in undisturbed, naturally-disturbed (e.g. fire-affected), and anthropogenically-affected sites (e.g. around buildings and infrastructure). Some surveys are associated with local validation of frozen ground conditions, through borehole temperatures, frost probing or creep phenomena. Others are in locations without boreholes or with clast-rich or bedrock active layers which preclude this direct confirmation. Most surveys have been carried out individually on particular dates but there are increasing numbers of repeated ERT measurements being made to detect change, either at intervals using a fixed array of electrodes, or at high frequency with a fixed and automated measurement apparatus. Taken as a group, ERT profiles represent an untapped knowledge base relating to permafrost presence, absence, or partial presence (i.e. discontinuous permafrost), and in some cases to the thickness of permafrost and ice content. When combined with borehole information, ERT measurements can identify massive ice features and provides information on soil stratigraphy. The Global Permafrost Electrical Resistivity Survey (GPERS) database is planned as a freely available on-line repository of data from two-dimensional electrical resistivity surveys undertaken in permafrost regions. Its development is supported by the Permafrost Carbon Network and an application for an International Permafrost Association (IPA) Action Group is also underway. When the future GPERS records are compared with the GTN-P database it will be

  16. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  17. Experimental determination of the electrical resistivity of iron at Earth's core conditions.

    PubMed

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-02

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  18. Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio.

    PubMed

    Perrone, Rossana; Silva, Ana

    2016-12-08

    Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates

  19. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  20. Predicting and tracking spatiotemporal moments in electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J.; Bai, L.

    2015-12-01

    Visualisation is an invaluable tool in the study of near sub-surface processes, whether by mathematical modelling or by geophysical imaging. Quantitative analysis can further assist interpretation of the ongoing physical processes, and it is clear that any reliable model should take direct observations into account. Using electrical resistivity tomography (ERT), localised areas can be surveyed to produce 2-D and 3-D time-lapse images. This study investigates combining quantitative results obtained via ERT with spatio-temporal motion models in tracer experiments to interpret and predict fluid flow. As with any indirect imaging technique, ERT suffers specific issues with resolution and smoothness as a result of its inversion process. In addition, artefacts are typical in the resulting volumes. Mathematical models are also a source of uncertainty - and in combining these with ERT images, a trade-off must be made between the theoretical and the observed. Using computational imaging, distinct regions of stable resistivity can be directly extracted from a time-slice of an ERT volume. The automated nature, as well the potential for more than one region-of-interest, means that multiple regions can be detected. Using Kalman filters, it is possible to convert the detections into a process state, taking into account pre-defined models and predicting progression. In consecutive time-steps, newly detected features are assigned, where possible, to existing predictions to create tracks that match the tracer model. Preliminary studies looked at a simple motion model, tracking the centre of mass of a tracer plume with assumed constant velocity and mean resistivity. Extending the model to factor in spatial distribution of the plume, an oriented semi-axis is used to represent the centralised second-order moment, with an increasing factor of magnitude to represent the plume dispersion. Initial results demonstrate the efficacy of the approach, significantly improving reliability as the

  1. Electrical resistivity of 5 f -electron systems affected by static and dynamic spin disorder

    NASA Astrophysics Data System (ADS)

    Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Drozdenko, D.; Cieslar, M.; Mašková, S.; Dopita, M.; Matěj, Z.

    2017-06-01

    Metallic 5 f materials have very strong coupling of magnetic moments and electrons mediating electrical conduction. It is caused by strong spin-orbit interaction, coming with high atomic number Z , together with involvement of the 5 f states in metallic bonding. We have used the recently discovered class of uranium (ultra)nanocrystalline hydrides, which are ferromagnets with high ordering temperature, to disentangle the origin of negative temperature coefficient of electrical resistivity. In general, the phenomenon of electrical resistivity decreasing with increasing temperature in metals can have several reasons. The magnetoresistivity study of these hydrides reveals that quantum effects related to spin-disorder scattering can explain the resistivity behavior of a broad class of actinide compounds.

  2. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru

    2016-11-01

    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  3. Analyzing Techniques for Increasing Power Transfer in the Electric Grid

    NASA Astrophysics Data System (ADS)

    Dave, Kushal

    The worldwide demand for electric energy is slated to increase by 80% between the years 1990 and 2040. In order to satisfy this increase in load, many new generators and transmission lines are planned. Implementations of various plans that can augment existing infrastructure have been hindered due to environmental constraints, public opposition and difficulties in obtaining right-of-way. As a result, stress on the present electrical infrastructure has increased, resulting in congestion within the system. The aim of this research is to analyze three techniques that could improve the power transfer capability of the present electric grid. These include line compaction, use of high temperature low sag conductors and high phase order systems. The above methods were selected as they could be readily employed without the need for additional right-of-way. Results from the line compaction tests indicate that line compaction up to 30% is possible and this increases the power transfer capability up to 53%. Additional advantages of employing line compaction are the reduction in electric and magnetic fields, increase in system stability and better voltage regulation. High temperature low sag conductors that were applied on thermally limited lines were seen to increase the power transfer capability. However, a disadvantage of this technique was that the second most congested line, limits the power transfer capability of the system. High phase (six phase) order system was noted to have several advantages over three phase system such as lower voltage requirement to transfer equal amount of power and lower electric and magnetic field across the right of way. An IEEE 9 and 118 bus test system were used to evaluate the above mentioned techniques.

  4. Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool.

    PubMed

    Terry, Neil; Day-Lewis, Frederick D; Robinson, Judith L; Slater, Lee D; Halford, Keith; Binley, Andrew; Lane, John W; Werkema, Dale

    2017-05-23

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research. © 2017, National Ground Water Association.

  5. Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.

    2017-02-01

    Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.

  6. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2017-02-01

    There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  7. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    USGS Publications Warehouse

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D; Halford, Keith J.; Binley, Andrew; Lane, John; Werkema, Dale

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  8. Soil characterization using electrical resistivity tomography and geotechnical investigations

    NASA Astrophysics Data System (ADS)

    Sudha, Kumari; Israil, M.; Mittal, S.; Rai, J.

    2009-01-01

    Electrical Resistivity Tomography (ERT) has been used in association with Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) for Geotechnical investigations at two sites, proposed for thermal power plants, in Uttar Pradesh (UP), India. SPT and DCPT tests were conducted at 28 points and two ERT profiles, each measuring 355 m long, were recorded using 72 electrodes deployed at 5 m spacing. Electrical characterization of subsurface soil was done using borehole data and grain size analysis of the soil samples collected from boreholes. The concept of electrical resistivity variation with soil strength related to the grain size distribution, cementation, porosity and saturation has been used to correlate the transverse resistance of soil with the number of blow counts ( N-values) obtained from SPT and DCPT data. It was thus observed that the transverse resistance of soil column is linearly related with the number of blow counts ( N-values) at these sites. The linear relationships are site-specific and the coefficients of linear relation are sensitive to the lithology of subsurface formation, which was verified by borehole data. The study demonstrates the usefulness of the ERT method in geotechnical investigations, which is economic, efficient and less time consuming in comparison to the other geotechnical methods, such as SPT and DCPT, used for the purpose.

  9. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  10. Small-scale electrical resistivity tomography of wet fractured rocks.

    PubMed

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  11. Electrical resistivity sounding to study water content distribution in heterogeneous soils

    USDA-ARS?s Scientific Manuscript database

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to assess ER sounding applicability to study soil water distribution in spatially heterogeneous soils. The 30x30-m study plot was located at ...

  12. Characterization of fracture aperture field heterogeneity by electrical resistance measurement.

    PubMed

    Boschan, A; Ippolito, I; Chertcoff, R; Hulin, J P; Auradou, H

    2011-04-01

    We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement experiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create "channel" or "barrier" structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity U(→). In the "channel" geometry, the resistance displays an initial linear variation followed by a tail part which reflects the velocity contrast between slow and fast flow channels. In the "barrier" geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple flow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. A unique data acquisition system for electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Zonge, K.

    1996-01-04

    Unique capabilities are needed in instrumentation used for acquiring data to do electrical resistance tomography (ERT). A data acquisition system is described which has a good combination of the required capabilities and yet is field rugged and user friendly. The system is a multichannel detector for high data rates, can operate over a wide range of load conditions, will measure both in phase and quadrature resistance at frequencies between 0.0007 Hz and 8 kHz. The system has been used in both the field and laboratory to collect data with a typical accuracy between 1 and 10%.

  14. In situ electrical resistance and activation energy of solid C60 under high pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Liu, Cai-Long; Gao, Chun-Xiao

    2013-09-01

    The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W—Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0.49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.

  15. An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings

    NASA Astrophysics Data System (ADS)

    Matsumura, R.; Yamamoto, H.; Niwano, M.; Hirano-Iwata, A.

    2016-01-01

    Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%-0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings.

  16. An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings.

    PubMed

    Matsumura, R; Yamamoto, H; Niwano, M; Hirano-Iwata, A

    2016-01-11

    Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%-0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings.

  17. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Brown, Brandon; Hughes, Mary E.

    2001-03-01

    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  18. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  19. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  20. Students' understanding of direct current resistive electrical circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Paula Vetter; Beichner, Robert J.

    2004-01-01

    Both high school and university students' reasoning regarding direct current resistive electric circuits often differ from the accepted explanations. At present, there are no standard diagnostic tests on electric circuits. Two versions of a diagnostic instrument were developed, each consisting of 29 questions. The information provided by this test can provide instructors with a way of evaluating the progress and conceptual difficulties of their students. The analysis indicates that students, especially females, tend to hold multiple misconceptions, even after instruction. During interviews, the idea that the battery is a constant source of current was used most often in answering the questions. Students tended to focus on the current in solving problems and to confuse terms, often assigning the properties of current to voltage and/or resistance.

  1. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  2. Electrical resistivity of V-Cr-Ti alloys

    SciTech Connect

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  3. Negative differential electrical resistance of a rotational organic nanomotor

    PubMed Central

    Sadeghi, Hatef; Sangtarash, Sara; Al-Galiby, Qusiy; Sparks, Rachel

    2015-01-01

    Summary A robust, nanoelectromechanical switch is proposed based upon an asymmetric pendant moiety anchored to an organic backbone between two C60 fullerenes, which in turn are connected to gold electrodes. Ab initio density functional calculations are used to demonstrate that an electric field induces rotation of the pendant group, leading to a nonlinear current–voltage relation. The nonlinearity is strong enough to lead to negative differential resistance at modest source–drain voltages. PMID:26734524

  4. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    PubMed

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn(2+), Cd(2+), and Pb(2+)) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  5. Electrically induced resistance training in individuals with motor complete spinal cord injury.

    PubMed

    Ryan, Terence E; Brizendine, Jared T; Backus, Deborah; McCully, Kevin K

    2013-11-01

    To examine the effects of 16 weeks of electrically induced resistance training on insulin resistance and glucose tolerance, and changes in muscle size, composition, and metabolism in paralyzed muscle. Pre-post intervention. University-based trial. Participants (N=14; 11 men and 3 women) with chronic (>2y post spinal cord injury), motor complete spinal cord injury. Home-based electrically induced resistance exercise training twice weekly for 16 weeks. Plasma glucose and insulin throughout a standard clinical oral glucose tolerance test, thigh muscle and fat mass via dual-energy x-ray absorptiometry, quadriceps and hamstrings muscle size and composition via magnetic resonance imaging, and muscle oxidative metabolism using phosphorus magnetic resonance spectroscopy. Muscle mass increased in all participants (mean ± SD, 39%±27%; range, 5%-84%). The mean change ± SD in intramuscular fat was 3%±22%. Phosphocreatine mean recovery time constants ± SD were 102±24 and 77±18 seconds before and after electrical stimulation-induced resistance training, respectively (P<.05). There was no improvement in fasting blood glucose levels, homeostatic model assessment calculated insulin resistance, 2-hour insulin, or 2-hour glucose. Sixteen weeks of electrical stimulation-induced resistance training increased muscle mass, but did not reduce intramuscular fat. Similarly, factors associated with insulin resistance or glucose tolerance did not improve with training. We did find a 25% improvement in mitochondrial function, as measured by phosphocreatine recovery rates. Larger improvements in mitochondrial function may translate into improved glucose tolerance and insulin resistance. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements.

    PubMed

    Szymczyk, A; Fievet, P; Foissy, A

    2002-11-15

    The zeta potential of mixed nickel-iron oxide particles is evaluated by a new laboratory instrument. This latter allows the measurement of streaming potential together with the electrical resistance of porous plugs. The conductivity of electrolyte inside plug (pore conductivity) is deduced from electrical resistance measurements and is used together with streaming potential to evaluate the zeta potential by accounting for the surface conduction phenomenon. It is shown that neglecting the surface conduction phenomenon leads to a substantial underestimation of the zeta potential. The coupled measurements of streaming potential and plug electrical resistance yield zeta potential values that are in very good agreement with those obtained by electrophoresis. The densification of the porous plug with increasing pressure increments is put in evidence by the decrease in measured streaming potentials. Electrical resistance measurements make it possible to account for the increase in surface conductivity resulting from the more compacted structure of the plug. By doing so, the calculated zeta potential is found to be virtually independent of the pressure difference involved in streaming potential experiments, whereas the negligence of surface conduction phenomenon leads to a decrease in the apparent zeta potential with increasing pressure level.

  7. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  8. Control of Multilevel Resistance in Vanadium Dioxide by Electric Field Using Hybrid Dielectrics.

    PubMed

    Abbas, Kaleem; Hwang, Jaeseok; Bae, Garam; Choi, Hongsoo; Kang, Dae Joon

    2017-04-06

    We investigate the effect of electric field on VO2 back-gated field effect transistor (FET) devices. Using hybrid dielectric layers, we demonstrate the highest resistance modulation on the order of 10(2) in VO2 at a positive gate bias of 80 V (1.6 MV/cm). VO2 FET devices are prepared on SiO2 substrates of different thicknesses (100-300 nm) and hybrid dielectric layers of Al2O3/SiO2 (500 nm). For thicknesses less than 300 nm, no electric-field effects are observed, whereas for a 300 nm thickness, a small decrease in resistance is observed under a 0.2 MV/cm electric field. Under the electrostatic effect, the carrier concentration increases in VO2 devices, decreasing the resistance and the transition temperature from 66.75 to 64 °C. The leakage analysis shows that the interface quality of VO2 films on hybrid dielectric layers can be further improved. These studies suggest a multilevel fast resistance switching with the electric field and give an insight into the gate-source leakage current, which limits the phase transition in VO2 in an electric field.

  9. Complex electrical resistance tomography of a subsurface PCE plume

    SciTech Connect

    Ramirez, A.; Daily, W,; LeBrecque, D.

    1996-01-01

    A controlled experiment was conducted to evaluate the performance of complex electrical resistivity tomography (CERT) for detecting and delineating free product dense non-aqueous phase liquid (DNAPL) in the subsurface. One hundred ninety liters of PCE were released at a rate of 2 liters per hour from a point 0.5 m below ground surface. The spill was conducted within a double walled tank where saturated layers of sand, bentonite and a sand/bentonite mixture were installed. Complex electrical resistance measurements were performed. Data were taken before the release, several times during, and then after the PCE was released. Magnitude and phase were measured at 1 and 64 Hz. Data from before the release were compared with those during the release for the purpose of imaging the changes in conductivity resulting from the plume. Conductivity difference tomographs showed a decrease in electrical conductivity as the DNAPL penetrated the soil. A pancake-shaped anomaly developed on the top of a bentonite layer at 2 m depth. The anomaly grew in magnitude and extent during the release and borehole television surveys data confirmed the anomaly to be free-product PCE whose downward migration was stopped by the low permeability clay. The tomographs clearly delineated the plume as a resistive anomaly.

  10. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.

    PubMed

    Mackey, Jon; Dynys, Frederick; Sehirlioglu, Alp

    2014-08-01

    This work establishes the level of uncertainty for electrical measurements commonly made on thermoelectric samples. The analysis targets measurement systems based on the four probe method. Sources of uncertainty for both electrical resistivity and Seebeck coefficient were identified and evaluated. Included are reasonable estimates on the magnitude of each source, and cumulative propagation of error. Uncertainty for the Seebeck coefficient includes the cold-finger effect which has been quantified with thermal finite element analysis. The cold-finger effect, which is a result of parasitic heat transfer down the thermocouple probes, leads to an asymmetric over-estimation of the Seebeck coefficient. A silicon germanium thermoelectric sample has been characterized to provide an understanding of the total measurement uncertainty. The electrical resistivity was determined to contain uncertainty of ±7.0% across any measurement temperature. The Seebeck coefficient of the system is +1.0%/-13.1% at high temperature and ±1.0% near room temperature. The power factor has a combined uncertainty of +7.3%/-27.0% at high temperature and ±7.5% near room temperature. These ranges are calculated to be typical values for a general four probe Seebeck and resistivity measurement configuration.

  11. Electrical resistivity imaging of the architecture of substream sediments

    NASA Astrophysics Data System (ADS)

    Crook, N.; Binley, A.; Knight, R.; Robinson, D. A.; Zarnetske, J.; Haggerty, R.

    2008-04-01

    The modeling of fluvial systems is constrained by a lack of spatial information about the continuity and structure of streambed sediments. There are few methods for noninvasive characterization of streambeds. Invasive methods using wells and cores fail to provide detailed spatial information on the prevailing architecture and its continuity. Geophysical techniques play a pivotal role in providing spatial information on subsurface properties and processes across many other environments, and we have applied the use of one of those techniques to streambeds. We demonstrate, through two examples, how electrical resistivity imaging can be utilized for characterization of subchannel architecture. In the first example, electrodes installed in riparian boreholes and on the streambed are used for imaging, under the river bed, the thickness and continuity of a highly permeable alluvial gravel layer overlying chalk. In the second example, electrical resistivity images, determined from data collected using electrodes installed on the river bed, provide a constrained estimate of the sediment volume behind a log jam, vital to modeling biogeochemical exchange, which had eluded measurement using conventional drilling methods owing to the boulder content of the stream. The two examples show that noninvasive electrical resistivity imaging is possible in complex stream environments and provides valuable information about the subsurface architecture beneath the stream channels.

  12. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    NASA Astrophysics Data System (ADS)

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of

  13. High pressure and temperature electrical resistivity of iron and implications for planetary cores

    NASA Astrophysics Data System (ADS)

    Deng, Liwei; Seagle, Christopher; Fei, Yingwei; Shahar, Anat

    2013-01-01

    Electrical resistivity measurements of polycrystalline iron have been performed at 5, 7, and 15 GPa and in the temperature range 293-2200 K by employing a four-wired method. The kinks in electrical resistivity associated with solid iron phase transitions and the solid to liquid transition were clearly observed upon increasing temperature. Geometry corrections due to volume variations with pressure and temperature were applied to the entire data set. High pressure and temperature thermal conductivity were calculated by fitting resistivity data through the Wiedemann-Franz law. The temperature dependences of electrical resistivity and thermal conductivity for α, γ, and ɛ solid iron have been determined at high-pressure conditions. Our study provides the first experimental constraint on the heat flux conducted at Mercury's outmost core, estimated to be 0.29-0.36 TW, assuming an adiabatic core. Extrapolations of our data to Martian outer core conditions yield a series of heat transport parameters (e.g., electrical resistivity, thermal conductivity, and heat flux), which are in reasonable comparison with various geophysical estimates.

  14. High pressure and temperature electrical resistivity of iron and implications for planetary cores (Invited)

    NASA Astrophysics Data System (ADS)

    Deng, L.; Seagle, C. T.; Fei, Y.; Shahar, A.

    2013-12-01

    Electrical resistivity measurements of polycrystalline iron have been performed at 5, 7 and 15 GPa and in the temperature range 293-2200 K by employing a four-wired method. The kinks in electrical resistivity associated with solid iron phase transitions and the solid to liquid transition were clearly observed upon increasing temperature. Geometry corrections due to volume variations with pressure and temperature were applied to the entire data set. High pressure and temperature thermal conductivity were calculated by fitting resistivity data through the Wiedemann-Franz law. The temperature dependences of electrical resistivity and thermal conductivity for α, γ and ɛ solid iron have been determined at high pressure conditions. Our study provides the first experimental constraint on the heat flux conducted at Mercury's outmost core, estimated to be 0.29-0.36 TW, assuming an adiabatic core. Extrapolations of our data to Martian outer core conditions yield a series of heat transport parameters (eg. electrical resistivity, thermal conductivity and heat flux), which are in reasonable comparison with various geophysical estimates.

  15. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  16. The use of rivets for electrical resistance measurement on carbon fibre-reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    DeBaere, I.; Van Paepegem, W.; Degrieck, J.

    2007-10-01

    The use of fibre-reinforced thermoplastics, for example in the aeronautical industry, is increasing rapidly. Therefore, there is an increasing need for in situ monitoring tools, which preferably have limited influence on the behaviour of the material and which are easy to use. Furthermore, in the aeronautical industry composites are very often attached with rivets. In this study, the possibility of the use of rivets as contact electrodes for electrical resistance measurement is explored. The material used is a carbon fibre-reinforced polyphenylene sulphide. First, the set-up used is discussed. Then, static tensile tests on the laminate are performed. The possible influence of an extensometer on the measurements is examined. Furthermore, failure predictability is assessed. It may be concluded that the proposed set-up with the rivets can be used for electrical resistance measurement, with the ability to predict failure, and that the extensometer has a negative influence on the resistance measurement.

  17. Methods to Increase Electrical Breakdown Threshold of Polystyrene Insulators

    DTIC Science & Technology

    2009-06-01

    in applications where high voltage is applied to dielectric insulators . Results in [2] have shown that flashover on or near the surface of the...Studies conducted in [9] have shown a direct correlation between shape of the insulator and surface flashover . Changing the angle of the...and vacuum technologies to modify the microscale structures on the surface of the polymer insulators in an effort to increase the electrical strength

  18. In Vitro Assessment of Electric Currents Increasing the Effectiveness of Vancomycin Against Staphylococcus epidermidis Biofilms.

    PubMed

    Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy

    2016-08-01

    Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria.

  19. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers.

    PubMed

    Guyot, Adrien; Ostergaard, Kasper T; Lenkopane, Mothei; Fan, Junliang; Lockington, David A

    2013-02-01

    Estimating sapwood area is one of the main sources of error when upscaling point scale sap flow measurements to whole-tree water use. In this study, the potential use of electrical resistivity tomography (ERT) to determine the sapwood-heartwood (SW-HW) boundary is investigated for Pinus elliottii Engelm var. elliottii × Pinus caribaea Morelet var. hondurensis growing in a subtropical climate. Specifically, this study investigates: (i) how electrical resistivity is correlated to either wood moisture content, or electrolyte concentration, or both, and (ii) how the SW-HW boundary is defined in terms of electrical resistivity. Tree cross-sections at breast height are analysed using ERT before being felled and the cross-section surface sampled for analysis of major electrolyte concentrations, wood moisture content and density. Electrical resistivity tomography results show patterns with high resistivities occurring in the inner part of the cross-section, with much lower values towards the outside. The high-resistivity areas were generally smaller than the low-resistivity areas. A comparison between ERT and actual SW area measured after felling shows a slope of the linear regression close to unity (=0.96) with a large spread of values (R(2) = 0.56) mostly due to uncertainties in ERT. Electrolyte concentrations along sampled radial transects (cardinal directions) generally showed no trend from the centre of the tree to the bark. Wood moisture content and density show comparable trends that could explain the resistivity patterns. While this study indicates the potential for application of ERT for estimating SW area, it shows that there remains a need for refinement in locating the SW-HW boundary (e.g., by improvement of the inversion method, or perhaps electrode density) in order to increase the robustness of the method.

  20. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  1. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    PubMed

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  2. Suitability of Archie's Law For Interpreting Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Singha, K.; Gorelick, S. M.

    2003-12-01

    Electrical resistivity tomography (ERT) is examined as a method to provide spatially continuous images of saline tracer concentrations during transport through unconsolidated fluid-saturated media. It is frequently accepted that there exists a quantitative relationship between the electrical conductivity of dilute electrolytes in pore water and bulk electrical conductivity of the subsurface measured using resistivity methods. The assumed relationship is typically Archie's Law. We tested the applicability of Archie's Law to field-scale data collected over a 10 m by 14 m area. A 20-day weak-dipole tracer test was conducted, in which 2 g/L NaCl were introduced into the upper 30 m of the saturated zone in a coarse sand and gravel aquifer. Cross-well ERT data were collected at 4 geophysical monitoring wells and inverted in 3-D. Fluid electrical conductivity was measured directly from a multilevel sampler. The change in the direct measurements of fluid electrical conductivity exceeded the change in bulk conductivity values in the tomograms by an order of magnitude. The estimated Archie formation factor from the field data was not constant with time, due largely to smoothing during the image reconstruction process. We illustrate by modeling synthetic cases over the field site that the ERT response is difficult to match to measured fluid conductivities due to the variability in the effects of regularization, which change in both space and time. Analysis of both the field data and synthetic cases suggest that Archie's Law cannot be used to directly scale ERT conductivities to fluid conductivities.

  3. Auxetic piezoelectric energy harvesters for increased electric power output

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kuang, Yang; Zhu, Meiling

    2017-01-01

    This letter presents a piezoelectric bimorph with auxetic (negative Poisson's ratio) behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE) modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  4. Detection of macropore flow at field scales using electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2008-12-01

    Even though macropores make up a very small portion of the pore space in a soil, their high connectivity allows them to carry large fluxes of flow to the subsurface. As a result, macropores can be a critical factor in determining groundwater recharge and contaminant transport. Despite their importance, there is a lack of field-scale methodologies for detecting the existence and activation of macropores in watersheds. The connectivity that makes macropores good conductors of fluid flow suggests that they may also be good conductors of electrical current when filled with water and could therefore be monitored using electrical resistivity measurements. To test this hypothesis and evaluate whether the resulting electrical response could be detected with field-scale dipole-dipole resistivity measurements this work combines hydrologically- driven equivalent medium models with anisotropic 3D numerical models of electrical current flow. The equivalent medium models are based on a dual-domain concept where the bulk electrical conductivity of the soil matrix is governed by water content and pore-water solute concentration, whereas macropore conductivity is directly related to the solute concentration of the filling fluid. Therefore, vertical and horizontal electrically conductivity values have dynamic responses depending on the soil saturation characteristics, evaporation and precipitation history, and activation of macropore flow. The resulting equivalent bulk electrical conductivity for the dual-domain is then used in a numerical model to determine the apparent resistivity response for a dipole-dipole array located on the ground surface. For conditions typical of watersheds near Clemson, i.e., runoff TDS values of about 50mg/L, the results of the model indicate that apparent resistivity measurements drop by 40% when macroporosity represents only 0.5% of the sample volume and by 80% when macroporosity is increased to 5% of the sample volume. This result represents the

  5. A higher dimensional theory of electrical contact resistance

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Tang, Wilkin

    2009-06-01

    The electrical contact resistance is computed for a local constriction of finite length and finite transverse dimension in a conducting current channel. Conformal mapping is used for a rectangular current channel, and an electrostatic code is used for a cylindrical current channel. The connecting bridge, which models a local electrical contact, is assumed to be made of the same conducting material as the main current channel. Very simple analytic scaling laws for the contact resistance are constructed for a wide range of geometrical aspect ratios between the main current channel and its connecting bridge, which may assume a rectangular shape (for Cartesian channel), and a cylindrical or funnel shape (for cylindrical channel). These scaling laws have been confirmed by spot checks with numerical code results. They are generalizations of the classical theory of Holm and Timsit on the contact resistance of the "a-spot," defined as a small circular area of zero thickness through which current can flow. Potential applications and extensions of the theory are indicated.

  6. Connection equation and shaly-sand correction for electrical resistivity

    USGS Publications Warehouse

    Lee, Myung W.

    2011-01-01

    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  7. The study of mudrocks resistivity in Northwestern Peninsula Malaysia using electrical resistivity survey

    NASA Astrophysics Data System (ADS)

    Hisham, Hazrul; Muztaza, Nordiana Mohd; Jia, Teoh Ying

    2017-07-01

    Mudrock is a type of sedimentary rock whose original constituents are clays and muds. Mudrocks are fine grained siliciclastic which include mudstone and claystone depending on the grain size. The colour of mudstone is a function of its minerology content and geochemistry processes. One common sedimentary structure of mudrocks is lamination due to variations in grain size and composition changes. The importance of mudrocks is as a mixture for cement and to produce brick used for building structure. This research emphasizes on the resistivity value of mudrocks; claystone and mudstone which exist in northwestern of Peninsula Malaysia. Mudstone of Kubang Pasu Formation, red mudstone and grey mudstone of Chepor Member and claystone of Semanggol Formation were chose as the study area as each of the mudrock was formed in a different environmental condition. Electrical resistivity survey was conducted on top of the outcrops using Wenner - Schlumberger array with 1.5 m and 1 m electrode spacing with respect to localities. The data was processed using Res2Dinv software to get the inversion model resistivity and the results were imported to Surfer10 software for labelling purposes. The mudstone resistivity value of Kubang Pasu Formation formed by depositional of calm water gives resistivity value from 20 - 120 Ωm. The red mudstone of Chepor Member formed at high oxidation environment gives resistivity value of 15 - 100 Ωm contrast to grey mudstone which formed under low oxidizing condition gives 120 - 500 Ωm resistivity value. The claystone of Semanggol Formation formed from shallow depositional environment gives resistivity value from 400 - 1000 Ωm. As a conclusion, electrical resistivity survey was successfully applied in differentiating the type of mudrocks. Also, mudrocks formed from different depositional environment gives different values of resistivity.

  8. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  9. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Eivani, A. R.; Ahmed, H.; Zhou, J.; Duszczyk, J.

    2009-10-01

    This research concerns the effect of homogenization treatment on the electrical resistivity of AA7020 aluminum alloy variants with different Zr and Cr contents. Small changes in the Zr and Cr contents of the as-cast alloy increase the electrical resistivity significantly. After employing various homogenization treatments, the electrical resistivity decreases, which is due to the depletion of Zr, Cr, and Mn in the matrix, by forming small dispersoids. The optimum treatment proposed in order to obtain the smallest recrystallized grains is to hold the material at 550 °C for 24 hours, which results in the lowest electrical resistivity. The viability of the proposed treatment was tested through hot compression tests and static annealing. Indeed, the samples homogenized at 550 °C for 24 hours showed the smallest recrystallized grains compared to those homogenized at other temperatures.

  10. Optical device with low electrical and thermal resistance bragg reflectors

    DOEpatents

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  11. Optical device with low electrical and thermal resistance Bragg reflectors

    DOEpatents

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  12. Monitoring six-phase ohmic heating of contaminated soils using electrical resistance tomography

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-09-01

    Electrical resistance tomography (ERT) was used to monitor six-phase ohmic heating used for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. The changes in electrical conductivity caused by six-phase ohmic-heating in a clay layer located in the vadose zone were monitored during a period of approximately 2 months, before, during and after heating. From an array of electrodes located in 4 boreholes, we collected electrical resistivity data between five pairs of adjacent holes pairs. This data was used to calculate tomographs which showed the electrical conductivity changes along five vertical planes. The difference tomographs show the combined effects of moisture redistribution and heating caused by six-phase heating and vapor extraction. The tomographs show that most of the clay layer increased in electrical conductivity during the first 3 weeks of the 4 week long heating phase. At this time, the electrical conductivities near the center of the heating array were twice as large as the pre-heat conductivities. Then the electrical conductivity started to decrease for portions of the clay layer closest to the vapor extraction well. We propose that the conductivity decreases are due to the removal of moisture by the heating and vacuum extraction. Parts of the clay layer near the extraction well reached electrical conductivities as low as 40% of the pre-heating values. We propose that these regions of lower than ambient electrical conductivities are indicators of regions where the vapor removal by vacuum extraction was most effective. At the end of the heating phase, our estimates suggest that the clay saturation may have dropped to as low as 10% based on the observed conductivity changes.

  13. Pulmonary rapidly adapting receptor stimulation does not increase airway resistance in anesthetized rabbits.

    PubMed

    Yu, J; Zhang, J F; Roberts, A M; Collins, L C; Fletcher, E C

    1999-09-01

    In open-chest artificially ventilated rabbits, removal followed by replacement of positive end-expiratory pressure (PEEP maneuver) favors stimulation of airway rapidly adapting receptors (RARs). The purpose of the present study was to determine whether activation of RARs can cause bronchoconstriction. We measured airway pressure, airflow, and tidal volume, and calculated dynamic lung compliance and total lung resistance. PEEP maneuver increased airway pressure swings (16.4 +/- 4% above control; p = 0.0016) and decreased compliance (to 84.8 +/- 2.8% of control; p = 0.0002) without changing resistance (108.0 +/- 4.4% of control; p = 0.85). On the other hand, the resistance increased greatly (93 +/- 13%, p < 0.01) after intravenous injection of acetylcholine or electrical stimulation of vagal efferents, indicating that our system could detect increases in the resistance. In a separate group, we stimulated RARs by stroking the trachea with a cotton tip (tickling), tickling produced cough, manifested by increased pressure and flow without resistance changing. These changes were abolished after paralysis with succinylcholine. Because we did not detect an increase in airflow resistance during activation of RARs by the PEEP maneuver and tickling, we conclude that increase in resistance may not be an important reflex component of airway RARs.

  14. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    USDA-ARS?s Scientific Manuscript database

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  15. Modified developer increases line resolution in photosensitive resist

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Standard developer solution is mixed with dipropyl carbonate. This reduces swelling in the photosensitive resist and permits application of relatively thick films with minimal pinhole formation and increased line resolution.

  16. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  17. Laboratory and Field Measurements of Electrical Resistivity to Determine Saturation and Detect Fractures in a Heated Rock Mass

    SciTech Connect

    Roberts, J J; Ramirez, A; Carlson, S; Ralph, W; Bonner, B P

    2001-04-03

    Laboratory measurements of the electrical resistivity of intact and fractured representative geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to infer saturation and fracture location in a large-scale field test. Measurements were performed to simulate test conditions with confining pressures up to 100 bars and temperatures to 145 C. Measurements presented are a first step toward making the search for fractures using electrical methods quantitatively. Intact samples showed a gradual resistivity increase when pore pressure was decreased below the phase-boundary pressure of free water, while fractured samples show a larger resistivity change at the onset of boiling. The resistivity change is greatest for samples with the most exposed surface area. Analysis of a field test provided the opportunity to evaluate fracture detection using electrical methods at a large scale. Interpretation of electrical resistance tomography (ERT) images of resistivity contrasts, aided by laboratory derived resistivity-saturation-temperature relationships, indicates that dynamic saturation changes in a heated rock mass are observable and that fractures experiencing drying or resaturation can be identified. The same techniques can be used to locate fractures in geothermal reservoirs using electrical field methods.

  18. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  19. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  20. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  1. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  2. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  3. Effect of polymer admixtures to cement on the bond strength and electrical contact resistivity between steel fiber and cement

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1996-02-01

    The addition of methylcellulose (0.4% by weight of cement) or latex (20% by weight of cement) to cement paste gave similarly significant increases of the shear bond strength between stainless steel fiber and cement paste, in spite of the low concentration of methylcellulose compared to latex. The methylcellulose addition did not affect the contact electrical resistivity between fiber and cement, whereas the latex addition increased this resistivity. Hence, for low cost and low contact resistivity, methylcellulose is preferred to latex. For a given cement paste composition, the bond strength increased linearly with the contact resistivity.

  4. Electrical resistivity for detecting subsurface non-aqueous phase liquids: A progress report

    SciTech Connect

    Lee, K.H.; Shan, C.; Javandel, I.

    1995-06-01

    Soils and groundwater have been contaminated by hazardous substances at many places in the United States and many other countries. The contaminants are commonly either petroleum products or industrial solvents with very low solubility in water. These contaminants are usually called non-aqueous phase liquids (NAPLs). The cost of cleaning up the affected sites in the United States is estimated to be of the order of 100 billion dollars. In spite of the expenditure of several billion dollars during the last 15 years, to date, very few, if any major contaminated site has been restored. The presence of NAPL pools in the subsurface is believed to be the main cause for the failure of previous cleanup activities. Due to their relatively low water solubility, and depending on their volume, it takes tens or even hundreds of years to deplete the NAPL sources if they are not removed from the subsurface. The intrinsic electrical resistivity of most NAPLs is typically in the range of 10{sup 7} to 10{sup 12}{Omega}-m, which is several orders of magnitude higher than that of groundwater containing dissolved solids (usually in the range of a few {Omega}-m to a few thousand {Omega}-m). Although a dry soil is very resistive, the electrical resistivity of a wet soil is on the order of 100 {Omega}-m and is dependent on the extent of water saturation. For a given soil, the electrical resistivity increases with decrease of water saturation. Therefore, if part of the pore water is replaced by a NAPL, the electrical resistivity will increase. At many NAPL sites, both the vadose and phreatic zones can be partially occupied by NAPL pools. It is the great contrast in electrical resistivity between the NAPLs and groundwater that may render the method to be effective in detecting subsurface NAPLs at contaminated sites. The following experiments were conducted to investigate the change of the electrical resistivity of porous media when diesel fuel (NAPL) replaces part of the water.

  5. Elastic Resistance Effectiveness on Increasing Strength of Shoulders and Hips.

    PubMed

    Picha, Kelsey J; Almaddah, Muataz R; Barker, Jordan; Ciochetty, Tavis; Black, W Scott; Uhl, Tim L

    2017-09-12

    Elastic resistance is a common training method used to gain strength. Currently, progression with elastic resistance is based on the perceived exertion of the exercise or completion of targeted repetitions; exact resistance is typically unknown. This study's objective is to determine if knowledge of load during elastic resistance exercise will increase strength gains during exercises. Participants were randomized into two strength training groups, elastic resistance only and elastic resistance using a load cell (LC) that displays force during exercise. The LC group used a Smart Handle (Patterson Medical Supply, Chicago, IL) to complete all exercises. Each participant completed the same exercises three times weekly for 8 weeks. The LC group was provided with a set load for exercises whereas the elastic resistance only group was not. Participant's strength was tested at baseline and program completion, measuring isometric strength for shoulder abduction (SAb), shoulder external rotation (SER), hip abduction (HAb), and hip extension (HEx). Independent t-tests were used to compare the normalized torques between groups. No significant differences were found between groups. Shoulder strength gains did not differ between groups (SAb p>0.05; SER p>0.05). Hip strength gains did not differ between groups (HAb p>0.05; HEx p>0.05). Both groups increased strength due to individual supervision, constantly evaluating degree of difficulty associated with exercise and providing feedback while using elastic resistance. Using a LC is as effective as supervised training and could provide value in a clinic setting when patients are working unsupervised.

  6. An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    SciTech Connect

    LaBrecque, Douglas J; Adkins, Paula L

    2008-12-09

    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at

  7. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  8. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

  9. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    2015-03-01

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state. Supported by NSF DMR-0907150, NSF DMR-1308141.

  10. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  11. Urinary Phthalates and Increased Insulin Resistance in Adolescents

    PubMed Central

    Spanier, Adam J.; Sathyanarayana, Sheela; Attina, Teresa M.; Blustein, Jan

    2013-01-01

    BACKGROUND Di-2-ethylhexylphthalate (DEHP) is an environmental chemical commonly found in processed foods. Phthalate exposures, in particular to DEHP, have been associated with insulin resistance in adults, but have not been studied in adolescents. METHODS: Using cross-sectional data from 766 fasting 12- to 19-year-olds in the 2003–2008 NHANES, we examined associations of phthalate metabolites with continuous and categorical measures of homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Controlling for demographic and behavioral factors, diet, continuous age, BMI category, and urinary creatinine, for each log (roughly threefold) increase in DEHP metabolites, a 0.27 increase (95% confidence interval 0.14–0.40; P < .001) in HOMA-IR was identified. Compared with the first tertile of DEHP metabolite in the study population (14.5% insulin resistant), the third tertile had 21.6% prevalence (95% confidence interval 17.2%–26.0%; P = .02). Associations persisted despite controlling for bisphenol A, another endocrine-disrupting chemical commonly found in foods, and HOMA-IR and insulin resistance were not significantly associated with metabolites of lower molecular weight phthalates commonly found in cosmetics and other personal care products. CONCLUSIONS: Urinary DEHP concentrations were associated with increased insulin resistance in this cross-sectional study of adolescents. This study cannot rule out the possibility that insulin-resistant children ingest food with higher phthalate content, or that insulin-resistant children excrete more DEHP. PMID:23958772

  12. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    PubMed Central

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A.

    2012-01-01

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages. PMID:23443085

  13. Fabrication of an electrically-resistive, varistor-polymer composite.

    PubMed

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A

    2012-11-23

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10-50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.

  14. Electrical resistivity and AC-calorimetric measurements of PrRu 4P 12 under pressure

    NASA Astrophysics Data System (ADS)

    Miyake, A.; Holmes, A. T.; Kagayama, T.; Shimizu, K.; Sekine, C.; Shirotani, I.; Kikuchi, D.; Sugawara, H.; Sato, H.

    2008-04-01

    We have studied the effect of pressure in the filled skutterudite PrRu 4P 12, which shows a metal-insulator (MI) transition at TMI=63 K, via simultaneous measurements of electrical resistivity ( ρ) and AC-calorimetry ( CAC). Schottky-like anomalies in CAC disappear under pressure, suggesting a change of the ground state. The resistivity below TMI is strongly suppressed with increasing pressure, in contrast to the weak pressure dependence of TMI. Above 10 GPa, ρ(T) shows metallic behavior with small anomalies at TMI. We discuss the likely change of ground state in PrRu 4P 12 with pressure from triplet to singlet.

  15. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    NASA Astrophysics Data System (ADS)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong

    2017-01-01

    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  16. Electrical Stimulation Increases Random Migration of Human Dermal Fibroblasts.

    PubMed

    Snyder, Sarah; DeJulius, Carlisle; Willits, Rebecca Kuntz

    2017-05-09

    Exogenous electrical stimulation (ES) has been investigated as a therapy for chronic wounds, as the skin produces currents and electrical fields (EFs) during wound healing. ES therapies operate by applying small EFs to the skin to mimic the transepithelial potentials that occur during the granulation phase of wound healing. Here, we investigated the effect of short duration (10 min) ES on the migration of HDFs using various magnitudes of physiologically relevant EFs. We modeled cutaneous injury by culturing HDFs in custom chambers that allowed the application of ES and then performed timelapse microscopy on a standard wound model. Using MATLAB to process cell coordinate data, we determined that the cells were migrating randomly and fit mean squared displacement data to the persistent random walk equation using nonlinear least squares regression analysis. Results indicated that application of 25-100 mV/mm DC EFs to HDFs on either uncoated or FN-coated surfaces demonstrated no significant changes in viability or proliferation. Of significance is that the HDFs increased random migration behavior under some ES conditions even after 10 min, providing a mechanism to enhance wound healing.

  17. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  18. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  19. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    NASA Astrophysics Data System (ADS)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N.; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A.; Polley, H. Wayne; Reich, Peter B.; Roscher, Christiane; Seabloom, Eric W.; Smith, Melinda D.; Thakur, Madhav P.; Tilman, David; Tracy, Benjamin F.; van der Putten, Wim H.; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W.; Wilsey, Brian; Eisenhauer, Nico

    2015-10-01

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  20. Monitoring radio-frequency heating of contaminated soils using electrical resistance tomography

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1993-09-01

    Electrical resistance tomography (ERT) was used to monitor a radio-frequency heating process for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. A dipole antenna located in a horizontal well in the unsaturated zone was used to heat a contaminated clay layer. The heat-induced changes were tomographically imaged by their effects on the formation electrical resistivity. The resistivity changes observed appear to be related to heating and vaporization of the pore water, formation of steam condensate, and infiltration of rainwater through the heated zones and adjacent areas. There is a clear asymmetry downward in the resistivity decreases associated with the heating process. The resistivity decreases observed in the vicinity of the heating well are believed to be caused by the heating and downward migration of warm water originally located within a radius of a few feet around the heating well; the magnitude of the change is between 10--20%. The decreasing resistivity implies an increasing rate of radio wave attenuation as heating progressed; therefore, the rate of energy deposition around the heating well increased while the penetration distance of the radio waves decreased. Saturation changes in the clay near the antenna during heating were estimated to be 50--55% based on the observed resistivity decreases. Resistivity changes observed at distances greater than 3 meters to one side of the antenna appear to be related to rainwater infiltration. We propose that gaps in near surface clay layers allow rainwater to migrate downward and reach the top of clay rich zone penetrated by the antenna borehole. The water may then accumulate along the top of the clay.

  1. Improving Heat Pump Water Heater Effeciency by Avoiding Electric Resistance Heater Use

    SciTech Connect

    Boudreaux, Philip R.; Munk, Jeffrey D.; Jackson, Roderick K.; Gehl, Anthony C.; Parkison, April E.; Nutaro, James J.

    2014-09-01

    Heat pump water heaters (HPWHs) are a promising technology that can decrease the domestic hot water energy consumption over an electric resistance storage water heater by up to 50%. Heat pump water heaters are really two water heaters in one; they can heat water by using a heat pump or by using electric resistance elements. During large water draw events the HPWHs will use the resistance elements that decrease the overall efficiency of the units. ORNL proposed and tested an advanced control algorithm that anticipates the large water draw events and appropriately sets-up the temperature of the tank water using only the heat pump. With sufficient energy stored in the tank at the elevated temperature, the large water draw is provided for and electric resistance use is avoided. Simulations using a validated heat pump water heater model, and measured water draw data from 25 homes, show average yearly energy savings of 9% for the advanced control algorithm. If the advanced control algorithm perfectly predicts the large water draw events then the savings increase to 19%. This discrepancy could be due to a lack of predictability of water draw patterns in some homes, or the water draw forecasting algorithm could be improved.

  2. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  3. Seismic refraction and electrical resistivity tests for fracture induced hydraulic anisotropy in a mountain watershed.

    NASA Astrophysics Data System (ADS)

    Mendieta, A. L.; Bradford, J.; Liberty, L. M.; McNamara, J. P.

    2016-12-01

    Granitic based terrains often have complex hydrogeological systems. It is often assumed that the bedrock is impermeable, unless it is fractured. If the bedrock is fractured this can greatly affect fluid flow, depending on fracture density and orientation. Recently there has been a substantial increase in the number of geophysical studies designed to investigate hydrologic processes in mountain watersheds, however few of these studies have taken fracture induced geophysical and hydraulic anisotropy into consideration. Vertically oriented fractures with a preferred orientation produce azimuthal anisotropy in the electrical resistivity, the seismic primary wave (P-wave) velocity, and the hydraulic permeability. By measuring the electrical and seismic anisotropy we can estimate fracture orientation and density which improves our understanding of hydraulic properties. Despite numerous previous studies of the hydrologic system, the subsurface hydraulic system at the Dry Creek Experimental Watershed (DCEW), located near Boise, Idaho, is not completely understood. This is particularly true of the deep (>5m) system which is difficult to study using conventional hydrologic measurements, particularly in rugged and remote mountain environments. From previous studies, it is hypothesized that there is a system of fractures that may be aligned according to the local stress field. To test for the preferential alignment, ergo the direction of preferential water flow, we collected seismic and electrical resistivity profiles along different azimuths. The preliminary results show an azimuthal dependence of the P-wave velocities in the bedrock, at depths greater than 18 m; P-wave velocities range from 3500 to 4100 m/s, which represents a 17.5 % difference. We interpret this difference to be caused by fractures present in the bedrock. At the same location, we measured an electric resistivity value of 29 ohm-m, and we expect a difference of 37 %, if the fractures are fully saturated

  4. Resistive graphene humidity sensors with rapid and direct electrical readout

    NASA Astrophysics Data System (ADS)

    Smith, Anderson D.; Elgammal, Karim; Niklaus, Frank; Delin, Anna; Fischer, Andreas C.; Vaziri, Sam; Forsberg, Fredrik; Råsander, Mikael; Hugosson, Håkan; Bergqvist, Lars; Schröder, Stephan; Kataria, Satender; Östling, Mikael; Lemme, Max C.

    2015-11-01

    We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further

  5. Effects of boiling on electrical resistivity of microporous rocks from the Geysers

    SciTech Connect

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-12-31

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150{degrees}C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145{degrees}C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  6. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  7. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated melts

    NASA Astrophysics Data System (ADS)

    Rustan, G. E.; Spyrison, N. S.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.

    2012-02-01

    Over the last two decades the popularity of levitation methods for studying equilibrium and supercooled melts has increased steadily. Measurements of density, viscosity, surface tension, and atomic structure have become well established. In contrast, measurements of electrical resistivity and magnetic susceptibility of levitated melts have been very limited. To fill this void, we have combined the tunnel diode oscillator (TDO) technique with electrostatic levitation (ESL) to perform inductively coupled measurements on levitated melts. A description of the basic operating principles of the TDO and ESL will be given, as well as a description of the implementation and performance characteristics of this technique. Preliminary measurements of electrical resistivity in the solid and liquid state will be presented for samples of Zr, Si, and Ge, as well as the measurements of ferromagnetic transitions in Fe and Co based alloys.

  8. Thermospheric topside neutral density, ionospheric anomalous electric field and resistivity measurements by active experiment at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Rietveld, Michael; Blagoveshchenskaya, Nataly; Yamazaki, Yosuke

    2016-07-01

    We have developed an active ground-based technique to estimate the topside thermospheric neutral density as well as topside ionospheric anomalous electric field and resistivity at EISCAT, combining the EISCAT UHF radar, HF heater and optics. When pumping the ionosphere the F-region electron temperature is significantly raised, increasing the upward plasma pressure gradient in the topside ionosphere, resulting in observed ion up-flow along the magnetic field line. Simultaneously, pump-induced suprathermal electrons produce artificial optical emissions. Using the modified ion-momentum equation, the thermospheric neutral density is estimated. Alternatively, using the MSIS model the field-aligned anomalous electric field is estimated. From the optical data the suprathermal electron flux is estimated, giving an estimate of the anomalous resistivity. Results from recent observations at EISCAT are presented.

  9. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  10. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ < 45 Ω m) at elevations ranging between -5 and -10 m. At one site near the shore of Biscayne Bay, the resistivity is less than 10 Ω m at -5 m elevation reflecting the presence of salt water in the aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  11. Material morphology and electrical resistivity differences in EPDM rubbers.

    SciTech Connect

    Yang, Nancy Y. C.; Domeier, Linda A.

    2008-03-01

    Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.

  12. Increasing antimicrobial resistance and narrowing therapeutics in typhoidal salmonellae.

    PubMed

    Kaurthe, Jaspal

    2013-03-01

    Multidrug-resistant typhoid fever (MDRTF) is a major public health problem in developing countries and is an emerging problem in the developed world. Because of the difficulties in preventing typhoid by public health measures or immunization in developing countries, great reliance is placed on antimicrobial chemotherapy. The treatment should commence as soon as the clinical diagnosis is made rather than after the results of antimicrobial susceptibility tests but the existence of MDRTF poses a serious clinical dilemma in the selection of empiric antimicrobial therapy. With the widespread emergence and spread of strains resistant to chloramphenicol, ampicillin and trimethoprim, ciprofloxacin became the drug of choice for the treatment of typhoid fever. However, of late the efficacy of fluoroquinolones too has been questioned, mainly due to increasing reports of increasing defervescence time and poor patient response. This indicates that the organism has begun to develop resistance to fluoroquinolones, and is corroborated by a steady increase in Minimum Inhibitory Concentration (MIC) of ciprofloxacin. The therapeutics of ciprofloxacin-resistant enteric fever narrows down to third- and fourth-generation cephalosporins and azithromycin. However, the emergence of extended-spectrum b-lactamases (ESBLs) in typhoidal Salmonellae poses a new challenge and would greatly limit the therapeutic options leaving only tigecycline and carbepenems as secondary antimicrobial drugs. This increasing resistance is alarming and emphasizes the need of effective preventive measures to control typhoid and to limit the unnecessary use of antibiotics.

  13. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  14. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  15. Electrical resistivity behaviors of liquid Pb-Sn binary alloy in the presence of ultrasonic field.

    PubMed

    Liu, Xuan; Zhang, Jianfeng; Li, Haoyu; Le, Qichi; Zhang, Zhiqiang; Hu, Wenyi; Bao, Lei

    2015-01-01

    Electrical resistivity behaviors of liquid Pb-Sn alloys have been investigated in the presence of ultrasonic field. The process demonstrated significantly that electrical resistivity could reveal the precise influence caused by ultrasound. Details revealed by applying the resistivity measuring approach to the liquid Pb-Sn alloy show that the short ordered structures in the liquid could be modified by ultrasonic irradiation, and the resistivity approach could have application value in the ultrasonic irradiation process on the specific liquid metals and alloys.

  16. Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Samgyu; Yi, Myeong-Jong; Kim, Jung-Ho; Shin, Seung Wook

    2016-12-01

    In the study area, uncontrolled landfill leachate is a serious cause of groundwater contamination that occurs extensively and rapidly following the rainy season. For this reason, the use of traditional hydrogeological monitoring methods using drilled wells is expensive and limited. Electrical resistivity imaging (ERI) is suitable for monitoring groundwater contamination because this method helps quickly investigate a large site without the need for well drilling. The resistivity of the landfill leachate is lower than that of clean groundwater; based on this fact, we evaluated the diffusion of landfill leachate before and after the rainy season using 3-D ERI characterization. In addition, ERI results were compared with piezometric and hydrochemical data obtained from observation wells for the purpose of cross-validation. The groundwater monitoring results agreed with the 2-D and 3-D interpretation of ERI results. The electrical resistivity values of contaminated zones were lower than those of clean zones due to an abundance of ions or molecules in the groundwater. The resistivity boundary between contaminated and clean zones observed in the inverted 2-D and 3-D ERI sections was considered to be approximately 100 Ω-m. The low-resistivity anomaly of the contamination zones increased in extent after rainfall. The expansion was likely accelerated by groundwater movement and diffusion of the landfill leachate. Images of the change in electrical resistivity were helpful for characterization of the behavior. The two-directional behaviors of NE-SW and N-S trends were confirmed by the 3-D ratio images. It is therefore, considered that the ERI technique is excellent for imaging contaminated zones as well as monitoring the behaviors of landfill leachate in uncontrolled landfills.

  17. Increased quinolone resistance among typhoid Salmonella isolated from Egyptian patients.

    PubMed

    Saleh, Fatma O I; Ahmed, Hazem A; Khairy, Rasha M M; Abdelwahab, Sayed F

    2014-05-14

    Typhoid fever is endemic in Egypt; and quinolones are the empirical treatment of choice. There are very limited data reporting quinolone resistance among Egyptian typhoidal Salmonella isolates. We previously reported that all typhoidal Salmonella were sensitive to quinolones. This study aimed to isolate and identify typhoidal Salmonella from cases suffering from enteric fever at Minia Governorate, Egypt, determine their quinolone resistance patterns, compare them to those reported 20 years ago, and test gyrA mutation as a possible mechanism for quinolone resistance. Stool samples from Widal-positive subjects were screened by culture on suitable media and were identified biochemically. The identified isolates were tested for resistance against three representatives of the first three quinolone generations, namely nalidixic acid (NAL), levofloxacin (LEV), and norfloxacin (NOR). The gyrA gene was amplified and sequenced to detect point mutation(s) conferring quinolone resistance. Out of 230 stool samples (from patients with Widal anti-O titers of ≥ 1/160), 40 isolates were S. enterica serovar Typhi (97.5%) and Paratyphi A (2.5%). Six (15%) isolates were resistant to at least one of the quinolones, compared to 0% in 1993. In this regard, 15%, 7.5%, and 2.5% of the isolates were resistant to NAL, both NAL and LEV, and all three quinolones tested, respectively. Sequencing of the gyrA gene revealed point mutations at position 83 and/or 87 of the gyrA gene only among the resistant isolates. There has been an increase in quinolone-resistant typhoidal Salmonella in Egypt over time.

  18. Remarkable increase in fluoroquinolone-resistant Mycoplasma genitalium in Japan.

    PubMed

    Kikuchi, Mina; Ito, Shin; Yasuda, Mitsuru; Tsuchiya, Tomohiro; Hatazaki, Kyoko; Takanashi, Masaki; Ezaki, Takayuki; Deguchi, Takashi

    2014-09-01

    We determined the prevalence of macrolide and fluoroquinolone resistance-associated mutations in Mycoplasma genitalium DNA specimens from men with non-gonococcal urethritis (NGU) and analysed their effects on antibiotic treatments of M. genitalium infections. In this retrospective study, we examined antibiotic resistance-associated mutations in the 23S rRNA, gyrA and parC genes of M. genitalium and the association of the mutations with microbiological outcomes of antibiotic treatments in men with M. genitalium-positive NGU. No macrolide resistance-associated mutations in the 23S rRNA gene were observed in 27 M. genitalium DNA specimens in 2011 and in 24 in 2012. However, 5 of 17 in 2013 had 23S rRNA mutations. Three of 15 in 2011, 6 of 19 in 2012 and 8 of 17 in 2013 had fluoroquinolone resistance-associated alterations in ParC. Three in 2013 had both the antibiotic resistance-associated alterations coincidentally. In two men with M. genitalium harbouring 23S rRNA mutations, the mycoplasma persisted after treatment with a regimen of 2 g of extended-release azithromycin (AZM-SR) once daily for 1 day. All nine men with mycoplasma harbouring ParC alterations were microbiologically cured with a regimen of 100 mg of sitafloxacin twice daily for 7 days. Macrolide- or fluoroquinolone-resistant M. genitalium appears to be increasing, and the increase in fluoroquinolone-resistant mycoplasmas is especially remarkable in Japan. Mycoplasmas harbouring 23S rRNA mutations would be resistant to the AZM-SR regimen, but those harbouring ParC alterations would still be susceptible to the sitafloxacin regimen. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  20. High resistance to sulfur poisoning of Ni with copper skin under electric field

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2017-02-01

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field.

  1. Modeling and analysis of direct-current electrical resistivity in the Durham Triassic basin, North Carolina

    USGS Publications Warehouse

    Brown, C. Erwin

    1987-01-01

    Sixty-two Schlumberger electrical soundings were made in the Durham Triassic basin in an effort to determine basin structural geometry, depth of the sedimentary layers, and spatial distribution of individual rock facies. A digital computer program was used to invert the sounding curves of apparent resistivity versus distance to apparent resistivity versus depth. The apparent-resistivity-versus-depth data from the computer-modeling program were used to construct a geoelectric model of the basin that is believed to accurately represent the subsurface geology of the basin. The largest depth to basement in the basin along a resistivity profile (geoelectric section) was determined to be 1,800 m. A resistivity decrease was observed on certain soundings from depths of 100 to 1,000 m; below a 1,000-m depth, apparent resistivity increased to the bottom of the basin. Resistivity values for basement rocks were greater than 1,000 ohm-m and less than 350 ohm-m for the sedimentary layers in the basin. The data suggest that the basin contains a system of step faults near its eastern boundary. ?? 1987.

  2. The effect of electrical conductivity on pore resistance and electroporation

    NASA Astrophysics Data System (ADS)

    Li, Jianbo; Lin, Hao

    2008-11-01

    Electroporation is an elegant means to gain access to the cytoplasm, and to deliver molecules into the cell while simultaneously maintaining viability and functionality. In this technique, an applied electric pulse transiently permeabilizes the cell membrane, through which biologically active agents such as DNA, RNA, and amino acids can enter the cell, and perform tasks such as gene and cancer therapy. Despite wide applications, current electroporation technologies fall short of desired efficiency and reliability, in part due to the lack of fundamental understanding and quantitative modeling tools. This work focuses on the modeling of cell membrane conductance due to the formation of aqueous conducting pores. An analytical expression is developed to determine effective pore resistance as a function of the membrane thickness, pore size, and intracellular and extracellular conductivities. The availability of this expression avoids empirical or ad hoc specification of the conductivity of the pore-filling solution which was adopted in previous works. Such pore resistance model is then incorporated into a whole-cell electroporation simulation to investigate the effect of conductivity ratio on membrane permeabilization. The results reveal that the degree of permeabilization strongly depends on the specific values of the extracellular and intracellular conductivities.

  3. Effect of high pressure on the electrical resistivity of Ge−Te−In glasses

    SciTech Connect

    Prasad, K. N. N.; Varma, G. Sreevidya; Asokan, S.; Rukmani, K.

    2015-06-24

    The variation in the electrical resistivity of the chalcogenide glasses Ge{sub 15}Te{sub 85-x}In{sub x} has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.

  4. The effect of thermal damage on the electrical resistivity of sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqiang; Sun, Qiang; Zhu, Shuyun; Hao, Shuqing

    2017-03-01

    In order to study the effect of thermal damage on the electrical property of sandstone, an electrical resistivity test is carried out with an electrical instrument. The prepared cylindrical samples are successively heated to target temperatures (i.e. 100 °C, 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C and 800 °C) at a fixed slow rate and gradually cooled down to room temperature at the same rate. The test results show that the resistivity of the sandstone samples increases gradually with the increasing temperature, and increases drastically between 300 °C and 350 °C. The wave velocity of the samples at different temperatures is also investigated and the results show that the wave velocity reduces gradually with the increasing temperature. Special attention is paid to the fact that the wave velocity reduces more quickly at certain temperatures between 300 °C and 350 °C. It can be speculated that there is a threshold temperature between 300 °C and 350 °C.

  5. Transcutaneous Electrical Nerve Stimulation Increases Rectal Activity in Children.

    PubMed

    Moeller Joensson, Iben; Hagstroem, Soren; Siggaard, Charlotte; Bower, Wendy; Djurhuus, Jens Christian; Krogh, Klaus

    2015-07-01

    Neurostimulation is increasingly used in treating bladder and bowel dysfunction, but its effect on rectal motility is obscure. The aim of the study was to evaluate the acute effect of transcutaneous electrical nerve stimulation (TENS) on rectal motility in children with overactive bladder (OAB). In this double-blind placebo-controlled study in 20 children with OAB (mean age 8.6 ± 1.8 years; 7 girls), 48-hour urodynamic monitoring including rectal manometry was performed. After 24-hours of baseline investigation without stimulation the children were randomised to either active TENS (n = 10) or placebo (n = 10). Surface electrodes were placed over the sacral bone. The exterior of active and placebo stimulators was identical. Starting in the morning, the children received either continuous TENS stimulation or placebo until bedtime. Rectal contractions were defined as pressure runs exceeding 5 cm H2O and lasting ≥3 minutes. At baseline there was no significant difference in proportion of time with rectal contractions in the 2 groups (TENS group median 31% [range 12%-66%] vs placebo group median 31% [range 10%-66%]; P = 0.75); however, on the day of stimulation there was more time with rectal contractions in the group receiving TENS (median 51% [range 25%-78%]) compared with placebo (median 32% [range 4%-68%]; P = 0.02). Also, there was an increase in time with rectal contractions in the TENS group (P = 0.007) but not in the placebo group (P = 0.39). The night after the TENS was disabled, rectal activity in both groups returned to baseline level. TENS acutely increases time with rectal contractions in children undergoing urodynamic investigation. The effect disappears when the stimulator is turned off.

  6. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  7. Increasing antimicrobial resistance among Shigella isolates in the Bushehr, Iran.

    PubMed

    Gharibi, O; Zangene, S; Mohammadi, N; Mirzaei, K; Karimi, A; Gharibi, A; Khajehiean, A

    2012-02-01

    Antibiotics are drugs used for treatment of infections caused by bacteria. Misuse and overuse of these drugs have contributed to phenomena known as antibiotic resistance. In this research, the antimicrobial resistance of the Shigella has been determined. This descriptive research analyzed registered laboratory data of patients referred to Fatemeh Zahra Hospital of the Bushehr, Iran. Shigella was isolated from their cultured sample from the year 2002-2008. In this study, the total of 121 registered Shigella collected from 2002-2008 were analyzed. There were 62 cases of S. sonnei, 46 cases of S. flexneri, eight cases of S. boydii and five cases of S. dysenteriae among them. Furthermore, two cases of Shigella sonnei were collected from the blood and the rest from the watery stools of the infected patients. The following is the resistance pattern of these organisms; to ciprofloxacin, 4.25%; ceftizoxime, 8.62%; nalidixic acid, 12.12%; co-trimoxazole, 86.13% and to tetracycline, 93.02%. Results ofantibiogram showed that highest rate of drug resistance belongs to tetracycline and co-trimoxazole and the lowest belongs to ciprofloxacin and ceftizoxime. One of the important issue for clinicians, now a day is drug resistance of microorganisms. This phenomenon is increasing due to some factors such as improper use of antibiotics and irrational prescribing. These factors lead to development of new drug resistant species.

  8. Electrical resistivity measurement of Fe-0.6%Cu alloy irradiated by neutrons at 14-19 K

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Yokotani, T.; Sato, K.; Hori, F.

    2016-12-01

    Electrical resistivity measurement is a useful experimental method for investigating the recovery of defects that are induced by irradiation in metals and alloys. In this study, an Fe-0.6%Cu alloy, used to model steel from old commercial reactor pressure vessels, was irradiated by neutrons at a low temperature range of 14-19 K with a dose of about 1.3 × 1020 neutrons/m2 (E > 0.1 MeV) in the Kyoto University Reactor (KUR); electrical resistivity measurement was performed during irradiation and after annealing of the irradiated sample from 20 K to 300 K to investigate the migration of point defects in the Fe-0.6%Cu alloy. The electrical resistivity was measured at 14-19 K. With the increase in the irradiation dose, the electrical resistivity increased linearly. Four peaks appeared at 70 K, 100 K, 150 K, and 260 K, in the change of electrical resistivity during annealing of the irradiated sample up to 300 K. The former two peaks were caused by the recombination of interstitials and vacancies, and the latter two peaks were caused by the formation of interstitial clusters and the migration of vacancies. Compared with previous electron irradiation results, the former two peaks represent new data, as does the ratio of recombination caused by close-pair and correlation to that caused by migrations of mixed-interstitials Fe-Cu and vacancies decreased in neutron irradiation.

  9. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    , telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  10. Diagnosis of the heating effect on the electrical resistivity of Ouargla (Algeria) dunes sand using XRD patterns and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Mechri, Mohammed Laïd; Chihi, Smaïl; Mahdadi, Naouia; Beddiaf, Samiha

    2017-01-01

    XRD patterns and FTIR spectra have shown that dunes sand of Ouargla's region, in its natural state, is formed of a high percentage of quartz, gypsum and very low percentage of kaolinite and hematite, in addition to some organic compounds. The electrical resistivity of the natural sand has been measured, it was 6 × 1014 Ω cm. Six samples of the sand were heated separately at 200, 400, 600, 800, 1000 and 1200 °C. The XRD patterns and FTIR spectra of these samples were carried out. On the other hand, the electrical resistivities of these samples have been measured. The change of the electrical resistivity with heat shows a nonlinear behavior. The heated sample of sand at 200 °C has lost some water. Most of the gypsum in the 200 °C heated sample has transformed into anhydrite, and the rest has transformed into bassanite, and its electrical resistivity has fallen down to 3.5 × 1014 Ω cm. By heating at 400 °C, the gypsum has lost all its water and it has transformed entirely to anhydrite, and its electrical resistivity became 6.75 × 1012 Ω cm, it has the lowest measured resistivity. At 600 °C and 800 °C, in addition to anhydrite, the kaolinite transformed to meta-kaolin due to the continuous breaking of OH bond and formation of water vapor, and the electrical resistivity increased to (1.5-1.9) × 1014 Ω cm. Heating at 1000 °C leads to the initiation of the interaction between anhydrite and quartz, the wollastonite appears, and the meta-kaolin transforms to aluminum-silicon and cristobalite. The wollastonite is a good electrical insulator. It raises the electrical resistivity of sand to 2.6 × 1014 Ω cm. The heating at 1200 °C makes all anhydrite to interact with quartz due to the increasing of volume of wollastonite, the anhydrite disappears completely, the quartz transforms into cristobalite. The cristobalite increases due to the dissociation of aluminium-silicon into mullite and cristobalite, as well as the transformation of quartz into cristobalite at

  11. Electrical resistivity measurements of single crystalline α-Mn under high pressure

    NASA Astrophysics Data System (ADS)

    Miyake, A.; Kanemasa, T.; Yagi, R.; Kagayama, T.; Shimizu, K.; Haga, Y.; Ōnuki, Y.

    We have measured electrical resistivity of single crystalline α-manganese ( α-Mn) under high pressure. α-Mn shows an antiferromagnetic ordering at TN=95 K and has four inequivalent crystal sites with different magnetic moments. With increasing pressure, TN shifts toward lower temperature. At higher pressure, the shape of anomaly at TN changes to a kink-like one, which may indicate different magnetic ordering from that at lower pressure. Such a difference between lower and higher pressure regions is considered to be caused by the four inequivalent magnetic moments in α-Mn. At ˜1.9 GPa, the boundary of the ordered phases, we observe a sudden decrease of the residual resistivity and a peak of the A-coefficient of T2-term of the resistivity.

  12. Electrical resistivity measurements of brine saturated porous media near reservoir conditions: Awibengkok preliminary results

    SciTech Connect

    Bonner, B; Duba, A; Roberts, J

    1999-06-28

    Laboratory measurements of the electrical resistivity of rocks and synthetic rocks with confining pressures up to 100 bars and temperatures between 20 and 211 C were performed to further investigate how the pore-size distribution and capillarity affects boiling in porous media. Similar to previous measurements on samples from The Geysers, CA, we observed a gradual increase in resistivity when pore pressure was decreased below the phase-boundary pressure of free water, an indication that boiling is controlled not only by temperature and pressure, but also by pore size distribution. Other important phenomena observed were strong resistance fluctuations during boiling that may be chaotic, and salt deposition that caused sample cracking. If confirmed in further experiments, these results may lead to a new geophysical diagnostic for locating boiling in high permeability areas of geothermal reservoirs and for methods of permeability alteration.

  13. Zero temperature coefficient of resistance of the electrical-breakdown path in ultrathin hafnia

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Ang, D. S.

    2017-09-01

    The recent widespread attention on the use of the non-volatile resistance switching property of a microscopic oxide region after electrical breakdown for memory applications has prompted basic interest in the conduction properties of the breakdown region. Here, we report an interesting crossover from a negative to a positive temperature dependence of the resistance of a breakdown region in ultrathin hafnia as the applied voltage is increased. As a consequence, a near-zero temperature coefficient of resistance is obtained at the crossover voltage. The behavior may be modeled by (1) a tunneling-limited transport involving two farthest-spaced defects along the conduction path at low voltage and (2) a subsequent transition to a scattering-limited transport after the barrier is overcome by a larger applied voltage.

  14. Influence of Nitrogen Flow Rates on the Structure, Hardness, and Electrical Resistivity of HfN Coatings by DC Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, Leandro; Zamora-Peredo, Luis; Flores-Ramírez, Nelly; Garnica-Romo, María Guadalupe; Hernández-Torres, Julián

    2015-04-01

    HfN hard coatings on Corning glass substrates were obtained using DC sputtering. A power of 200 W was used keeping the flow rate of argon at 10 sccm and varying the nitrogen flow rates at 2.5, 3.5, 5.0, and 7.5 sccm to analyze differences in the hardness and electrical resistivity values, explaining variations in relation to structural changes. To achieve this, the Vickers microhardness test, x-ray diffraction, Raman, atomic force microscopy, and high resistivity measurements were used. At 2.5 sccm, the hardness value was shown to reach a maximum value of 20 GPa, and a minimum electrical resistivity of 6.5 × 108 µΩcm. Furthermore, as the flow is increased, the hardness values gradually decrease (until a value of 8 GPa is reached), the fracture toughness increase (until a value of 0.3 MPa√m is reached), and the electrical resistivity reaches its maximum at 1.52 × 1012 μΩcm. These variations are attributed to the evolution that the HfN phase progressively undergoes from a crystal orientation at (111) to an amorphous phase. In addition, the presence of tensile stresses, which tend to favor electrical resistivity, was identified. The average RMS roughness increased from 3.76 to 10.69 nm as the nitrogen flow was increased. Finally, the Raman spectroscopy confirmed the presence of the HfN phase.

  15. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... MSHA-approved flame-resistant cable. The cable shall be of the type that the splice kit is designed to... the cable shall be compatible with the splice kit design. Each splice shall be made in accordance...

  16. Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements

    Treesearch

    T.E. Paysen; A.L. Koonce; E. Taylor; M.O. Rodriquez

    2006-01-01

    In May 1993, electrical resistance measurements were performed on trees in burned and unburned stands of Caribbean pine (Pinus caribaea Mor.) in north-eastern Nicaragua to determine whether tree vigor was affected by fire. An Osmose model OZ-67 Shigometer with digital readout was used to collect the sample electrical resistance data. Computer-...

  17. Effects of microcrack evolution on the electrical resistance of Cu thin films on flexible PI substrates during cyclic-bend testing

    NASA Astrophysics Data System (ADS)

    Bag, Atanu; Park, Ki-Seong; Choi, Shi-Hoon

    2017-07-01

    Cyclic-bend testing was conducted on flexible Cu-clad laminate (FCCL) to investigate the correlation between electrical resistance and the evolution of microcracks. During the test, the change in the electrical resistance of the FCCL was monitored using two-point probe method. The variation in the electrical resistance of the FCCL with respect to the bending cycle can be divided into three stages according to the slope. In order to reveal the microcracks in Cu thin film and how they contribute to the variation in electrical resistance, quantitative analysis of the microcracks was conducted on the surface and cross-section of the deformed Cu thin films using field emission scanning electron microscopy. Analysis showed that the simultaneous extensive evolution of microcracks in the tension and compression zones were main contributors to increase the electrical resistance following specific critical bending cycles.

  18. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  19. Monitoring crack development in fiber concrete beam by using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Wiwattanachang, N.; Giao, P. H.

    2011-10-01

    Accurate detection of damaged concrete zones plays an important role in selecting the proper remedial technique. This study presents results from an application of the electrical imaging method to monitor the development of cracks in fiber concrete beams. The study showed that resistivity measurements on the concrete specimens were able to detect the increase of concrete resistivity with the curing time that reached about 65 Ωm after 28 days of curing. A similar development trend of concrete compressive strength was also found. Two types of cracks were investigated, i.e., artificial cracks made of plastic sheets inserted in concrete and cracks developed during a four-step loading test. A mini-electric imaging survey with Wenner array was conducted on the tension face of the beams. To deal with the effect of the beam size new procedures to correct resistivity measurements before inversion were proposed and successfully applied in this study. The results indicated that both crack direction and depth could be accurately determined in the inverted resistivity sections.

  20. The effect of surface roughness on the resistivity increase in nanometric dimensions

    NASA Astrophysics Data System (ADS)

    Marom, H.; Eizenberg, M.

    2006-06-01

    Materials with nanometric dimensions exhibit higher electrical resistivity due to additional scattering centers for the conduction electrons, mainly from surfaces and grain boundaries. In this study we focus on the effect of surfaces by implementing an experimental technique in which the resistivity of thin films is measured during and after etching them inside a solution. This technique enables to analyze the contribution of surfaces to the resistivity and gives a unique insight as for the effect of surface roughness. It is shown that the scattering of electrons from annealed copper films with smooth enough surfaces is mostly specular and that the resistivity in this case is dominated by the effect of grain boundaries. However, when the roughness of the surface becomes larger than the de Broglie wavelength of the electrons, a substantial increase in resistivity occurs. This roughness-induced resistivity is analyzed and shown to be much larger in certain cases than the resistivity predicted for a flat surface, even when all electron scatterings are assumed to be completely diffused.

  1. Plant adaptogens increase lifespan and stress resistance in C. elegans.

    PubMed

    Wiegant, F A C; Surinova, S; Ytsma, E; Langelaar-Makkinje, M; Wikman, G; Post, J A

    2009-02-01

    Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way. In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.

  2. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.

    PubMed

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-22

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  3. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    NASA Astrophysics Data System (ADS)

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  4. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    PubMed Central

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-01-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839

  5. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhang, Xiaopei; Du, Lizhi

    2017-10-01

    Thermal conductivity k (Wm- 1 K- 1) and electrical resistivity ρ (Ω·m) depend on common parameters such as grain size, dry density and saturation, allowing the finding of a relationship between both parameters. In this paper, we found a linear quantitative formula between thermal conductivity and electrical resistivity of soil. To accomplish this, we measured the thermal conductivity and electrical resistivity of 57 soil samples in the laboratory; samples included 8 reconstructed soils from the Changchun area (clay, silt, and sand) with approximately 7 different saturation levels. A linear relationship between thermal conductivity and electrical resistivity was found excluding the parameter of soil saturation, and the linear model was validated with undisturbed soils in Changchun area. To fully use this relationship (e.g., by imaging the thermal conductivity of soils with electrical resistivity tomography), further measurements with different soils are needed.

  6. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-09

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices.

  7. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  8. Improving the Erosion Resistance of Electrical Insulating Materials Using Nano Fillers

    NASA Astrophysics Data System (ADS)

    El-Hag, A.; Ul-Haq, S.; Jayaram, S.; Cherney, E.

    2007-08-01

    The paper presents the experimental results obtained to test the effect of nano-fillers on the aging performance of silicone rubber for outdoor applications and enamelled wire for motor insulation. The erosion resistance of silicone rubber (SIR) filled with 12 nm size fumed silica is compared to those filled with 5 μm size silica filler using the ASTM 2303 Inclined Plane Tracking and Erosion Test. The erosion resistance of the SIR materials increased with increasing percentage of the fillers, and it was observed that 10% by weight of nano-filled SIR gives a performance that is similar to that obtained with 50% by weight of micro-filled SIR. The paper discusses the possible reasons for the improvement in the erosion resistance of nano-filled silicone composites using different material analysis techniques like Thermo Gravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Also, the effect of using different nano fillers like alumina, fumed silica and titanium oxide on the erosion resistance of enamel wire insulating material subjected to different electrical stresses will be addresses. Surface roughness is used to evaluate the effect of different nano-fillers on the erosion resistance of enamel wire insulation.

  9. Electrical Resistivity Measurements in Sandstone During CH4 Hydrate Formation and CH4-CO2 Exchange

    NASA Astrophysics Data System (ADS)

    Birkedal, K.; Hauge, L.; Ersland, G.; Graue, A.

    2012-12-01

    The electrical properties of hydrate bearing sediments change with mineralogy, porosity, hydrate saturation, brine salinity, and mobility of the formation brine. Reliable calibration data is therefore essential for correct interpretation. Electrical resistivity measurements have been conducted on homogeneous Bentheim sand during CH4 hydrate formation. Various initial conditions (salinity and Sw) were used to determine the robustness of resistivity as a measure of hydrate saturation. Two setups with different electrode-arrangements were used; the first setup was a four electrode core holder without imaging capabilities, the second a two-electrode core holder used in combination with MRI to calibrate saturation data. The agreement between the two setups was good and there was little variation in phase angle. An initial resistivity decrease was observed at the initiation of hydrate growth for all experiments. This effect was more pronounced with lower initial salinities. Further increase in hydrate saturation resulted in reduced pore connectivity and increased tortuosity which resulted in increased resistivity (45-2487 kΩ). Only CH4 and water were used to form hydrate. The brine NaCl concentration of the remaining brine solution therefore increased during hydrate growth. Dynamic Rw and R0 values were incorporated into Archie's equations to account for changes in brine composition during hydrate formation. Resistivity was also measured during exchange between CH4-hydrate and CO2. There was an immediate resistivity and pressure response as CO2 was introduced to the system. This may be explained by higher water activity and CO2-hydrate growth at the trans-axial core face as CO2 is the preferred guest molecule at the experimental conditions. A spontaneous exchange therefore occurs, where the change in enthalpy accelerates the exchange. The resistivity showed a continuous decreasing trend after CO2 was introduced. This is explained by local in-equilibrium where

  10. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  11. Electrical resistance relaxation induced by high pressure in single crystals of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.

    2013-06-01

    An effect of high hydrostatic pressure on the electrical resistance in the ab-plane of single crystals of YBa2Cu3O7-δ with oxygen deficiency is investigated. It is found that the temperature dependence of the electrical resistance is determined by the fluctuation conductivity near Tc and by the scattering of electrons by phonons in a normal state. A high pressure causes the redistribution of labile oxygen, increasing a phase separation. The depressuriazation is accompanied by relaxation processes in both the phonon and the electronic subsystems, the characteristic times of which are significantly different from each other.

  12. Quantitative evaluation of dynamic precipitation kinetics in a complex Nb-Ti-V microalloyed steel using electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Gil; Bae, Jin-Ho; Lee, Young-Kook

    2013-09-01

    The kinetics of dynamic precipitation in austenite of a complex Nb-Ti-V microalloyed steel during hot compression at 900 °C with a strain rate of 6.7 s-1 was quantitatively investigated through electrical resistivity measurements. The dynamic precipitation in the Nb-Ti-V microalloyed steel started at a strain of 0.15. The amount of tiny Nb-rich (Nb,Ti,V)C carbides, which were precipitated at crystal defects gradually increased up to 0.02 wt% at a maximum strain of 0.67. The electrical resistivity was successfully applied to the quantitative evaluation of dynamic precipitation kinetics in microalloyed steel by excluding the effects of crystal defects and interstitial atoms on the electrical resistivity.

  13. Detecting leaks in hydrocarbon storage tanks using electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; LaBrecque, D.; Binley, A.

    1995-04-03

    Large volumes of hydrocarbons are stored worldwide in surface and underground tanks. It is well documented [1] that all too often these tanks are found to leak, resulting in not only a loss of stored inventory but, more importantly, contamination to soil and groundwater. Two field experiments are reported herein to evaluate the utility of electrical resistance tomography (ERT) for detecting and locating leaks as well as delineating any resulting plumes emanating from steel underground storage tanks (UST). Current leak detection methods for single shell tanks require careful inventory monitoring, usually from liquid level sensors within the tank, or placement of chemical sensors in the soil under and around the tank. Liquid level sensors can signal a leak but are limited in sensitivity and, of course, give no information about the location or the leak or the distribution of the resulting plume. External sensors are expensive to retrofit and must be very densely spaced to assure reliable detection, especially in heterogeneous soils. The rational for using subsurface tomography is that it may have none of these shortcomings.

  14. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  15. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  16. Waste disposal mapping with electrical resistivity tomography case: Leuwigajah landfill

    NASA Astrophysics Data System (ADS)

    Aryanti, Erisha; Ardi, Ahmad Puji; Almunziri, Muaz; Xanggam, Zael Yahd; Eleazar, Adino; Widodo

    2017-07-01

    Leuwigajah landfill as administrative is located between district of Bandung and Cimahi citythat has an environmental and social problem that caused aquifer contamination due to the big amount of waste from Bandung city, Cimahi and Bandung regency. It is occupied in abandoned andesite mine site with an area of about 25 hectare. The aim of this research is to map the geology structure and to study the leachate towards aquifer layer below Leuwigajah landfill. Here, we present the study of Leuwigajah landfill subsurface using Electrical Resistivity Tomography (ERT). ERT is one of the most promising prospecting techniques mainly concerning its effective contribution to resolve several environmental problems, was applied for the geophysical modeling. ERT is a robust imaging method the theory and implementation of which are well documented in geophysical research literature. The geological setting comprises clayed weathered layer, fractured andesitic dike. Due to the above-mentioned geological singularity and in the light of the requirement for an environmentally safe construction of the landfill, an ERT survey was carried out with dipole-dipole array, 78 m of acquisition line and 6 m of electrode spacing. The model consists of 4 layers below the Leuwigajah landfill and andesitic fracture until depth of 18.7 m below the surface.

  17. Less Invasive Corneal Transepithelial Electrical Resistance Measurement Method.

    PubMed

    Uematsu, Masafumi; Mohamed, Yasser Helmy; Onizuka, Naoko; Ueki, Ryotaro; Inoue, Daisuke; Fujikawa, Azusa; Sasaki, Hitoshi; Kitaoka, Takashi

    2016-01-01

    To evaluate acute corneal permeability changes after instillation of benzalkonium chloride (BAC) using a newly developed in vivo less invasive corneal transepithelial electrical resistance (TER) measurement method in animals and humans. We previously developed an in vivo method for measuring corneal TER using intraocular electrodes in animals. This method can be used to precisely measure the decline of the corneal barrier function after instillation of BAC. To lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the surface of the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. Corneal TER changes before and after exposure to 0.02% BAC were determined in this study using the new device in both rabbits and humans. There was a significant decrease in the corneal TER after exposure of the cornea to 0.02% BAC solution in both rabbits and humans (P<.01). The results of this new less invasive method agreed with those of formerly established anterior chamber methods in rabbit experiments. This new less invasive corneal TER measurement method enables us for the first time to measure TER of the human cornea, allowing safe and reliable investigation of the direct effect of different eye drop treatments on the corneal epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Visualizing Moisture Storage in Basin Lysimeters Using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Schnabel, W.; Munk, J.; Lee, W.

    2010-12-01

    Electrical resistivity tomography (ERT) was utilized to evaluate soil moisture in two large (10m x 20m x 2m) basin lysimeters over a four-year period in Anchorage, Alaska. The lysimeters were intended to test the efficacy of two competing landfill cover designs, thus water balance information was collected over the entire experimental period. The first lysimeter contained a thin (0.5m) layer of compacted soil within its 2m depth and was planted with local grasses. The second lysimeter contained no compacted soil layer and was planted with deep-rooting woody vegetation to maximize moisture removal via evapotranspiration. After four years of observation, 291mm of moisture percolated through the compacted soil lysimeter compared to 201mm in the evapotranspiration lysimeter. This presentation describes the observed water balance results, discusses efficacy of utilizing compacted soils versus evapotranspiration as the primary means of minimizing infiltration into engineered soil systems, and demonstrates the use of ERT as a technique for visualizing soil moisture storage.

  19. High electric resistant zirconia and/or hafnia ceramics

    SciTech Connect

    Mase, S.; Soejima, S.

    1985-03-26

    Disclosed are Zirconia and/or hafnia-containing ceramics having high electric resistivity and mechanical strength which consists essentially of 5-30 mol % of at least one component of Group A consisting of YO, ScO, SmO, EuO, GdO, TbO, DyO, HoO, ErO, TmO, YbO, LuO, CaO and MgO, 5-40 mol % of at least one component of Group B consisting of NbO and TaO and 30-90 mol % of at least one component of Group C consisting of ZrO/sub 2/ and HfO/sub 2/, said ceramics preferably satisfying the following equation ..sigma..((4-(ion valence number of each component of Group A))X(number of mole of each component of Group A))less than or equal to(total number of mole of components of Group B). and crystal phase of said ceramics being preferred to be composed mainly of tetragonal phase.

  20. Use of a thermal analogy to find electrical resistances of the electrical breaks in the TPX passive stabilization systems

    SciTech Connect

    Redler, K.M.; Baxi, C.B.; Hoffmann, E.H.; Schaubel, K.M.

    1995-12-31

    The inner and outer passive stabilization systems for the Tokamak Physics Experiment (TPX) are similar in design in that they both utilize copper passive plates that form large toroidal rings. The rings are electrically continuous except at one toroidal location where a high resistance break must exist. Vertical conductors connect the rings together on either side of the electrical break forming a saddle coil. In order to prevent all the current during initial plasma start-up from flowing through the rings instead of the plasma, the resistances of the breaks for the inner and outer stabilizers must be greater than 70 and 300 {mu}{Omega} respectively. A thermal-electrical analogy has been developed so that 2-D heat transfer finite element codes can be used to find the electrical resistances in the proposed designs of the high resistance breaks. This analogy is based on classical heat transfer theory using an electrical analogy for finding the equivalent conductances of materials that are in series or parallel. In these cases the conductivities of the materials are converted into conduction resistances.

  1. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  2. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-07-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  3. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  4. Increased Vascular Resistance with Hemoglobin-Based Oxygen Carriers

    DTIC Science & Technology

    1993-01-01

    vascular resistance. Swine resuscitated with otofHb exhibited the rapid onset of marked systemic hypertension . The blood pressure rose within seconds...virtual absence of red blood cells (3), hemoglobin solutions have produced hypertension irn animals or have not supported an increase in cardiac output...with blood volume expansion. Half of all the humans administered hemoglobin in published trials demonstrated hypertension (4), and a recent human

  5. Increased use of reject heat from electric generation

    SciTech Connect

    Leigh, R.W.; Piraino, M.

    1994-02-01

    This study aims to determine existing barriers to greater use of reject heat by electric power producers, including utilities and cogenerators. It includes analytical studies of the technical and economic issues and a survey of several electric power producers. The core analytic findings of the study are that although electric utility- based, cogenerated district heating is sometimes cost competitive with currently common furnaces and boilers, it is not clearly less expensive, and is often more expensive. Since market penetration by a new technology depends on strong perceived advantages, district heating will remain at a disadvantage unless its benefits, such as lowered emissions and decreased reliance on foreign oil, are given overt financial form through subsidies or tax incentives. The central finding from the survey was that electric utilities have arrived at the same conclusion by their own routes; we present a substantial list of their reasons for not engaging in district heating or for not pursuing it more vigorously, and many of them can be summarized as the lack of a clear cost advantage for district heat. We also note that small-scale district heating systems, based on diesel generators and located near the thermal load center, show very clear cost advantages over individual furnaces. This cost advantage is consistent with the explosive growth currently observed in private cogeneration systems.

  6. Sensitivity of Global Climate Model Simulations to Increased Stomatal Resistance and C02 Increases*.

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; McGuffie, K.; Gross, C.

    1995-07-01

    Increasing levels of atmospheric C02 will not only modify climate, they will also likely increase the water-use efficiency of plants by decreasing stomatal openings. The effect of the imposition of `doubled stomatal resistance' on climate is investigated in off-line simulations with the Biosphere-Atmosphere Transfer Scheme @BATS) and in two sets of global climate model simulations: for present-day and doubled atmospheric CO2, concentrations. The anticipated evapotranspiration decrease is seen most clearly in the boreal forests in the summer although, for the present-day climate @but not at 2 × C02), there are also noticeable responses in the tropical forests in South America. In the latitude zone 44°N to 58°N, evapotranspiration decreases by 15 W m2, temperatures increase by +2 K, and the sensible heat flux by +15 W m2. Soil moisture is often, but less extensively, increased, which can cause increases in runoff. The responses at 2 × C02 are larger in the 44°N to 58°N zone than elsewhere. Globally, the impact of imposing a doubled stomatal resistance in the present-day climate is an increase in the annually averaged surface air temperature of 0.13 K and a reduction in total precipitation of 0.82%. If both the atmospheric C02 content and the stomatal resistance are doubled, the global response in surface air temperature and precipitation are +2.72 K and +5.01% compared with +2.67 K and +7.73% if CO2 is doubled but stomatal resistance remains unchanged as in the usual `greenhouse' experiment. Doubling stomatal resistance as well as atmospheric C02 results in increased soil moisture in northern midlatitudes in summer.

  7. Increasing pesticide-resistant ectoparasitic infections may increase pesticide poisoning risks in children.

    PubMed

    Diaz, James H

    2008-01-01

    Head louse and scabies mite infestations are common among pre-school and school-age children, and topical pesticides are frequently prescribed to treat such conditions. Ectoparasite resistance to the safest and most commonly prescribed pyrethrin/pyrethroid pesticides for ectoparasitic infections has, however, been increasing since the 1980s. The increasing resistance of these arthropods to the safest pesticides may lead to greater use of more toxic, alternative pesticides to control infestations and to prevent institutional outbreaks. MEDLINE and Cochrane searches, 1966-2008, were conducted to assess the impact of increasing pesticide resistance on prescribing practices for ectoparasitic infections and to describe the evolving global epidemiology of pediatric poisonings by more toxic pediculicides and miticides, including carbamates, organochlorines, and organophosphates. Pharmacists, physicians, and poison control personnel should be fully informed about increasing pesticide resistance among the most commonly encountered ectoparasites of children and the institutionalized and be prepared to prevent and to treat accidental home and institutional pesticide poisonings with more toxic pesticides.

  8. Time-lapse electrical resistivity tomography of a water infiltration test on Johannishus Esker, Sweden

    NASA Astrophysics Data System (ADS)

    Ulusoy, İnan; Dahlin, Torleif; Bergman, Bo

    2015-05-01

    Managed aquifer recharge (MAR) is an efficient way to remove organic matter from raw water and, at the same time, reduce temperature variation. Two MAR sites were constructed by Karlskrona municipality on Johannishus Esker in Sweden. One of these sites, Vång, was monitored for electrical conductivity and electrical resistivity (using electrical resistivity tomography - ERT) during a 9-week tracer infiltration test. The aim of the monitoring was to map the pathways of the infiltrated water, with the overall goal to increase the efficiency of the MAR. ERT proved useful in determining both the nature of the esker formation and the water migration pathways. In Vång, the esker ridge follows a tectonically controlled paleo-valley. The fault/fracture zone in the bedrock along this paleo-valley was mapped. During the tracer test, the infiltrated water was detected in the area close to the infiltration ponds, whereas far-situated observation wells were less affected. For sequential infiltration and recharge periods in MAR, the timing of the well pumping is another important factor. Natural groundwater flow direction was a determinant in the infiltration process, as expected. ERT measurements provide supplementary data for site selection, for monitoring the functionality of the MAR sites, and for revealing the geological, hydrogeological and structural characteristics of the site.

  9. Electrical resistivity monitoring of the thermomechanical heater test in yucca mountain

    SciTech Connect

    Ramirez, A., LLNL

    1998-02-19

    Of the several thermal, mechanical nd hydrological measurements being used to monitor the rock mass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane of the electrodes. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. the size this region grows with time and the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The Waxman Smits model has been sued to calculate rock saturation after accounting for temperature effects. The saturation estimates suggest that a region of drying develops around the heater and grows over time. The estimates also show regions increase in saturation over time, primarily below and to the sides of the heater. The accuracy of the saturation estimates depends on several factors that are only partly understood at the time of writing.

  10. Electrochemical Reduction of Silver Vanadium Phosphorous Oxide, Ag2VO2PO4: Silver Metal Deposition and Associated Increase in Electrical Conductivity

    PubMed Central

    Marschilok, Amy C.; Kozarsky, Eric S.; Tanzil, Kevin; Zhu, Shali; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2010-01-01

    This report details the chemical and associated electrical resistance changes of silver vanadium phosphorous oxide (Ag2VO2PO4, SVPO) incurred during electrochemical reduction in a lithium based electrochemical cell over the range of 0 to 4 electrons per formula unit. Specifically the cathode electrical conductivities and associated cell DC resistance and cell AC impedance values vary with the level of reduction, due the changes of the SVPO cathode. Initially, Ag+ is reduced to Ag0 (2 electrons per formula unit, or 50% of the calculated theoretical value of 4 electrons per formula unit), accompanied by significant decreases in the cathode electrical resistance, consistent with the formation of an electrically conductive silver metal matrix within the SVPO cathode. As Ag+ reduction progresses, V5+ reduction initiates; once the SVPO reduction process progresses to where the reduction of V5+ to V4+ is the dominant process, both the cell and cathode electrical resistances then begin to increase. If the discharge then continues to where the dominant cathode reduction process is the reduction of V4+ to V3+, the cathode and cell electrical resistances then begin to decrease. The complex cathode electrical resistance pattern exhibited during full cell discharge is an important subject of this study. PMID:20657813

  11. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  12. Investigation of degree of saturation in landfill liners using electrical resistivity imaging.

    PubMed

    Kibria, Golam; Hossain, Md Sahadat

    2015-05-01

    During construction of compacted clay liners and evapotranspiration (ET) covers, quality control involves laboratory and field tests in individual lifts. However, the available methods may be inadequate to determine non-uniform compaction conditions, poor bonding of lifts, and/or variable soil composition. Moreover, the applicability of the available methods is restricted, in many instances, when spatial variability of the subsurface is expected. Resistivity Imaging (RI) is a geophysical method employed to investigate a large area in a rapid and non-destructive way. High resistivity of clay liner soil is an indication of a low degree of saturation, high air-filled voids, and poor lift bonding. To utilize RI as a quality control tool in a landfill liner, it is important to determine the saturation condition of the compacted soils because compaction and permeability of liner soil are functions of degrees of saturation. The objective of the present study is to evaluate the degree of saturation of a municipal solid waste (MSW) landfill liner, using RI. Electrical resistivity tests were performed in the laboratory, at varied moisture contents and dry unit weights, on four types of soil samples, i.e., highly plastic clay (CH), low plastic clay (CL), Ca-bentonite, and kaolinite. According to the experimental results, electrical resistivity of the specimens decreased as much as 15.3 times of initial value with increase in the degrees of saturation from 23% to 100%. In addition, cation exchange capacity (CEC) substantially affected resistivity. A multiple linear regression (MLR) model was developed to correlate electrical resistivity with degree of saturation and CEC using experimental results. Additionally, RI tests were conducted on compacted clay liners to determine the degrees of saturation, and predicted degrees of saturation were compared with the in-situ density tests. The study results indicated that the developed model can be utilized for liner soils having CEC

  13. Rainfall infiltration process in mountain headwater region using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ono, M.; Yamamiya, K.; Shimada, J.

    2008-12-01

    Many researchers have studied about the hydrological process, especially rainfall-runoff process, in the headwater region using multi hydrometric methods. Since the possibility has been recognized that bedrock groundwater has important role to play in the rainfall-runoff process, it is important to comprehend the rainfall infiltration process within fluctuations of bedrock groundwater. However, we would need many hydrological instruments to understand this process precisely. So we have applied electrical resistivity tomography (ERT) method to understand rainfall infiltration process in the area that is estimated the contribution of bedrock groundwater for rainfall-runoff processes. Resistivity changes with the saturation rate of the pore fluid in the subsurface material. So it is possible to estimate spatial and temporal distribution of subsurface water by using ERT. In this study, we will estimate rainfall infiltration process in mountain headwater region using resistivity method. The study area is the Mamushi-dani watershed in Shiranui, Kumamoto, Japan. We described the bedrock groundwater storage systems using resistivity method in this watershed previously. Resistivity has been observed at 2 measurement lines in slope areas of this watershed. Both measurement lines have 47m in length, 1m electrode spacing and 48 electrodes. We used the multi-electrode system, NEXT-400(Kowa Co. Ltd., Japan) for measuring apparent resistivity and the application software, E-tomo (Diaconsultant Co. Ltd., Japan) for inversion of apparent resistivity data. The observed resistivity data were compared with water head observed at borehole and specific discharge observed at foot of the watershed. Inverted resistivity profiles and observed hydrological data showed the interface between saturated and unsaturated zone. During rainfall occurs, resistivity in surface area gets lower than that before the rainfall and resistivity in some part of unsaturated area shows increasing tendency. Both

  14. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electrical resistivity and piezoresistivity of Ni-CNT filled epoxy-based composites

    NASA Astrophysics Data System (ADS)

    Jiang, Jinbao; Xiao, Huigang; Li, Hui

    2013-04-01

    This paper investigates properties about electrical resistivity and piezoresistivity of multi-wall carbon nanotubes (MWCNTs)-filled epoxy-based composite and its further use for strain sensing. The MWCNTs dispersed epoxy resin, using MWCNTs in the amount of 1.5~3.0 vol.%, was first prepared by combined high-speed stirring and sonication methods. Then, the MWCNTs dispersed epoxy resin was cast into an aluminum mold to form specimens measuring 10×10×36 mm. After curing, DC electrical resistance measurements were performed along the longitudinal axis using the four-probe method, in which copper nets served as electrical contacts. The percolation threshold zone of resistivity was got as MWCNTs in the amount of 2.00-2.50 vol.%. Further compressive testing of these specimens was conducted with four-probe method for resistance measurements at the same time. Testing results show that the electrical resistivity of the composites changes with the strain's development, namely piezoresistivity. While for practical strain sensing use, signals of electric resistance and current in the acquisition circuits were both studied. Results show that the signal of current, compared with that of resistance, had better linear relationship with the compressive strain, better stability and longer effective section to reflect the whole deformation process of the specimens under pressure. Further works about the effects of low magnetic field on the electrical resistivity and piezoresistivity of Ni-CNTs filled epoxy-based composites were presented briefly at the end of the paper.

  16. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    NASA Astrophysics Data System (ADS)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  17. Bulk energy storage increases United States electricity system emissions.

    PubMed

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  18. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  19. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  20. Procedure for measuring electrical resistivity of anisotropic materials: A revision of the Montgomery method

    NASA Astrophysics Data System (ADS)

    dos Santos, C. A. M.; de Campos, A.; da Luz, M. S.; White, B. D.; Neumeier, J. J.; de Lima, B. S.; Shigue, C. Y.

    2011-10-01

    A procedure for determining the electrical resistivity of anisotropic materials is presented. It offers several improvements to the well-known Montgomery method. One improvement, in particular, is the ability to obtain the electrical resistivity for all three axes of an orthorhombic crystal analytically, rather than using the iterative approach suggested by Montgomery for the third axis. All necessary equations are derived and their application in determining the tensor components of the electrical resistivity is explained in detail. Measurements on isotropic specimens were executed in order to test the foundations of the method. Measurements on anisotropic samples are compared with measurements obtained by using the standard four-probe method, revealing good agreement.

  1. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  2. Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, D.B.; Carter, P.J.

    1989-01-01

    Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.

  3. Electrical resistivity of some Zintl phase and the precursors

    SciTech Connect

    Wolfe, L.

    1990-09-21

    Resistivity measurements have been performed for electric characterization of the compounds Ba{sub 5}Sb{sub 3} and Ba{sub 5}Sb{sub 3}Cl, both with the Mn{sub 5}Si{sub 3} structure type, along with Ca{sub 5}Bi{sub 3} and Ca{sub 5}Bi{sub 3}F, both with the {beta}-Yb{sub 5}Sb{sub 3} structure type. These measurements were taken as a function of temperature using the four probe method on pressed polycrystalline pellets of the compounds. A sealed apparatus was developed for containing these air-sensitive compounds throughout the experiments. By a simple electron count, one extra electron in both Ba{sub 5}Sb{sub 3} and Ca{sub 5}Bi{sub 3} should occupy a conduction band, giving these compounds a metallic character. In the cases of Ba{sub 5}Sb{sub 3}Cl and Ca{sub 5}Bi{sub 3}F, the extra electron should bond to the halide, both filling the valence band and giving rise to semiconducting character. Ca{sub 5}Bi{sub 3}, Ca{sub 5}Bi{sub 3}F, and Ba{sub 5}Sb{sub 3}Cl were found to comply with the electron count prediction. Ba{sub 5}Sb{sub 3}, however, was found to be a semiconductor (E{sub g} = 0.30 eV) with a larger band gap than its corresponding chloride (E{sub g} = 0.09 eV).

  4. Novel experimental design for high pressure-high temperature electrical resistance measurements in a "Paris-Edinburgh" large volume press.

    PubMed

    Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron

    2015-04-01

    We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

  5. Novel experimental design for high pressure-high temperature electrical resistance measurements in a "Paris-Edinburgh" large volume press

    NASA Astrophysics Data System (ADS)

    Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron

    2015-04-01

    We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

  6. Carbon fiber polymer-matrix structural composites for electrical-resistance-based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Daojun

    This dissertation has advanced the science and technology of electrical-resistance-based sensing of strain/stress and damage using continuous carbon fiber epoxy-matrix composites, which are widely used for aircraft structures. In particular, it has extended the technology of self-sensing of carbon fiber polymer-matrix composites from uniaxial longitudinal loading and flexural loading to uniaxial through-thickness loading and has extended the technology from structural composite self-sensing to the use of the composite (specifically a one-lamina composite) as an attached sensor. Through-thickness compression is encountered in the joining of composite components by fastening. Uniaxial through-thickness compression results in strain-induced reversible decreases in the through-thickness and longitudinal volume resistivities, due to increase in the fiber-fiber contact in the through-thickness direction, and minor-damage-induced irreversible changes in these resistivities. The Poisson effect plays a minor role. The effects in the longitudinal resistivity are small compared to those in the through-thickness direction, but longitudinal resistance measurement is more amenable to practical implementation in structures than through-thickness resistance measurement. The irreversible effects are associated with an increase in the through-thickness resistivity and a decrease in the longitudinal resistivity. The through-thickness gage factor is up to 5.1 and decreases with increasing compressive strain above 0.2%. The reversible fractional change in through-thickness resistivity per through-thickness strain is up to 4.0 and decreases with increasing compressive strain. The irreversible fractional change in through-thickness resistivity per unit through-thickness strain is around -1.1 and is independent of the strain. The sensing is feasible by measuring the resistance away from the stressed region, though the effectiveness is less than that at the stressed region. A one

  7. Eradication of Multidrug-Resistant Pseudomonas Biofilm with Pulsed Electric Fields

    PubMed Central

    Khan, Saiqa I.; Golberg, Alexander; McCormack, Michael C.; Yarmush, Martin L.; Hamblin, Michael R.; Austen, William G.

    2015-01-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100–80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100–80% of bacteria were eradicated was 50.5 ± 9.9 mm2 for 300 pulses, and 13.4 ± 0.65 mm2 for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved eradication of mesh infections. PMID

  8. The use of electrical resistivity tomography and borehole to characterize leachate distribution in Laogang landfill, China.

    PubMed

    Feng, Shi-Jin; Bai, Zhen-Bai; Cao, Ben-Yi; Lu, Shi-Feng; Ai, Shu-Gang

    2017-08-09

    Leachate is a polluting liquid which may cause harmful effects on human health or the environment without a tightly control manner. The leachate management is an important part of the design and operation of bioreactor landfills. To detect the leachate distribution in Laogang Landfill, China, the measurement of electrical resistivity tomography (ERT) was carried out in three areas with different ages. ERT method proved to be an effective non-invasive geophysical method in bioreactor landfills, and the physical properties of waste samples obtained by boreholes were tested in a laboratory. The correlation between the resistivity and the moisture content was described by Archie's law. The result shows that the moisture content of fresh waste is inhomogeneous, while that of aged waste increases with depth. A pseudo 3D model of the moisture content was proposed to improve the understanding of leachate distribution and exhibit the accuracy of the ERT method.

  9. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field.

    PubMed

    Golberg, Alexander; Broelsch, G Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R; Austen, William G; Sheridan, Robert L; Yarmush, Martin L

    2014-06-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol.

  10. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field

    PubMed Central

    Golberg, Alexander; Broelsch, G. Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R.; Austen, William G.; Sheridan, Robert L.; Yarmush, Martin L.

    2014-01-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  11. Damage Characterization in SiC/SiC Composites using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Xia, Zhenhai

    2011-01-01

    SiC/SiC ceramic matrix composites (CMCs) under creep-rupture loading accumulate damage by means of local matrix cracks that typically form near a stress concentration, such as a 90o fiber tow or large matrix pore, and grow over time. Such damage is difficult to detect through conventional techniques. Electrical resistance changes can be correlated with matrix cracking to provide a means of damage detection. Sylramic-iBN fiber-reinforced SiC composites with both melt infiltrated (MI) and chemical vapor infiltrated (CVI) matrix types are compared here. Results for both systems exhibit an increase in resistance prior to fracture, which can be detected either in situ or post-damage.

  12. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    SciTech Connect

    Carter, J David; Mawdsley, Jennifer R; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  13. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  14. Brain evolution triggers increased diversification of electric fishes.

    PubMed

    Carlson, Bruce A; Hasan, Saad M; Hollmann, Michael; Miller, Derek B; Harmon, Luke J; Arnegard, Matthew E

    2011-04-29

    Communication can contribute to the evolution of biodiversity by promoting speciation and reinforcing reproductive isolation between existing species. The evolution of species-specific signals depends on the ability of individuals to detect signal variation, which in turn relies on the capability of the brain to process signal information. Here, we show that evolutionary change in a region of the brain devoted to the analysis of communication signals in mormyrid electric fishes improved detection of subtle signal variation and resulted in enhanced rates of signal evolution and species diversification. These results show that neural innovations can drive the diversification of signals and promote speciation.

  15. Minimal increase in genetic diversity enhances predation resistance.

    PubMed

    Koh, Kai S; Matz, Carsten; Tan, Chuan H; LE, Hoang L; Rice, Scott A; Marshall, Dustin J; Steinberg, Peter D; Kjelleberg, Staffan

    2012-04-01

    The importance of species diversity to emergent, ecological properties of communities is increasingly appreciated, but the importance of within-species genetic diversity for analogous emergent properties of populations is only just becoming apparent. Here, the properties and effects of genetic variation on predation resistance in populations were assessed and the molecular mechanism underlying these emergent effects was investigated. Using biofilms of the ubiquitous bacterium Serratia marcescens, we tested the importance of genetic diversity in defending biofilms against protozoan grazing, a main source of mortality for bacteria in all natural ecosystems. S. marcescens biofilms established from wild-type cells produce heritable, stable variants, which when experimentally combined, persist as a diverse assemblage and are significantly more resistant to grazing than either wild type or variant biofilms grown in monoculture. This diversity effect is biofilm-specific, a result of either facilitation or resource partitioning among variants, with equivalent experiments using planktonic cultures and grazers resulting in dominance by a single resistant strain. The variants studied are all the result of single nucleotide polymorphisms in one regulatory gene suggesting that the benefits of genetic diversity in clonal biofilms can occur through remarkably minimal genetic change. The findings presented here provide a new insight on the integration of genetics and population ecology, in which diversity arising through minimal changes in genotype can have major ecological implications for natural populations. © 2011 Blackwell Publishing Ltd.

  16. Hypoxia increases muscle hypertrophy induced by resistance training.

    PubMed

    Nishimura, Akinobu; Sugita, Masaaki; Kato, Ko; Fukuda, Aki; Sudo, Akihiro; Uchida, Atsumasa

    2010-12-01

    Recent studies have shown that low-intensity resistance training with vascular occlusion (kaatsu training) induces muscle hypertrophy. A local hypoxic environment facilitates muscle hypertrophy during kaatsu training. We postulated that muscle hypertrophy can be more efficiently induced by placing the entire body in a hypoxic environment to induce muscle hypoxia followed by resistance training. Fourteen male university students were randomly assigned to hypoxia (Hyp) and normoxia (Norm) groups (n = 7 per group). Each training session proceeded at an exercise intensity of 70% of 1 repetition maximum (RM), and comprised four sets of 10 repetitions of elbow extension and flexion. Students exercised twice weekly for 6 wk and then muscle hypertrophy was assessed by magnetic resonance imaging and muscle strength was evaluated based on 1RM. Muscle hypertrophy was significantly greater for the Hyp-Ex (exercised flexor of the hypoxia group) than for the Hyp-N (nonexercised flexor of the hypoxia group) or Norm-Ex flexor (P < .05, Bonferroni correction). Muscle hypertrophy was significantly greater for the Hyp-Ex than the Hyp-N extensor. Muscle strength was significantly increased early (by week 3) in the Hyp-Ex, but not in the Norm-Ex group. This study suggests that resistance training under hypoxic conditions improves muscle strength and induces muscle hypertrophy faster than under normoxic conditions, thus representing a promising new training technique.

  17. Electrical Stimulation Improves Microbial Salinity Resistance and Organofluorine Removal in Bioelectrochemical Systems

    PubMed Central

    Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun

    2015-01-01

    Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966

  18. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.

    2015-07-01

    Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.

  19. Apple extract induces increased epithelial resistance and claudin 4 expression in Caco-2 cells.

    PubMed

    Vreeburg, Robert A M; van Wezel, Esther E; Ocaña-Calahorro, Francisco; Mes, Jurriaan J

    2012-01-30

    The small intestinal epithelium functions both to absorb nutrients, and to provide a barrier between the outside, luminal, world and the human body. One of the passageways across the intestinal epithelium is paracellular diffusion, which is controlled by the properties of tight junction complexes. We used a differentiated Caco-2 monolayer as a model for small intestinal epithelium to study the effect of crude apple extracts on paracellular permeability. Exposure of crude apple homogenate to the differentiated Caco-2 cells increased the paracellular resistance, determined as trans-epithelial electrical resistance (TEER). This increase was linearly related to the concentration of apple present. The TEER-enhancing effect of apple extract was due to factors mainly present in the cortex, and the induction was not inhibited by protein kinase inhibitors. Apple-induced resistance was accompanied by increased expression of several tight junction related genes, including claudin 4 (CLDN4). Crude apple extract induces a higher paracellular resistance in differentiated Caco-2 cells. Future research will determine whether these results can be extrapolated to human small intestinal epithelia. Copyright © 2011 Society of Chemical Industry.

  20. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  1. Differential device for the determination of magnetic permeability or electric resistivity inside massive cylindrical samples

    SciTech Connect

    Ursu, D.D.; Bursuc, I.D.

    1985-03-01

    A differential device for the determination of magnetic permeability or electric resistivity of the ferromagnetic cylindrical samples was realized. Our method, which takes into account a simple model of hysteresis, leads to encouraging results.

  2. Sensitivity of global climate model simulations to increased stomatal resistance and CO{sub 2} increases

    SciTech Connect

    Henderson-Sellers, A.; McGuffie, K.; Gross, C.

    1995-07-01

    Increasing levels of atmospheric CO{sub 2} will not only modify climate, they will also likely increase the water-use efficiency of plants by decreasing stomatal openings. The effect of the imposition of {open_quotes}doubled stomatal resistance{close_quotes} on climate is investigated in off-line simulations with the Biosphere-Atmosphere Transfer Scheme (BATS) and in two sets of global climate model simulations: for present-day and doubled atmospheric CO{sub 2} concentrations. The anticipated evapotranspiration decrease is seen most clearly in the boreal forests in the summer although, for the present-day climate (but not at 2 x CO{sub 2}), there are also noticeable responses in the tropical forests in South America. In the latitude zone 44{degrees}N to 58{degrees}N, evapotranspiration decreases by -15 W m{sup 2}, temperatures increase by =2 K, and the sensible heat flux by +15 W m{sup {minus}2}. Soil moisture is often, but less extensively, increased, which can cause increases in runoff. The responses at 2 x CO{sub 2} are larger in the 44{degrees}N to 58{degrees}N zone than elsewhere. Globally, the impact of imposing a doubled stomatal resistance in the present-day climate is an increase in the annually averaged surface air temperature of 0.13 K and a reduction in total precipitation of -0.82%. If both the atmospheric CO{sub 2} content and the stomatal resistance are doubled, the global response in surface air temperature and precipitation are +2.72 K and +5.01% compared with +2.67 K and + 7.73% if CO{sub 2} is doubled but stomatal resistance remains unchanged as in the usual {open_quotes}greenhouse{close_quotes} experiment. Doubling stomatal resistance as well as atmospheric CO{sub 2} results in increased soil moisture in northern midlatitudes in summer. 40 refs.. 17 figs., 5 tabs.

  3. Saturation of electrical resistivity of solid iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Alfè, Dario

    2016-01-01

    We report on the temperature dependence of the electrical resistivity of solid iron at high pressure, up to and including conditions likely to be found at the centre of the Earth. We have extended some of the calculations of the resistivities of pure solid iron we recently performed at Earth's core conditions (Pozzo et al. in Earth Planet Sci Lett 393:159-164, 2014) to lower temperature. We show that at low temperature the resistivity increases linearly with temperature, and saturates at high temperature. This saturation effect is well known as the Mott-Ioffe-Regel limit in metals, but has been largely ignored to estimate the resistivity of iron at Earth's core conditions. Recent experiments (Gomi et al. in Phys Earth Planet Int 224:88-103, 2013) coupled new high pressure data and saturation to predict the resitivity of iron and iron alloys at Earth's core conditions, and reported values up to three times lower than previous estimates, confirming recent first principles calculations (de Koker et al. in Proc Natl Acad Sci 109:4070-4073, 2012; Pozzo et al. in Nature 485:355-358, 2012, Phys Rev B 87:014110-10, 2013, Earth Planet Sci Lett 393:159-164, 2014; Davies et al. in Nat Geosci 8:678-685, 2015). The present results support the saturation effect idea.

  4. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    SciTech Connect

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  5. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  6. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  7. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation.

    PubMed

    Truex, M J; Macbeth, T W; Vermeul, V R; Fritz, B G; Mendoza, D P; Mackley, R D; Wietsma, T W; Sandberg, G; Powell, T; Powers, J; Pitre, E; Michalsen, M; Ballock-Dixon, S J; Zhong, L; Oostrom, M

    2011-06-15

    The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.

  8. Electrical Resistivity and Seismic Characterization of Submarine Groundwater Discharge in Long Bay, SC

    NASA Astrophysics Data System (ADS)

    Viso, R. F.; McCoy, C.; Quafisi, D.; Gayes, P. T.

    2007-12-01

    Submarine groundwater discharge (SGD) has been identified as a significant contributor of dissolved nutrients and contaminants to near-shore waters. Little is known, however, about geologic controls on the spatial distribution of SGD seeps. Discharge estimates are typically derived from geochemical tracers such as Rn-222. Such estimates of total fluxes over a given area do not consider the potential for spatial variability in discharge rates. Higher fluxes of chemically distinct SGD over smaller areas could have complex effects on localized water masses, ecosystems, and geological features. In an effort to assess the distribution of SGD, electrical resistivity and seismic surveys were conducted along the inner shelf of Long Bay, South Carolina during a series of cruises between October, 2005 and November 2006. In addition, basic bottom water quality parameters including dissolved oxygen, temperature, salinity, and pH were measured. Preliminary submarine groundwater flux estimates for northern Long Bay were also generated from measurements of Rn-222. The resistivity signal is highly variable along shore with several instances of elevated values suggesting presence of relatively fresher pore waters. In some cases, elevated resistivity measurements were spatially co-registered with seismically defined paleochannels extending across the shelf. Other areas of elevated resistivity values correlate with smaller discontinuities in seismic reflectors. A third category of resistivity anomalies does not correlate with seismically defined features. Overall, anomaly frequency and intensity decrease rapidly with increasing distance from shore. At distances > 1 km from shore, the resistivity signal is uniform in space and low in magnitude, implying less of a fresh water contribution. Water quality parameters are variable along shore and may reflect the influence of SGD. Rn-derived fluxes suggest SGD equivalent to as much as 50% of riverine discharge into Long Bay. Ongoing work is

  9. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik

    2003-05-01

    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  10. New Electrical Resistivity Tomography approach for karst cave characterization: Castello di Lepre karst cave (Marsico Nuovo, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Guerriero, Merilisa; Capozzoli, Luigi; De Martino, Gregory; Perciante, Felice; Gueguen, Erwan; Rizzo, Enzo

    2017-04-01

    Geophysical methods are commonly applied to characterize karst cave. Several geophysical method are used such as electrical resistivity tomography (ERT), gravimetric prospecting (G), ground penetrating radar (GPR) and seismic methods (S), in order to provide information on cave geometry and subsurface geological structure. In detail, in some complex karst systems, each geophysical method can only give partial information if used in normal way due to a low resolution for deep target. In order to reduce uncertainty and avoid misinterpretations based on a normal use of the electrical resistivity tomography method, a new ERT approach has been applied in karst cave Castello di Lepre (Marsico Nuovo, Basilicata region, Italy) located in the Mezo-Cenozoic carbonate substratum of the Monti della Maddalena ridge (Southern Appenines). In detail, a cross-ERT acquisition system was applied in order to improve the resolution on the electrical resistivity distribution on the surrounding geological structure of a karst cave. The cross-ERT system provides a more uniform model resolution vertically, increasing the resolution of the surface resistivity imaging. The usual cross-ERT is made by electrode setting in two or more borehole in order to acquire the resistivity data distribution. In this work the cross-ERT was made between the electrodes located on surface and along a karst cave, in order to obtain an high resolution of the electrical resistivity distributed between the cave and the surface topography. Finally, the acquired cross-ERT is potentially well-suited for imaging fracture zones since electrical current flow in fractured rock is primarily electrolytic via the secondary porosity associated with the fractures.

  11. Wireless Damage Monitoring of Laminated CFRP Composites using Electrical Resistance Change

    DTIC Science & Technology

    2007-02-25

    Final report Project Title: Wireless Damage Monitoring of Laminated CFRP composites using Electrical Resistance Change Project number...07 NOV 2007 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Wireless Damage Monitoring of Laminated CFRP composites using Electrical...strain measuring sensors into laminated composite structures [12, 13]. This approach, however, may cause reductions in static and fatigue strengths

  12. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  13. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance

    PubMed Central

    Lowe, Kevin; Alvarez, Diego F.; King, Judy A.; Stevens, Troy

    2010-01-01

    Objective Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Design Prospective, randomized, controlled study. Setting Research laboratory. Subjects One hundred twenty male CD40 rats. Interventions To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Measurements Static and dynamic lung mechanics and hemodynamics were measured continuously. Main Results Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased pressure over time sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Conclusions Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure. PMID:20400904

  14. Adropin deficiency is associated with increased adiposity and insulin resistance.

    PubMed

    Ganesh Kumar, K; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P; Halem, Heather H; Culler, Michael D; Mynatt, Randall L; Butler, Andrew A

    2012-07-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoR(a)) in hyperinsulinemic-euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance.

  15. Adropin Deficiency Is Associated With Increased Adiposity and Insulin Resistance

    PubMed Central

    Kumar, K. Ganesh; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P.; Halem, Heather H.; Culler, Michael D.; Mynatt, Randall L.; Butler, Andrew A.

    2014-01-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoRa) in hyperinsulinemic–euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance. PMID:22318315

  16. Muscle fiber size increases following resistance training in multiple sclerosis.

    PubMed

    Dalgas, U; Stenager, E; Jakobsen, J; Petersen, T; Overgaard, K; Ingemann-Hansen, T

    2010-11-01

    To test the hypothesis that lower body progressive resistance training (PRT) leads to an increase of the muscle fiber cross-sectional area (CSA) and a shift in the proportion of fiber types in patients with multiple sclerosis (MS). The present study was a two-arm, randomized controlled trial (RCT). Thirty-eight MS patients (Expanded Disability Status Scale (EDSS) 3-5.5) were randomized to a PRT group (Exercise, n = 19) or a control group (Control, n = 19). The Exercise group performed a biweekly 12-week lower body PRT program [five exercises progressing from 15RM (Repetition Maximum) towards 8RM], whereas the Control group maintained their usual daily activity level during the trial period. Muscle biopsies from vastus lateralis were taken before (pre) and after the trial (post). Thigh volume (TV) was estimated from anthropometric measurements. Isokinetic muscle strength of the knee extensors (KE) and flexors (KF) were evaluated at slow (90(°)/s) and fast (180(°)/s) angular velocities. In the Exercise group the mean CSA of all muscle fibers (7.9 ± 15.4% vs. -3.5 ± 9.0%, p = 0.03) and of type II muscle fibers (14.0 ± 19.4% vs. -2.6 ± 15.5%, p = 0.02) increased in comparison with the Control group. No changes occurred in the proportion of fiber types in the Exercise group. Neither was there any change in total TV. Isokinetic strength at KE180, KF90 and KF180 improved significantly after PRT when compared with the control group (10.2-21.3%, p ≤ 0.02). We conclude that progressive resistance training induces a compensatory increase of muscle fiber size in patients with the central nervous system disorder, multiple sclerosis.

  17. Low-salt diet increases insulin resistance in healthy subjects.

    PubMed

    Garg, Rajesh; Williams, Gordon H; Hurwitz, Shelley; Brown, Nancy J; Hopkins, Paul N; Adler, Gail K

    2011-07-01

    Low-salt (LS) diet activates the renin-angiotensin-aldosterone and sympathetic nervous systems, both of which can increase insulin resistance (IR). We investigated the hypothesis that LS diet is associated with an increase in IR in healthy subjects. Healthy individuals were studied after 7 days of LS diet (urine sodium <20 mmol/d) and 7 days of high-salt (HS) diet (urine sodium >150 mmol/d) in a random order. Insulin resistance was measured after each diet and compared statistically, unadjusted and adjusted for important covariates. One hundred fifty-two healthy men and women, aged 39.1 ± 12.5 years (range, 18-65) and with body mass index of 25.3 ± 4.0 kg/m(2), were included in this study. Mean (SD) homeostasis model assessment index was significantly higher on LS compared with HS diet (2.8 ± 1.6 vs 2.4 ± 1.7, P < .01). Serum aldosterone (21.0 ± 14.3 vs 3.4 ± 1.5 ng/dL, P < .001), 24-hour urine aldosterone (63.0 ± 34.0 vs 9.5 ± 6.5 μg/d, P < .001), and 24-hour urine norepinephrine excretion (78.0 ± 36.7 vs 67.9 ± 39.8 μg/d, P < .05) were higher on LS diet compared with HS diet. Low-salt diet was significantly associated with higher homeostasis model assessment index independent of age, sex, blood pressure, body mass index, serum sodium and potassium, serum angiotensin II, plasma renin activity, serum and urine aldosterone, and urine epinephrine and norepinephrine. Low-salt diet is associated with an increase in IR. The impact of our findings on the pathogenesis of diabetes and cardiovascular disease needs further investigation.

  18. An experimental and computational investigation of electrical resistivity imaging for prediction ahead of tunnel boring machines

    NASA Astrophysics Data System (ADS)

    Schaeffer, Kevin P.

    Tunnel boring machines (TBMs) are routinely used for the excavation of tunnels across a range of ground conditions, from hard rock to soft ground. In complex ground conditions and in urban environments, the TBM susceptible to damage due to uncertainty of what lies ahead of the tunnel face. The research presented here explores the application of electrical resistivity theory for use in the TBM tunneling environment to detect changing conditions ahead of the machine. Electrical resistivity offers a real-time and continuous imaging solution to increase the resolution of information along the tunnel alignment and may even unveil previously unknown geologic or man-made features ahead of the TBM. The studies presented herein, break down the tunneling environment and the electrical system to understand how its fundamental parameters can be isolated and tested, identifying how they influence the ability to predict changes ahead of the tunnel face. A proof-of-concept, scaled experimental model was constructed in order assess the ability of the model to predict a metal pipe (or rod) ahead of face as the TBM excavates through a saturated sand. The model shows that a prediction of up to three tunnel diameters could be achieved, but the unique presence of the pipe (or rod) could not be concluded with certainty. Full scale finite element models were developed in order evaluate the various influences on the ability to detect changing conditions ahead of the face. Results show that TBM/tunnel geometry, TBM type, and electrode geometry can drastically influence prediction ahead of the face by tens of meters. In certain conditions (i.e., small TBM diameter, low cover depth, large material contrasts), changes can be detected over 100 meters in front of the TBM. Various electrode arrays were considered and show that in order to better detect more finite differences (e.g., boulder, lens, pipe), the use of individual cutting tools as electrodes is highly advantageous to increase spatial

  19. Theoretical modeling of electrical resistivity and Seebeck coefficient of bismuth nanowires by considering carrier mean free path limitation

    NASA Astrophysics Data System (ADS)

    Murata, Masayuki; Yamamoto, Atsushi; Hasegawa, Yasuhiro; Komine, Takashi; Endo, Akira

    2017-01-01

    In this study, the electrical resistivity and Seebeck coefficient of bismuth nanowires, several hundred nanometers in diameter, are calculated using the Boltzmann equation in the relaxation time approximation. The three-dimensional density of states and properties of single-crystalline bulk bismuth, such as carrier density, effective mass, and mobility, are used in the calculation without considering the quantum size effect. The relaxation times of the electrons and holes are calculated using Matthiessen's rule considering the carrier collisions at the wire boundary. The temperature, crystal orientation, and diameter dependence of the electrical resistivity and Seebeck coefficient are investigated. The calculation demonstrates that the electrical resistivity increases gradually with decreasing wire diameter, and the temperature coefficient of the electrical resistivity varies from positive to negative at low temperatures for thin wires with diameters less than approximately 500 nm. The diameter dependence of the electrical resistivity varies with the crystal orientation; the increase along the bisectrix axis is larger than that along the binary and trigonal axes. The temperature dependence of the Seebeck coefficient also strongly depends on the crystal orientation. The absolute value of the negative Seebeck coefficient along the bisectrix axis rapidly decreases with decreasing diameter and even changes sign from negative to positive at low temperatures despite the charge neutrality condition, while the Seebeck coefficients along the binary and trigonal axes do not differ significantly from those of single-crystalline bulk bismuth. We conclude that the thermoelectric properties of bismuth nanowires strongly depend not only on the wire diameter but also on the crystal orientation.

  20. Effect of atomic order on the electrical resistivity of CoxFe100-x alloys

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Berger, L.

    1988-04-01

    We measured the electrical resistivity at 4.2 K of a series of CoxFe100-x alloys in the ordered and disordered state. For 30resistivity increases upon ordering as expected when an energy gap occurs at the Fermi level. For 40resistivity decreases upon ordering due to an increase of the electron relaxation time. For two samples with x=38 and x=48 at. % Co we measured ρ(TQ,T) at temperatures T=4.2, 77, and 295 K after quenching the samples in salt water from several temperatures TQ around the ordering temperature To. For the first sample, ρ(TQ,4.2 K) increases for TQincreasing the measuring temperature T, therefore exciting electrons across the energy gap. From the dependence of ρ(TQ,T) on T we estimate the gap width to be around 45 meV. For x=50 at.% Co both ρ(TQ,4.2 K) and ρ(T) decrease upon ordering. Here the gapless behavior of the resistivity is due to the particular topology of the Fermi surface.

  1. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Friedrich, I.; Weidenhof, V.; Njoroge, W.; Franz, P.; Wuttig, M.

    2000-05-01

    Temperature dependent measurements of the electrical resistance have been employed to study structural changes in sputtered Ge2Sb2Te5 films. The pronounced changes of film resistance due to structural changes enable a precise determination of transition temperatures and activation energies. Furthermore the technique is sensitive enough to measure the influence of ultrathin capping layers on the transformation kinetics. With increasing temperature the Ge2Sb2Te5 films undergo a structural change from an amorphous to rock salt structure (Fm3m) around 140 °C and finally a hexagonal structure (p3¯m) around 310 °C. Both structural changes are accompanied by a major drop of resistance. Applying the Kissinger method [Anal. Chem. 29, 1702 (1957)] the activation energy for crystallization to the rock salt structure is determined to be 2.24±0.11 eV, and for the phase transformation to the hexagonal phase to be 3.64±0.19 eV, respectively. A thin capping layer of ZnS-SiO2 leads to an increase of the first transition temperature as well as of the corresponding activation energy (2.7±0.2 eV).

  2. Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam

    NASA Astrophysics Data System (ADS)

    Oh, Seokhoon; Sun, Chang-Guk

    2008-03-01

    Electrical resistivity survey and the geotechnical SPT blow counts ( N value) method were simultaneously analyzed to investigate the stability of a center-core type earth-fill dam against the seepage phenomenon. The coupling of these heterogeneous field methods provided a chance to understand the status of underground material by comparing the geophysical and geotechnical view. The analysis shows that the zones with low resistivity value generally have low N value, which means low stiffness. However, some zones with a high resistivity pattern are not accompanied by an increase of its N value, and are even showing a lower N value. These results imply that one should be careful to directly correlate resistivity value with the real status of the core material of a fill dam. And a highly resistive zone may be in poor status due to the effect of increase of resistivity value as a result of the piping condition. Additional laboratory tests show that there is a deficiency of fine soil particles believed as the clay at the troubled region, which means an increase in resistivity value. Therefore, multiple explorations should be planned to reduce the uncertainty in application of geophysical methods to dam safety evaluation in order to compensate the resistivity information of core material.

  3. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  4. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  5. Modelling the electrical resistivity response to CO2 plumes generated in a laboratory, cylindrical sandbox

    NASA Astrophysics Data System (ADS)

    Kremer, T.; Maineult, A. J.; Binley, A.; Vieira, C.; Zamora, M.

    2012-12-01

    CO2 capture and storage into deep geological formations is one of the main solutions proposed to reduce the concentration of anthropic CO2 in the atmosphere. The monitoring of injection sites is a crucial issue to assess for the long term viability of CO2 storage. With the intention of detecting potential leakages, we are investigating the possibility of using electrical resistivity tomography (ERT) techniques to detect CO2 transfers in the shallow sub-surface. ERT measurements were performed during a CO2 injection in a cylindrical tank filled with Fontainebleau sand and saturated with water. Several measurements protocols were tested. The inversion of the resistances measured with the software R3T (Binley and Kemna (2005)) clearly showed that the CO2 injection induces significant changes in the resistivity distribution of the medium, and that ERT has a promising potential for the detection and survey of CO2 transfers through unconsolidated saturated media. We modeled this experiment using Matlab by building a 3D cellular automaton that describes the CO2 spreading, following the geometric and stochastic approach described by Selker et al. (2007). The CO2 circulation is described as independents, circular and continuous gas channels whose horizontal spread depends on a Gaussian probability law. From the channel distribution we define the corresponding gas concentration distribution and calculate the resistivity of the medium by applying Archie's law for unsaturated conditions. The forward modelling was performed with the software R3T to convert the resistivity distribution into resistances values, each corresponding to one of the electrode arrays used in the experimental measurements. Modelled and measured resistances show a good correlation, except for the electrode arrays located at the top or the bottom of the tank. We improved the precision of the model by considering the effects due to CO2 dissolution in the water which increases the conductivity of the

  6. Sheet resistance determination of electrically symmetric planar four-terminal devices with extended contacts

    NASA Astrophysics Data System (ADS)

    Cornils, Martin; Paul, Oliver

    2008-07-01

    This paper reports an analytic method to determine the sheet resistance Rsq of symmetric planar four-terminal devices based on resistance measurements. Using the technique of conformal mapping it is first shown that any such device is electrically equivalent to a corresponding symmetric unit disk with the same Rsq and invariant under rotations by 90°. Two independent resistances measurable on these devices are expressed analytically as a function of Rsq and of the contact opening angle α. These two resistances fully characterize the electrical properties of such planar conductive devices. A simple procedure to extract both α and Rsq from the resistance values is then presented. These findings are corroborated by the experimental characterization of four-contact devices of ten different geometries fabricated using a commercial complementary metal oxide semiconductor process. From these widely different devices, the sheet resistance of a n-well is extracted to be 1042Ω with a relative uncertainty of only 0.45%.

  7. Resistance and internal electric field in cloud-to-ground lightning channel

    SciTech Connect

    Cen, Jianyong; Yuan, Ping Xue, Simin; Wang, Xuejuan

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  8. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  9. Research on change of phase transformation temperatures and electrical resistance triggered by heat treatment of alloy from Cu-Mn system

    NASA Astrophysics Data System (ADS)

    Karakaya, N.; Aldirmaz, E.

    2016-05-01

    This paper is aimed at studying influence of various heat treatments on transformation temperatures and electrical resistance properties of alloys from binary Cu-Mn system. It was noticed that with an increase in sample's grain size, transformation temperatures also increased. The activation energies of samples were calculated according to Kissinger and Augis-Bennett. Thermogravimetric and differential thermal analysis measurements were used to investigate phase transformations and kinetic parameters. The electrical values of resistance of alloy were investigated at different temperatures. The resistance as a function of quenching temperature showed a decrease. Depending on quenching techniques, Cu-Mn alloy can display different product phases such as parent phase and precipitation.

  10. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  11. The influence of temperature on the electrical resistivity of the cellular polypropylene and the effect of activation energy.

    PubMed

    Vila, Floran; Dhima, Pranvera; Mandija, Florian

    2013-01-01

    In this paper, we determine the surface and volume electrical resistivity of the 50 μm thick cellular polypropylen (VHD50), for the temperature range 393-453 K. For this we use a contemporary methodology, which consist of a voltage measurement across the sample, with a known current flowing through it. This methodology includes a three-electrode system, which allows us to estimate the resistivity of the samples, based on their corresponding total resistances. The electric fields applied for a time interval of 1 min are of the order of 200 kVm (-1). The order of magnitude of surface and volume electrical resistivity is 10(13) Ω and 10(11) Ωm, respectively. For both types of the resistivity, the temperature dependence is an increasing or decreasing exponential function, depending on the type of the activation energy, (its average value for the temperature range mentioned above is 41,20 kJmol (-1)), totally confirmed by the corresponding theoretical interpretation, conditioned by the ionic conduction. The methodology and equipment used, as well as the satisfying accordance with the results, found out directly or indirectly with the consulted literature, confirm the high accuracy of experimental measurements.

  12. Indirect estimation of electrical resistivity by abrasion and physico-mechanical properties of rocks

    NASA Astrophysics Data System (ADS)

    Su, Okan; Momayez, Moe

    2017-08-01

    This paper attempts to estimate electrical resistivity from physico-mechanical and abrasion properties of rocks. For this purpose, the electrical properties of rock samples collected from igneous and metamorphic formations were initially measured in a laboratory by employing the two-electrode method. In addition, physical, mechanical, and abrasion properties of the rocks were determined. Then, an attempt was made to examine the possibility of estimation of electrical resistivity from other rock properties. In this sense, it was found that water content, porosity, and the ratio of Vp/Vs have significant effects on the electrical resistivity. Moreover, we report that indirect tensile strength and static elastic modulus indirectly control the electrical characteristics of rocks, since reasonable correlations exist between them. Nevertheless, the reliability of the effect of rock abrasion on the resistivity could not be confirmed with a high degree of certainty. More data are needed to check its validity. Thus, we conclude in light of statistical analyses that the results of the tests and the relationships are statistically significant. For this reason, the electrical resistivity of the intact rock can be indirectly estimated by accounting for the physico-mechanical properties for a given formation. However, rock abrasion cannot be considered for the same purpose.

  13. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-04-28

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  14. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  15. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  16. Design and performance of low-thermal-resistance, high-electrical-isolation heat intercept connections

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Gonczy, J. D.; Phelan, P. E.; Nicol, T. H.

    Electrical conductors often require the removal of heat produced by normal operation. The heat can be removed by mechanical connection of the conductor to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Fabrication of these connections should be straightforward, and performance must be reliable and independent of operating temperature. The connection method described here involves clamping (by thermal interference fit) an electrically insulating cylinder between an outer metallic ring and an inner metallic disc. Material candidates for insulating cylinders include composites, e.g. epoxy/fibreglass, and ceramics, e.g. alumina. Design factors, including geometry, materials and thermal contact resistance are discussed. The design, construction experience and performance measurements of a heat intercept connection in a high-temperature superconducting lead assembly is presented.

  17. On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale.

    PubMed

    Degueurce, Axelle; Clément, Rémi; Moreau, Sylvain; Peu, Pascal

    2016-10-01

    Agricultural waste is a valuable resource for solid state anaerobic digestion (SSAD) thanks to its high solid content (>15%). Batch mode SSAD with leachate recirculation is particularly appropriate for such substrates. However, for successful degradation, the leachate must be evenly distributed through the substrate to improve its moisture content. To study the distribution of leachate in agricultural waste, electrical resistivity tomography (ERT) was performed. First, laboratory-scale experiments were conducted to check the reliability of this method to monitor infiltration of the leachate throughout the solid. Two representative mixtures of agricultural wastes were prepared: a "winter" mixture, with cattle manure, and a "summer" mixture, with cattle manure, wheat straw and hay. The influence of density and water content on electrical resistivity variations was assessed in the two mixtures. An increase in density was found to lead to a decrease in electrical resistivity: at the initial water content, resistivity decreased from 109.7 to 19.5Ω·m in the summer mixture and from 9.8 to 2.7Ω·m in the "winter" mixture with a respective increased in density of 0.134-0.269, and 0.311-0.577. Similarly, resistivity decreased with an increase in water content: for low densities, resistivity dropped from 109.7 to 7.1Ω·m and 9.8 to 4.0Ω·m with an increase in water content from 64 to 90w% and 74 to 93w% for "summer" and "winter" mixtures respectively. Second, a time-lapse ERT was performed in a farm-scale SSAD plant to monitor leachate infiltration. Results revealed very heterogeneous distribution of the leachate in the waste, with two particularly moist areas around the leachate injection holes. However, ERT was successfully applied in the SSAD plant, and produced a reliable 3D map of leachate infiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electrical Resistivity Tomography Using Wenner β - Schlumberger Configuration for Anomaly Detection in The Soil

    NASA Astrophysics Data System (ADS)

    Pebriyanto, Y.; Dahlan, K.; Sari, Y. W.

    2017-03-01

    In the subsurface exploration investigations there are many methods used, one of them is Electrical Resistivity Tomography (ERT). ERT method is able to measure the electrical properties of the material below the earth surface based on the value of the resistivity of the material by injecting electric current and measure the potential at the surface. Based on the data obtained then will be inputted into RES2DINV software for final processing of 2D image. This research has been created by testing 2 configurations Wenner-Schlumberger and Wenner β - Schlumberger for detecting anomalies in homogeneous soil. A wooden box containing homogeneous soil is used for the test. Three anomalies (wood, stone, and wet soil) were placed in different positions and the variation of resistivity was detected. We found that the Wenner β - Schlumberger configuration results in a smaller resistivity value error than the Wenner-Schlumberger configurations.

  19. Determination of human penile electrical resistance and implication on safety for electrosurgery of penis.

    PubMed

    Tsai, Vincent F S; Chang, Hong-Chiang; Liu, Shih-Ping; Kuo, Yuh-Chen; Chen, Jyh-Horng; Jaw, Fu-Shan; Hsieh, Ju-Ton

    2010-08-01

    Electrosurgery has been a surgical application since the late 19th century. Although many urologists take this daily application for granted, the effects of electrical treatment on penile nerves and vessels have not been well documented. To investigate the electrical characteristics of the penis and erectile tissues and to discover the potential hazards of electrosurgery on the penis. Measurement of the electrical characteristics of three human penises in order to create models to analyze the effect of electricity on penile nerves and vessels. Electrical resistivity of the penile shaft, electrical current density, and electric field strength on penile nerves and vessels, proportion of generated heat on the penis and electrical current density of the electrosurgery return electrode. Electrical resistivity (ρ) of the penile shaft is 127.14 Ω · cm at 500 kHz. Electrical current density (J) of the penis shaft is 71.06 mA/cm(2) , nerve (60.23 mA/cm(2) ), vessel (67.93 mA/cm(2) ), and return electrode (2.11 mA/cm(2) ). Electrical field strength (E) of the whole penis shaft is 9.03 volt/cm. The proportion of generated heat on the penis is four times as much as on other body parts of the circuit. Potential and subclinical injury to erectile tissue caused by electrosurgery on the penis cannot be underestimated. The injury mechanism can be attributed to a thermal (electrical current) effect and a nonthermal (mainly electrical field) effect. Ways to avoid the electrosurgical injury are: using less power (W)/electrical field and less time, biopolar electrosurgery confining the injured area, ligation to achieve hemostasis, and new laser technologies. © 2010 International Society for Sexual Medicine.

  20. Electrical resistance of individual defects at a topological insulator surface.

    PubMed

    Lüpke, Felix; Eschbach, Markus; Heider, Tristan; Lanius, Martin; Schüffelgen, Peter; Rosenbach, Daniel; von den Driesch, Nils; Cherepanov, Vasily; Mussler, Gregor; Plucinski, Lukasz; Grützmacher, Detlev; Schneider, Claus M; Voigtländer, Bert

    2017-06-12

    Three-dimensional topological insulators host surface states with linear dispersion, which manifest as a Dirac cone. Nanoscale transport measurements provide direct access to the transport properties of the Dirac cone in real space and allow the detailed investigation of charge carrier scattering. Here we use scanning tunnelling potentiometry to analyse the resistance of different kinds of defects at the surface of a (Bi0.53Sb0.47)2Te3 topological insulator thin film. We find the largest localized voltage drop to be located at domain boundaries in the topological insulator film, with a resistivity about four times higher than that of a step edge. Furthermore, we resolve resistivity dipoles located around nanoscale voids in the sample surface. The influence of such defects on the resistance of the topological surface state is analysed by means of a resistor network model. The effect resulting from the voids is found to be small compared with the other defects.

  1. Monitoring Soil Hydraulic and Thermal Properties using Coupled Inversion of Time-lapse Temperature and Electrical Resistance Data

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Kowalsky, M. B.; Tokunaga, T. K.; Faybishenko, B.; Long, P.

    2014-12-01

    Evaluation of spatiotemporal dynamics of heat transport and water flow in terrestrial environments is essential for understanding hydrological and biogeochemical processes. Electrical resistance tomography has been increasingly well used for monitoring subsurface hydrological processes and estimating soil hydraulic properties through coupled hydrogeophysical inversion. However, electrical resistivity depends on a variety of factors such as temperature, which may limit the accuracy of hydrogeophysical inversion. The main objective of this study is to develop a hydrogeophysical inversion framework to enable the incorporation of nonisothermal processes into the hydrogeophysical inversion procedure, and use of this procedure to investigate the effect of hydrological controls on biogeochemical cycles in terrestrial environments. We developed the coupled hydro-thermal-geophysical inversion approach, using the iTOUGH2 framework. In this framework, the heat transport and water flow are simultaneously modeled with TOUGH2 code, which effectively accounts for the multiphase, multi-component and nonisothermal flow in porous media. A flexible approach is used to incorporate petrophysical relationships and uncertainty to link soil moisture and temperature with the electrical resistivity. The developed approach was applied to both synthetic and field case studies. At the DOE subsurface biogeochemistry field site located near Rifle CO, seasonal snowmelt delivers a hydrological pulse to the system, which in turn influences the cycles of nitrogen, carbon and other critical elements. Using the new approach, we carried out numerical inversion of electrical resistance data collected along a 100 m transect at the Rifle site, and compared the results with field investigations of the soil, vadose zone, including the capillary fringe, and groundwater, as well as temperature and tensiometer measurements. Preliminary results show the importance of accounting for nonisothermal conditions to

  2. Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia.

    NASA Astrophysics Data System (ADS)

    Kvon, Dina; Vladimir, Shevnin; Boris, Nikulin; Albert, Ryjov; Alexey, Skobelev

    2013-04-01

    Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia. Kvon D. A.(1)*, Shevnin V.A.(1), Nikulin B. A.(1), Ryjov A. A.(2), Skobelev A. O.(1) (1)Geophysical dept., Faculty of Geology, Moscow state university; (2)VSEGINGEO Due to acute shortage of fresh drinking water near Anapa town (not far from the Black Sea), geophysical investigations were performed for searching and mapping aquifers in the area, where, according to rare wells exist probability to find fresh underground water. Geophysical explorations were carried out by Electrical resistivity tomography (ERT) method and water resistivity measurements. The resistivity of fresh groundwater is 15 Ohm.m, its salinity is 0.4 g/l. The structure of the area has been obtained by previous geological and hydrogeological studies and boreholes drilling. Geological structure of the area consists of two parts: the upper part of cross-section presented by loose lacustrine-alluvial sediments of Upper Pleistocene - Holocene, the lower part presented by hard rocs of carbonate-flysch formation of Upper Cretaceous age consisted of marl and limestone. Prospective areas to find underground water are: water-bearing horizon of upper Pleistocene-Holocene sediments, which is presented by gravel layer (base layer of modern lacustrine-alluvial sediments), and fractured zones in hard rocks of the carbonate-flysch formation of Maastricht age (Supseh formation). Analysis of rocks' resistivity obtained from Electrical resistivity tomography followed by calculation of rock resistivity on known petrophysical parameters (in Petrowin program created by A. A. Ryjov) [Shevnin et al., 2007]. The calculation showed that there is low clay content in carbonate rocks of the studied area, and the rock is limestone, not marl. Measurement of rock samples with X-ray radiometric method showed high calcium content (30-35%) or 75-87.5% limestone. This fact shows that flysch formation of the area is mainly

  3. Effect of fast neutrons on the electric resistivity of porcelain for application in fast-neutron dosimetry

    SciTech Connect

    Fadel, M.A.; Abdel-Fattah, W.I.; Abdulla, A.A.; Kadum, A.A.

    1982-11-01

    The electric resistivity (rho) of quartz and alumina porcelain was measured before and after irradiation with different fluences (phi) of fission neutrons in the range of 10/sup 7/-10/sup 12/ n/cm/sup 2/ and at different temperatures in the range of 20-90/sup 0/C. The results showed that the activation energy (..delta..E) for quartz porcelain decreased progressively with the increase of phi, while it remained approximately constant for alumina porcelain. Moreover, the electric resistivity of alumina porcelain decreased with the increase of phi. However, there were no measureable effects of /sup 60/Co ..gamma.. doses up to 0.6 Mrad on the electric resistivities of the samples. An empirical formula for calculating phi from the measured value of ..delta..E for quartz porcelain was achieved. A semiempirical formula for calculating phi for the resistivity data for the alumina porcelain is given. The effect of neutron energies on the induced changes in (rho) for the alumina porcelain was investigated. Additionally, the effect of storage at 50/sup 0/C for periods up to 3 weeks on these changes were also measured.

  4. Electrical resistivity near Pomeranchuk instability in two dimensions.

    PubMed

    Dell'Anna, Luca; Metzner, Walter

    2007-03-30

    We analyze the dc charge transport in the quantum critical regime near a d-wave Pomeranchuk instability in two dimensions. The transport decay rate is linear in temperature everywhere on the Fermi surface except at cold spots on the Brillouin zone diagonal. For pure systems, this leads to a dc resistivity proportional to T(3/2) in the low-temperature limit. In the presence of impurities the residual impurity resistance at T=0 is approached linearly at low temperatures.

  5. Special Report on Electrical Standards: New Internationally Adopted Reference Standards of Voltage and Resistance

    PubMed Central

    Taylor, B. N.

    1989-01-01

    This report provides the background for and summarizes the main results of the 18th meeting of the Consultative Committee on Electricity (CCE) of the International Committee of Weights and Measures (CIPM) held in September 1988. Also included are the most important implications of these results. The principal recommendations originating from the meeting, which were subsequently adopted by the CIPM, establish new international reference standards of voltage and resistance based on the Josephson effect and the quantum Hall effect, respectively. The new standards, which are to come into effect starting January 1, 1990, will result in improved uniformity of electrical measurements worldwide and their consistency with the International System of Units or SI. To implement the CIPM recommendations in the U.S. requires that, on January 1, 1990, the value of the U.S. representation of the volt be increased by about 9.26 parts per million (ppm) and the value of the U.S. representation of the ohm be increased by about 1.69 ppm. The resulting increases in the U.S. representations of the ampere and watt will be about 7.57 ppm and 16.84 ppm, respectively. The CCE also recommended a particular method, affirmed by the CIPM, of reporting calibration results obtained with the new reference standards that is to be used by all national standards laboratories. PMID:28053403

  6. Special Report on Electrical Standards: New Internationally Adopted Reference Standards of Voltage and Resistance.

    PubMed

    Taylor, B N

    1989-01-01

    This report provides the background for and summarizes the main results of the 18th meeting of the Consultative Committee on Electricity (CCE) of the International Committee of Weights and Measures (CIPM) held in September 1988. Also included are the most important implications of these results. The principal recommendations originating from the meeting, which were subsequently adopted by the CIPM, establish new international reference standards of voltage and resistance based on the Josephson effect and the quantum Hall effect, respectively. The new standards, which are to come into effect starting January 1, 1990, will result in improved uniformity of electrical measurements worldwide and their consistency with the International System of Units or SI. To implement the CIPM recommendations in the U.S. requires that, on January 1, 1990, the value of the U.S. representation of the volt be increased by about 9.26 parts per million (ppm) and the value of the U.S. representation of the ohm be increased by about 1.69 ppm. The resulting increases in the U.S. representations of the ampere and watt will be about 7.57 ppm and 16.84 ppm, respectively. The CCE also recommended a particular method, affirmed by the CIPM, of reporting calibration results obtained with the new reference standards that is to be used by all national standards laboratories.

  7. Monitoring High Velocity Salt Tracer via 4D Electrical Resistivity Tomography - Possibility for Salt Tracer Tomography

    NASA Astrophysics Data System (ADS)

    Doro, K. O.; Cirpka, O. A.; Patzelt, A.; Leven, C.

    2014-12-01

    Hydrogeological testing in a tomographic sequence as shown by the use of hydraulic tomography, allows an improvement of the spatial resolution of subsurface parameters. In this regard, recent studies show increasing interest in tracer tomography which involves sequential and spatially separated tracer injections and the measurement of their corresponding tracer breakthrough at different locations and depths. Such concentration measurements however require large experimental efforts and can be simplified by geophysical tracer monitoring techniques such as electrical resistivity. In this study, we present the use of 4-D, cross-hole electrical resistivity tomography (ERT) for monitoring salt tracer experiments in high velocity flow fields. For our study, we utilized a set up that enables the conduction of salt tracer experiments with complete recovery within 84 hours over a transport distance of 16 m. This allows the repetition of the experiments with different injection depths for a tomographic salt tracer testing. For ERT monitoring, we designed modular borehole electrodes for repeated usage in a flexible manner. We also assess the use of a high speed resistivity data acquisition mode for field scale tracer monitoring ensuring high spatial and temporal resolution without sacrificing data accuracy. We applied our approach at the Lauswiesen test site, Tübingen, Germany. In our 10 m × 10 m tracer monitoring domain with 16 borehole electrodes, we acquired 4650 data points in less than 18 minutes for each monitoring cycle. Inversion results show that the tracer could be successfully imaged using this approach. The results show that repeated salt tracer tests can be efficiently monitored at a high resolution with ERT which gives the possibility for salt tracer tomography at field scale. Our results also provide a data base for extending current hydrogeophysical inversion approaches to field scale data.

  8. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  9. Electrical resistance tomography for monitoring the infiltration of water into a pavement section

    SciTech Connect

    Buettner, M.; Daily, B.; Ramirez, A.

    1997-07-03

    Electrical resistance tomography (ERT) was used to follow the infiltration of water into pavement section at the UC Berkeley Richmond Field Station. A volume of pavement 1m square and 1.29 m deep was sampled by an ERT array consisting of electrodes in 9 drilled holes plus 8 surface electrodes. The data were collected using a computer controlled data acquisition system capable of collecting a full data set in under 1 hour, allowing for nearly real time sampling of the infiltration. The infiltration was conducted in two phases. During the first phase, water was introduced into the asphalt-concrete (AC) layers at a slow rate of about 8 ml per hour for a period of about 6 days. In the second phase, water was introduced into the asphalt-treated-permeable base (ATPB) layer at a more rapid rate of about 100 ml/h for about 2 days. The ERT images show that water introduced into the upper AC layers shows up as a decrease in resistivity which grows with time. The images also appear to show that when water moves into the layers below the ATPB, the resistivity increases; an unexpected result. There are some indications that the water moved laterally as well as down into the deeper ATPB and the aggregate base. The images also show that when water is introduced directly into the ATPB and aggregate layer, the water moves into the the underlying materials much more quickly.

  10. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    PubMed

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of electrical stimulation-induced resistance exercise on mitochondrial fission and fusion proteins in rat skeletal muscle.

    PubMed

    Kitaoka, Yu; Ogasawara, Riki; Tamura, Yuki; Fujita, Satoshi; Hatta, Hideo

    2015-11-01

    It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The purpose of this study was to investigate the effect of acute and chronic resistance exercise, which induces muscle hypertrophy, on the expression of proteins related to mitochondrial dynamics in rat skeletal muscle. Resistance exercise consisted of maximum isometric contraction, which was induced by percutaneous electrical stimulation of the gastrocnemius muscle. Our results revealed no change in levels of proteins that regulate mitochondrial fission (Fis1 and Drp1) or fusion (Opa1, Mfn1, and Mfn2) over the 24-h period following acute resistance exercise. Phosphorylation of Drp1 at Ser616 was increased immediately after exercise (P < 0.01). Four weeks of resistance training (3 times/week) increased Mfn1 (P < 0.01), Mfn2 (P < 0.05), and Opa1 (P < 0.01) protein levels without altering mitochondrial oxidative phosphorylation proteins. These observations suggest that resistance exercise has little effect on mitochondrial biogenesis but alters the expression of proteins involved in mitochondrial fusion and fission, which may contribute to mitochondrial quality control and improved mitochondrial function.

  12. The Concept of Electrical Resistance: How Cassirer's Philosophy, and the Early Developments of Electric Circuit Theory, Allow a Better Understanding of Students' Learning Difficulties.

    ERIC Educational Resources Information Center

    Viard, Jerome; Khantine-Langlois, Francoise

    2001-01-01

    Investigates the difficulties students are confronted with when facing the concept of electrical resistance. Discusses the nature of the electrical resistance concept in light of Cassirer philosophy and its origin in the 19th century. Presents an analysis of the way this concept is taught in French high schools. (SAH)

  13. Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks

    SciTech Connect

    Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

    2003-01-14

    Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  14. Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling

    SciTech Connect

    Detwiler, R L; Roberts, J J

    2003-06-23

    The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  15. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    NASA Astrophysics Data System (ADS)

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.

    2016-02-01

    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (Si) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  16. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  17. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    NASA Astrophysics Data System (ADS)

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.

    2017-09-01

    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (S i) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  18. Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples

    NASA Astrophysics Data System (ADS)

    Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.

    2016-12-01

    Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.

  19. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    PubMed

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  20. Optimization of Iron Cobalt-based Nanocomposite Alloys for High Induction and Increased Resistivity

    NASA Astrophysics Data System (ADS)

    Shen, Shen

    FeCo-based nanocrystalline soft magnetic materials are promising to provide high saturation induction, high Curie temperature and excellent soft magnetic properties for electric vehicle and high frequency power conversion applications. The increasing operation frequency of various inductive applications requires nanocomposite alloys with higher resistivity to suppress power losses. In this thesis, the method of measuring as-cast and annealed resistivity of melt-spun ribbon alloys by obtaining alloy densities was established. Archimedes method with deionized water as a medium was used to determine the density of crystalline alloys. A gas pycnometer using dry Helium gas as the medium exhibited improved accuracy in measuring the density of amorphous ribbon alloys compared to the conventional Archimedes method using a liquid medium. This method was applied to previously developed HITPERM (FeCoZrBCu) and HTX002 (FeCoBSiCu) type of alloys as well as carbon-containing (FeCoBCCu) alloys to guide composition adjustments pursuing for improved magnetic properties. In the HITPERM type of alloys, the composition dependence of as-cast resistivity was studied and simulated by Mott's two-current model with a rigid-band assumption which provided guidance for further adjusting alloy composition looking for higher resistivity. An alloy designed with the Fe:Co ratio for maximum as-cast resistivity and Hf as glass former exhibits low power loss values being approximately 1/4 of those measured on the alloy with the original HITPERM composition for a range of frequencies. The Al and Si additions were found effective to achieve a high resistivity of 151.9 muO·cm in the as-cast alloys but also lead to embrittlement of melt-spun ribbons. Composition adjustments on the HTX002 type of alloys which are castable in air and available for larger-scale production were also explored. Increasing the ferromagnetic late transition metal content by reducing glass formers was found effective to achieve

  1. Electrical resistance tests of glass mat type separators

    SciTech Connect

    Lind, A.L.

    1997-12-01

    Resistance measurement of glass mat separators for VRLA batteries is necessary for proper design selection. The equipment described makes sample comparison possible under compression in either flooded or starved condition. The Palico Instrument Labs method operates on the principle of measuring the change in resistance of test cell as electrolyte level is changed, first with and then without the separator sample. Since the separator can only be removed by removing the Model 903 Carrier and then reinserting after separator removal, stability to test readings and accurate measurement of electrolyte level are essential. Measurements are made with a reversing polarity DC current in all of the Palico resistance test equipment which closely match conditions found in the final battery.

  2. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  3. Physical Modelling on Detecting Buried Object Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Nizam, Z. M.; Azhar, A. T. S.; Aziman, M.; Shaylinda, M. Z. N.

    2016-07-01

    This study focused on the evaluation of electrical resistivity method (ERM) for buried object detection and its relationship due to the different stiffness of material. In the past, the conventional method to detect the buried structure was face some limitation due to the time and cost. For example, previous approach related to the trial and error excavation has always expose to some risky outcome due to the uncertainties of the buried object location. Hence, this study introduced an alternative technique with particular reference to resistivity method to detect and evaluate the buried object with different strength of stiffness. The experiment was performed based on field miniature model (small scale study) using soil trial embankment made by lateritic soil and various concrete cube strengths (grade 20, 25 and 30) representing buried object with different conditions. 2D electrical resistivity test (electrical resistivity imaging) was perform using ABEM Terrameter SAS4000 during the data acquisition while the raw data was process using RES2DINV software. It was found that the electrical resistivity method was able to detect the buried concrete structures targeted based on the contrast of the electrical resistivity image produced. Moreover, three different strength of concrete cube were able to be differentiated based on the electrical resistivity values (ERV) obtained. This study found that the ERV of concrete cube for grade 20, 25 and 30 were 170 Ωm, 227 Ωm and 503 Ωm, respectively. Hence, this study shows that the ERV has a strong relationship with different stiffness of material thus applicable to be a useful alternative tool in underground structure detection.

  4. Role of electrical resistance of electrodes in modeling of discharging and charging of flooded lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Gandhi, K. S.

    2015-03-01

    Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf [1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf [1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. [2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries.

  5. Low-intensity resistance training after high-intensity resistance training can prevent the increase of central arterial stiffness.

    PubMed

    Okamoto, T; Masuhara, M; Ikuta, K

    2013-05-01

    Although high-intensity resistance training increases arterial stiffness, low-intensity resistance training reduces arterial stiffness. The present study investigates the effect of low-intensity resistance training before and after high-intensity resistance training on arterial stiffness. 30 young healthy subjects were randomly assigned to a group that performed low-intensity resistance training before high-intensity resistance training (BLRT, n=10), a group that performed low-intensity resistance training after high-intensity resistance training (ALRT, n=10) and a sedentary control group (n=10). The BLRT and ALRT groups performed resistance training at 80% and 50% of one repetition maximum twice each week for 10 wk. Arterial stiffness was measured using carotid-femoral and femoral-ankle pulse wave velocity (PWV). One-repetition maximum strength in the both ALRT and BLRT significantly increased after the intervention (P<0.05 to P<0.01). Both carotid-femoral PWV and femoral-ankle PWV after combined training in the ALRT group did not change from before training. In contrast, carotid-femoral PWV after combined training in the BLRT group increased from before training (P <0.05). Femoral-ankle PWV after combined training in the both BLRT and ALRT groups did not change from before training. These results suggest that although arterial stiffness is increased by low-intensity resistance training before high-intensity resistance training, performing low-intensity resistance training thereafter can prevent the increase of arterial stiffness.

  6. Focusing Sources on Induced Polarization and Electrical Resistivity Method Applied to Soil Pollution Problems

    NASA Astrophysics Data System (ADS)

    Tejero, A.; Lopez, A.; Induced Polarization Team

    2013-05-01

    In recent years the problems of soil contamination have been increasing and geophysical methods, particularly electrical resistivity tomography (ERT) have struggled to find and monitor cases of contamination. Moreover, Induced Polarization (IP) has shown promise in mapping contaminant plumes, although both techniques (ERT and IP) have problems like noise, inductive coupling, effects of electrodes, etc. limiting the precision and accuracy of the data. To overcome these problems, this paper introduces a novel technique of focusing sources. This technique reduces the effects of adjacent vertical formations and contacts due to the flowing of current in a vertical way at the zone where the electrode potentials have been deployed. This fact allows obtaining cleaner data of ERT and IP. In order to introduce the proposed technique a vertical contact synthetic model is studied and after to a cultivar area in Hidalgo State, México which presents different types of

  7. INORGANIC PLUME DELINEATION USING SURFACE HIGH RESOLUTION ELECTRICAL RESISTIVITY AT THE BC CRIBS & TRENCHES SITE HANFORD

    SciTech Connect

    BENECKE, M.W.

    2007-05-29

    A surface resistivity survey was conducted on the Hanford Site over a waste disposal trench that received a large volume of liquid inorganic waste. The objective of the survey was to map the extent of the plume that resulted from the disposal activities approximately 50 years earlier. The survey included six resistivity transects of at least 200m, where each transect provided two-dimensional profile information of subsurface electrical properties. The results of the survey indicated that a low resistivity plume resides at a depth of approximately 25-44 m below ground surface. The target depth was calibrated with borehole data of pore-water electrical conductivity. Due to the high correlation of the pore-water electrical conductivity to nitrate concentration and the high correlation of measured apparent resistivity to pore-water electrical conductivity, inferences were made that proposed the spatial distribution of the apparent resistivity was due to the distribution of nitrate. Therefore, apparent resistivities were related to nitrate, which was subsequently rendered in three dimensions to show that the nitrate likely did not reach the water table and the bounds of the highest concentrations are directly beneath the collection of waste sites.

  8. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    PubMed

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G

    2016-03-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  9. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  10. Study of Electrical Resistivity on the Location and Identification of Contamination.

    DTIC Science & Technology

    1985-01-01

    Pertof te fS.bueuAw the wof Master of Science Approvd by: %Z46L1 iKAiz/4f, -"-°. ., .- .% STUDY OF ELECTRICAL RESISTIVITY ON THE LOCATION AND...Education and Research UNIVERSITY OF CINCINNATI in partial fulfillment of the requirement for the degree of Master of Science 1985 by Brian D. McCarty...IF . -9- - - ~ V LIST OF FIGURES Figures 11-3 -Relationship of Resistance to Resistivity Diagram 11-5 - Earth Resistivity Diagram 11-7 -Wenner

  11. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides

    NASA Astrophysics Data System (ADS)

    Gance, J.; Malet, J.-P.; Supper, R.; Sailhac, P.; Ottowitz, D.; Jochum, B.

    2016-03-01

    Landslides developed on clay-rich slopes are controlled by the soil water regime and the groundwater circulation. Spatially-distributed and high frequency observations of these hydrological processes are important for improving our understanding and prediction of landslide triggering. This work presents observed changes in electrical resistivity monitored at the Super-Sauze clayey landslide with the GEOMON 4D resistivity instrument installed permanently on-site for a period of one year. A methodological framework for processing the raw measurement is proposed. It includes the filtering of the resistivity dataset, the correction of the effects of non-hydrological factors (sensitivity of the device, sensitivity to soil temperature and fluid conductivity, presence of fissures in the topsoil) on the filtered resistivity values. The interpretation is based on a statistical analysis to define possible relationships between the rainfall characteristics, the soil hydrological observations and the soil electrical resistivity response. During the monitoring period, no significant relationships between the electrical response and the measured hydrological parameters are evidenced. We discuss the limitations of the method due to the effect of heat exchange between the groundwater, the vadose zone water and the rainwater that hides the variations of resistivity due to variations of the soil water content. We demonstrate that despite the absence of hydrogeophysical information for the vadose zone, the sensitivity of electrical resistivity monitoring to temperature variations allows imaging water fluxes in the saturated zone and highlighting the existence of matrix and preferential flows that does not occur at the same time and for the same duration. We conclude on the necessity to combine electrical resistivity measurements with distributed soil temperature measurements.

  12. Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods

    NASA Astrophysics Data System (ADS)

    Aborn, L.; Jacob, R. W.; Mucelli, A.

    2016-12-01

    Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most

  13. In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO₂.

    PubMed

    Kamaladasa, Ranga J; Sharma, Abhishek A; Lai, Yu-Ting; Chen, Wenhao; Salvador, Paul A; Bain, James A; Skowronski, Marek; Picard, Yoosuf N

    2015-02-01

    In this study, in situ electrical biasing was combined with transmission electron microscopy (TEM) in order to study the formation and evolution of Wadsley defects and Magnéli phases during electrical biasing and resistive switching in titanium dioxide (TiO2). Resistive switching devices were fabricated from single-crystal rutile TiO2 substrates through focused ion beam milling and lift-out techniques. Defect evolution and phase transformations in rutile TiO2 were monitored by diffraction contrast imaging inside the TEM during electrical biasing. Reversible bipolar resistive switching behavior was observed in these single-crystal TiO2 devices. Biased induced reduction reactions created increased oxygen vacancy concentrations to such an extent that shear faults (Wadsley defects) and oxygen-deficient phases (Magnéli phases) formed over large volumes within the TiO2 TEM specimen. Nevertheless, the observed reversible formation/dissociation of Wadsley defects does not appear to correlate to resistive switching phenomena at these length scales. These defect zones were found to reversibly reconfigure in a manner consistent with charged oxygen vacancy migration responding to the applied bias polarity.

  14. Electrical resistivity surveys in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    McDougal, Robert R.

    2006-01-01

    Prospect Gulch is a major source of naturally occurring and mining related metals to Cement Creek, a tributary of the upper Animas River in southwestern Colorado. Efforts to improve water quality in the watershed have focused on Prospect Gulch because many of its abandoned mines and are located on federal lands. Information on sources and pathways of metals, and related ground-water flow, will be useful to help prioritize and develop remediation strategies. It has been shown that the occurrence of sulfate, aluminum, iron, zinc and other metals associated with historical mining and the natural weathering of pyritic rock is substantial. In this study, direct current resistivity surveys were conducted to determine the subsurface resistivity distribution and to identify faults and fractures that may act as ground-water conduits or barriers to flow. Five lines of resistivity data were collected in the vicinity of Prospect Gulch, and cross-section profiles were constructed from the field data using a two-dimensional inversion algorithm. The conductive anomalies in the profiles are most likely caused by wet or saturated rocks and sediments, clay rich deposits, or high TDS ground water. Resistive anomalies are likely bedrock, dry surficial and sub-surface deposits, or deposits of ferricrete.

  15. Studying ground water under Delmarva coastal bays using electrical resistivity

    USGS Publications Warehouse

    Manheim, Frank T.; Krantz, David E.; Bratton, John F.

    2004-01-01

    Fresh ground water is widely distributed in subsurface sediments below the coastal bays of the Delmarva Peninsula (Delaware, Maryland, and Virginia). These conditions were revealed by nearly 300 km of streamer resistivity surveys, utilizing a towed multichannel cable system. Zones of high resistivity displayed by inversion modeling were confirmed by vibradrilling investigations to correspond to fresh ground water occurrences. Fresh water lenses extended from a few hundred meters up to 2 km from shore. Along the western margins of coastal bays in areas associated with fine-grained surficial sediments, high-resistivity layers were widespread and were especially pronounced near tidal creeks. Fresh ground water layers were less common along the eastern barrier-bar margins of the bays, where sediments were typically sandy. Mid-bay areas in Chincoteague Bay, Maryland, did not show evidence of fresh water. Indian River Bay, Delaware, showed complex subsurface salinity relationships, including an area with possible hypersaline brines. The new streamer resistivity system paired with vibradrilling in these investigations provides a powerful approach to recovering information required for extension of hydrologic modeling of shallow coastal aquifer systems into offshore areas.

  16. Wear resistance and electrical property of infrared processed copper/tungsten carbide composites

    NASA Astrophysics Data System (ADS)

    Deshpande, Pranav K.

    Copper matrix composites with 53 vol% of WC particle reinforcements have been prepared with an infrared infiltration technique. The process produced fully dense composite owing to excellent wetting between copper and WC. The microhardness values of completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. The electric conductivity of these composites, as determined by a four-point-probe method, is similar to commercially available Cu/W composites containing 52 vol% of tungsten. The wear behavior of Cu/WC composites has been determined with a pin-on-disk technique against a sintered SiC abrasive disk. The wear rate as a function of a normal wear stress and composite porosity was investigated. Results have shown that up to a normal load of around 9 N (or 0.55 MPa pressure), the wear rate of fully dense Cu/WC composites increases linearly with the applied pressure. Results also show that porosity in the Cu/WC composite increases wear. A model of wear, taking into account various wear mechanisms, was developed. This model successfully predicts the wear behavior of dense Cu/WC composites. Owing to its significantly better wear resistance, as compared to Cu/W composites, the composition of Cu/53 vol% WC composite was varied by an innovative technique to improve the electrical conductivity of these composites without much compensation on its wear resistance. The technique of composition variation also helped in overcoming the shortcomings of pressure-less infiltration technique.

  17. Inter-electrode tissue resistance is not affected by tissue oedema when electrically stimulating the lower limb of sepsis patients.

    PubMed

    Durfee, William K; Young, Joseph R; Ginz, Hans F

    2014-05-01

    ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.

  18. Study of frequency and temperature dependent electrical resistivity in heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Baral, P. C.

    2017-07-01

    This paper focuses on the interplay of Kondo effect and magnetic ordering through a microscopic theory of the frequency and temperature dependent electrical resistivity as well as the dielectric function in heavy fermion systems. It is then analysed in Kondo lattice model in addition to Heisenberg-type interaction between localized f-electrons. The model Hamiltonian is solved by using mean-field approximation (MFA). The study of electrical resistivity is presented by considering phonon interaction to bare f-electrons, c-electrons and to the hybridization between c- and f-electrons and phonon Hamiltonian in harmonic approximation. An attempt has been made to calculate the temperature and frequency dependent electrical resistivity to study the peaks at TK (Kondo temperature) and T_{{ Cor}} (correlation temperature). The evolution of peaks exhibit change in slopes. These findings are compared to the experimental data.

  19. Study of frequency and temperature dependent electrical resistivity in heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Baral, P. C.

    2017-02-01

    This paper focuses on the interplay of Kondo effect and magnetic ordering through a microscopic theory of the frequency and temperature dependent electrical resistivity as well as the dielectric function in heavy fermion systems. It is then analysed in Kondo lattice model in addition to Heisenberg-type interaction between localized f- electrons. The model Hamiltonian is solved by using mean-field approximation (MFA). The study of electrical resistivity is presented by considering phonon interaction to bare f -electrons, c -electrons and to the hybridization between c - and f -electrons and phonon Hamiltonian in harmonic approximation. An attempt has been made to calculate the temperature and frequency dependent electrical resistivity to study the peaks at TK (Kondo temperature) and T_{{ Cor}} (correlation temperature). The evolution of peaks exhibit change in slopes. These findings are compared to the experimental data.

  20. Fabrication of intermetallic coatings for electrical and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1994-10-01

    Several intermetallic films were fabricated to high-temperature alloys (V-alloys and 304 and 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain-growth behavior at 1000{degrees}C for the V-5Cr-5Ti was investigated to determine the stability of alloy substrate during coating formation by chemical vapor deposition (CVD) or metallic vapor processes at 800-850{degrees}C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and X-ray diffraction analysis and tested for electrical resistivity and corrosion resistance. The results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  1. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  2. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Song, Wujun; Wang, Yanming; Shao, Zhenlu

    2017-01-01

    In order to improve the accuracy of fire area delineation in coalfield with electrical prospecting, the categorical geoelectric models of coal fires are established according to geological and mining conditions. The room-and-pillar coal mine fires are divided into three types which are coal seam fire, goaf fire and subsidence area fire, respectively, and forward electrical simulations and inversion analysis of each type of coal fire are implemented. Simulation results show that the resistance anomalies of goaf fires exist around one and a half to two times higher than background field, in contrast, coal seam and subsidence area fires performance low resistivity response which are roughly half to two-third of background field resistivity, respectively. Identification of different fire types and delineation of coal fire areas are further presented. The inversion results which are validated by borehole survey prove that the presented method could eliminate the omission of coal fires with high resistance anomaly and provide a novel reference for fire extinguishing in the future.

  3. Electric charging of dust particles: Impact on the variations of electric field and electric resistivity of air

    NASA Astrophysics Data System (ADS)

    Seran, Elena; Zakharov, Alexander; Godefroy, Michel; Dolnikov, Gennady

    Abstract. Short Dipole Antenna is proposed in the frame of the Dust Package onboard the ROSCOSMOS- ESA ExoMars Lander. The SDA is developed to measure the electric field from few μV m-1 to few tens kV m-1 in the frequency range form DC to few kHz. The SDA concept and the model of its electric coupling with the air were tested and justified in the Nevada desert, in the conditions of dust devils generation. We illustrate our presentation with few examples of earth's observations, present simple models that explain the measured electric field and its correlation with the electric charge of the dust/sand particles, their density and motion. Comparative analysis between Earth and Mars cases is discussed.

  4. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    PubMed

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  5. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2017-01-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  6. Estimating the hydration status in nephrotic patients by leg electrical resistivity measuring method.

    PubMed

    Jiang, Feng; Bo, Yuhong; Cui, Taigen; Zhou, Yilun; Li, Zhongxin; Ma, Lijie; Bi, Zengqi

    2010-06-01

    For years, bioelectrical impedance analysis has been widely used to evaluate the hydration status in dialysis patients. However, its value in assessment and controlling the hydration status in non-dialysis patients with kidney disease, such as nephrotic syndrome, is little mentioned. Because a simple and accurate method to evaluate the hydration status of nephrotic patients is not available, the aim of the present study was to assess the value of leg electrical resistivity measurement in controlling the hydration status of nephrotic patients. The study investigated 46 nephrotic patients with a mean age of 41.65 +/- 17.15 years, 47.8% of whom were female. The patients were divided into remission and relapse groups according to their serum albumin concentration and oedema. Four hundred and twenty-seven healthy persons were studied as normal control. Their hydration status estimated by leg electrical resistivity was studied. There was significant negative correlation between leg electrical resistivity and percentage of extracellular fluid (ECF) measured by the bromide dilution method. The percentage of ECF estimated by the leg electrical resistivity in the relapse group was significantly larger than that of the remission group, but it was approximately the same in the remission group as in the normal control. For nephrotic patients in the relapse group, after they ahcieved remission, their percentage of ECF estimated by the leg electrical resistivity was significantly less than that before treatment, and was close to that of the normal control. Leg electrical resistivity measurement is a simple, non-invasive and valuable method for controlling the hydration status in patients with nephrotic syndrome.

  7. Increasing Drug Resistance in Extensively Drug-Resistant Tuberculosis, South Africa

    PubMed Central

    Richardson, Jessica; Moodley, Prashini; Moodley, Salona; Babaria, Palav; Ramtahal, Melissa; Heysell, Scott K.; Li, Xuan; Moll, Anthony P.; Friedland, Gerald; Sturm, A. Willem; Gandhi, Neel R.

    2011-01-01

    We expanded second-line tuberculosis (TB) drug susceptibility testing for extensively drug-resistant Mycobacterium tuberculosis isolates from South Africa. Of 19 patients with extensively drug-resistant TB identified during February 2008–April 2009, 13 (68%) had isolates resistant to all 8 drugs tested. This resistance leaves no effective treatment with available drugs in South Africa. PMID:21392446

  8. Electrical and magneto resistance studies of bulk Ga 1- xNi xSb ternary alloys

    NASA Astrophysics Data System (ADS)

    Kamilla, S. K.; Hazra, S. K.; Samantaray, B. K.; Basu, S.

    2011-01-01

    Ternary semiconductor alloys of Ga 1- xNi xSb were grown with different Ni concentrations by vertical Bridgman method with well-defined temperature profile for possible applications as Diluted Magnetic Semiconductor (DMS). The electrical properties of the grown samples were studied in the temperature range 78-300 K by Hall effect measurements using van der Pauw configurations. The positive sign of Hall coefficient confirmed p-type conductivity of the grown samples. The results of the measurements at 300 K indicate that resistivity, Hall coefficient and hole mobility decrease while the hole concentration increases with the increasing Ni concentrations from 0.5% to 2.8% in Ga 1- xNi xSb ternary alloys. The magneto resistance studies at different magnetic fields (≤10 kG) and in the temperature range 78-300 K showed positive magneto resistance and the Arrott plots revealed very low Curie temperature of the material ( <78 K).

  9. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    NASA Astrophysics Data System (ADS)

    Lee, Myong-Goo; Nho, Young Chang

    2001-04-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied.

  10. Tuning electrical conduction along endothelial tubes of resistance arteries through Ca2+-activated K+ channels

    PubMed Central

    Behringer, Erik J.; Segal., Steven S.

    2012-01-01

    Rationale Electrical conduction through gap junction channels between endothelial cells of resistance vessels is integral to blood flow control. Small and intermediate-conductance Ca2+-activated K+ channels (SKCa/IKCa) initiate electrical signals in endothelial cells but it is unknown whether SKCa/IKCa activation alters signal transmission along the endothelium. Objective We tested the hypothesis that SKCa/IKCa activity regulates electrical conduction along the endothelium of resistance vessels. Methods and Results Freshly isolated endothelial cell tubes (60 μm wide; 1–3mm long; cell length, ~35 μm) from mouse skeletal muscle feed (superior epigastric) arteries were studied using dual intracellular microelectrodes. Current was injected (±0.1–3 nA) at Site 1 while recording membrane potential (Vm) at Site 2 (separation distance = 50–2000 μm). SKCa/IKCa activation (NS309, 1 μmol/L) reduced the change in Vm along endothelial cell tubes by ≥50% and shortened the electrical length constant (λ) from 1380 to 850 μm (P<0.05) while intercellular dye transfer (propidium iodide) was maintained. Activating SKCa/IKCa with acetylcholine or SKA-31 also reduced electrical conduction. These effects of SKCa/IKCa activation persisted when hyperpolarization (>30 mV) was prevented with 60 mM [K+]o. Conversely, blocking SKCa/IKCa (apamin + charybdotoxin) depolarized cells by ~10 mV and enhanced electrical conduction (i.e., changes in Vm) by ~30% (P<0.05). Conclusions These findings illustrate a novel role for SKCa/IKCa activity in tuning electrical conduction along the endothelium of resistance vessels by governing signal dissipation through changes in membrane resistance. Voltage-insensitive ion channels can thereby tune intercellular electrical signaling independent from gap junction channels. PMID:22492531

  11. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  12. Hydrogeophysical estimation of groundwater tracer concentrations from field-scale electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Singha, Kamini

    This research has established a systematic procedure to accurately track the migration of a groundwater solute tracer using cross-well electrical resistivity tomography (ERT). There are three contributions in this dissertation. First, based on original experimental data collected for this project at the Massachusetts Military Reservation, it is shown that the migration of a saline tracer was readily detected in 3D using ERT, and that the mass, center of mass, and spatial variance of the imaged tracer plume were estimated from modified moment analysis of the electrical resistivity tomograms. Conversion of the inverted electrical resistivities to solute concentrations via Archie's law resulted in significant underestimation of tracer mass and greater apparent dispersion than that suggested by reasonable advection-dispersion simulations. However, the center of mass estimated from ERT inversions was accurately tracked when compared to 3D transport simulation. The second contribution presented in this dissertation is to reveal how the spatially variable resolution of ERT affects electrical resistivity estimates and local solute concentrations. Underestimated tracer mass from ERT and overestimated tracer plume dispersion is shown to be an effect of two properties of ERT surveys: (1) reduced measurement sensitivity to electrical resistivity values with distance from the electrodes and, (2) spatial smoothing (regularization) resulting from tomographic inversion. Analyses suggest that no single petrophysical relation, such as Archie's law, exists between concentration and electrical resistivity. The "correct" petrophysical model must vary both in space and time. Finding this non-stationary petrophysical model is the third contribution of this research. A method is demonstrated that employs numerical simulation of both solute transport and electrical flow to create local non-stationary linear relations between resistivities and tracer concentrations. These relations are used

  13. Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K.

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Weitzel, D. H.; Powell, R. L.

    1971-01-01

    Measurement of thermal conductivity, electrical resistivity, and thermopower for several aerospace alloys: titanium alloy A110-AT, aluminum alloy 7039, Inconel 718, and Hastelloy X. Tables and graphs of the measured properties and Lorenz ratio are presented over the range from 4 to 300 K. Comparisons to other measurements and theoretical analysis of the data are included. The uncertainties of the property data are estimated as 0.7 to 2.5% for thermal conductivity, 0.25% in electrical resistivity, and about 0.1 microvolt/K in thermopower.

  14. Electrical resistivity well-logging system with solid-state electronic circuitry

    USGS Publications Warehouse

    Scott, James Henry; Farstad, Arnold J.

    1977-01-01

    An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.

  15. Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks

    SciTech Connect

    Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

    2002-05-09

    Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

  16. Elastic and Electrical Properties Evaluation of Low Resistivity Pays in Malay Basin Clastics Reservoirs

    NASA Astrophysics Data System (ADS)

    Almanna Lubis, Luluan; Ghosh, Deva P.; Hermana, Maman

    2016-07-01

    The elastic and electrical properties of low resistivity pays clastics reservoirs in Malay Basin are strongly dependent on the complex nature of the clay content, either dispersed or laminated/layered. Estimating the hydrocarbon pore volume from conventional electrical log, i.e. resistivity log, is quite a challenge. The low elastic impedance contrast also found as one of the challenge thus create a problem to map the distribution of the low resistivity reservoirs. In this paper, we evaluate the electrical properties and elastic rock properties to discriminate the pay from the adjacent cap rock or shale. Forward modeling of well log responses including electrical properties are applied to analyze the nature of the possible pays on laminated reservoir rocks. In the implementation of rock properties analysis, several conventional elastic properties are comparatively analyzed for the sensitivity and feasibility analysis on each elastic parameters. Finally, we discussed the advantages of each elastic parameters in detail. In addition, cross-plots of elastic and electrical properties attributes help us in the clear separation of anomalous zone and lithologic properties of sand and shale facies over conventional elastic parameter crossplots attributes. The possible relationship on electrical and elastic properties are discussed for further studies.

  17. Mechanical flexible and electric fatigue resistant behavior of relaxor ferroelectric terpolymer

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Yang, Wei; Yang, Wen

    2009-08-01

    Uniaxial tension and polarization evolution under cyclic electric field are investigated for poly(vinylidene fluoride-trifluorethylene-chlorofluoroethylene) terpolymer films prepared by different annealing conditions. The stress-strain behavior of the terpolymer film exhibits that of polymeric elastomers, with its fracture strain reaching 680%. Structure analysis demonstrates that the polymer chains undergo reorientation, and conformational change from nonpolar to polar phase takes place during uniaxial tension. Under cyclic electric field, the terpolymer film exhibits a narrow polarization loop typical of a ferroelectric relaxor. Conformational change from nonpolar to polar phase also occurs upon the electric field, and it reverses to the nonpolar phase when the field is removed. As the cycle number accumulates, the terpolymer film demonstrates excellent resistance to electric fatigue. Compared to the film annealed at 115 °C, the terpolymer film annealed at 100 °C has a larger volume fraction of crystallite/amorphous interfaces and shows better mechanical flexibility as well as electric fatigue resistance. The mechanical flexible and electric fatigue resistant terpolymer films hold promises for many applications, ranging from embedded sensors and actuators to flexible memory devices.

  18. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    PubMed

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  19. Low electrical resistivity carbon nanotube and polyethylene nanocomposites for aerospace and energy exploration applications

    NASA Astrophysics Data System (ADS)

    Moloney, Padraig G.

    An investigation was conducted towards the development and optimization of low electrical resistivity carbon nanotube (CNT) and thermoplastic composites as potential materials for future wire and cable applications in aerospace and energy exploration. Fundamental properties of the polymer, medium density polyethylene (MDPE), such as crystallinity were studied and improved for composite use. A parallel effort was undertaken on a broad selection of CNT, including single wall, double wall and multi wall carbon nanotubes, and included research of material aspects relevant to composite application and low resistivity such as purity, diameter and chirality. With an emphasis on scalability, manufacturing and purification methods were developed, and a solvent-based composite fabrication method was optimized. CNT MDPE composites were characterized via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of electron microscopy. Techniques including annealing and pressure treatments were used to further improve the composites' resulting electrical performance. Enhancement of conductivity was explored via exposure to a focused microwave beam. A novel doping method was developed using antimony pentafluoride (SbF5) to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat and pressure, were produced with exceptional electrical resistivities reaching as low as 2*10-6O·m (5*105S/m). A unique gas sensor application utilizing the unique electrical resistivities of the produced CNT-MDPE composites was developed. The materials proved suitable as a low weight and low energy sensing material for dimethyl methylphosphonate (DMMP), a nerve gas simulant.

  20. Three-dimensional internal structure of an entire alpine rockglacier, detected by Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Emmert, Adrian; Kneisel, Christof

    2017-04-01

    Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures

  1. Impact of parasitic resistances on the electrical characteristics of a SiC MESFET

    NASA Astrophysics Data System (ADS)

    Dutta, Sutanu

    2017-10-01

    The mathematical formulations of extrinsic resistances of a SiC-MESFET are developed and their impact on the electrical characteristics of the device has been studied in this work. Numerical techniques are used to calculate the drain current of a MESFET considering the existence of parasitic resistances. The analytical expressions of drain conductance, mutual conductance and cut off frequency of the device have been derived and their variations over different device parameters are studied incorporating the effect of extrinsic resistances. It is observed that the impact of parasitic resistances on the drain current and other parameters of the device is significant and device performance usually degrades with parasitic resistances. The parasitic resistances computed using our approach is compared with the experimentally extracted data reported earlier and a reasonably good agreement has been observed.

  2. Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain

    SciTech Connect

    Azar, A. D.; Finley, E.; Harris, K. D.

    2015-01-15

    A complete analysis of strain tolerance in a stretchable transparent conductor (TC) should include tracking of both electrical conductivity and transparency during strain; however, transparency is generally neglected in contemporary analyses. In this paper, we describe an apparatus that tracks both parameters while TCs of arbitrary composition are deformed under stretching-mode strain. We demonstrate the tool by recording the electrical resistance and light transmission spectra for indium tin oxide-coated plastic substrates under both linearly increasing strain and complex cyclic strain processes. The optics are sensitive across the visible spectrum and into the near-infrared region (∼400-900 nm), and without specifically optimizing for sampling speed, we achieve a time resolution of ∼200 ms. In our automated analysis routine, we include a calculation of a common TC figure of merit (FOM), and because solar cell electrodes represent a key TC application, we also weigh both our transparency and FOM results against the solar power spectrum to determine “solar transparency” and “solar FOM.” Finally, we demonstrate how the apparatus may be adapted to measure the basic performance metrics for complete solar cells under uniaxial strain.

  3. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini

    2016-05-01

    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  4. Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain

    NASA Astrophysics Data System (ADS)

    Azar, A. D.; Finley, E.; Harris, K. D.

    2015-01-01

    A complete analysis of strain tolerance in a stretchable transparent conductor (TC) should include tracking of both electrical conductivity and transparency during strain; however, transparency is generally neglected in contemporary analyses. In this paper, we describe an apparatus that tracks both parameters while TCs of arbitrary composition are deformed under stretching-mode strain. We demonstrate the tool by recording the electrical resistance and light transmission spectra for indium tin oxide-coated plastic substrates under both linearly increasing strain and complex cyclic strain processes. The optics are sensitive across the visible spectrum and into the near-infrared region (˜400-900 nm), and without specifically optimizing for sampling speed, we achieve a time resolution of ˜200 ms. In our automated analysis routine, we include a calculation of a common TC figure of merit (FOM), and because solar cell electrodes represent a key TC application, we also weigh both our transparency and FOM results against the solar power spectrum to determine "solar transparency" and "solar FOM." Finally, we demonstrate how the apparatus may be adapted to measure the basic performance metrics for complete solar cells under uniaxial strain.

  5. Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain.

    PubMed

    Azar, A D; Finley, E; Harris, K D

    2015-01-01

    A complete analysis of strain tolerance in a stretchable transparent conductor (TC) should include tracking of both electrical conductivity and transparency during strain; however, transparency is generally neglected in contemporary analyses. In this paper, we describe an apparatus that tracks both parameters while TCs of arbitrary composition are deformed under stretching-mode strain. We demonstrate the tool by recording the electrical resistance and light transmission spectra for indium tin oxide-coated plastic substrates under both linearly increasing strain and complex cyclic strain processes. The optics are sensitive across the visible spectrum and into the near-infrared region (∼400-900 nm), and without specifically optimizing for sampling speed, we achieve a time resolution of ∼200 ms. In our automated analysis routine, we include a calculation of a common TC figure of merit (FOM), and because solar cell electrodes represent a key TC application, we also weigh both our transparency and FOM results against the solar power spectrum to determine "solar transparency" and "solar FOM." Finally, we demonstrate how the apparatus may be adapted to measure the basic performance metrics for complete solar cells under uniaxial strain.

  6. Electrical Resistivity Monitoring of Heat Tracer to Characterize Lab-Scale Hydraulic Conductivity Distributions

    NASA Astrophysics Data System (ADS)

    Adetokunbo, P.; Hermans, T.; Oware, E. K.

    2016-12-01

    Knowledge of the spatial variations of hydraulic conductivity (K) is crucial to almost every hydrogeological investigation. The representative scale of K estimates from traditional slug and pumping tests are, however, inadequate to accurately predict hydrogeological processes. There is increasing interest in the application of electrical resistivity tomography (ERT) to quantify spatially continuous K variations. ERT estimation of high-resolution K distributions, however, requires continuous injection of saline tracer (ST) into an aquifer over an extended period, which is feasible but impractical. Here, we present electrical resistivity thermography (ERTh) to evaluate the potential application of time-lapse ER monitoring of heat tracer (HT) to characterize high-resolution K architectures. Unlike ST, long term HT experiments are comparatively easier to manage and repeatable with minimal environmental impact. We estimate K variations via petrophysical coupling of flow and heat transport with joint time-lapse ER and discrete multi-level temperature breakthrough curves. We illustrate the strategy with a 2-D lab-scale sandbox experiment. To construct the heterogeneous field, three lenses with high-K properties with each consisting of gravel, coarse sand, and a mixture of coarse and fine sand, were created within a background of comparatively low-K fine sand. The experiment involved continuous injection and extraction of heat, respectively, at the left and right boundaries of the lab-scale aquifer. We simultaneously performed time lapse ER monitoring of the heat transport and temperature measurements at four discrete multi-levels near the heat extraction well. Results of the coupled inversions demonstrate that ER monitoring of heat tracer provides a unique opportunity to characterize high-resolution spatially continuous K variations, which seems more practical for field applications in contrast to that of the traditional ST.

  7. On the Stressing of Annealed NITINOL: The Electrical Resistance and Calorimetric Effects

    DTIC Science & Technology

    1987-04-01

    Security Classification) On the Stressing of Annealed NITINOL : The Electrical Resistance and Calorimetric Effects 12 PERSONAL AUTHOR(S) Goldstein, David...COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by blck numbher) FIELD GROUP SUB-GROUP NITINOL 06 Shape Memory Alloy 13 o i...calorimetry curves of NITINOL during its phase transformation are substantial. The generation of a peak occurs in the resistance curve, and an additional

  8. Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1996-12-31

    The degree of dispersion of latex particles in latex-modified cement paste was assessed by measurement of the volume electrical resistivity and modeling this resistivity in terms of latex and cement phases that are partly in series and partly in parallel. The assessment was best at low values of the latex-cement ratio; it underestimated the degree of latex dispersion when the latex/cement ratio was high, especially > 0.2.

  9. Influence of Degree of Saturation in the Electric Resistivity-Hydraulic Conductivity Relationship

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed Ahmed; Monterio Santos, Fernando A.

    2009-11-01

    The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.

  10. Electrical test methods for on-line fuel cell ohmic resistance measurement

    NASA Astrophysics Data System (ADS)

    Cooper, K. R.; Smith, M.

    The principles and trade-offs of four electrical test methods suitable for on-line measurement of the ohmic resistance (R Ω) of fuel cells is presented: current interrupt, AC resistance, high frequency resistance (HFR), and electrochemical impedance spectroscopy (EIS). The internal resistance of a proton exchange membrane (PEM) fuel cell determined with the current interrupt, HFR and EIS techniques is compared. The influence of the AC amplitude and frequency of the HFR measurement on the observed ohmic resistance is examined, as is the ohmic resistance extracted from the EIS data by modeling the spectra with a transmission line model for porous electrodes. The ohmic resistance of a H 2/O 2 PEM fuel cell determined via the three methods was within 10-30% of each other. The current interrupt technique consistently produced measured cell resistances that exceeded those of the other two techniques. For the HFR technique, the frequency at which the measurement was conducted influenced the measured resistance (i.e., higher frequency providing smaller R Ω), whereas the AC amplitude did not effect the observed value. The difference in measured ohmic resistance between these techniques exceeds that reasonably accounted for by measurement error. The source of the discrepancy between current interrupt and impedance-based methods is attributed to the difference in the response of a non-uniformly polarized electrode, such as a porous electrode with non-negligible ohmic resistance, to a large perturbation (current interrupt event) as compared to a small perturbation (impedance measurement).

  11. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  12. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-08-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.

  13. Application of the contact electric resistance method for in situ investigation of semiconductor surface properties in electrolyte

    NASA Astrophysics Data System (ADS)

    Charny, L.; Saario, T.; Marichev, V. A.

    1994-06-01

    The contact electric resistance method (CER) has been applied for in situ investigation of the charge transfer through the semiconductor surface under potentiostatic control in electrolytes. Single crystals of n- and p-GaAs were investigated. As a result of changing the electrochemical potential, two simultaneous tendencies of surface resistance changes were observed. The first type of resistance change, which occurs immediately after application of the potential, is caused by band bending at the surface charge region. The second type of resistance change, characterized by a power law dependence on time, is caused by adsorption and / or oxidation processes at the surface. The surface resistance sharply increases close to the As/As 2O 3 (As/HAsO 2) equilibrium potential, but does not change at potentials close to the Ga/Ga(OH) 3 equilibrium potential. In addition, the influence of the sulphur content of the electrolyte on the surface resistance was investigated in 0.01M, 0.1M and 1M Na 2S borate buffer solutions. At potentials lower than -0.8 V SCE sulphur was found to adsorb competitively on GaAs and to prevent adsorption of borate and hydroxyl anions, resulting in reduction of the surface resistance.

  14. Influence of rhombohedral stacking order in the electrical resistance of bulk and mesoscopic graphite

    NASA Astrophysics Data System (ADS)

    Zoraghi, M.; Barzola-Quiquia, J.; Stiller, M.; Setzer, A.; Esquinazi, P.; Kloess, G. H.; Muenster, T.; Lühmann, T.; Estrela-Lopis, I.

    2017-01-01

    The electrical, in-plane resistance as a function of temperature R (T ) of bulk and mesoscopic thin graphite flakes obtained from the same batch was investigated. Samples thicker than ˜30 nm show metalliclike contribution in a temperature range that increases with the sample thickness, whereas a semiconductinglike behavior was observed for thinner samples. The temperature dependence of the in-plane resistance of all measured samples and several others from literature can be very well explained between 2 and 1100 K assuming three contributions in parallel: a metalliclike conducting path at the interfaces between crystalline regions, composed of two semiconducting phases, i.e., Bernal and rhombohedral stacking. From the fits of R (T ) we obtain a semiconducting energy gap of 110 ±20 meV for the rhombohedral and 38 ±8 meV for the Bernal phase. The presence of these crystalline phases was confirmed by x-ray diffraction measurements. We review similar experimental data from literature of the last 33 years and two more theoretical models used to fit R (T ) .

  15. Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.

    2016-12-01

    Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.

  16. Electrical resistivity of Gd4(Co1-xCux)3 compounds

    NASA Astrophysics Data System (ADS)

    Seixas, T. M.; Machado da Silva, J. M.; Braun, H. F.; Eska, G.

    2008-04-01

    In order to study the effects caused by substituting Co for Cu on the electronic and transport properties of Gd4(Co1-xCux)3 compounds with x =0.05, 0.1, 0.2, and 0.3, electrical resistivity [ρ(T)] measurements were performed in the temperature range 12-300K. The paramagnetic-ferrimagnetic and spin-reorientation transitions are marked by clear anomalies in dρ /dT. For x =0.2, however, the onset of ferrimagnetic order at TC produces just a comparatively small peak in dρ /dT. This fact is compatible with a hypothetical mixed ferrimagnetic phase exhibiting partial disorder of the magnetic moments, as suggested by magnetic measurements [T. M. Seixas, J. M. Machado da Silva, H. F. Braun, and G. Eska (unpublished)]. The spin disorder resistivity shows a pronounced decrease with increasing x that can be attributed to the observed reduction of the magnetic moment of Co atoms. This stresses the important role played by 3d-band electrons in both magnetic state and in the strong s-d electron scattering. Magnon-induced electron scattering is also apparent in all compounds through well-defined maxima in dρ /dT, at temperatures ranging from 37to48K, where the magnetic contribution to dρ /dT largely exceeds the phonon contribution.

  17. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  18. Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska

    USGS Publications Warehouse

    Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.

    2016-01-01

    Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.

  19. Controlling of the electrical resistivity of GaN layer using AIN nucleation layer.

    PubMed

    Yi, Min-Su; Kim, Hyo Jung; Lee, Hyun Hwi

    2011-08-01

    The sheet resistance (Rs) of undoped GaN films on AIN/c-plane sapphire substrate was investigated. The Rs was strongly dependent on the AIN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using X-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AIN nucleation layer (NL) and was gradually relaxed as increasing AIN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AIN layer condition, which was originated by the crossover from planar to island grains of AIN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AIN buffer layer affected the electric resistance of GaN film.

  20. Regional Differences in Metronidazole Resistance and Increasing Clarithromycin Resistance among Helicobacter pylori Isolates from Japan

    PubMed Central

    Kato, Mototsugu; Yamaoka, Yoshio; Kim, Jae J.; Reddy, Rita; Asaka, Masahiro; Kashima, Kei; Osato, Michael S.; El-Zaatari, Fouad A. K.; Graham, David Y.; Kwon, Dong H.

    2000-01-01

    The patterns of antibiotic resistance in Helicobacter pylori were assessed in two different regions in Japan. Overall, prevalences of resistance to metronidazole and clarithromycin were 12.4 and 12.9%, respectively. While there was no difference in clarithromycin resistance, the prevalence of metronidazole resistance was significantly higher in Kyoto (23.8%) than in Sapporo (8.1%). From 1996 to 1999, the prevalence of metronidazole resistance did not change but the prevalence of clarithromycin resistance doubled (from 9.1 to 18.7%). PMID:10898707

  1. Electrical resistivity structure of the upper mantle in the Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Shindo, H.; Seama, N.; Matsuno, T.; Shibata, Y.; Kimura, M.; Nogi, Y.; Okino, K.

    2012-12-01

    We show a 2-D electrical resistivity structure of the upper mantle in the Southern Mariana Trough. The Mariana Trough is an active back-arc basin in which the seafloor spreading has occurred. In the southern region of the Mariana Trough, the seafloor spreading rate is 35-45 km/Myr at present (Kato et al., 2003) that is slow, but there are characteristics of the fast spreading ridge such as an axial topographic high (Martinez et al., 2000) and a nearly constant low mantle Bouguer anomaly along the spreading axis suggesting high magmatic activity with a sheet-like mantle upwelling under the spreading axis (Kitada et al., 2006). We carried out an electromagnetic experiment along a ~120 km length profile across the spreading axis to estimate an electrical resistivity structure, and hence the physical property like temperature, water and melt content in the upper mantle. The observation was made using ten Ocean Bottom Electro-Magnetometers (OBEMs) from August to November in 2010. The data was recorded for ~85 days in two OBEMs and for ~60 days in the rest of the OBEMs. Successfully, eight OBEMs recorded time-variations of the electric and magnetic fields and two OBEMs recorded only those of the magnetic field. The magnetotelluric (MT) method is a base for the data analysis. We carried out the time-series data analysis to estimate the MT responses and correct topographic distortions in the MT responses. We have basically performed a smooth model inversion analysis using the processed MT responses to estimate a minimum electrical resistivity structure, and also have considered a prior constraint in the inversion analysis for the subducted slab inferred from a seismic research (Gudmundsson and Sambridge, 1998). The obtained 2-D electrical resistivity structure shows an asymmetry about the spreading center. The trenchward side shows higher resistivity (~300 Ohm-m), while the opposite side (the west side) shows that intermediate resistivity (~100 Ohm-m) with ~40 km thickness

  2. Methods of increasing the erosion resistance of powder metallurgy steel

    SciTech Connect

    Kulu, P.A.

    1987-09-01

    The authors comparatively assess the effects of a variety of surface hardening methods--including carburizing, boriding, chromizing, and carbochromizing, as well as the flame, plasma arc, and detonation spraying of nickel and molybdenum coatings--on the wear, corrosion resistance, and pore structure of steel 45, and outline testing procedures used to arrive at their results.

  3. Increasing the frost resistance of facade glazed tiles

    SciTech Connect

    Egerev, V.M.; Zotov, S.N.; Romanova, G.P.

    1986-09-01

    The authors investigate the protective properties of a coating of boron oxides and zirconium oxides applied as a glaze to ceramic tiles by conducting a series of tests to determine the frost resistance, the propensity to absorb water, the moisture expansion coefficient, the fracture behavior, and the effect of thermal cycling on the oxides. Results are graphed and tabulated.

  4. Alternative reinforcement increases resistance to change: Pavlovian or operant contingencies?

    PubMed Central

    Nevin, J A; Tota, M E; Torquato, R D; Shull, R L

    1990-01-01

    Two multiple-schedule experiments with pigeons examined the effect of adding food reinforcement from an alternative source on the resistance of the reinforced response (target response) to the decremental effects of satiation and extinction. In Experiment 1, key pecks were reinforced by food in two components according to variable-interval schedules and, in some conditions, food was delivered according to variable-time schedules in one of the components. The rate of key pecking in a component was negatively related to the proportion of reinforcers from the alternative (variable-time) source. Resistance to satiation and extinction, in contrast, was positively related to the overall rate of reinforcement in the component. Experiment 2 was conceptually similar except that the alternative reinforcers were contingent on a specific concurrent response. Again, the rate of the target response varied as a function of its relative reinforcement, but its resistance to satiation and extinction varied directly with the overall rate of reinforcement in the component stimulus regardless of its relative reinforcement. Together the results of the two experiments suggest that the relative reinforcement of a response (the operant contingency) determines its rate, whereas the stimulus-reinforcement contingency (a Pavlovian contingency) determines its resistance to change. PMID:2341820

  5. The role of depressed metabolism in increased radio resistance

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    Studies are presented of the physiology of depressed metabolism, radio-resistance in depressed metabolic states, comparative aspects of depressed metabolism, and gastrointestinal responses to ionizing radiation. Specific data cover helium-cold induced hypothermia in white rats and hamsters, and radiation responses and intestinal absorption in the gerbil.

  6. Study of electric susceptibility, electrical resistivity and energy loss functions of carbon-nickel composite films at different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Dalouji, V.; Elahi, S. M.; Saadi Alecasir, M.

    2015-11-01

    In this work, the optical and electrical properties of carbon-nickel films annealed at different temperatures (300-1000 °C) were investigated. The obtained data of the refractive index n using the Swanepoel’s method can be analyzed to obtain the high-frequency dielectric constant which describes the free carriers and the lattice vibration modes of dispersion. The lattice dielectric constant ɛL and the plasma frequency ωp at 500 °C have maximum values 4.95 and 40.02 × 106 Hz, respectively. The free carrier electric susceptibility measurements in wavelength range (300-1000 nm) are discussed according to the Spitzer-Fan model. It is shown that the electric susceptibility at 500 °C has maximum value and with increasing wavelength it increases. It is also shown that the waste of electrical energy as heat at 500 °C has maximum value and with increasing wavelength it increases. It is found that energy loss by the free charge carriers when traversing the bulk and surface of films at 800 °C has a minimum value and it is approximately constant with wavelength. It is shown that optical properties were consistent with electrical properties of films annealed at different temperatures in temperature range (15-500 K).

  7. Electrical properties and fatigue resistance of polyamide 6,6 fabrics with nanocrystal silver coating.

    PubMed

    Wang, R X; Tao, X M; Wang, Y; Wang, G F

    2009-05-01

    Nanocrystalline silver was coated on plain woven fabrics made from continuous polyamide multifilament yarns by sputtering technique. Electrical conductivity and abrasion resistances of the coating fabric were measured. There was a minimum value of resistance when the coating thickness varies. The critical coating thickness at the minimum resistance was found to be much greater than that necessary to form a continuous layer of coating on a single fabric. X-ray diffraction (XRD) and transmission electron microscope (TEM), and field emission scanning electronic microscopy (FESEM) were employed to identify the contributing factors of dips between two adjacent parallel fibres and cross-over junction of the warp and weft yarns.

  8. Electrical Resistivity Tomography in the characterisation of wetting patterns of historical masonry

    NASA Astrophysics Data System (ADS)

    López-González, Laura; Gomez-Heras, Miguel; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad

    2016-04-01

    Electrical Resistivity Tomography (ERT) is a geophysical technique widely used to identify subsurface structures based on electrical resistivity measurements made at the surface. In recent years this technique has been used for surveying historic buildings and characterise the subsurface of walls by using non-invasive EKG electrodes. This methods is used to locate wet areas based on the lower electrical resistivity wet materials have in relation to dry ones. A good knowledge of the wetting patterns of historic buildings during, for example, rainfalls is crucial to understand the decay processes that take place in the building and plan interventions. This paper presents results of transects of Electric Resistivity Tomography of walls of the Monastery of Santa Maria de Mave (Palencia, Spain), a 9th century Romanesque building, during rainfall. ERT transects were performed with a GeoTom device (Geolog2000) in areas with and without buttresses to understand how this architectural detail affected the wetting dynamics of the building. The ERT results were integrated with other resistivity-based techniques and Thermohygrometric survey in a GIS and showed how lower resistivity surface measurements ERT correspond with areas of higher humidity. Resistivity-based techniques measured and evaporation focal points take in the interior of the building mark the outer ground level. The highest moisture content measurements do not always correspond to the visibly most damaged areas of the wall. The consecutive ERT transects show the wall getting wetter as rainfall progresses. The comparison of the measurements obtained of a wall affected by water obtained with GIS mapping, allowed to quickly studying the development of moisture in the wall over time, which is essential for a correct diagnosis of the building. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  9. Joint-interpretation of 2-D electrical resistivity method and borehole data for subsurface lithology identification

    NASA Astrophysics Data System (ADS)

    Bery, Andy Anderson; Nordiana, M. M.; Kiu, Y. C.; Amalina, M. K. A. Nur; Saidin, M.; Mohamamad-Afiq, A.; Nur-Amalina, A. M.

    2017-07-01

    There have been improvement in the subsurface investigation using non-destructive geophysical method. These were supported by improvement in data inversion method for 2-D resistivity imaging method. This geophysical method have been used for many environmental and engineering studies, such as slope monitoring, cavities detection, buried man-made structures and so on. This paper present the 2-D data inversion in electrical resistivity method which was carried out in Penang, Malaysia. This non-destructive method is used to image the subsurface for soil's lithology purpose. In addition, two inline boreholes were used to validate and verify the obtained results of electrical resistivity imaging. Based on the electrical resistivity imaging, the subsurface is made up of four type of materials. They are sandy silt, silty sand, sand and lastly weathered granite. Sandy silt and silty sand soils give resistivity values of 65-220 Ωm and 120-770 Ωm. Meanwhile for sand and weathered granite materials, their resistivity values are 220-1400 Ωm and 410-2600 Ω.m respectively. Beside than electrical resistivity imaging, this work also present the distribution of conductivity for the investigated subsurface via the 2-D conductivity model. In conclusion, the used of the non-destructive geophysical method in this study is successful in image the investigated subsurface lithology and the investigation coverage area is enhanced instead of information from two discrete points of the geotechnical boreh oles. Therefore, the joint-interpretation of these two technical methods is capable and reliable to give information about the Earth's subsurface lithology.

  10. Imaging hydrological processes in headwater riparian seeps with time-lapse electrical resistivity

    USDA-ARS?s Scientific Manuscript database

    The activation of subsurface seepage in response to precipitation events represents a potentially important pathway of nitrogen (N) delivery to streams in agricultural catchments. We used electrical resistivity imaging (ERI) and shallow piezometers to elucidate how seep and non-seep areas within the...

  11. High School Students' Understanding of Resistance in Simple Series Electric Circuits.

    ERIC Educational Resources Information Center

    Liegeois, Laurent; Mullet, Etienne

    2002-01-01

    Studies the understanding that 8-12 grade high school students were able to develop with regard to the interrelationships between resistance, potential difference, and current concepts (Ohm's law). Explores the immediate effects of exposure to electricity courses on the intuitive mastery of these relationships. (Contains 32 references.)…

  12. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  13. High School Students' Understanding of Resistance in Simple Series Electric Circuits.

    ERIC Educational Resources Information Center

    Liegeois, Laurent; Mullet, Etienne

    2002-01-01

    Studies the understanding that 8-12 grade high school students were able to develop with regard to the interrelationships between resistance, potential difference, and current concepts (Ohm's law). Explores the immediate effects of exposure to electricity courses on the intuitive mastery of these relationships. (Contains 32 references.)…

  14. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  15. Electrical resistance determination of actual contact area of cold welded metal joints

    NASA Technical Reports Server (NTRS)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  16. Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey

    NASA Astrophysics Data System (ADS)

    Drahor, Mahmut G.; Göktürkler, Gökhan; Berge, Meriç A.; Kurtulmuş, T. Özgür

    2006-05-01

    Electrical resistivity imaging is a widely used tool in near surface geophysical surveys for investigation of various geological, environmental and engineering problems including landslide. In this study, an electrical resistivity tomography (ERT) survey was conducted in a landslide area, located in the Söke district of Aydın, Turkey. In 2003, the Neogene-aged units on the slope next to a newly built school building became unstable due to an excavation work and moved after a heavy rainfall. The resulting landslide partly covered the school. The authors carried out a 2-D resistivity survey along three profiles over the landslide mass using a Wenner configuration. It yielded useful information about the geometry and characteristics of the landslide. In addition, a 2-D synthetic resistivity modelling study was carried out to understand the response of the resistivity method to a landslide problem before the field surveys. Eight boreholes were also drilled in the landslide area. Both the drilling and resistivity results indicated the presence of a fault in the site. Also, the resistivity data from the line measured along the axis of the landslide revealed the surface of rupture.

  17. A theoretical study of electrical and thermal response in resistance spot welding

    SciTech Connect

    Na, S.J.; Park, S.W.

    1996-08-01

    The effect of contact resistance including constriction and contamination resistance has been a major hurdle for the thermoelectrical analysis of the resistance spot welding process. In this paper, a simple model was suggested and used for calculating the electrical and thermal response of the resistance spot welding process to investigate the influence of contacting forces on the formation of weld nuggets. The electrode surface of the contact interface was assumed to be axisymmetric and its microasperities to have a trapezoidal cross-section. These microasperities were considered as the one-dimensional contact resistance elements in the finite element formulation. The contamination film was assumed to be a nonconducting oxide layer, which is very brittle, so that it is broken to some number of pieces when a contacting pressure is being applied. The crushed films were assumed to be distributed at regular intervals and to conserve their size and number during the welding process. The simulation results revealed that the proposed model can be successfully used to predict the effect of the contact resistance on the electrical and thermal response of the resistance spot welding process.

  18. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    NASA Technical Reports Server (NTRS)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (< 4 V) and short duration (< 20 ns) electrical pulses across a thin film sample of a CMR material at room temperature and under no applied magnetic field. The pulse can directly either increase or decrease the resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  19. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    NASA Technical Reports Server (NTRS)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (< 4 V) and short duration (< 20 ns) electrical pulses across a thin film sample of a CMR material at room temperature and under no applied magnetic field. The pulse can directly either increase or decrease the resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  20. Applications of a high temperature radiation resistant electrical insulation

    NASA Astrophysics Data System (ADS)

    Cooper, M. H.

    Electrical components are being developed for service inside the reactor vessel of Fast Breeder Reactors. These components will function in an exceptionally hostile environment combining high temperature (1000 F), chemical activity (liquid