Sample records for increased fire activity

  1. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.

    PubMed

    Krawchuk, Meg A; Cumming, Steve G

    2011-01-01

    Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.

  2. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    NASA Astrophysics Data System (ADS)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  3. Past and future changes in Canadian boreal wildfire activity.

    PubMed

    Girardin, Martin P; Mudelsee, Manfred

    2008-03-01

    Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.

  4. Climatic and human controls on the late Holocene fire history of northern Israel

    NASA Astrophysics Data System (ADS)

    Quintana Krupinski, N. B.; Nishri, A.; Street, J. H.; Paytan, A.

    2011-12-01

    Long-term fire histories provide insight into the effects of climate, ecology and human influence on fire activity. Fire records can be expanded beyond the period of historical record using accumulation rates of large charcoal particles and soot black carbon (BC) in lacustrine sediments: charcoal accumulation peaks indicate local to regional fire events, while increased deposition of BC may document regional-scale burning. To determine which factors exert the greatest control over changes in fire frequency at different times, this study compares late Holocene fire records from Lake Kinneret (the Sea of Galilee), Israel to local and regional records of climate and human activity. We show that fire frequency decreased during the past 3010 years from 3-4 fire events per 400 years between 3010 - 2620 y.b.p. to 0-2 fire events per 400 years from 750 y.b.p. to present. Human modification of the landscape during periods of high population (e.g. forest clearing, agriculture, settlement expansion and industry) appears to have been the greatest contributor to increased fire activity in the semi-arid southern Levant region during the late Holocene, though aridity may also have contributed to higher fire activity. However, during much of the study period, climate and human activity were interrelated, so while human activity may have been the greater control on fire activity, the effect of climate may have been both direct and indirect (through climate-related changes in population), making it sometimes difficult to distinguish the two controls. Projections of increasing aridification of the region combined with a heavy impact on the landscape from a large modern population suggest that increased fire activity may occur in the region in the near future.

  5. Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2018-03-01

    Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.

  6. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions

    Treesearch

    Yongqiang Liu; Scott Goodrick; Warren Heilman

    2014-01-01

    Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved...

  7. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build-up cyclicity. © 2014 John Wiley & Sons Ltd.

  8. Fire-climate-human interactions during the postglacial period at Sunrise Ridge, Mount Rainier National Park, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Lukens, Michael L.; McCutcheon, Patrick T.; Burtchard, Greg C.

    2017-12-01

    With the creation of Mount Rainier National Park (MORA) in 1899 came the active management of the park's landscapes and a heavy emphasis on fire suppression. Today, managers at MORA seek to better manage current fire activity; however, this requires an improved understanding of past fire activity on the mountain. In this study high-resolution macroscopic charcoal analysis and pollen analysis of lake sediment records was used to reconstruct the postglacial fire and vegetation history for the Sunrise Ridge area of MORA. Fire activity was lowest during the Late Glacial when vegetation was sparse and climate was cool and dry. Fire activity increased during the early Holocene as the regional climate warmed and dried, and burnable biomass became more abundant. Fire activity continued to increase into the middle Holocene (until ca. 6600 cal yr BP) even as the regional climate became wetter and eventually cooler; the modern-day mesic forest and subalpine meadow landscapes of the park established at this time. Fire activity was generally highest and mean fire return intervals were lowest on Sunrise Ridge during the late Holocene, and are consistent with tree-ring based estimates of fire frequency. The similarity between the Sunrise Ridge and other paleofire records in the Pacific Northwest suggests that broad-scale climatic shifts, such as the retreat of the Cordilleran ice sheet and changes in annual insolation, as well as increased interannual climate variability (i.e., drought) particularly in the middle to late Holocene, were responsible for changes in fire activity during the postglacial period. However, abundant and increasing archaeological evidence from Sunrise Ridge during the middle to late Holocene suggests that humans may have also influenced the landscape at this time. It is likely that fires will continue to increase at MORA as drought becomes a more frequent occurrence in the Pacific Northwest.

  9. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn severity 1 d post-fire, but by 8 d post-fire activity was the same in all treatments, indicating complete recovery of the microbial population. Phenol oxidase activity was low in all treatments 1 d post-fire, but by 8 d post-fire, severe plots had substantially increased phenol oxidase activity, likely due to microbial efforts to mitigate phenolic compound toxicity following severe fires. Both DOC and the slope ratio of CDOM absorbance increased with burn severity 1 d post-fire, indicating higher extractability of lighter molecular weight C from severe burns. These results imply that black C created from fires remains as a stable C pool while more labile C is mobilized with increasing burn severity. Our results suggest that the immediate effects of fire severity on microbial communities have the potential to change both nutrient use and the form and concentration of C being processed and mobilized from larch forest ecosystems. These findings highlight the importance of changing fire regimes on soil dynamics with implications for forest re-growth, soil-atmospheric feedbacks, and terrestrial inputs to aquatic ecosystems.

  10. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  11. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    PubMed

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  12. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  13. Fire, Climate, and Human Activity: A Combustive Combination

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  14. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  15. Trends and drivers of fire activity vary across California aridland ecosystems

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Abatzoglou, John T.

    2017-01-01

    Fire activity has increased in western US aridland ecosystems due to increased human-caused ignitions and the expansion of flammable exotic grasses. Because many desert plants are not adapted to fire, increased fire activity may have long-lasting ecological impacts on native vegetation and the wildlife that depend on it. Given the heterogeneity across aridland ecosystems, it is important to understand how trends and drivers of fire vary, so management can be customized accordingly. We examined historical trends and quantified the relative importance of and interactions among multiple drivers of fire patterns across five aridland ecoregions in southeastern California from 1970 to 2010. Fire frequency increased across all ecoregions for the first couple decades, and declined or plateaued since the 1990s; but area burned continued to increase in some regions. The relative importance of anthropogenic and biophysical drivers varied across ecoregions, with both direct and indirect influences on fire. Anthropogenic variables were equally important as biophysical variables, but some contributed indirectly, presumably via their influence on annual grass distribution and abundance. Grass burned disproportionately more than other cover types, suggesting that addressing exotics may be the key to fire management and conservation in much of the area.

  16. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    PubMed Central

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  17. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-03-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  18. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.

    PubMed

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats

    2016-03-04

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  19. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  20. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE

    PubMed Central

    Taylor, Alan H.; Trouet, Valerie; Skinner, Carl N.; Stephens, Scott

    2016-01-01

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California. PMID:27849589

  1. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  2. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    PubMed

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing rate profiles were best fitted by rising exponential functions. With stimulation, however, firing rate profiles were best fitted with linear functions or with less steeply rising exponentials. Firing rate profiles for the descending phases of the contractions were best fitted with linear functions for both control and stimulation conditions. These results seem consistent with the idea that PICs contribute to non-linear firing rate profiles during ascending but not descending phases of contractions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.

  4. Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    PubMed Central

    Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  5. Comparison of Interglacial fire dynamics in Southern Africa

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Daniau, Anne-Laure

    2016-04-01

    Responses of fire activity to a change in climate are still uncertain and biases exist by integrating this non-linear process into global modeling of the Earth system. Warming and regional drying can force fire activity in two opposite directions: an increase in fire in fuel supported ecosystems or a fire reduction in fuel-limited ecosystems. Therefore, climate variables alone can not be used to estimate the fire risk because vegetation variability is an important determinant of fire dynamics and responds itself to change in climate. Southern Africa (south of 20°S) paleofire history reconstruction obtained from the analysis of microcharcoal preserved in a deep-sea core located off Namibia reveals changes of fire activity on orbital timescales in the precession band. In particular, increase in fire is observed during glacial periods, and reduction of fire during interglacials such as the Eemian and the Holocene. The Holocene was characterized by even lower level of fire activity than Eemian. Those results suggest the alternance of grass-fueled fires during glacials driven by increase in moisture and the development of limited fueled ecosystems during interglacials characterized by dryness. Those results question the simulated increase in the fire risk probability projected for this region under a warming and drying climate obtained by Pechony and Schindell (2010). To explore the validity of the hypotheses we conducted a data-model comparison for both interglacials from 126.000 to 115.000 BP for the Eemian and from 8.000 to 2.000 BP for the Holocene. Data out of a transient, global modeling study with a Vegetation-Fire model of full complexity (JSBACH) is used, driven by a Climate model of intermediate complexity (CLIMBER). Climate data like precipitation and temperature as well as vegetation data like soil moisture, productivity (NPP) on plant functional type level are used to explain trends in fire activity. The comparison of trends in fire activity during the Eemian (126.000 to 120.000 BP) and the Holocene (8.000 to 200 BP) shows an increase in fire data and in simulated fire. Lower level of fire during the Holocene than Eemian can be explained by differences due to unequal trends in vegetation as a result of climate forcing due to orbital changes: while woody type vegetation plays a major role during the Eemian, the Holocene is influenced by grass land. From the modelling perspective changes in the seasonal precipitation drives the vegetation pattern.

  6. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  7. Projecting climate-driven increases in North American fire activity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near-term climate projections point to pronounced changes in fire season length, total burned area, and the frequency of extreme events across North America by 2050.

  8. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic-continental climatic gradient in northern Poland

    NASA Astrophysics Data System (ADS)

    Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz

    2017-12-01

    Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.

  9. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  10. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  11. Chapter 14: Effects of fire suppression and postfire management activities on plant invasions

    Treesearch

    Matthew L. Brooks

    2008-01-01

    This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...

  12. Phenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammal.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2016-05-15

    Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus (Antechinus stuartii), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  14. Fire regimes of remnant pitch pine communities in the Ridge and Valley Region of central Pennsylvania, USA. Forests

    Treesearch

    Joseph Marschall; Michael Stambaugh; Benjamin Jones; Richard Guyette; Patrick Brose; Daniel C. Dey

    2016-01-01

    Many fire-adapted ecosystems in the northeastern U.S. are converting to fire-intolerant vegetation communities due to fire suppression in the 20th century. Prescribed fire and other vegetation management activities that increase resilience and resistance to global changes are increasingly being implemented, particularly on public lands. For many fire-dependent...

  15. Fire and smoke retardants

    NASA Astrophysics Data System (ADS)

    Drews, M. J.

    Despite a reduction in Federal regulatory activity, research concerned with flame retardancy and smoke suppression in the private sector appears to be increasing. This trend seem related to the increased utilization of plastics for end uses which traditionally have employed metal or wood products. As a result, new markets have appeared for thermally stable and fire resistance thermoplastic materials, and this in turn has spurred research and development activity. In addition, public awareness of the dangers associated with fire has increased as a result of several highly publicized hotel and restaurant fires within the past two years. The consumers recognition of flammability characteristics as important materials property considerations has increased. The current status of fire and smoke retardant chemistry and research are summarized.

  16. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep

    PubMed Central

    Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio

    2016-01-01

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire at high levels for 6 h in 2 different conditions: during active wake with exploration and during sleep. We find that neurons need more time OFF only after sustained firing in wake, suggesting that fatigue due to sustained firing alone is unlikely to account for the increase in SWA that follows sleep deprivation. PMID:27927960

  17. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    PubMed

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire at high levels for 6 h in 2 different conditions: during active wake with exploration and during sleep. We find that neurons need more time OFF only after sustained firing in wake, suggesting that fatigue due to sustained firing alone is unlikely to account for the increase in SWA that follows sleep deprivation. Copyright © 2016 the authors 0270-6474/16/3612436-12$15.00/0.

  18. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  19. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  20. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.

  1. Spatially explicit forecasts of large wildland fire probability and suppression costs for California

    Treesearch

    Haiganoush Preisler; Anthony L. Westerling; Krista M. Gebert; Francisco Munoz-Arriola; Thomas P. Holmes

    2011-01-01

    In the last decade, increases in fire activity and suppression expenditures have caused budgetary problems for federal land management agencies. Spatial forecasts of upcoming fire activity and costs have the potential to help reduce expenditures, and increase the efficiency of suppression efforts, by enabling them to focus resources where they have the greatest effect...

  2. Strategy for increasing the participation of masyarakat peduli api in forest fire control

    NASA Astrophysics Data System (ADS)

    Ni’mah, N. L. K.; Herdiansyah, H.; Soesilo, T. E. B.; Mutia, E. F.

    2018-03-01

    Forest fires have negative impact on ecology, health, and damage economic activities. One of conservation areas facing the threat of forest fire is Gunung Ciremai National Park. This research aims to formulate a strategy to increase the participation of Masyarakat Peduli Api in the effort of forest fire control. This research use quantitative method with SWOT analysis. Expert consisting of representatives from the national park, Ministry of Environment and Forestry, and BPBD Kuningan Regency. An alternative strategy based on SWOT analysis is in quadrant 1 with coordinate point (0,39; 1,23). The position shows that sustainability of national park management through forest fire control can be done with an aggressive strategy. That is maximizing the strength that is owned with its potential as an ecotourism area to increase community motivation to engage in forest fire control activities. Provision of tourism management licenses will create employment opportunities and increase income for the community so it is expected to increase community participation to prevent the occurrence of forest fires rather than forest fire prevention.

  3. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  4. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genet, Helene; McGuire, A. David; Barrett, K.

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less

  6. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion

    USGS Publications Warehouse

    Keeley, Jon E.; Syphard, Alexandra D.

    2015-01-01

    In the California Sierra Nevada region, increased fire activity over the last 50 years has only occurred in the higher-elevation forests on US Forest Service (USFS) lands, and is not characteristic of the lower-elevation grasslands, woodlands and shrublands on state responsibility lands (Cal Fire). Increased fire activity on USFS lands was correlated with warmer and drier springs. Although this is consistent with recent global warming, we found an equally strong relationship between fire activity and climate in the first half of the 20th century. At lower elevations, warmer and drier conditions were not strongly tied to fire activity over the last 90 years, although prior-year precipitation was significant. It is hypothesised that the fire–climate relationship in forests is determined by climatic effects on spring and summer fuel moisture, with hotter and drier springs leading to a longer fire season and more extensive burning. In contrast, future fire activity in the foothills may be more dependent on rainfall patterns and their effect on the herbaceous fuel load. We predict spring and summer warming will have a significant impact on future fire regimes, primarily in higher-elevation forests. Lower elevation ecosystems are likely to be affected as much by global changes that directly involve land-use patterns as by climate change.

  7. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    USGS Publications Warehouse

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  8. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    PubMed Central

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-01-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662

  9. Management and climate contributions to satellite-derived active fire trends in the contiguous United States.

    PubMed

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.

  10. Fire, fuel treatments, and ecological restoration: Conference proceedings; 2002 16-18 April; Fort Collins, CO

    Treesearch

    Philip N. Omi; Linda A. Joyce

    2003-01-01

    Recent fires have spawned intense interest in fuel treatment and ecological restoration activities. Scientists and land managers have been advocating these activities for years, and the recent fires have provided incentives for federal, state, and local entities to move ahead with ambitious hazard reduction and restoration projects. Recent fires also have increased...

  11. Negative consequences of positive feedbacks in US wildfire management

    Treesearch

    David E. Calkin; Matthew P. Thompson; Mark A. Finney

    2015-01-01

    Over the last two decades wildfire activity, damage, and management cost within the US have increased substantially. These increases have been associated with a number of factors including climate change and fuel accumulation due to a century of active fire suppression. The increased fire activity has occurred during a time of significant ex-urban development of the...

  12. How do climate and human impact affect Sphagnum peatlands under oceanic-continental climatic conditions? 2000 years of fire and hydrological history of a bog in Northern Poland

    NASA Astrophysics Data System (ADS)

    Marcisz, Katarzyna; Tinner, Willy; Colombaroli, Daniele; Kołaczek, Piotr; Słowiński, Michał; Fiałkiewicz-Kozieł, Barbara; Lamentowicz, Mariusz

    2014-05-01

    Climate change affects many natural processes and the same applies to human impact For instance climate change and anthropogenic activities may cause increased fire activity or change peatland dynamics. Currently it is still unknown how Sphagnum peatlands in the oceanic-continental transition zone of Poland may respond to combined effects of heat waves, drought and fire. The aim of the study was to reconstruct the last 2000 years palaeohydrology and fire history at Linje bog in Northern Poland. The main task was to determine the drivers of fire episodes, particularly to identify climatic and anthropogenic forcing. A two-meter peat core was extracted and subsampled with a high resolution. Micro- and macroscopic charcoal analyses were applied to determine past fire activity and the results compared with palaeohydrological reconstructions based on testate amoeba analysis. Palynological human indicators were used to reconstruct human activity. A depth-age model including 20 14C dates was constructed to calculate peat accumulation rates and charcoal influx. We hypothesised that: 1) fire frequency in Northern Poland was determined by climatic conditions (combination of low precipitation and heat waves), as reflected in peatland water table, and that 2) past fire episodes in the last millennium were intensified by human activity. Furthermore climate may have influenced human activity over harvest success and the carrying capacity. Our study shows that fire was important for the studied ecosystem, however, its frequency has increased in the last millennium in concomitance with land use activities. Landscape humanization and vegetation opening were followed by a peatland drying during the Little Ice Age (from ca. AD 1380). Similarly to other palaeoecological studies from Poland, Linje peatland possessed an unstable hydrology during the Little Ice Age. Increased fire episodes appeared shortly before the Little Ice Age and most severe fires were present in the time when recorded water table was the lowest. We acknowledge the support of RE-FIRE SCIEX project 12.286 and grant PSPB-013/2010 from Switzerland through the Swiss Contribution to the enlarged European Union.

  13. The changing strength and nature of fire-climate relationships in the northern Rocky Mountains, U.S.A., 1902-2008

    USGS Publications Warehouse

    Littell, Jeremy

    2015-01-01

    Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.

  14. The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008

    PubMed Central

    Higuera, Philip E.; Abatzoglou, John T.; Littell, Jeremy S.; Morgan, Penelope

    2015-01-01

    Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity. PMID:26114580

  15. The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008.

    PubMed

    Higuera, Philip E; Abatzoglou, John T; Littell, Jeremy S; Morgan, Penelope

    2015-01-01

    Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.

  16. Risk for large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2015-08-01

    The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.

  17. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy

    2017-12-01

    Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.

  18. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes

    Treesearch

    D. B. McWethy; P. E. Higuera; C. Whitlock; T. T. Veblen; D. M. J. S. Bowman; G. J. Cary; S. G. Haberle; R. E. Keane; B. D. Maxwell; M. S. McGlone; G. L. W. Perry; J. M. Wilmshurst

    2013-01-01

    The increased incidence of large fires around much of the world in recent decades raises questions about human and non-human drivers of fire and the likelihood of increased fire activity in the future. The purpose of this paper is to outline a conceptual framework for examining where human-set fires and feedbacks are likely to be most pronounced in temperate forests...

  19. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.

  20. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  1. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units

    PubMed Central

    Lester, Rosemary A.; Johns, Richard K.

    2014-01-01

    During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting on motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In the first set, the extent of saturation was quantified for 136 low-threshold MUs during isometric ramp contractions. Firing rate-force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed. PMID:25475356

  2. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography

    PubMed Central

    Crone, Nathan E.; Niebur, Ernst; Franaszczuk, Piotr J.; Hsiao, Steven S.

    2009-01-01

    Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated with an increase in power in the high-gamma frequency range (∼60–200 Hz). Here we investigate the neural correlates of this high-gamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque SII cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40–80 Hz) was much smaller. In order to explore the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing between neurons in the population. Both an increase in firing rate and neuronal synchrony increased high-gamma power in the simulated ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate. PMID:18987189

  3. One thousand years of fires: Integrating proxy and model data

    USGS Publications Warehouse

    Kehrwald, Natalie; Aleman, Julie C.; Coughlan, Michael; Courtney Mustaphi, Colin J.; Githumbi, Esther N.; Magi, Brian I.; Marlon, Jennifer R.; Power, Mitchell J.

    2016-01-01

    The expected increase in fire activity in the upcoming decades has led to a surge in research trying to understand their causes, the factors that may have influenced similar times of fire activity in the past, and the implications of such fire activity in the future. Multiple types of complementary data provide information on the impacts of current fires and the extent of past fires. The wide array of data encompasses different spatial and temporal resolutions (Figure 1) and includes fire proxy information such as charcoal and tree ring fire scars, observational records, satellite products, modern emissions data, fire models within global land cover and vegetation models, and sociodemographic data for modeling past human land use and ignition frequency. Any single data type is more powerful when combined with another source of information. Merging model and proxy data enables analyses of how fire activity modifies vegetation distribution, air and water quality, and proximity to cities; these analyses in turn support land management decisions relating to conservation and development.

  4. The impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Williams, P.; Abatzoglou, J. T.

    2016-12-01

    Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.

  5. Partial agonists for α4β2 nicotinic receptors stimulate dopaminergic neuron firing with relatively enhanced maximal effects

    PubMed Central

    Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud

    2012-01-01

    BACKGROUND AND PURPOSE Partial agonists selective for α4β2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native α4β2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of α4β2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human α4β2 and α7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All α4β2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native α4β2* receptors. However, partial agonists with relative maximal effects as low as 33% on α4β2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial α4β2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native α4β2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of α4β2 partial agonists. PMID:21838750

  6. Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.

    PubMed

    Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N

    1997-12-01

    Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.

  7. Impact of anthropogenic climate change on wildfire across western US forests.

    PubMed

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  8. Impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Park Williams, A.

    2016-10-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  9. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    PubMed Central

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  10. The Impact of Fire on Active Layer Thicknes

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Parsekian, A.; Natali, S.; Ludwig, S.; Michaelides, R. J.; Zebker, H. A.; Chen, J.

    2016-12-01

    Fire influences permafrost thermodynamics by darkening the surface to increase solar absorption and removing insulating moss and organic soil, resulting in an increase in Active Layer Thickness (ALT). The summer of 2015 was one of the worst fire years on record in Alaska with multiple fires in the Yukon-Kuskokwim (YK) Delta. To understand the impacts of fire on permafrost, we need large-scale, extensive measurements of ALT both within and outside the fire zones. In August 2016, we surveyed ALT across multiple fire zones in the YK Delta using Ground Penetrating Radar (GPR) and mechanical probing. GPR uses pulsed, radio-frequency electromagnetic waves to noninvasively image the subsurface and is an effective tool to quickly map ALT over large areas. We supplemented this ALT data with measurements of Volumetric Water Content (VWC), Organic Layer Thickness (OLT), and burn severity. We quantified the impacts of fire by statistically comparing the measurements inside and outside the fire zones and statistically regressing ALT against VWC, change in OLT, and burn severity.

  11. Climate and human intervention effects on future fire activity and consequences for air pollution across the 21st century

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.

    2016-12-01

    Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.

  12. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+degN). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- 49 years (based on firescars) and 106 +/- 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approx.71+degN). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post- Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. Keywords Fire ecology Fire history Fire frequency Siberian wildfires Larch forests Climate change

  13. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    NASA Astrophysics Data System (ADS)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future fires highly challenging.

  14. The impact of a 2 X CO2 climate on lightning-caused fires

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.

  15. Climate change, fire management, and ecological services in the southwestern US

    USGS Publications Warehouse

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.

  16. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  17. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo.

    PubMed

    Cymerblit-Sabba, Adi; Schiller, Yitzhak

    2012-03-01

    The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ~60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.

  18. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwei; Zhao, Yan; Qin, Feng

    2017-10-01

    Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.

  19. Wildfire Policy in Mediterranean France: How Far is it Efficient and Sustainable?

    PubMed

    Curt, Thomas; Frejaville, Thibaut

    2018-03-01

    A new fire policy reinforcing aggressive fire suppression was established in Mediterranean France in response to the devastating wildfires of the 1990s, but to what extent this has changed fire activity yet remains poorly understood. For this purpose, we compared the number and location of ignitions and of burned areas between two 20-year periods (1975-1994 vs. 1995-2014), in parallel to the changes in fuel covering, human activity promoting ignitions, and fire weather. The number of fires decreased almost continuously since 1975, but sharply after 1994, suggesting an effect of better fire prevention due to the new policy. But the major change in fire activity is a considerable reduction in fire size and burned areas after 1994, especially during summer and in the most fire-prone places, in response to massive efforts put into fire suppression. These reductions have occurred while the covering by fuel biomass, the human pressure on ignition, and the fire weather index increased, thus making the study area more hazardous. Our results suggest that a strategy of aggressive fire suppression has great potential for counterbalancing the effects of climate changes and human activities and for controlling fire activity in the short term. However, we discuss whether such a suppression-oriented approach is sustainable in the context of global changes, which cast new fire challenges as demonstrated by the devastative fires of 2003 and 2016. We advocate for a more comprehensive fire policy to come. © 2017 Society for Risk Analysis.

  20. Reconstructing fire history in central Mongolia from tree-rings

    Treesearch

    Amy E. Hessl; Uyanga Ariya; Peter Brown; Oyunsannaa Byambasuren; Tim Green; Gordon Jacoby; Elaine Kennedy Sutherland; Baatarbileg Nachin; R. Stockton Maxwell; Neil Pederson; Louis De Grandpre; Thomas Saladyga; Jacques C. Tardif

    2012-01-01

    Rising temperatures are expected to increase wildfire activity in many regions of the world. Over the last 60 years in Mongolia, mean annual temperatures have increased ~2°C and the recorded frequency and spatial extent of forest and steppe fires have increased. Few long records of fire history exist to place these recent changes in a historical perspective. The...

  1. Impact of anthropogenic climate change on wildfire across western US forests

    PubMed Central

    Williams, A. Park

    2016-01-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting. PMID:27791053

  2. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65 + deg N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase and observed to be about 80 years at 64 deg N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approximately 71 deg + N). Northward FRI increase correlated with incoming solar radiation (r = -0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase.

  3. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    PubMed Central

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2017-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+°N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRI) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase, and observed to be about 80 years at 64°N, about 200 years near the Arctic Circle, and about 300 years nearby the northern range limit of larch stands (~71°+N). Northward FRI increase correlated with incoming solar radiation (r = − 0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. PMID:28966554

  4. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  5. Post-fire recovery of torpor and activity patterns of a small mammal.

    PubMed

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  6. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  7. The effects of past climate variability on fire and vegetation in the cerrãdo savanna ecosystem of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia

    NASA Astrophysics Data System (ADS)

    Maezumi, S. Y.; Power, M. J.; Mayle, F. E.; McLauchlan, K.; Iriarte, J.

    2015-01-01

    Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are predicted to increase by ~ 3 °C coupled with a precipitation decrease of ~ 20%. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500 year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed for phytoliths, stable isotopes and charcoal. A non-analogue, cold-adapted vegetation community dominated the Late Glacial-Early Holocene period (14 500-9000 ka), that included trees and C3 Pooideae and C4 Panicoideae grasses. The Late Glacial vegetation was fire sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the Early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly fire-dependent during the Middle Holocene with the expansion of C4 fire adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels, and (2) decreased frequency and duration of surazos leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Late Glacial period.

  8. Late-Quaternary records of vegetation and fire in southeastern North Carolina from Jones Lake and Singletary Lake

    NASA Astrophysics Data System (ADS)

    Spencer, Jessica; Jones, Kaylee B.; Gamble, Douglas W.; Benedetti, Michael M.; Taylor, Audrey K.; Lane, Chad S.

    2017-10-01

    We conducted fossil pollen, charcoal, and geochemical analyses of sediment cores from Jones Lake and Singletary Lake spanning the last ∼50,000 cal yr B.P. to examine the linkages between climate, vegetation, and fire activity on the Atlantic Coastal Plain, and particularly emphasize changes since the Last Glacial Maximum. Application of the modern analog technique (MAT) to fossil pollen data allowed for quantitative estimates of Holocene climate, but Pleistocene assemblages had no modern analogues preempting their use for quantitative reconstructions. The MAT data indicate markedly lower mean annual precipitation and temperatures during the late Pleistocene relative to the Holocene. Increased charcoal accumulation during interstadials indicates increased fire activity during these warm intervals. Geochemical data (δ13C, δ15N, C:N) and pollen concentrations indicate a sparsely-vegetated Pleistocene landscape that produced few fires followed by an increase in biomass and fire activity around the lakes during the Holocene transition. A Quercus spp. maximum in the early Holocene is associated with low charcoal abundances, while increased dominance of Pinus spp. during the middle Holocene is associated with dramatic increases in charcoal. It is unclear if the Quercus-Pinus transition was the result of changing fire regimes or if the fire regime changed in response to vegetation. The regional asynchronicity of the Quercus-Pinus transition may indicate another forcing mechanism besides climate change, such as prehistoric human activity, is responsible for the ecological change. Macroscopic charcoal and C:N ratios reach unprecedented values during the late Holocene, possibly as a result of deforestation by both prehistoric Native Americans and later immigrant populations.

  9. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our analysis we quantified how including sub-500m burned area influenced global burned area, carbon emissions, and net ecosystem exchange (NEE) in different continental regions using the Global Fire Emissions Database (GFED) biogeochemical model. We conclude by discussing validation needs using higher resolution visible and thermal imagery.

  10. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration

    Treesearch

    Rebecca E. Hewitt; Teresa N. Hollingsworth; F. Stuart Chapin III; D. Lee Taylor

    2016-01-01

    Background: Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment.

  11. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    PubMed

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  13. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.

  14. Projected changes in daily fire spread across Canada over the next century

    NASA Astrophysics Data System (ADS)

    Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.

    2017-02-01

    In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.

  15. Phasic Firing in Vasopressin Cells: Understanding Its Functional Significance through Computational Models

    PubMed Central

    MacGregor, Duncan J.; Leng, Gareth

    2012-01-01

    Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. PMID:23093929

  16. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    PubMed Central

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry. PMID:27243579

  17. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats.

    PubMed

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.

  18. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration.

    PubMed

    Hewitt, Rebecca E; Hollingsworth, Teresa N; Stuart Chapin Iii, F; Lee Taylor, D

    2016-05-11

    Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment. We investigated the effects of fire severity on soil biota and associated effects on plant performance for two plant species predicted to expand into Arctic tundra. We inoculated seedlings in a growth chamber experiment with soils collected from the largest tundra fire recorded in the Arctic and used molecular tools to characterize root-associated fungal communities. Seedling biomass was significantly related to the composition of fungal inoculum. Biomass decreased as fire severity increased and the proportion of pathogenic fungi increased. Our results suggest that effects of fire severity on soil biota reduces seedling performance and thus we hypothesize that in certain ecological contexts fire-severity effects on plant-fungal interactions may dampen the expected increases in tree and shrub establishment after tundra fire.

  19. Chk1 promotes replication fork progression by controlling replication initiation

    PubMed Central

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-01-01

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465

  20. 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach

    NASA Astrophysics Data System (ADS)

    Feurdean, A.; Liakka, J.; Vannière, B.; Marinova, E.; Hutchinson, S. M.; Mosburgger, V.; Hickler, T.

    2013-12-01

    The usefulness of sedimentary charcoal records to document centennial to millennial scale trends in aspects of fire regimes (frequency, severity) is widely acknowledged, yet the long-term variability in these regimes is poorly understood. Here, we use a high-resolution, multi-proxy analysis of a lacustrine sequence located in the lowlands of Transylvania (NW Romania), alongside global climate simulations in order to disentangle the drivers of fire regimes in this dry climatic region of Central-Eastern Europe. Periods of greater fire activity and frequency occurred between 10,700 and 7100 cal yr BP (mean Fire Interval = mFI 112 yr), and between 3300 and 700 cal yr BP (mFI 150 yr), whereas intervals of lower fire activity were recorded between 12,000 and 10,700 cal yr BP (mFI 217 yr), 7100 and 3300 cal yr BP (mFI 317 yr), and over last 700 years (no fire events detected). We found good correlations between simulated early summer (June, July) soil moisture content and near-surface air temperature with fire activity, particularly for the early to mid Holocene. A climate-fire relationship is further supported by local hydrological changes, i.e., lake level and runoff fluctuations. Fuel limitation, as a result of arid and strongly seasonal climatic conditions, led to low fire activity before 10,700 cal yr BP. However, fires were most frequent during climatically drier phases for the remaining, fuel-sufficient, part of the Holocene. Our results also suggest that the occurrence of more frequent fires in the early Holocene has kept woodlands open, promoted grassland abundance and sustained a more flammable ecosystem (mFI < 150 years) whereas the decline in fire risk under cooler and wetter climate conditions (mFI = 317 years) favoured woodland development. From 3300 cal yr BP, human impacts clearly were partly responsible for changes in fire activity, first increasing fire frequency and severity in periods with fire-favourable climatic conditions (halving the mFI from 300 years to about 150 years), then effectively suppressing fires over the last several centuries. Given the projected future temperature increase and moisture decline and the biomass accumulation due to the agricultural land abandonment in the region, natural fire frequency would be expected to return to <150 years.

  1. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  2. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.

    PubMed

    Frank, Julie G; Mendelowitz, David

    2012-01-01

    GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+) currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration.

  3. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

    PubMed Central

    Kelly, Ryan; Chipman, Melissa L.; Higuera, Philip E.; Stefanova, Ivanka; Brubaker, Linda B.; Hu, Feng Sheng

    2013-01-01

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming. PMID:23878258

  4. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    PubMed

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  5. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  6. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  7. ENSO controls interannual fire activity in southeast Australia

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Fletcher, M.-S.; Holz, A.; Nyman, P.

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is the main mode controlling the variability in the ocean-atmosphere system in the South Pacific. While the ENSO influence on rainfall regimes in the South Pacific is well documented, its role in driving spatiotemporal trends in fire activity in this region has not been rigorously investigated. This is particularly the case for the highly flammable and densely populated southeast Australian sector, where ENSO is a major control over climatic variability. Here we conduct the first region-wide analysis of how ENSO controls fire activity in southeast Australia. We identify a significant relationship between ENSO and both fire frequency and area burnt. Critically, wavelet analyses reveal that despite substantial temporal variability in the ENSO system, ENSO exerts a persistent and significant influence on southeast Australian fire activity. Our analysis has direct application for developing robust predictive capacity for the increasingly important efforts at fire management.

  8. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  9. A review of the relationships between drought and forest fire in the United States

    Treesearch

    Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charlie H. Luce

    2016-01-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity,...

  10. Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy

    PubMed Central

    Toyoda, Izumi; Fujita, Satoshi; Thamattoor, Ajoy K.

    2015-01-01

    Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset. PMID:25904809

  11. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  12. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.

  13. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  14. Assessing the risk of ignition in the Russian far east within a modeling framework of fire threat.

    PubMed

    Loboda, Tatiana V; Csiszar, Ivan A

    2007-04-01

    The forests of high biological importance in the Russian Far East (RFE) have been experiencing increasing pressure from growing demands for natural resources under the changing economy of post-Soviet Russia. This pressure is further amplified by the rising threat of large and catastrophic fire occurrence, which threatens both the resources and the economic potential of the region. In this paper we introduce a conceptual Fire Threat Model (FTM) and use it to provide quantitative assessment of the risk of ignition in the Russian Far East. The remotely sensed data driven FTM is aimed at evaluating potential wildland fire occurrence and its impact and recovery potential for a given resource. This model is intended for use by resource managers to assist in assessing current levels of fire threat to a given resource, projecting the changes in fire threat under changing climate and land use, and evaluating the efficiency of various management approaches aimed at minimizing the fire impact. Risk of ignition (one of the major uncertainties within fire threat modeling) was analyzed using the MODIS active fire product. The risk of ignition in the RFE is shown to be highly variable in spatial and temporal domains. However, the number of ignition points is not directly proportional to the amount of fire occurrence in the area. Fire ignitions in the RFE are strongly linked to anthropogenic activity (transportation routes, settlements, and land use). An increase in the number of fire ignitions during summer months could be attributed to (1) disruption of the summer monsoons and subsequent changes in fire weather and (2) an increase in natural sources of fire ignitions.

  15. Climate Change and Mountain Community Fire Management in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    All, J.; Medler, M.; Cole, R. J.; Arques, S.; Schmitt, C. G.

    2014-12-01

    In the central Andes of Peru, climate change is altering fire risk through changes in local meteorology and fuel loading. Greater moisture and favorable growing conditions are increasing vegetative productivity, which in turn increases fuel loads. This process is accentuated during El Nino events and potentially results in increased fire occurrence and frequency during relatively dry La Nina events. Park officials are concerned about the ramification of the changes on local ecology and tourist use of the resources. However, using a time-series of two different products from the MODIS Terra and Aqua platforms (Active Fire and Burned Area), TRMM 3B43 precipitation data, and Multivariate ENSO Index data we document fire occurrence and extent from 2000 to 2010 and our analysis indicates that fires are burning exclusively during winter months when there are no natural ignition sources. Globally, fire is used in conjunction with grazing to improve the regeneration and yield of grasses. During our interviews, locals claimed to only set fires in the buffer zone outside of the park, but our analysis indicates that the buffer zone rarely burns and that most fires begin within the park and only occasionally move into the buffer zones. Additionally, we determined that although this is small-scale fire activity every year, overall fire is having a very minor effect on local systems. The park service must develop programs to work with local grazing stakeholders to better limit the impacts of fire, while also address the negative perceptions from tourists in the future. In this instance, fire perception and fire reality are not the same and the challenge for resource managers is how to reconcile these two factors in order to more effectively manage the parklands.

  16. Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.

    PubMed

    Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy

    2017-03-01

    Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities. © 2016 by the Ecological Society of America.

  17. Characterizing Predictability of Fire Occurrence in Tropical Forests and Grasslands: The Case of Puerto Rico

    Treesearch

    Ana Carolina Monmany; William Gould; Maria Jose Andrade-Nunez; Grizelle Gonzalez; Maya Quinones

    2017-01-01

    Global estimates of fire frequency indicate that over 70% of active fires occur in the tropics, and the size and frequency of fires are increasing every year. The majority of fires in the tropics are an unintended consequence of current land-use practices that promotes the establishment of grass and shrubland communities, which are more flammable and more adapted to...

  18. Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.

    2017-12-01

    The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.

  19. Economics of wildland fire management

    Treesearch

    David Calkin; Krista Gebert

    2009-01-01

    Increased wildland fire activity and associated suppression costs over the last decade have significantly challenged federal agencies' ability to manage the nation's lands and meet public expectations. Three common factors have typically been identified to explain this increasing cost trend: 1) increased development within the wildland urban interface...

  20. Fire Effects on Microbial Dynamics and C, N, and P Cycling in Larch Forests of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Alexander, H. D.; Mann, P. J.; Natali, S.; Schade, J. D.

    2013-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After 1 day, 8 days and 1 year post-fire, we measured CO2 flux from the plots, and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, PO4, and chromophoric dissolved organic matter (CDOM) from soil leachates. Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). Both 1 day and 8 days post-fire DOC, TDN, NH4, and PO4 all increased with burn severity, but by 1 year they were similar to control plots. The aromaticity and molecular weight of DOM decreased with fire severity. One day post-fire we observed a spike in phenol oxidase activity in the severe burns only, and a decline in β-glucosidase and phosphatase activity. By 8 days post-fire all enzyme activities were at the level of the control plots. 1 year post-fire LAP, β-glucosidase, and phosphatase all decreased with fire severity, parallel to a decrease in CO2 flux by fire severity. Ratios of enzymatic activity 1 year post-fire reflect a switch of resource allocation from P acquiring to N acquiring activities in more severe fires. Our results show an immediate microbial response to the short-term effects of fire severity that reflects both a change in nutrient use and the form and concentration of C being processed, and a response to long-term effects of fire severity that show further changes in nutrient use and overall decreased microbial activity. These findings highlight the importance of changing fire regimes on soil dynamics with implications for forest re-growth, soil-atmospheric feedbacks, and terrestrial inputs to aquatic ecosystems.

  1. Preictal Activity of Subicular, CA1, and Dentate Gyrus Principal Neurons in the Dorsal Hippocampus before Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K.

    2014-01-01

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2–4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41–57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. PMID:25505320

  2. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    PubMed

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  3. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014

    Treesearch

    Arjan J. H. Meddens; Crystal A. Kolden; James A. Lutz; John T. Abatzoglou; Andrew T. Hudak

    2018-01-01

    A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is...

  4. Weather, fuels, and topography impede wildland fire spread in western US landscapes

    Treesearch

    Lisa Holsinger; Sean A. Parks; Carol Miller

    2016-01-01

    As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet...

  5. Using simulated historical time series to prioritize fuel treatments on landscapes across the United States: The LANDFIRE prototype project

    Treesearch

    Robert E. Keane; Matthew Rollins; Zhi-Liang Zhu

    2007-01-01

    Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA....

  6. Estimation of fire danger in Hawai'i using limited weather data and simulation

    Treesearch

    D.R. Weise; S.L. Stephens; F.M. Fujioka; T.J. Moody; J. Benoit

    2010-01-01

    The presence of fire in Hawai'i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rating System (NFDRS) typically requires 5 to 10 yr of data to determine percentile weather values and fire activity. The U.S. Army Pōhakuloa Training Area in Hawai‘i is located in the interface zone between windward...

  7. Human-started wildfires expand the fire niche across the United States.

    PubMed

    Balch, Jennifer K; Bradley, Bethany A; Abatzoglou, John T; Nagy, R Chelsea; Fusco, Emily J; Mahood, Adam L

    2017-03-14

    The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal "fire niche" in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km 2 , the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km 2 , primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.

  8. Human-started wildfires expand the fire niche across the United States

    PubMed Central

    Balch, Jennifer K.; Bradley, Bethany A.; Nagy, R. Chelsea; Fusco, Emily J.; Mahood, Adam L.

    2017-01-01

    The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal “fire niche” in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km2, the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km2, primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards. PMID:28242690

  9. Human presence diminishes the importance of climate in driving fire activity across the United States

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken

    2017-01-01

    Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.

  10. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    PubMed Central

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726

  11. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    PubMed

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.

  12. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale

    PubMed Central

    Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.

    2013-01-01

    Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917

  13. Adding fuel to the fire: the impacts of non-native grass invasion on fire management at a regional scale.

    PubMed

    Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B

    2013-01-01

    Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.

  14. Fires in Non-drought Conditions in Indonesia: the Role of Increasing Temperatures

    NASA Astrophysics Data System (ADS)

    Fernandes, K.; Verchot, L. V.; Baethgen, W.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.; Martius, C.

    2017-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  15. Heightened fire risk in Indonesia in response to increasing temperature

    NASA Astrophysics Data System (ADS)

    Fernandes, K.; Baethgen, W.; Verchot, L. V.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.

    2016-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  16. Human and climate impacts on Holocene fire activity recorded in polar and mountain ice cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie; Zennaro, Piero; Kirchgeorg, Torben; Li, Quanlian; Wang, Ninglian; Power, Mitchell; Zangrando, Roberta; Gabrielli, Paolo; Thompson, Lonnie; Gambaro, Andrea; Barbante, Carlo

    2014-05-01

    Fire is one of the major influences of biogeochemical change on local to hemispheric scales through emitting greenhouse gases, altering atmospheric chemistry, and changing primary productivity. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is a specific molecular that can only be produced by cellulose burning at temperatures > 300°C, comprises a major component of smoke plumes, and can be transported across > 1000 km distances. Levoglucosan is deposited on and archived in glaciers over glacial interglacial cycles resulting in pyrochemical evidence for exploring interactions between fire, climate and human activity. Ice core records provide records of past biomass burning from regions of the world with limited paleofire data including polar and low-latitude, high-altitude regions. Here, we present Holocene fire activity records from the NEEM, Greenland (77° 27'N; 51° 3'W; 2454 masl), EPICA Dome C, Antarctica (75° 06'S; 123° 21'E; 3233 masl), Kilimanjaro, Tanzania (3° 05'S, 21.2° E, 5893 masl) and the Muztagh, China (87.17° E; 36.35° N; 5780 masl ice cores. The NEEM ice core reflects boreal fire activity from both North American and Eurasian sources. Temperature is the dominant control of NEEM levoglucosan flux over decadal to millennial time scales, while droughts influence fire activity over sub-decadal timescales. Our results demonstrate the prominence of Siberian fire sources during intense multiannual droughts. Unlike the NEEM core, which incorporates the largest land masses in the world as potential fire sources, EPICA Dome C is located far from any possible fire source. However, EPICA Dome C levoglucosan concentrations are consistently above detection limits and demonstrate a substantial 1000-fold increase in fire activity beginning approximately 800 years ago. This significant and sustained increase coincides with Maori arrival and dispersal in New Zealand augmented by later European arrival in Australia. The EPICA Dome C levoglucosan profile is similar to regional charcoal compilations from New Zealand and southeastern Australia. Evidence from Kilimanjaro demonstrates a major increase in fire activity centered around 800-1000 years ago, corresponding to both increased temperatures and aridity as recorded in regional lake cores. This peak in fire activity is an order of magnitude higher than at any other time in the record including the most recent period. Environmental and anthropological studies suggest that upslope human migrations have occurred in response to the warmer, drier conditions. Kilimanjaro is surrounded by flammable savanna vegetation, yet the Muztagh core is located in an especially arid section of the Tibetan Plateau and consistently contains levoglucosan concentrations that are 100 to 1000 times greater than the mean Kilimanjaro flux. These high concentrations and the lack of available fuel suggest that regional rather than local biomass burning may be the source of the fire products. Biomass burning aerosols are a major component of the South Asian Brown Cloud and may influence the composition and concentration of pyrogenic aerosols across the Tibetan Plateau. The relative impact of human activity versus climate change on Holocene biomass burning varies regionally. Combining ice and sediment core data with model output can help place these regional differences into a global context with implications for a warming climate.

  17. Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Coen, J.; Oliva, P.

    2013-12-01

    Availability of spatially refined satellite active fire detection data is gradually increasing. For example, the new 375 m Visible Infrared Imaging Radiometer Suite (VIIRS) data show improved active fire detection performance for both small and large size fires. The VIIRS data have proved superior to MODIS for mapping of wildfires events spanning several days to weeks of either continued or intermittent activity, delivering 12-h active fire data of improved spatial fidelity. The VIIRS active fire data are complemented by other satellite active fire data sets of similar or higher spatial resolution, including the new 30 m Landsat-8. Additional assets should include the upcoming 20 m Sentinel-2 Landsat-class satellite program by the European Space Agency to be launched in 2014-15. These improved active fire data sets are fostering new applications that rely on higher resolution input fire data. In this study, we describe the characteristics of the new VIIRS and Landsat-8 data and demonstrate one such new application of satellite active fire data in support of fire behavior modeling. We present results for a wildfire observed in June 2012 in New Mexico using an innovative approach to improving the simulation of large, long-duration wildfires, either for retrospective studies or forecasting in a number of geophysical applications. The approach uses (1) the Coupled Atmosphere-Wildland Fire Environment (CAWFE) Model, a numerical weather prediction model two-way coupled with a module representing the rate of spread of a wildfire's flaming front, its rate of consumption of different wildland fuels, and the feedback of this heat release upon the atmosphere - i.e. 'how a fire creates its own weather', combined with (2) spatially refined 375 m VIIRS active fire data, which is used for initialization of a wildfire already in progress in the model and evaluation of its simulated progression at the time of the next pass. Results show that initializing a fire that is 'in progress' with VIIRS data and a weather simulation based on more recent atmospheric analyses can overcome several issues and improve the simulation of late-developing fires and of later periods (particularly those with growth periods separated by lulls) in a long-lived fire.

  18. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  19. Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.

  20. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures

    NASA Astrophysics Data System (ADS)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher

    2017-05-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  1. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests

    USGS Publications Warehouse

    Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.

    2009-01-01

    Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance. ?? 2009 by the Ecological Society of America.

  2. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    USGS Publications Warehouse

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  3. Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity

    PubMed Central

    Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H

    2009-01-01

    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541

  4. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions

    PubMed Central

    Ali, Adam A.; Blarquez, Olivier; Girardin, Martin P.; Hély, Christelle; Tinquaut, Fabien; El Guellab, Ahmed; Valsecchi, Verushka; Terrier, Aurélie; Bremond, Laurent; Genries, Aurélie; Gauthier, Sylvie; Bergeron, Yves

    2012-01-01

    Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire–climate–vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America. PMID:23213207

  5. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.

    PubMed

    James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A

    2017-03-01

    Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.

  6. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  7. Climate-induced variations in global wildfire danger from 1979 to 2013

    PubMed Central

    Jolly, W. Matt; Cochrane, Mark A.; Freeborn, Patrick H.; Holden, Zachary A.; Brown, Timothy J.; Williamson, Grant J.; Bowman, David M. J. S.

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate. PMID:26172867

  8. The effect of smoke inhalation on lung function and airway responsiveness in wildland fire fighters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.; Tager, I.B.; Balmes, J.R.

    1992-12-01

    The current study was undertaken to evaluate the effect of smoke on forced expiratory volumes and airway responsiveness in wildland fire fighters during a season of active fire fighting. Sixty-three seasonal and full-time wildland fire fighters from five U.S. Department of Agriculture Forest Service (USDAFS) Hotshot crews in Northern California and Montana completed questionnaires, spirometry, and methacholine challenge testing before and after an active season of fire fighting in 1989. There were significant mean individual declines of 0.09, 0.15, and 0.44 L/s in postseason values of FVC, FEV1, and FEF25-75, respectively, compared with preseason values. There were no consistent significantmore » relationships between mean individual declines of the spirometric parameters and the covariates: sex, smoking history, history of asthma or allergies, years as a fire fighter, upper/lower respiratory symptoms, or membership in a particular Hotshot crew. There was a statistically significant increase in airway responsiveness when comparing preseason methacholine dose-response slopes (DRS) with postseason dose-response slopes (p = 0.02). The increase in airway responsiveness appeared to be greatest in fire fighters with a history of lower respiratory symptoms or asthma, but it was not related to smoking history. These data suggest that wildland fire fighting is associated with decreases in lung function and increases in airway responsiveness independent of a history of cigarette smoking. Our findings are consistent with the results of previous studies of municipal fire fighters.« less

  9. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    PubMed

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  10. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy

    PubMed Central

    Kros, Lieke; Lindeman, Sander; Eelkman Rooda, Oscar H. J.; Murugesan, Pavithra; Bina, Lorenzo; Bosman, Laurens W. J.; De Zeeuw, Chris I.; Hoebeek, Freek E.

    2017-01-01

    Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations. PMID:29163057

  11. Independence of motor unit recruitment and rate modulation during precision force control.

    PubMed

    Kamen, G; Du, D C

    1999-01-01

    The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.

  12. Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover

    PubMed Central

    Lambert, Elisabeth A; Schlaich, Markus P; Dawood, Tye; Sari, Carolina; Chopra, Reena; Barton, David A; Kaye, David M; Elam, Mikael; Esler, Murray D; Lambert, Gavin W

    2011-01-01

    Abstract Recent work using single-unit sympathetic nerve recording techniques has demonstrated aberrations in the firing pattern of sympathetic nerves in a variety of patient groups. We sought to examine whether nerve firing pattern is associated with increased noradrenaline release. Using single-unit muscle sympathetic nerve recording techniques coupled with direct cardiac catheterisation and noradrenaline isotope dilution methodology we examined the relationship between single-unit firing patterns and cardiac and whole body noradrenaline spillover to plasma. Participants comprised patients with hypertension (n = 6), depression (n = 7) and panic disorder (n = 9) who were drawn from our ongoing studies. The patient groups examined did not differ in their single-unit muscle sympathetic nerve firing characteristics nor in the rate of spillover of noradrenaline to plasma from the heart. The median incidence of multiple spikes per beat was 9%. Patients were stratified according to the firing pattern: low level of incidence (less than 9% incidence of multiple spikes per beat) and high level of incidence (greater than 9% incidence of multiple spikes per beat). High incidence of multiple spikes within a cardiac cycle was associated with higher firing rates (P < 0.0001) and increased probability of firing (P < 0.0001). Whole body noradrenaline spillover to plasma and (multi-unit) muscle sympathetic nerve activity in subjects with low incidence of multiple spikes was not different to that of those with high incidence of multiple spikes. In those with high incidence of multiple spikes there occurred a parallel activation of the sympathetic outflow to the heart, with cardiac noradrenaline spillover to plasma being two times that of subjects with low nerve firing rates (11.0 ± 1.5 vs. 22.0 ± 4.5 ng min−1, P < 0.05). This study indicates that multiple within-burst firing and increased single-unit firing rates of the sympathetic outflow to the skeletal muscle vasculature is associated with high cardiac noradrenaline spillover. PMID:21486790

  13. Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration.

    PubMed

    Aristieta, A; Morera-Herreras, T; Ruiz-Ortega, J A; Miguelez, C; Vidaurrazaga, I; Arrue, A; Zumarraga, M; Ugedo, L

    2014-05-01

    Within the basal ganglia, the subthalamic nucleus (STN) is the only glutamatergic structure and occupies a central position in the indirect pathway. In rat, the STN receives serotonergic input from the dorsal raphe nucleus and expresses serotonergic receptors. This study examined the consequences of serotonergic neurotransmission modulation on STN neuron activity. In vivo single-unit extracellular recordings, HPLC determination, and rotarod and bar test were performed in control, 4-chloro-DL-phenylalanine methyl ester hydrochloride- (pCPA, a serotonin synthesis inhibitor) and chronically fluoxetine-treated rats. The pCPA treatment and the administration of serotonin (5-HT) receptor antagonists increased number of bursting neurons in the STN. The systemic administration of the 5-HT(1A) agonist, 8-OH-DPAT, decreased the firing rate and increased the coefficient of variation of STN neurons in pCPA-treated rats but not in control animals. Additionally, microinjection of 8-OH-DPAT into the STN reduced the firing rate of STN neurons, while microinjection of the 5-HT(2C) agonist, Ro 60-0175, increased the firing rate in both control and fluoxetine-treated animals. Finally, the fluoxetine challenge increased the firing rate of STN neurons in fluoxetine-treated rats and induced catalepsy. Our results indicate that the depletion and the blockage of 5-HT modify STN neuron firing pattern. STN neuron activity is under the control of 5-HT(1A) and 5-HT(2C) receptors located both inside and outside the STN. Finally, fluoxetine increases STN neuron activity in chronically fluoxetine-treated rats, which may explain the role of this nucleus in fluoxetine-induced extrapyramidal side effects.

  14. Low-threshold mechanoreceptors play a frequency-dependent dual role in subjective ratings of mechanical allodynia.

    PubMed

    Löken, Line S; Duff, Eugene P; Tracey, Irene

    2017-12-01

    In the setting of injury, myelinated primary afferent fibers that normally signal light touch are thought to switch modality and instead signal pain. In the absence of injury, touch is perceived as more intense when firing rates of Aβ afferents increase. However, it is not known if varying the firing rates of Aβ afferents have any consequence to the perception of dynamic mechanical allodynia (DMA). We hypothesized that, in the setting of injury, the unpleasantness of DMA would be intensified as the firing rates of Aβ afferents increase. Using a stimulus-response protocol established in normal skin, where an increase in brush velocity results in an increase of Aβ afferent firing rates, we tested if brush velocity modulated the unpleasantness of capsaicin-induced DMA. We analyzed how changes in estimated low-threshold mechanoreceptor firing activity influenced perception and brain activity (functional MRI) of DMA. Brushing on normal skin was perceived as pleasant, but brushing on sensitized skin produced both painful and pleasant sensations. Surprisingly, there was an inverse relationship between Aβ firing rates and unpleasantness such that brush stimuli that produced low firing rates were most painful and those that elicited high firing rates were rated as pleasant. Concurrently to this, we found increased cortical activity in response to low Aβ firing rates in regions previously implicated in pain processing during brushing of sensitized skin, but not normal skin. We suggest that Aβ signals do not merely switch modality to signal pain during injury. Instead, they exert a high- and low-frequency-dependent dual role in the injured state, with respectively both pleasant and unpleasant consequences. NEW & NOTEWORTHY We suggest that Aβ signals do not simply switch modality to signal pain during injury but play a frequency-dependent and dual role in the injured state with both pleasant and unpleasant consequences. These results provide a framework to resolve the apparent paradox of how touch can inhibit pain, as proposed by the Gate Control Theory and the existence of dynamic mechanical allodynia.

  15. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict

    PubMed Central

    Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A.

    2017-01-01

    Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. PMID:26494798

  16. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking.

    PubMed

    Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole

    2011-11-29

    Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.

  17. The dynamics of fire regimes in tropical peatlands in Central Kalimantan, Borneo

    NASA Astrophysics Data System (ADS)

    Hoscilo, Agata; Page, Susan; Tansey, Kevin

    2010-05-01

    As a carbon-rich ecosystem, tropical peatland contributes significantly to terrestrial carbon storage and stability of the global carbon cycle. Vast areas of tropical peatland in SE Asia are degraded by the increasingly intensive scale of human activities, illustrated by high rates of deforestation, poor land-use management, selective illegal logging, and frequently repeated fires. Analysis of time-series satellite images performed in this study confirmed that fire regimes have dramatically changed in tropical peatlands over the last three decades (1973-2005). The study was conducted in the southern part of Central Kalimantan (Indonesian Borneo). We found that there was an evident increase in fire frequency and a decline in the fire return interval after implementation of the Mega Rice Project (1997-2005). Up until 1997, fires had affected a relatively small area, in total 23% of the study area, and were largely related to land clearance. This situation changed significantly during the last decade (1997-2005), when the widespread, intensive fires of 1997 affected a much larger area. Five years later, in 2002, extensive fires returned, affecting again 22% of the study area. Then, in 2004 and 2005, a further large area of peatland was on fire. Fire frequency analysis showed that during the period 1997-2005, around 45% of the study area was subject to multiple fires, with 37% burnt twice and 8% burnt three or more times. Near-annual occurrence of fire events reduces the rate and nature of vegetation regrowth. Hence, we observed a shift in the fire fuel type and amount over the period of investigation. After 1997, the fire fuel shifted from mainly peat swamp forest biomass towards non-woody biomass, dominated by regenerating vegetation, mainly ferns and a few trees. This secondary vegetation has been shown to be fire prone, although fire propagation is slower than in forest and restricted by both low fuel quality and load. Furthermore, we investigated the interaction between human impacts and presence and extent of fires. We found that the majority of fire events were directly or indirectly associated with human activities (i.e. selective logging, land clearance, intensive drainage and transmigration re-settlement). The intensive drainage infrastructure associated with the Mega Rice Project initiative greatly impaired the peatland hydrological system, increasing the risk of fire. In addition, the network of canals allowed easy access for people whose activities provided ignition sources. Hence, multiple fires were located within close proximity to canals and declined with distance away from canals. These results emphasise the vulnerability of degraded tropical peatlands to fire and confirm that widespread and intensive fires have become an integral part of tropical peatland ecosystem and are now associated with most dry seasons.

  18. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    PubMed

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  19. Holocene fire activity and vegetation response in South-Eastern Iberia

    NASA Astrophysics Data System (ADS)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  20. Quantifying Future PM2.5 and Associated Health Effects Due to Changes in US Wildfires

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Val Martin, M.; Ford, B.; Zelasky, S.; Heald, C. L.; Li, F.; Lawrence, D. M.; Fischer, E. V.

    2017-12-01

    Fine particulate matter (PM2.5) from landscape fires has been shown to adversely affect visibility, air quality and and health across the US. Fire activity is strongly related to climate and human activities. Predictions based on climate scenarios and future land cover projections that consider socioeconomic development suggest that fire activity will rise dramatically over the next decades. As PM2.5 is associated with increased mortality and morbidity rates, increases in emissions from landscape fires may alter the health burden on the US population. Here we present an analysis of the changes in future wildfire activity and consequences for PM2.5 and health over the US from 2000 to 2100. We employ the global Community Earth System Model (CESM) with the IPCC RCP projections. Within CESM, we use a process-based global fire parameterization to project future climate-driven and human-caused fire emissions. From these simulations, we determine the current and future impact on PM2.5 concentrations and visibility for different regions of the US, and we also calculate the mortality attributable to PM2.5 and wildfire-specific PM2.5 using existing concentration-response functions. Results show that although total PM2.5 concentrations in the US are projected to be similar in 2100 as in 2000, the dominant source of PM2.5 will change. Under the RCP8.5 climate projection and SSP3 population projection, non-fire emissions (mostly anthropogenic) are projected to decrease, but PM2.5 from CONUS and non-US wildfires is projected to increase from approximately 20% of all PM2.5 in 2000 to 80% of all PM2.5 in 2100. Furthermore, although the US population is expected to decline between 2000 and 2100, the mortality attributable to wildfire smoke is expected to increase from 25,000 deaths per year in 2000 to 75,000 deaths per year in 2100.

  1. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring.

    PubMed

    Westerling, Anthony LeRoy

    2016-06-05

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  2. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring

    PubMed Central

    2016-01-01

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216510

  3. Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought.

    PubMed

    Hinojosa, M Belén; Parra, Antonio; Laudicina, Vito Armando; Moreno, José M

    2016-12-15

    Fire may cause significant alterations in soil properties. Post-fire soil dynamics can vary depending, among other factors, on rainfall patterns. However, little is known regarding variations in response to post-fire drought. This is relevant in arid and semiarid areas with poor soils, like much of the western Mediterranean. Furthermore, climate change projections in such areas anticipate reduced precipitation and longer annual drought periods, together with an increase in fire severity and frequency. This research evaluates the effects of experimental drought after fire on soil dynamics of a Cistus-Erica shrubland (Central Spain). A replicated (n=4) field experiment was conducted in which the total rainfall and its patterns were manipulated by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2months drought), moderate drought (25% reduction of historical control, 5months drought) and severe drought (45% reduction, 7months drought). After one growing season under these rainfall treatments, the plots were burned. One set of unburned plots under natural rainfall served as an additional control. Soils were collected seasonally. Fire increased soil P and N availability. Post-fire drought treatments reduced available soil P but increased N concentration (mainly nitrate). Fire reduced available K irrespective of drought treatments. Fire reduced enzyme activities and carbon mineralization rate, a reduction that was higher in post-fire drought-treated soils. Fire decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased. Post-fire drought decreased soil total microbial biomass and fungi, with bacteria becoming more abundant. Our results support that increasing drought after fire could compromise the resilience of Mediterranean ecosystems to fire. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    PubMed

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  5. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory system.

  6. Hazard report. Internal wire breakage in reusable electrosurgical active electrode cables may cause sparking and surgical fires.

    PubMed

    2009-07-01

    Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk.

  7. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    PubMed Central

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  8. Fire patterns in the Amazonian biome

    NASA Astrophysics Data System (ADS)

    Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan

    2010-05-01

    This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).

  9. In vivo analysis of Purkinje cell firing properties during postnatal mouse development

    PubMed Central

    Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.

    2014-01-01

    Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961

  10. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    NASA Astrophysics Data System (ADS)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp and paper market. Since the operational start of the website, the number of registered users has been steadily increasing up to a total of 300 users from a wide community that encompasses forest managers, firemen and civil protection officers, personnel from municipalities, academic researchers and private owners.

  11. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults.

    PubMed

    McCutcheon, James E; Conrad, Kelly L; Carr, Steven B; Ford, Kerstin A; McGehee, Daniel S; Marinelli, Michela

    2012-09-01

    Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.

  12. Stereotypic wheel running decreases cortical activity in mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  13. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term.

    PubMed

    González-De Vega, S; De Las Heras, J; Moya, D

    2016-12-15

    In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems should be implemented. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  15. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas. ©2009 Society for Conservation Biology.

  16. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical. Based on NOAA and TOMS daily data, we estimated fire emissions (including CO2, CO, CH4 and other smoke aerosols) of over 70 Tg Carbon for Yakutian fires in 2002 and more than 120 Tg C for all Russian fires in 2010. We note the potential for increasing amounts of methane emissions when fires occur in permafrost zones and peat bogs. Post-fire changes in permafrost and vegetation cover are discussed in the connection changes in solar radiance balance. During the fire season of 2006 in the Eastern-Siberian, Transbaikal, and Far East regions we identified more than 15,000 fires with a total area of 120,000 km2. From 2002-2010 the annual number of fires in this area ranged from 10,000 to 16,500, and annual burned areas ranged from a low of 30 000 km2 in 2004 to a high of 145,000 km2 in 2003.

  17. 78 FR 2947 - Manti-La Sal National Forest, Utah; Maverick Point Forest Health Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... class structure via use of timber harvesting and prescribed fire. Project activities also seek to.... Over the last 20 years drought conditions have increased; fire size, severity, and total acres burned... fire regimes have been significantly altered from their historical range. The risk of losing key...

  18. Photochemical potential of forest fire smoke

    Treesearch

    W. Henry Benner; Paul Urone; Charles K. McMahon; Paul Ryan

    1977-01-01

    A stainless steel laboratory chamber to hold the entire combustion products from a small scale pine needle fire was useful for measuring the photochemical activity of pine needle fire smoke. Particle size distributions indicated that the nucleation of small numbers of submicron particles was sufficient to increase the amount of light a plume would scatter. Artificial...

  19. An evaluation of three wood shred blends for post-fire erosion control using indoor simulated rain events on small plots

    Treesearch

    R. B. Foltz; N. S. Wagenbrenner

    2010-01-01

    The assessment teams who make post-fire stabilization and treatment decisions are under pressure to employ more effective and economic post-fire treatments, as wild fire activity and severity has increased in recent years across the western United States. Use of forest-native wood-based materials for hillslope mulching has been on the rise due to potential...

  20. EFFECTS OF CHRONIC ANTIDEPRESSANT DRUG ADMINISTRATION AND ELECTROCONVULSIVE SHOCK ON ACTIVITY OF DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTUM

    PubMed Central

    West, Charles Hutchison Keesor; Weiss, Jay Michael

    2010-01-01

    Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 days via subcutaneously-implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anesthesia. Also, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either three or five days after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on “burst” firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions. PMID:20482941

  1. Economics of wildfire management: The development and application of suppression expenditure models

    Treesearch

    Michael S. Hand; Krista M. Gebert; Jingjing Liang; David E. Calkin; Matthew P. Thompson; Mo Zhou

    2014-01-01

    In the United States, increased wildland fire activity over the last 15 years has resulted in increased pressure to balance the cost, benefits, and risks of wildfire management. Amid increased public scrutiny and a highly variable wildland fire environment, a substantial body of research has developed to study factors affecting the cost-effectiveness of wildfire...

  2. Climate change and future fire regimes: Examples from California

    USGS Publications Warehouse

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  3. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  4. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    NASA Astrophysics Data System (ADS)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  5. Post-wildfire physiological ecology of an Australian microbat.

    PubMed

    Doty, Anna C; Stawski, Clare; Law, Brad S; Geiser, Fritz

    2016-10-01

    Historical patterns of wildfires are being altered as a result of changing climate and therefore are becoming an increasingly pressing global issue. How small mammals deal physiologically with changes in landscape and food availability due to fire remains largely unknown, although recent studies on small heterothermic terrestrial mammals have shown an increase in post-fire torpor use to reduce energy and foraging requirements. However, data on the behavioural and physiological responses of bats after fires are scarce, although potentially these volant species may differ from terrestrial mammals. Therefore, we investigated the post-fire thermal biology and activity of lesser long-eared bats (Nyctophilus geoffroyi) using temperature-telemetry in Warrumbungle National Park, NSW, which experienced a devastating wildfire in 2013. The study comprised two field seasons, one in 2013 within 4 months after the fire, and one in 2015 two years after the fire to identify potential changes in behaviour and physiology. Interestingly, soon after the fire, bats showed significantly shorter torpor bout duration (11.8 ± 12.5 h) and longer normothermia duration (8.7 ± 4.6 h) in comparison to those in 2015 (torpor bout duration: 24.1 ± 23.5 h; normothermia duration: 2.5 ± 1.5 h). Insect availability was significantly (20-fold) higher in 2013 than in 2015, which was likely an important factor resulting in the short average torpor bout duration by N. geoffroyi after the fire. Our data indicate that volant bats appear to show the opposite post-fire behavioural and physiological responses to small terrestrial mammals, showing longer normothermic and active periods and shorter torpor bouts to capitalise on an increase in available post-fire resources.

  6. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  7. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    PubMed Central

    Zijdewind, Inge; Thomas, Christine K

    2012-01-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n = 19 units) or irregular intervals (CV > 0.15, n = 14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5–15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (∼20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs. Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated afterhyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise. PMID:22310313

  8. The effects of nicotine exposure and PFC transection on the time-frequency distribution of VTA DA neurons' firing activities.

    PubMed

    Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin

    2011-05-01

    We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.

  9. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period.

    PubMed

    van der Werf, Guido R; Randerson, James T; Collatz, G James; Giglio, Louis; Kasibhatla, Prasad S; Arellano, Avelino F; Olsen, Seth C; Kasischke, Eric S

    2004-01-02

    During the 1997 to 1998 El Niño, drought conditions triggered widespread increases in fire activity, releasing CH4 and CO2 to the atmosphere. We evaluated the contribution of fires from different continents to variability in these greenhouse gases from 1997 to 2001, using satellite-based estimates of fire activity, biogeochemical modeling, and an inverse analysis of atmospheric CO anomalies. During the 1997 to 1998 El Niño, the fire emissions anomaly was 2.1 +/- 0.8 petagrams of carbon, or 66 +/- 24% of the CO2 growth rate anomaly. The main contributors were Southeast Asia (60%), Central and South America (30%), and boreal regions of Eurasia and North America (10%).

  10. Temporal scaling behavior of forest and urban fires

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.

  11. Physiological responses to fire fighting activities.

    PubMed

    Romet, T T; Frim, J

    1987-01-01

    Eight professional fire fighters participated in six fire fighting scenarios at a training facility. Data on heart rate (HR), rectal temperature (Tre), and skin temperatures at the chest and thigh were collected using a portable data acquisition system. Average HR ranged from 122 to 151 beats.min-1 during the six scenarios. Detailed analyses indicated that HR and Tre increases are related to both the physical and environmental stresses of the various activities carried out. The most demanding activity, that of building search and victim rescue, resulted in an average HR of 153 beats.min-1 and Tre rise of 1.3 degree C, while the least demanding activity, that of the crew captain who directs the fire fighting, resulted in an average HR of only 122 beats.min-1 and a Tre rise of only 0.3 degree C. This study shows that fire fighting is strenuous work for those directly entering a building and performing related duties, but that the physical demands of other activities are considerably less. The results further suggest that heat strain injuries in fire fighters could perhaps be reduced by rotating duties frequently with other crew members performing less stressful work.

  12. Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire.

    PubMed

    Fu, Congsheng; Wang, Guiling; Bible, Kenneth; Goulden, Michael L; Saleska, Scott R; Scott, Russell L; Cardon, Zoe G

    2018-04-13

    Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world-wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe-controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system-scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO 2 (or reduce annual CO 2 release to the atmosphere). Moreover, engagement of CLM4.5's ground-truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO 2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems. © 2018 John Wiley & Sons Ltd.

  13. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    PubMed

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  14. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the subject of several research projects in the NASA LCLUC program over the globe, and, in particular, in Northern Eurasia. As an operational agency, NOAA puts global fire monitoring as a priority and supports related GCOS, CEOS and GOFC-GOLD objectives. NOAA developed an operational quasi-global fire monitoring system using geostationary satellites that provides coverage over parts of Northern Eurasia. Fire products from the VIIRS (Visible Infrared Imager Radiometer Suite) sensor on the NPP (NPOESS Preparatory Project) satellite, launched in October 2011, and on subsequent JPSS satellites will ensure high quality global fire monitoring and will extent the AVHRR- and MODIS-based fire data record over Northern Eurasia. This overview presents an update of NASA's and NOAA's fire monitoring capability and scientific achievements on fire-climate interactions. We will illustrate how combination of coarse spatial resolution polar orbiting satellite observations are combined with moderate spatial resolution observations to better monitor the location of fires and burned areas. While coarse resolution data have been more or less easily available, the utility of moderate resolution Landsat data has increased tremendously during the past couple of years once the data became freely available. Data fusion from polar orbiting and geostationary satellites will be discussed.

  15. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  16. Fire, Carbon and Climate Change in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Flannigan, M. D.; Amiro, B. D.; Logan, K. A.

    2005-12-01

    Disturbances are the major stand-renewing agents for much of the circumboreal forest. In Canada, fire has received much of the attention in carbon cycle science because it affects about 3 million ha of Canadian forest annually, impacts air quality, and can threaten life, property and infrastructure. Fire affects the carbon balance through three processes. First, carbon and other greenhouse gases are emitted to the atmosphere during the combustion process. We estimate this to average about 27 Tg C/year in Canada over the past 40 years, which is close to 20% of industrial carbon emissions. However, in some years this can exceed 100 Tg C. Efforts are underway to estimate global fire activity and greenhouse gas emissions using observations, remote sensing and modelling. The second process is the decomposition of fire-killed vegetation. This forms a pool of coarse woody debris that can take decades to decompose, or can be quite rapid, depending on the post-fire environment. The third process is succession of vegetation following fire, a dynamic process that involves the interplay among species establishment and competition. Weather and climate affects all of these processes. Estimates of the future environment indicate that much of boreal Canada will experience warmer and drier conditions, although there will be regional differences and transient effects. The projections suggest that we may experience a doubling of area burned over the next century because of anthropogenic climate changes. This may have further implications to the global carbon budget by increasing atmospheric carbon dioxide concentrations. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. A run-away scenario is unlikely because young successional boreal vegetation often does not burn as readily and would limit the positive feedback cycle. Also, changes to the forest composition following fire increases surface albedo and alters the energy balance; effects that may cause climate cooling. However, the impacts of landscape feedbacks and human intervention limiting future fire are not well known.

  17. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood.

    PubMed

    Roland, Alison V; Moenter, Suzanne M

    2011-02-01

    Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.

  18. Differences in Human Versus Lightning Fires with Human Proximity at Two Spatial Scales in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; Varvak, A.; McGuire, A. D.

    2017-12-01

    The boreal forest contains significant amounts of carbon in its biomass and soils and is currently responding to a rapidly changing climate. This is leading to warmer temperatures, drier conditions and larger and more frequent wildfires in western North America. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and do not account for the complexity of human-fire interactions. In order to achieve a better understanding of the human influence on fires and how human fires differ from lightning fires, we analyzed both in regard to human proximity at two spatial scales (the Fairbanks subregion and Interior Alaska) using ArcGIS and quantitative analysis methods. We found that area burned is increasing across the region at 3% per year and is driven by increase in area burned by lightning while human-caused area burned has been decreasing recently especially in the WUI near Fairbanks. Human fires differed from lightning fires in several ways: they occurred significantly closer to settlements and highways, burned for a shorter duration, and were not as restricted to a brief seasonal window. The fire regime in the much more populated Fairbanks subregion has been altered by human activity: it experienced substantially more human fire ignitions along with a larger area burned though the human influence decreases with distance. This study provides important insights into spatial patterns of human influences on fires and provides useful information for fire modeling and fire management.

  19. The human dimension of fire regimes on Earth.

    PubMed

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  20. The human dimension of fire regimes on Earth

    PubMed Central

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; DeFries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but ‘natural’ (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from ‘natural’ background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research. PMID:22279247

  1. The human dimension of fire regimes on Earth

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  2. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  3. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  4. Basic principles of forest fuel reduction treatments

    Treesearch

    James K. Agee; Carl N. Skinner

    2005-01-01

    Successful fire exclusion in the 20th century has created severe fire problems across the West. Not every forest is at risk of uncharacteristically severe wildfire, but drier forests are in need of active management to mitigate fire hazard. We summarize a set of simple principles important to address in fuel reduction treatments: reduction of surface fuels, increasing...

  5. Seasonal Forecasting of Fires across Southern Borneo, 1997-2010

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich

    2014-05-01

    Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while several studies using historical data have established negative relationships between fires and antecedent rainfall, and/or positive relationships between fires and deforestation in regions affected by El Nino, comparatively little work has attempted to predict fires and emissions in such regions. Ensemble seasonal climate forecasts issued with several months lead-time have been applied to support risk assessment systems in many fields, notably agricultural production and natural disaster management of flooding, heat waves, drought and fire. The USA, for example, has a long-standing seasonal fire danger prediction system. Fire danger monitoring systems have been operating in Indonesia for over a decade, but, as of yet, no fire danger prediction systems exist. Given the effort required to mobilise suppression and prevention measures in Indonesia, one could argue that high fire danger periods must be anticipated months in advance for mitigation and response measures to be effective. To address this need, the goal of our work was to examine the utility of seasonal rainfall forecasts in predicting severe fires in Indonesia more than one month in advance, using southern Borneo (comprising the bulk of Kalimantan) as a case study. Here we present the results of comparing seasonal forecasts of monthly rainfall from ECMWF's System 4 against i) observed rainfall (GPCP), and ii) burnt area and deforestation (MODIS, AVHRR and Landsat) across southern Borneo for the period 1997-2010. Our results demonstrate the utility of using ECMWF's seasonal climate forecasts for predicting fire activity in the region. Potential applications include improved fire mitigation and responsiveness, and improved risk assessments of biodiversity and carbon losses through fire. These are important considerations for forest protection programmes (e.g. REDD+), forest carbon markets and forest (re)insurance enterprises.

  6. The impact of fire on the Late Paleozoic Earth system

    PubMed Central

    Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world. PMID:26442069

  7. The impact of fire on the Late Paleozoic Earth system.

    PubMed

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  8. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.

  9. Influence of carbon additives on operational properties of the intumescent coatings for the fire protection of building constructions

    NASA Astrophysics Data System (ADS)

    Zybina, Olga; Gravit, Marina; Stein, Yelena

    2017-10-01

    In work ability of the intercalated graphite entered into the fireproof intumescent compositions to act as catalytically active additive raising operational characteristics of the classical distending coverings intended for fire protection of building constructions. It is established that thermal expanded graphite, as well as nano-additives, increase frequency rate, durability, elasticity, density and uniformity of a coke layer of a fireproof covering for increase of fire resistance of a building construction.

  10. Prefrontal single-unit firing associated with deficient extinction in mice

    PubMed Central

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of Sthan B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and increased the number of Zif268-labeled cells in layer II of IL, but failed to increase vmPFC single-unit firing. Collectively, these findings further support the important contribution these cortical regions play in determining the balance between robust extinction on the one hand, and sustained fear on the other. Elucidating the precise nature of these roles could help inform understanding of the pathophysiology of fear-related anxiety disorders. PMID:24231425

  11. Links between Plant Invasion, Anthropogenic Nitrogen Enrichment, and Wildfires: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Felker-Quinn, E.; Gooding Lassiter, M.; Maxwell, A.; Housego, R.; Young, B.

    2014-12-01

    Wildfires can become positive feedbacks in climate change scenarios, because wildfires release large amounts of carbon sequestered in plants and soil to the atmosphere, and because their frequency increases with increasing temperatures. Invasive plants represent an important biotic link between anthropogenic activity and wildfire, as many of these species benefit from human disturbance while increasing fire frequency and severity. A robust body of literature addresses the response of invasive species to nitrogen enrichment, and a separate body of research assesses the feedbacks between invasive plant species and wildfire. We have undertaken a systematic review of these fields in order to evaluate the hypothesis that anthropogenic nitrogen loading contributes to increasing wildfires by promoting the growth and spread of fire-adapted invasive plant species. We identified invasive plant species using the Fire Effects Information System (FEIS), a Forest Service database that evaluates fire ecology of species identified as being of concern by land managers. We used information contained in the FEIS as well as more recent studies to characterize species on a continuum from fire-adapted to fire-intolerant based on traits related to interactions of fire with survival, reproduction, and spread. Of the 107 invasive plant species with fire ecology reports in the FEIS, we have initially classified 18 as fire-adapted, possessing traits that intensify fire regimes. Additionally, 33 species are fire-tolerant, benefiting from fire primarily because it creates a high-resource, low-competition environment. In continuing work, we are evaluating the responses of the invasive plant species to increased anthropogenic nitrogen with a focus on traits such as germination, productivity, and survival, as these traits contribute to wildfire frequency and severity. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.

  12. Analysing Forst Fores in China

    NASA Astrophysics Data System (ADS)

    Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann

    2016-08-01

    Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.

  13. Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests.

    PubMed

    Moya, D; González-De Vega, S; García-Orenes, F; Morugán-Coronado, A; Arcenegui, V; Mataix-Solera, J; Lucas-Borja, M E; De Las Heras, J

    2018-05-28

    Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15-21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less

  15. The role of fire in the boreal carbon budget

    USGS Publications Warehouse

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  16. Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters.

    PubMed

    Hunter, Amanda L; Unosson, Jon; Bosson, Jenny A; Langrish, Jeremy P; Pourazar, Jamshid; Raftis, Jennifer B; Miller, Mark R; Lucking, Andrew J; Boman, Christoffer; Nyström, Robin; Donaldson, Kenneth; Flapan, Andrew D; Shah, Anoop S V; Pung, Louis; Sadiktsis, Ioannis; Masala, Silvia; Westerholm, Roger; Sandström, Thomas; Blomberg, Anders; Newby, David E; Mills, Nicholas L

    2014-12-09

    Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m³ particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4-6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.

  17. Global Change Impacts on Future Fire Regimes: Distinguishing Between Climate-limited vs Ignition-Limited Landscapes

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.; Syphard, A. D.

    2016-12-01

    Global warming is expected to exacerbate fire impacts. Predicting how climates will impact future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned, however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models are needed that predict future seasonal temperature changes if we are to forecast future fire regimes in these forests. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited, and because they are closely juxtaposed with human habitations fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science, it is far more complicated than that. Climate change is not relevant on some landscapes, but where climate is relevant the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  18. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    PubMed

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  19. Holocene fire history in Western China - relationships with climate and human impact, and the role of fire in vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Cui, Q.

    2015-12-01

    It is well recognised that studies of past fire regimes and their causes (human and/or climatic) are useful to understand the long-term ecological effects of fire on vegetation communities. Further, information on the long-term fire history and its effect on vegetation dynamics may provide useful insights for vegetation management in fragile eco-environment of Western China. The main aim of this study is to quantitatively reconstruct high-resolution fire history in West China based on charcoal records from peatlands in Zoige basin (Tibet) and Altai Mountains (Xinjiang). We investigate the long-term relationships between fire, climate, human-impact and the history of biodiversity based on four Holocene macro- and micro- charcoal records and a synthesis on previously published pollen data and geochemistry data. Three hypotheses based on global charcoal records and former studies on palaeofire carried out in China need to be test by this study: 1) during early-mid Holocene period, fire frequency in the study area is relative low and best explained by the changes of regional climate; 2) during the late Holocene, fire activities in the study area increased might due to impacts of the human activities over the climate changes, and human activities is responsible for the temporal and spatial variations in fire regime; 3) the difference of fire histories can be explained by the difference of vegetation composition at site.

  20. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest

    PubMed Central

    Power, M. J.; Whitney, B. S.; Mayle, F. E.; Neves, D. M.; de Boer, E. J.; Maclean, K. S.

    2016-01-01

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216522

  1. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an effective means for evaluating some aspects of the current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential to improve the robustness of the next generation inventory system.

  2. Developmental metaplasticity in neural circuit codes of firing and structure.

    PubMed

    Baram, Yoram

    2017-01-01

    Firing-rate dynamics have been hypothesized to mediate inter-neural information transfer in the brain. While the Hebbian paradigm, relating learning and memory to firing activity, has put synaptic efficacy variation at the center of cortical plasticity, we suggest that the external expression of plasticity by changes in the firing-rate dynamics represents a more general notion of plasticity. Hypothesizing that time constants of plasticity and firing dynamics increase with age, and employing the filtering property of the neuron, we obtain the elementary code of global attractors associated with the firing-rate dynamics in each developmental stage. We define a neural circuit connectivity code as an indivisible set of circuit structures generated by membrane and synapse activation and silencing. Synchronous firing patterns under parameter uniformity, and asynchronous circuit firing are shown to be driven, respectively, by membrane and synapse silencing and reactivation, and maintained by the neuronal filtering property. Analytic, graphical and simulation representation of the discrete iteration maps and of the global attractor codes of neural firing rate are found to be consistent with previous empirical neurobiological findings, which have lacked, however, a specific correspondence between firing modes, time constants, circuit connectivity and cortical developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-08-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.

  4. The influence of fires on the properties of forest soils in the Amur River basin (the Norskii Reserve)

    NASA Astrophysics Data System (ADS)

    Tsibart, A. S.; Gennadiev, A. N.

    2008-07-01

    The influence of forest fires on the properties of taiga brown, gley taiga brown, and alluvial bog soils widespread in the area of the Norskii Reserve (the Amur River basin) was studied. During several years after the fire, the humus content increased, especially in the soils subjected to fires of high intensity. In the soils of steep slopes, the humus content decreased due to damage to the forest vegetation and activation of lateral runoff after the fire. As a rule, in the soils subjected to fire, the C ha-to-C fa ratio increased and correlated with the fire intensity. Some relationships between the forest fires and the acid-base properties of the soils were revealed. After the fires, the pH values often became higher. The stronger the fire, the higher the pH values. The stony soils differed from the other ones, since the reaction of their upper horizons turned out to be more acid after the fires. The analysis of the authors’ and literature data showed that the pyrogenic changes of some soil properties have been poorly studied and need further investigation, including their geographical aspects.

  5. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Treesearch

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  6. MX Siting Investigation. Water Resources Program Industry Activity Inventory, Nevada-Utah.

    DTIC Science & Technology

    1980-09-02

    sites. New and revived mining activities and the cooling needs of possible new coal -fired electric power plants represent the chief competitors with MX...34 !- ---- ON CO. Figure .-. Ma showing araipce yUaIoto f𔃻XMsieCmlx 1 3 include new mining activity and coal -fired, geothermal, and hydroelectric j energy...in northeastern Juab County. The Soil Conservation Service has been actively pushing land treatment programs to increase the productivity of irrigated

  7. FIRE Science Results 1989

    NASA Technical Reports Server (NTRS)

    Mcdougal, David S. (Editor)

    1990-01-01

    FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation research program formed in 1984 to increase the basic understanding of cirrus and marine stratocumulus cloud systems, to develop realistic parameterizations for these systems, and to validate and improve ISCCP cloud product retrievals. Presentations of results culminating the first 5 years of FIRE research activities were highlighted. The 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, the Extended Time Observations (ETO), and modeling activities are described. Collaborative efforts involving the comparison of multiple data sets, incorporation of data measurements into modeling activities, validation of ISCCP cloud parameters, and development of parameterization schemes for General Circulation Models (GCMs) are described.

  8. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement

    PubMed Central

    Eaton, Ryan W.; Libey, Tyler

    2017-01-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1–3 min separated by 3–10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. PMID:28031396

  9. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.

    PubMed

    Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E

    2017-03-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. Copyright © 2017 the American Physiological Society.

  10. Modeling fire occurrence as a function of landscape

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.

  11. Smokey Bear is Dead: A New Era of Wildfires in the Western U.S

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Duffin, J.; Lindquist, E.; Wuerzer, T.; Pellant, M.

    2013-12-01

    High fuel densities, combined with increasingly severe drought, make the western US highly susceptible to changes in the timing of snowmelt and increases in the length of the fire season. The forests and rangelands of Idaho are especially prone to wildfire; in 2012, over 1.7 million acres burned across Idaho, more acres than in any other state. Climate change is projected to increase summer temperatures and decrease summer precipitation in Idaho, and a drier, warmer, and more variable climate will increase the risk of stand-replacing fires. While infrastructure and alert systems are in place to warn residents about threats from hurricanes, floods and tornados, there is limited protection for communities in the ';fire-plain.' Part of this lack of preparation may stem from the belief that fires can be prevented or stopped; a perception that has been perpetuated by ';Smokey Bear,' and the generally successful interval of fire suppression during the 1960's-1980's. However, in the mid-1980's, severe drought, rising temperatures, and early snowmelt have brought an era of ';mega-fires' to the American West. Periods of recurring high wildfire activity across the western US are not unprecedented in the paleo-record, but the frequency of large fires (> 400 ha) and the annual area burned have increased in the modern. For example, in the past 10 years in Idaho, 17 fires burned over 100,000 acres each: six of those fires occurred in 2012. Likewise, the size and severity of rangeland fires in the Western U.S. has increased by almost an order of magnitude in recent decades; in the early 1980's, range fire extents over 100,000 acres was unheard of, but has become increasingly common in recent years (Pellant, 2013). Boise State University's departments of Geoscience, Community and Regional Planning, and the Public Policy Center are examining the risks and impacts of fire along the Boise WUI. The research integrates the perspectives of the geosciences and social sciences by combining physically-based fire hazards, effective fire management policies, and Planning in the West.

  12. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model

    NASA Astrophysics Data System (ADS)

    Chaste, Emeline; Girardin, Martin P.; Kaplan, Jed O.; Portier, Jeanne; Bergeron, Yves; Hély, Christelle

    2018-03-01

    Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire-weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2-induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity.

  13. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    PubMed Central

    Legg, Colin J.

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2. PMID:27833814

  14. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    PubMed

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  15. Climate controls on fire pattern in African and Australian continents

    NASA Astrophysics Data System (ADS)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve our understanding of future ecological problems that we can face due to climate change. Andela et al. 2017. doi: 10.1126/science.aal4108 Bowman et al. 2017. doi:10.1038/s41559-016-0058 CCI-LC. 2014. CCI-LC Product User Guide. UCL-Geomatics, Belgium Lolly et al. 2015. doi:10.1038/ncomms8537 van der Werf et al. 2008. doi:10.1029/2007GB003122

  16. Prolonged post-inhibitory rebound firing in the cerebellar nuclei mediated by group I mGluR potentiation of L-type Ca currents

    PubMed Central

    Zheng, Nan; Raman, Indira M.

    2011-01-01

    Neurons in the cerebellar nuclei fire at accelerated rates for prolonged periods after trains of synaptic inhibition that interrupt spontaneous firing. Both in vitro and in vivo, however, this prolonged rebound firing is favored by strong stimulation of afferents, suggesting that neurotransmitters other than GABA may contribute to the increased firing rates. Here, we tested whether metabotropic glutamate receptors modulate excitability of nuclear cells in cerebellar slices from mouse. In current clamp, the prolonged rebound firing rate after high-frequency synaptic stimulation was reduced by a variety of group I mGluR antagonists, including CPCCOEt (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester), JNJ16259685 ((3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone)+MPEP, or 3-MATIDA (α-amino-5-carboxy-3-methyl-2-thiopheneacetic acid) +MPEP, as long as both mGluR1 and mGluR5 were blocked. This mGluR-dependent acceleration of firing was reduced but still evident when IPSPs were prevented by GABAA receptor antagonists. In voltage clamp, voltage ramps revealed a non-inactivating, low-voltage-activated, nimodipine-sensitive current that was enhanced by the selective group I mGluR agonist s-DHPG ((S)-3,5-dihydroxyphenylglycine). This putative L-type current also increased when mGluRs were activated by trains of evoked synaptic currents instead of direct application of agonist. In current clamp, blocking L-type Ca channels with the specific blocker nifedipine greatly reduced prolonged post-stimulus firing and occluded the effect of adding group I mGluR antagonists. Thus, potentiation of a low-voltage-activated L-type current by synaptically released glutamate accounted nearly fully for the mGluR-dependent acceleration of firing. Together, these data suggest that prolonged rebound firing in the cerebellar nuclei in vivo is most likely to occur when GABAA and mGluRs are simultaneously activated by concurrent excitation and inhibition. PMID:21753005

  17. Analysis of USDA Forest Service fire-related expenditures 1970-1995

    Treesearch

    Ervin G. Schuster; David A. Cleaves; Enoch F. Bell

    1997-01-01

    Forest Service expenditures for fire presuppression and suppression activities increased from $61 million in FY 1970 to $951 million in FY 1994. Yet, real (net of inflation) expenditures have not increased significantly since FY 1970, if FY 1994 expenditures are excluded. During any given year, 56 percent of suppression expenditures are spent on supplies and services,...

  18. Chapter 13: Effects of fuel and vegetation management activities on nonnative invasive plants

    Treesearch

    Erik J. Martinson; Molly E. Hunter; Jonathan P. Freeman; Philip N. Omi

    2008-01-01

    Twentieth century land use and management practices have increased the vertical and horizontal continuity of fuels over expansive landscapes. Thus the likelihood of large, severe wildfires has increased, especially in forest types that previously experienced more frequent, less severe fire (Allen and others 2002). Disturbances such as fire may promote nonnative plant...

  19. Modeling effects of climate change and fire management on western white pine (Pinus monticola) in the northern Rocky Mountains, USA

    Treesearch

    Rachel A. Loehman; Jason A. Clark; Robert E. Keane

    2011-01-01

    Climate change is projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. Mountainous landscapes have been shown to be...

  20. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  1. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2015-06-15

    Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. Copyright © 2015 the American Physiological Society.

  2. The effect of fire intensity on soil respiration in Siberia boreal forest

    Treesearch

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  3. Neural responses to facial expression and face identity in the monkey amygdala.

    PubMed

    Gothard, K M; Battaglia, F P; Erickson, C A; Spitler, K M; Amaral, D G

    2007-02-01

    The amygdala is purported to play an important role in face processing, yet the specificity of its activation to face stimuli and the relative contribution of identity and expression to its activation are unknown. In the current study, neural activity in the amygdala was recorded as monkeys passively viewed images of monkey faces, human faces, and objects on a computer monitor. Comparable proportions of neurons responded selectively to images from each category. Neural responses to monkey faces were further examined to determine whether face identity or facial expression drove the face-selective responses. The majority of these neurons (64%) responded both to identity and facial expression, suggesting that these parameters are processed jointly in the amygdala. Large fractions of neurons, however, showed pure identity-selective or expression-selective responses. Neurons were selective for a particular facial expression by either increasing or decreasing their firing rate compared with the firing rates elicited by the other expressions. Responses to appeasing faces were often marked by significant decreases of firing rates, whereas responses to threatening faces were strongly associated with increased firing rate. Thus global activation in the amygdala might be larger to threatening faces than to neutral or appeasing faces.

  4. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kapoor, Nidhi; Maxwell, Joshua T; Mignery, Gregory A; Will, David; Blatter, Lothar A; Banach, Kathrin

    2014-01-01

    The functional role of inositol 1,4,5-trisphosphate (InsP3) signaling in cardiomyocytes is not entirely understood but it was linked to an increased propensity for triggered activity. The aim of this study was to determine how InsP3 receptors can translate Ca(2+) release into a depolarization of the plasma membrane and consequently arrhythmic activity. We used embryonic stem cell-derived cardiomyocytes (ESdCs) as a model system since their spontaneous electrical activity depends on InsP3-mediated Ca(2+) release. [InsP3]i was monitored with the FRET-based InsP3-biosensor FIRE-1 (Fluorescent InsP3 Responsive Element) and heterogeneity in sub-cellular [InsP3]i was achieved by targeted expression of FIRE-1 in the nucleus (FIRE-1nuc) or expression of InsP3 5-phosphatase (m43) localized to the plasma membrane. Spontaneous activity of ESdCs was monitored simultaneously as cytosolic Ca(2+) transients (Fluo-4/AM) and action potentials (current clamp). During diastole, the diastolic depolarization was paralleled by an increase of [Ca(2+)]i and spontaneous activity was modulated by [InsP3]i. A 3.7% and 1.7% increase of FIRE-1 FRET ratio and 3.0 and 1.5 fold increase in beating frequency was recorded upon stimulation with endothelin-1 (ET-1, 100 nmol/L) or phenylephrine (PE, 10 µmol/L), respectively. Buffering of InsP3 by FIRE-1nuc had no effect on the basal frequency while attenuation of InsP3 signaling throughout the cell (FIRE-1), or at the plasma membrane (m43) resulted in a 53.7% and 54.0% decrease in beating frequency. In m43 expressing cells the response to ET-1 was completely suppressed. Ca(2+) released from InsP3Rs is more effective than Ca(2+) released from RyRs to enhance INCX. The results support the hypothesis that in ESdCs InsP3Rs form a functional signaling domain with NCX that translates Ca(2+) release efficiently into a depolarization of the membrane potential.

  5. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

    PubMed

    Price, Owen F; Williamson, Grant J; Henderson, Sarah B; Johnston, Fay; Bowman, David M J S

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as "hotspots"), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data.

  6. Future climate change drives increases in forest fires and summertime OC concentrations in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Logan, J. A.; Mickley, L. J.; Park, R. J.; Flannigan, M. D.; Westerling, A. L.

    2006-12-01

    Increased forest fire activity in the Western United States appears to be driven by increasing spring and summer temperatures. Here we make a first estimate of how climate-driven changes in fire activity will influence summertime organic carbon (OC) concentrations in the Western US. We use output from a general circulation model (GCM) combined with area burned regressions to predict how area burned will change between present day and 2050. Calculated area burned is used to create future emission estimates for the Western U.S. and we use a global chemical transport model (CTM) to predict future changes in OC concentrations. Stepwise linear regression is used to determine the best relationships between observed area burned for 1980- 2004 and variables chosen from temperature, relative humidity, wind speed, rainfall and drought indices from the Candaian Fire Weather Index Model. Best predictors are ecosytem dependent but typically include mean summer temperature and mean drought code. In forest ecosystems of the Western U.S. our regressions explain 50-60% of the variance in annual area burned. Between 2000 and 2050 increases in temperature and reductions in precipitation, as predicted by the GISS GCM, cause mean area burned in the western U.S. to increase by 30-55%. We use the GEOS-Chem CTM to show that these increased emissions result in an increase in summertime western U.S. OC concentrations by 55% over current concentrations. Our results show that the predicted increase in future wild fires will have important consequences for western US air quality and visibility.

  7. Contribution of Earth Observation and meteorological datasets for the design and development of a national fire risk assessment system (NFOFRAS)

    NASA Astrophysics Data System (ADS)

    Katagis, Thomas; Bliziotis, Dimitris; Liantinioti, Chrysa; Gitas, Ioannis Z.; Charalampopoulou, Betty

    2016-08-01

    During the past decades, forest fires have increased both in frequency and severity thus, increasing the life threats for people and environment and leading countries to spend vast amounts of resources in fighting forest fires. Besides anthropogenic activities, climatic and environmental changes are considered as driving factors affecting fire occurrence and vegetation succession. Especially in the Mediterranean region, the development and existence of effective tools and services is crucial for assisting pre-fire planning and preparedness. The collaborative project NFOFRAS aims at introducing an innovative and effective system for rating forest fire risk, and is based on existing technology and standards that have been developed by countries with a long and a very successful involvement in this field. During the first phase of the project a detailed documentation of the proposed methodology was composed. In addition, Earth Observation (EO) and meteorological datasets were utilized for producing accurate pre-fire measurements over a selected study area in Greece.

  8. Resistance of the boreal forest to high burn rates.

    PubMed

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.

  9. Resistance of the boreal forest to high burn rates

    PubMed Central

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-01-01

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981

  10. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    NASA Astrophysics Data System (ADS)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  11. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict.

    PubMed

    Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A

    2017-01-01

    Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

    PubMed

    Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana

    2016-12-15

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Smokey comes of age: Unmanned aerial systems for fire management

    USGS Publications Warehouse

    Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian

    2016-01-01

    During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.

  14. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    USGS Publications Warehouse

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel consumption and potentially less injury to trees. This reduction in fire severity may compensate for relatively modest increases in bark beetle attack probabilities on some tree species, ultimately resulting in a forest structure that differs little between early and late season prescribed burning treatments.

  15. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities

    NASA Astrophysics Data System (ADS)

    Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam

    2018-01-01

    Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.

  16. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    NASA Astrophysics Data System (ADS)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  17. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.

  18. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation. ?? 2007 by the Ecological Society of America.

  19. Linkages Among Climate, Fire, and Thermoerosion in Alaskan Tundra Over the Past Three Millennia

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hu, F. S.

    2017-12-01

    Amplified Arctic warming may facilitate novel tundra disturbance regimes, as suggested by recent increases in the rate and extent of thermoerosion and fires in some tundra areas. Thermoerosion and wildfire can exacerbate warming by releasing large permafrost carbon stocks, and interactions between disturbance regimes can lead to complex ecosystem feedbacks. We conducted geochemical and charcoal analyses of lake sediments from an Alaskan lake to identify thermoerosion and fire events over the past 3,000 years. Thermoerosion was inferred from lake sediments in the context of modern soil data from retrogressive thaw slumps (RTS). Magnetic susceptibility (MS), Ca:K, and Ca:Sr increased with depth in modern RTS soils and were higher on recently exposed than older slump surfaces. Peaks in bulk density, % CaCO3, Ca:K, Ca:Sr, and MS values in the sediments suggest at least 18 thermoerosion events in the Loon Lake watershed over the past 3,000 years. Charcoal analysis identifies 22 fires over the same period at this site. Temporal variability in these records suggests climate-driven responses of both thermoerosion and fire disturbance regimes, with fewer RTS episodes and fire events during the Little Ice Age than the Medieval Climate Anomaly. Moreover, RTS activity lagged behind catchment fires by 20-30 years (>90% confidence interval), implying that fires facilitated thermoerosion on decadal time scales, possibly because of prolonged active-layer deepening following fire and postfire proliferation of insulative shrub cover. These results highlight the potential for complex interactions between climate, vegetation, and tundra disturbance in response to ongoing warming.

  20. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    PubMed

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  1. Fire activity increasing as climate changes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  2. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972

  3. A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.

    2017-12-01

    Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.

  4. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  5. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) - Part 1: Algorithms, product contents and analysis

    NASA Astrophysics Data System (ADS)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Mullen, R.

    2015-06-01

    Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP) that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point) at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP information together with the per-pixel uncertainty metrics. Using scene simulations and analysis of real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe some of the sensor and data pre-processing characteristics influencing fire detection and FRP uncertainty. We show that the FTA algorithm is able to discriminate actively burning fires covering down to 10-4 of a pixel, and is more sensitive to fire than algorithms used within many other widely exploited active fire products. We also find that artefacts arising from the digital filtering and geometric resampling strategies used to generate level 1.5 SEVIRI data can significantly increase FRP uncertainties in the SEVIRI active fire products, and recommend that the processing chains used for the forthcoming Meteosat Third Generation attempt to minimise the impact of these types of operations. Finally, we illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity. A companion paper (Roberts et al., 2015) provides a full product performance evaluation for both products, along with examples of their use for prescribing fire smoke emissions within atmospheric modelling components of the Copernicus Atmosphere Monitoring Service (CAMS).

  6. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  7. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  8. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE PAGES

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; ...

    2016-12-02

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  9. Third U.S. Geological Survey Wildland Fire-Science Workshop : Denver, Colorado, November 12-15, 2002

    USGS Publications Warehouse

    Livingston, Russell K.

    2004-01-01

    Executive Summary -- The historically significant wildland fire events that occurred in the United States during 2000 and 2002, together with the associated recognition of the need for a different national policy of forest management, has led to an increased awareness of the need for cooperative effort among all Federal agencies in planning for and managing the risks and consequences of wildland fire. The expertise and capabilities of the U.S. Geological Survey (USGS) are significant resources in this regard, and the agency is becoming increasingly involved in fire-science activities in support of the various land-management agencies that are dealing directly with this issue. The First USGS Wildland Fire Workshop was held in Sioux Falls, South Dakota, in 1997 and helped to establish the direction of USGS in sharing its expertise with the fire-management agencies. The Second USGS Wildland Fire Workshop was held in Los Alamos, New Mexico, in 2000 and brought together all the agencies involved in the management of wildland fires in order to determine their needs, to demonstrate USGS capabilities to meet those needs, and to establish methods for the USGS to distribute data and tools useful in fire management. It enhanced the relationships developed during the 1997 workshop and helped to define USGS' role in the fire-management community. The Third USGS Wildland Fire-Science Workshop, held in Denver, Colorado, November 12?15, 2002, was an opportunity for exchange of information on recent progress in the area of fire science and to determine the gaps in fire-science research that could be addressed by the USGS. In addition to more than 90 USGS scientists engaged in fire-related research and managers of organizational units involved in some aspect of wildland fire activities, the workshop was attended by about 30 representatives of 11 other Federal agencies. There also were a number of attendees affiliated with several universities, private companies, and State and local agencies. The 4-day meeting consisted of a pre-workshop field trip to the Hayman Fire area, several keynote presentations, five panel discussions, presentation and 'breakout' discussion of four 'white paper' topics, and a poster session with more than 30 presentations.

  10. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  11. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    PubMed

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron communication in the brain slice defined here as vasculo-neuronal coupling. We showed that, in response to increases in parenchymal arteriole tone, astrocyte intracellular Ca 2+ increased and cortical neuronal activity decreased. On the other hand, decreasing parenchymal arteriole tone increased resting cortical pyramidal neuron activity. Vasculo-neuronal coupling was partly mediated by TRPV4 channels as genetic ablation, or pharmacological blockade impaired increased flow/pressure-evoked neuronal inhibition. Increased flow/pressure-evoked neuronal inhibition was blocked in the presence of adenosine A1 receptor and GABA B receptor blockade. Results provide evidence for the concept of vasculo-neuronal coupling and highlight the importance of understanding the interplay between basal CBF and resting neuronal activity. Copyright © 2016 the authors 0270-6474/16/3612624-16$15.00/0.

  12. The impact of fire on nitrogen availability in the Yukon Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Jardine, L.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Pena, H., III

    2017-12-01

    Rising temperatures and changing precipitation patterns in the Arctic are increasing the severity and frequency of fires, resulting in direct and indirect changes to permafrost ecosystems. Due to slow rates of decomposition, nitrogen (N) is a highly limiting resource in tundra. The availability of N can be substantially altered following fire as a direct result of combustion of organic matter and also due to long-term changes in ecosystem structure and function. It is critical to understand both the short- (years) and long (decades)-term effects of fire on N availability because of the role of N in arctic ecosystems. In order to better understand the availability of N following fire, we collected active layer and permafrost soil and vegetation samples from unburned, 2015 burn scars, and 1972 burn scars in peat plateau tundra in the Yukon Kuskokwim Delta, Alaska. We measured carbon (C) and nitrogen (N) concentrations and pools in plants and soils, and soil organic matter content, extractable inorganic N and potentially mineralizable N in active layer (0-30 cm) and surface permafrost (to 100 cm). We found that active layer N concentrations were significantly lower in the two-year burn, but N concentrations in the 45-year burn were comparable to that of unburned tundra. The levels of ammonium in the active layer were nearly three times higher in both the two- and in the 45-year-old burns, while extractable nitrate was low (<3 ug/L) at all sites. These results suggest that ammonium is retained for decades following its initial post-fire increase or that new pools of ammonium are becoming available as a result of fire-mediated permafrost thaw or microbial community changes. These results suggest that 45 years after disturbance by fire, there is still a large potential for N assimilation, nitrification, or nitrous oxide production in tundra ecosystems. These findings are especially relevant as fire regimes intensify across the Arctic, which may have long-term consequences for plant and soil communities and ecosystem C and N storage.

  13. Modelling global CO2 emissions into the atmosphere from crown, ground, and peat fires

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.; Mokhov, Igor I.; Chernokulsky, Alexander V.

    2015-04-01

    The scheme for natural fires implemented in the climate model (CM) developed at the A.M. Obukhov Institute of Atmospheric Physics (IAP RAS) is extended by a module accounting for ground and peat fires. With the IAP RAS CM, the simulations are performed for 1700-2300 in accordance with the CMIP5 (Coupled Models Intercomparison Project, phase 5) protocol. The modelled present-day burnt area, BA, and the corresponding CO2 emissions into the atmosphere E agree with the GFED-3.1 estimates at most regions. In the 21st century, under the RCP (Representative Concentration Pathways) scenarios, the global BA increases by 10-41% depending on scenario, and E increases by 11-39%. Under the mitigation scenario RCP 2.6, both BA and E slightly decrease in the 22nd-23rd centuries. For scenarios RCP 4.5, RCP 6.0, and RCP 8.5, they continue to increase in these two centuries. All these changes are mostly due to changes in natural fires activity in the boreal regions. Ground and peat fires contribute significantly to the total emissions of CO2 from natural fires (20-25% at the global scale depending on scenario and calendar year). Peat fires markedly intensify interannual variability of regional CO2 emissions from natural fires.

  14. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuera, P E; Brubaker, L B; Anderson, P M

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90more » s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.« less

  15. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    NASA Astrophysics Data System (ADS)

    De Luca, C. J.; Kline, J. C.

    2012-02-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.

  16. Neural activity in the prelimbic and infralimbic cortices of freely moving rats during social interaction: Effect of isolation rearing.

    PubMed

    Minami, Chihiro; Shimizu, Tomoko; Mitani, Akira

    2017-01-01

    Sociability promotes a sound daily life for individuals. Reduced sociability is a central symptom of various neuropsychiatric disorders, and yet the neural mechanisms underlying reduced sociability remain unclear. The prelimbic cortex (PL) and infralimbic cortex (IL) have been suggested to play an important role in the neural mechanisms underlying sociability because isolation rearing in rats results in impairment of social behavior and structural changes in the PL and IL. One possible mechanism underlying reduced sociability involves dysfunction of the PL and IL. We made a wireless telemetry system to record multiunit activity in the PL and IL of pairs of freely moving rats during social interaction and examined the influence of isolation rearing on this activity. In group-reared rats, PL neurons increased firing when the rat showed approaching behavior and also contact behavior, especially when the rat attacked the partner. Conversely, IL neurons increased firing when the rat exhibited leaving behavior, especially when the partner left on its own accord. In social interaction, the PL may be involved in active actions toward others, whereas the IL may be involved in passive relief from cautionary subjects. Isolation rearing altered social behavior and neural activity. Isolation-reared rats showed an increased frequency and decreased duration of contact behavior. The increased firing of PL neurons during approaching and contact behavior, observed in group-reared rats, was preserved in isolation-reared rats, whereas the increased firing of IL neurons during leaving behavior, observed in group-reared rats, was suppressed in isolation-reared rats. This result indicates that isolation rearing differentially alters neural activity in the PL and IL during social behavior. The differential influence of isolation rearing on neural activity in the PL and IL may be one of the neural bases of isolation rearing-induced behavior.

  17. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses

    PubMed Central

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E.; Gewaltig, Marc-Oliver; Einevoll, Gaute T.

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state. PMID:25400575

  18. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses.

    PubMed

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E; Gewaltig, Marc-Oliver; Einevoll, Gaute T

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state.

  19. Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania

    PubMed Central

    Zambrano, Andrea I.; Muñoz, Beatriz E.; Mkocha, Harran; West, Sheila K.

    2015-01-01

    Background Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors. Methods Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9yrs were invited to a survey where both eyelids were graded for follicular (TF) and intense trachoma (TI) using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis. Findings 5240 (79%) of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00–3·27 and TI OR 4·06, 1·96–8·42). Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking. Conclusions In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation. PMID:26046359

  20. Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania.

    PubMed

    Zambrano, Andrea I; Muñoz, Beatriz E; Mkocha, Harran; West, Sheila K

    2015-01-01

    Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors. Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9 yrs were invited to a survey where both eyelids were graded for follicular (TF) and intense trachoma (TI) using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis. 5240 (79%) of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00-3·27 and TI OR 4·06, 1·96-8·42). Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking. In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation.

  1. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  2. Series of Wildfires in Northern California Continue Blazing

    NASA Image and Video Library

    2015-08-06

    California has been hit hard the past few weeks with storms. Storms bring lightning and lightning strikes cause wildfires. Currently there are at least five fire complexes in the area including River, Fork, South, Route and Mad River. The Mad River complex is a series of seven lightning fires that started on July 30th, 2015 after a lightning storm moved through Northern California. After initial firefighters responded, 25 fires were reported and most of the fires were contained. Some additional fires might be detected from the original lightning storms in the upcoming days and will be attacked once they are found. Damage assessment is ongoing and crews will determine the extent of structures and equipment damaged or destroyed. The River Complex is managing a total of 5 fires due to fires merging together on the Shasta-Trinity and the Six Rivers National Forests. Winds from the west are expected to lift the inversion today resulting in active fire behavior. The Fork Complex consists of over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. These fires are still being identified, assessed, and prioritized. Updated acreage and information about specific fires will be published as it is known. Fire activity moderated throughout last night (8/4) with the smoke inversion layer remaining in place today. Hopefully this will create favorable conditions for fire crews to take direct fire attack on the fires edge, construct dozer line and scout for best firefighting locations on all fires in the complex. The South Complex consists of approximately nine known fires, five of which are currently over 100 acres. The fires are active and defense of structures and point protection are in progress. The weather is trapping smoke in the valley causing very poor air quality. As the smoke lifts the fire activity increases. Firefighters will continue to provide point protection on structures and to look for opportunities to build direct and indirect containment lines. The Route Complex currently stands at 12,164 acres from seven separate fires and is at 2% containment. The overall acreage has been reduced because the South Fire on the nearby South Complex is merging with the Johnson Fire in the Route Complex resulting in decreased and revised fire perimeter acreage. This natural-color satellite image collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows smoke rising and drifting northwest from the various fire complexes. It was captured on August 04, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Holocene Fire, Climate, and Geomorphic Response: Perspectives From the Past and Indications for the Future

    NASA Astrophysics Data System (ADS)

    Meyer, G. A.; Pierce, J. L.; Frechette, J. D.; New, J.; Jull, A.

    2006-12-01

    Increased wildfire activity has accompanied late 20th-century to present warming across the diverse conifer forests of western North America. In ponderosa pine forests in particular, large, severe wildfires and ensuing erosion and debris flows appear unprecedented in light of tree-ring fire-scar records, and are often attributed to increased stand density following Euro-American settlement and fire suppression starting in the late 1800s. Yet, presettlement periods in fire-scar records correspond to mostly cooler Little Ice Age climates, when we expect that severe fires may be less probable. AMS 14C dating of fire-related alluvial-fan deposits provides a longer-term context for assessing links between fire, climate, erosion, and anthropogenic change. Infrequent high-severity fire is typical of cool, high-elevation Yellowstone National Park (YNP). Fire-related debris flows were common in YNP 2350-2000 cal yr BP and in Medieval time 1050-650 BP, both relatively warm periods at many sites across the Northern Hemisphere. Drier, low-elevation ponderosa forests in central Idaho also experienced severe fires and debris flows at these times, and ~25% of fan aggradation in the last 4000 yr occurred via postfire debris flows within the 400-yr Medieval period containing widespread, multidecadal droughts (Cook et al. 2004). Few fire-related deposits in YNP date to the Little Ice Age and prior cold episodes ca. 1400 and 2800 BP. At these same times, thin charcoal-bearing deposits indicate frequent low-severity fires in Idaho, where cooler, effectively wetter climates promoted growth of grass and fine fuels that promoted surface fires in the typically dry summers of this region. Initial data from varied forest types in the monsoonal (dry spring, wet summer) climate of the Sacramento Mountains, New Mexico, indicate voluminous fire-related sedimentation 6000-4500 BP, consistent with a warm middle Holocene. Fire-induced debris flows were less frequent in the late Holocene, but indicate that some severe fires affected ponderosa pine-dominated forests. Therefore, modern postfire debris flows are not without precedent in any of these areas, where fire has been an important catalyst for episodic erosion. Each record indicates an increased probability of severe fire with warmer climates. As greenhouse gas increases are virtually assured over the next century, impacts on fire and erosion have likely just begun. Earlier snowmelt accompanying warming lengthens the fire season in much of the Rocky Mountains, including YNP and central Idaho (Westerling et al. 2006). In ponderosa and similar forests where surface fires were suppressed by humans, increased stand density compounds the effect of warming. Increasing temperatures may also heighten precipitation intensity, producing greater postfire erosion. Although Holocene history provides imperfect analogs for a uniquely anthropogenic future, the sensitivity of fire regimes to past warming portends future increases in severe fires and geomorphic change.

  4. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.

    PubMed

    Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G

    2014-09-10

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.

  5. The Impact of Increasing Fire Frequency on Forest Transformations in the Zabaikal Region, Southern Siberia

    NASA Astrophysics Data System (ADS)

    Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.

    2017-12-01

    The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the average rate in Siberia. This would likely lead to higher fire activity in the region. Implementation of sustainable forest management strategies has the potential to mitigate effects of changing climate and fire regimes on forest ecosystems in the Zabaikal region. This research was supported by the RFBR grant (# 15-04-06567) and the NASA LCLUC Program.

  6. The Relationship between Particulate Pollution Levels in Australian Cities, Meteorology, and Landscape Fire Activity Detected from MODIS Hotspots

    PubMed Central

    Price, Owen F.; Williamson, Grant J.; Henderson, Sarah B.; Johnston, Fay; Bowman, David M. J. S.

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as “hotspots”), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data. PMID:23071788

  7. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.

  8. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  9. Linking Satellite-Derived Fire Counts to Satellite-Derived Weather Data in Fire Prediction Models to Forecast Extreme Fires in Siberia

    NASA Astrophysics Data System (ADS)

    Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.

  10. A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons

    PubMed Central

    Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando

    2018-01-01

    Ca2+-activated ion channels shape membrane excitability in response to elevations in intracellular Ca2+. The most extensively studied Ca2+-sensitive ion channels are Ca2+-activated K+ channels, whereas the physiological importance of Ca2+-activated Cl- channels has been poorly studied. Here we show that a Ca2+-activated Cl- currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca2+-dependent currents: the K+ [IK(Ca)] and CaCC. When the IK(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca2+-activated Cl- channels with anthracene-9′-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons. PMID:29867553

  11. A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons.

    PubMed

    Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando

    2018-01-01

    Ca 2+ -activated ion channels shape membrane excitability in response to elevations in intracellular Ca 2+ . The most extensively studied Ca 2+ -sensitive ion channels are Ca 2+ -activated K + channels, whereas the physiological importance of Ca 2+ -activated Cl - channels has been poorly studied. Here we show that a Ca 2+ -activated Cl - currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca 2+ -dependent currents: the K + [I K(Ca) ] and CaCC. When the I K(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca 2+ -activated Cl - channels with anthracene-9'-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons.

  12. Effects of forest fires and post-fire rehabilitation: a Colorado, USA case study

    Treesearch

    Lee H. MacDonald; Isaac J. Larsen

    2009-01-01

    Anthropogenic activities have increased the number of large, high-burn severity wildfires in the lower and mid-elevation coniferous forests in Colorado as well as much of the western US. Forests provide most of the water for cities and agriculture, and the increased runoff and erosion after wildfires is a major concern because of the potential adverse effects on...

  13. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  14. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    PubMed

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  15. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California

    PubMed Central

    Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  16. Relation between the National Fire Danger spread component and fire activity in the Lake States.

    Treesearch

    Donald A. Haines; William A. Main; Von J. Johnson

    1970-01-01

    Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...

  17. Grass seedling growth and survival under different post-fire grazing management scenarios

    USDA-ARS?s Scientific Manuscript database

    As wildfires have increased in frequency and size throughout the Great Basin, post-fire rehabilitation activities have become important in reestablishing resilient sagebrush steppe communities. Many rehabilitation treatments fail when perennial grass seedlings do not establish. This can be due to pr...

  18. Towards improved quantification of post-fire conifer mortality and recovery: Impacts of fire radiative flux on seedling and mature tree mortality, physiology, and growth

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Kolden, C.; Smith, A. M.

    2016-12-01

    Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.

  19. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123

    PubMed Central

    Storey, Granville P.; Heimbigner, Lauren; Walwyn, Wendy M.; Bamford, Nigel S.

    2016-01-01

    Abstract Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following abstinence and a subsequent drug challenge. PMID:26866057

  20. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. PMID:26674866

  1. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    PubMed

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. Copyright © 2015 the authors 0270-6474/15/3516404-14$15.00/0.

  2. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  3. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors

    PubMed Central

    Heckman, C. J.; Powers, R. K.; Rymer, W. Z.; Suresh, N. L.

    2014-01-01

    Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing. PMID:24572092

  4. The dynamics and drivers of fuel and fire in the Portuguese public forest.

    PubMed

    Fernandes, Paulo M; Loureiro, Carlos; Guiomar, Nuno; Pezzatti, Gianni B; Manso, Filipa T; Lopes, Luís

    2014-12-15

    The assumption that increased wildfire incidence in the Mediterranean Basin during the last decades is an outcome of changes in land use warrants an objective analysis. In this study we examine how annual area burned (BA) in the Portuguese public forest varied in relation to environmental and human-influenced drivers during the 1943-2011 period. Fire behaviour models were used to describe fuel hazard considering biomass removal, cover type changes, area burned, post-disturbance fuel accumulation, forest age-classes distribution and fuel connectivity. Biomass removal decreased rapidly beyond the 1940s, which, along with afforestation, increased fuel hazard until the 1980s; a subsequent decline was caused by increased fire activity. Change point analysis indicates upward shifts in BA in 1952 and in 1973, both corresponding to six-fold increases. Fire weather (expressed by the 90th percentile of the Canadian FWI during summer) increased over the study period, accounting for 18 and 36% of log(BA) variation before 1974 and after 1973, respectively. Regression modelling indicates that BA responds positively to fire weather, fuel hazard and number of fires in descending order of importance; pre-summer and 2-year lagged precipitation respectively decrease and increase BA, but the effects are minor and non-significant when both variables are included in the model. Land use conflicts (expressed through more fires) played a role, but it was afforestation and agricultural abandonment that supported the fire regime shifts, explaining weather-drought as the current major driver of BA as well. We conclude that bottom-up factors, i.e. human-induced changes in landscape flammability and ignition density, can enhance or override the influence of weather-drought on the fire regime in Mediterranean humid regions. A more relevant role of fuel control in fire management policies and practices is warranted by our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Wildfires in Siberian Mountain Forest

    NASA Astrophysics Data System (ADS)

    Kharuk, V.; Ponomarev, E. I.; Antamoshkina, O.

    2017-12-01

    The annual burned area in Russia was estimated as 0.55 to 20 Mha with >70% occurred in Siberia. We analyzed Siberian wildfires distribution with respect to elevation, slope steepness and exposure. In addition, wildfires temporal dynamic and latitudinal range were analyzed. We used daily thermal anomalies derived from NOAA/AVHRR and Terra/MODIS satellites (1990-2016). Fire return intervals were (FRI) calculated based on the dendrochronology analysis of samples taken from trees with burn marks. Spatial distribution of wildfires dependent on topo features: relative burned area increase with elevation increase (ca. 1100 m), switching to following decrease. The wildfires frequency exponentially decreased within lowlands - highlands transition. Burned area is increasing with slope steepness increase (up to 5-10°). Fire return intervals (FRI) on the southfacing slopes are about 30% longer than on the north facing. Wildfire re-occurrence is decreasing exponentially: 90% of burns were caused by single fires, 8.5% by double fires, 1% burned three times, and on about 0.05% territory wildfires occurred four times (observed period: 75 yr.). Wildfires area and number, as well as FRI, also dependent on latitude: relative burned area increasing exponentially in norward direction, whereas relative fire number is exponentially decreasing. FRI increases in the northward direction: from 80 years at 62°N to 200 years at the Arctic Circle, and to 300 years at the northern limit of closed forests ( 71+°N). Fire frequency, fire danger period and FRI are strongly correlated with incoming solar radiation (r = 0.81 - 0.95). In 21-s century, a positive trend of wildfires number and area observed in mountain areas in all Siberia. Thus, burned area and number of fires in Siberia are significantly increased since 1990th (R2 =0.47, R2 =0.69, respectively), and that increase correlated with air temperatures and climate aridity increases. However, wildfires are essential for supporting fire-resistant species (e.g., Larix sibirica, L, dahurica and Pinus silvestris) reforestation and completion with non-fire-resistant species. This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk krai, the Krasnoyarsk Fund for Support of Scientific and Technological Activities (N 17-41-240475)

  6. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  7. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGES

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  8. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr +/+ mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr -/- mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr -/- mice. In both Ghsr +/+ and Ghsr -/- mice, blocking GABA A receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  9. Fire and aquatic ecosystems in forested biomes of North America

    USGS Publications Warehouse

    Gresswell, Robert E.

    1999-01-01

    Synthesis of the literature suggests that physical, chemical, and biological elements of a watershed interact with long-term climate to influence fire regime, and that these factors, in concordance with the postfire vegetation mosaic, combine with local-scale weather to govern the trajectory and magnitude of change following a fire event. Perturbation associated with hydrological processes is probably the primary factor influencing postfire persistence of fishes, benthic macroinvertebrates, and diatoms in fluvial systems. It is apparent that salmonids have evolved strategies to survive perturbations occurring at the frequency of wildland fires (100a??102 years), but local populations of a species may be more ephemeral. Habitat alteration probably has the greatest impact on individual organisms and local populations that are the least mobile, and reinvasion will be most rapid by aquatic organisms with high mobility. It is becoming increasingly apparent that during the past century fire suppression has altered fire regimes in some vegetation types, and consequently, the probability of large stand-replacing fires has increased in those areas. Current evidence suggests, however, that even in the case of extensive high-severity fires, local extirpation of fishes is patchy, and recolonization is rapid. Lasting detrimental effects on fish populations have been limited to areas where native populations have declined and become increasingly isolated because of anthropogenic activities. A strategy of protecting robust aquatic communities and restoring aquatic habitat structure and life history complexity in degraded areas may be the most effective means for insuring the persistence of native biota where the probability of large-scale fires has increased.

  10. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008

  11. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    PubMed

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  12. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada.

    PubMed

    Köster, Egle; Köster, Kajar; Berninger, Frank; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka

    2017-12-01

    Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO 2 ) and methane (CH 4 ) emissions. We studied changes in CO 2 , CH 4 and nitrous oxide (N 2 O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100years. The soils in our study acted as sources of CO 2 and N 2 O and sinks for CH 4 . The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH 4 , and the N 2 O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and aerosol transport in the Himalayan region. The implication of this study and the details of the analysis will be presented during the conference.

  14. Phenology-based, remote sensing of post-burn disturbance windows in rangelands

    USGS Publications Warehouse

    Sankeya, Joel B.; Wallace, Cynthia S.A.; Ravi, Sujith

    2013-01-01

    Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ∼100 historical wildland fires, with associated post-fire reseeding treatments, that burned 1990–2003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance – such as nutrient cycling, carbon storage, microbial community composition, or soil hydrology – as a function of disturbance windows, possibly using simulation modeling and historical wildfire information.

  15. Linking tree demography to climate change feedbacks: fire, larch forests, and carbon pools of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.

    2017-12-01

    Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to increased tree aboveground C pools and decreased ground-layer vegetation C pools, which corresponded to higher canopy cover, cooler soils, and shallower active layer depths. Our findings highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.

  16. The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements

    Treesearch

    Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews

    2018-01-01

    The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...

  17. Fires, Floods, and Hurricanes: Is ENSO to Blame?

    ERIC Educational Resources Information Center

    Mjelde, James W.; Litzenberg, Kerry K.; Hoyle, Julie E.; Holochwost, Sharon R.; Funkhouser, Sarah

    2007-01-01

    Scientists have associated the El Nino/Southern Oscillation (ENSO) phenomenon with extreme climate events such as flooding in California, droughts in Australia, fires in Indonesia, and increased hurricane activity in the Atlantic Ocean. The popular media is constantly attributing individual storms to the ENSO phenomenon. The reality is that a…

  18. Survival analysis and classification methods for forest fire size

    PubMed Central

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497

  19. Survival analysis and classification methods for forest fire size.

    PubMed

    Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.

  20. Managing Fire Risk During Drought: The Influence of Certification and El Nino on Fire-Driven Forest Conversion for Oil Palm in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-01-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero forestation.

  1. Fire Regime and Land Abandonment in European Russia: Case Study of Smolensk Oblast

    NASA Astrophysics Data System (ADS)

    Krylov, A.; McCarty, J. L.; Potapov, P.; Turubanova, S.; Prishchepov, A. V.; Manisha, A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.; Hansen, M.

    2014-12-01

    Fires in anthropogenically-dominated landscapes are generally attributed to ecosystem management, agriculture, and policy drivers. In European Russia, fire mainly occurring on agricultural lands, wetlands, and abandoned lands. In the agricultural practice in Russia prescribed fires are believed to increase pasture and hay productivity, suppress trees and shrub expansion, and reduce fire hazards, with fire frequency fire dependent on land use and agricultural practices. The large-scale socio-economic transition since the fall of the Soviet Union has led to changes in land use and land management, including land abandonment and changing agricultural practices. In June 2014, an extensive field campaign was completed in the Smolensk Oblast, located approximately two hundred kilometers west of Moscow on the border with Belarus. Our field sampling was based on circa 1985 Landsat-based forest cover map (Potapov et al., 2014). Points were randomly selected from the non-forested class of the 1985 classification, prior to the collapse of the Soviet Union. Of total field collects, 55% points were sampled on land in either early or late stage of abandonment, 15% from actively cropped fields, and 30% from hay or pasture. Fire frequency was calculated for the 108 field points using 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) active fire data for years 2000-2014. Also we calculated percent of points burned in spring 2014 using 30 m Landsat 8 Operational Land Imager (OLI) data to derive burn scars. Actively cropped fields had lowest burn frequency while abandoned lands - early and late stage abandonment - had highest frequency. Fire frequency was significantly higher on wet soils than dry soils, with no relationship between fire frequency and tree canopy cover. We hypothesize, higher fire frequency on abandoned lands was likely due to greater fuel loads and because of traditional belief in rural Russia that fire is efficient way to suppress tree and shrub expansion.

  2. Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    PubMed Central

    McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.

    2009-01-01

    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391

  3. Major Land Clearing Fires, Kalimantan, Borneo, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    These many and intense land clearing fires in the Kalimantan region of the island of Borneo, Indonesia (3.5S, 113.5E) are indicative of the many deforestation activities on a worldwide scale. In order to feed and house ever increasing populations, more cleared land is required for agriculture to feed ever increasing populations. More pasture lands are needed for livestock. And, more cleared lands are needed for housing.

  4. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

    Treesearch

    Robert Keane; Rachel Loehman

    2010-01-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...

  5. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change

    PubMed Central

    Higuera, Philip E.; Brubaker, Linda B.; Anderson, Patricia M.; Brown, Thomas A.; Kennedy, Alison T.; Hu, Feng Sheng

    2008-01-01

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere. PMID:18320025

  6. Cerebellar output controls generalized spike‐and‐wave discharge occurrence

    PubMed Central

    Kros, Lieke; Eelkman Rooda, Oscar H. J.; Spanke, Jochen K.; Alva, Parimala; van Dongen, Marijn N.; Karapatis, Athanasios; Tolner, Else A.; Strydis, Christos; Davey, Neil; Winkelman, Beerend H. J.; Negrello, Mario; Serdijn, Wouter A.; Steuber, Volker; van den Maagdenberg, Arn M. J. M.; De Zeeuw, Chris I.

    2015-01-01

    Objective Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike‐and‐wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. Methods Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short‐lasting, on‐demand CN stimulation could disrupt epileptic seizures. Results We found that a subset of CN neurons show phase‐locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ‐aminobutyric acid type A (GABA‐A) agonist muscimol increased GSWD occurrence up to 37‐fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA‐A antagonist gabazine decimated its occurrence. A single short‐lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed‐loop system, GSWDs were detected and stopped within 500 milliseconds. Interpretation CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated. Ann Neurol 2015;77:1027–1049 PMID:25762286

  7. Fire in the Pliocene: a Record from the Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Rosell-Melé, A.; Moraleda, N.; Peterson, L.; Lawrence, K. T.

    2015-12-01

    There is a growing recognition of the importance of wildfires in the Earth system. The IPCC 5AR concluded that extensive areas of the world will increase substantially their probability to fire in the near future. This issue is of difficult evaluation given the multiplicity drivers of fire, including anthropogenic factors, and because fire was impossible to observe and analyse as a global phenomenon until well into the satellite era. The study of the Pliocene may however afford some glimpses to this issue as one of the best ancient-climate analogues of present-day and future greenhouse-warming conditions. The incidence of fire in the Pliocene has not been assessed in much detail. In fact, fossil evidence for fire activity over the last 50+ Ma from the Eocene through to the present day is scant, and is chiefly based on the presence of charred materials, or charcoal, which provides a partial perspective of fire occurrence, and the development of pyrophytic biomes such as savannahs and shrublands. Marine charcoal records, from widely separated geographic regions (North Pacific, Eastern south Atlantic, South China Sea), indicate low but significant fire activity throughout the Cenozoic until the late Miocene or Pliocene, when it increased, sometimes together with the rise of pyrophytic biomes. An alternative to the study of charcoal records is the analysis of polyaromatic hydrocarbons (PAHs), which are also generated in biomass combustion processes but are associated to soot and integrate the occurrence of fire over large regional provinces. One of the most abundant is retene, formed from the thermal degradation of resins. We have quantified PAHs in Site ODP 1125 which spans the Pliocene-Pleistocene, on the north slope of Chatham Rise, 600 km east of New Zealand's South Island. PAHs have been identified throughout the record, and namely during colder climatic episodes. Their abundance appears tightly linked to that of other terrigenous biomarkers like the n-alkanes, which are likely to result from changes in fluvial and aeolian inputs. Overall, they appear to increase from the Pliocene to present indicating a shift in fire regimes, although the role of transport processes in modulating fluxes of terrigenous biomarkers need to be investigated further.

  8. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus.

    PubMed

    Ranels, Heather J; Griffin, John D

    2003-02-21

    In response to an immune system challenge with lipopolysaccharide (LPS), recent work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show distinct axonal projections to the anterior perifornical area (APFx) and the paraventricular nucleus (PVN). It has been hypothesized that neurons within the VMPO integrate their local responses to temperature with changes in firing activity that result from LPS induced production of prostaglandin E(2) (PGE(2)). This may be an important mechanism by which the set-point regulation of thermoeffector neurons in the APFx and PVN is altered, resulting in hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. Based on the slope of firing rate as a function of tissue temperature, neurons were classified as either warm sensitive or temperature insensitive. Neurons were then treated with PGE(2) (200 nM) while tissue temperature was held at a constant level ( approximately 36 degrees C). The majority of temperature insensitive neurons responded to PGE(2) with an increase in firing rate activity, while warm sensitive neurons showed a reduction in firing rate. This suggests that both warm sensitive and temperature insensitive neurons in the VMPO may play critical and contrasting roles in the production of a fever during an acute phase response to infection.

  9. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    PubMed Central

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  10. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    PubMed Central

    De Luca, C J; Kline, J C

    2012-01-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0 to 10%) voluntary contractions, muscle fibres of recruited motor units produce force-twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution. PMID:22183300

  11. Moving beyond traditional fire management practices to better minimize community vulnerability to wildfire in southern California

    NASA Astrophysics Data System (ADS)

    Syphard, A. D.; Keeley, J. E.; Brennan, T. J.

    2010-12-01

    Wildfires are an important natural process in southern California, but they also present a major hazard for human life and property. The region leads the nation in fire-related losses, and since 2001, wildfires have damaged or destroyed more than 10,000 homes. As human ignitions have increased along with urban development and population growth, fire frequency has also surged, and most home losses occur in large fires when ignitions coincide with Santa Ana windstorms. As the region accommodates more growth in the future, the wildfire threat promises to continue. We will thus explore how a broader, more comprehensive approach to fire management could improve upon traditional approaches for reducing community vulnerability. The traditional approach to mitigating fire risk, in addition to fire suppression, has been to reduce fuel through construction of fuel breaks. Despite increasing expenditure on these treatments, there has been little empirical study of their role in controlling large fires. We will present the results of a study in which we constructed and analyzed a spatial database of fuel breaks in southern California national forests. Our objective was to better understand characteristics of fuel breaks that affect the behavior of large fires and to map where fires and fuel breaks most commonly intersect. We found that fires stopped at fuel breaks 22-47% of the time, depending on the forest, and the reason fires stopped was invariably related to firefighter access and management activities. Fire weather and fuel break condition were also important. The study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities. While fuel breaks have played a role in controlling wildfires at the Wildland Urban Interface, we are evaluating alternative approaches for reducing community vulnerability, including land use planning. Recent research shows that the amount and spatial arrangement of human infrastructure, such as roads and housing developments, strongly influences wildfire patterns. Therefore, we hypothesize that the spatial arrangement and location of housing development is likely to affect the susceptibility of lives and property to fire. In other words, potential for urban loss may be greatest at specific housing densities, spatial patterns of development, and locations of development. If these risk factors can be identified, mapped, and modeled, it is possible that vulnerability to wildfire could be substantially minimized through careful planning for future development - especially because future development will likely increase the region’s fire risk. To address these possibilities, we are evaluating past housing loss in relation to land use planning, in conjunction with other variables that influence fire patterns. We are also exploring alternative future scenarios to identify optimum land use planning strategies for minimizing fire risk.

  12. Practical approximation method for firing-rate models of coupled neural networks with correlated inputs

    NASA Astrophysics Data System (ADS)

    Barreiro, Andrea K.; Ly, Cheng

    2017-08-01

    Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.

  13. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    PubMed

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  14. An Examination of Extreme Fire Behavior and its Impact on Smoke Injection Altitude using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Peterson, D. A.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.; Hair, J. W.; Butler, C. F.; Fenn, M. A.

    2014-12-01

    A variety of regional smoke forecasting applications are currently available to identify air quality, visibility, and societal impacts during large fire events. However, these systems typically assume persistent fire activity, and therefore can have large errors before, during, and after short-term periods of extreme fire behavior. This study employs a wide variety of ground, airborne, and satellite observations, including data collected during a major NASA airborne and field campaign, to examine the conditions required for both extreme spread and pyrocumulonimbus (pyroCb) development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. Increasing values of fire radiative power (FRP) at the pixel and sub-pixel level are shown to systematically correspond to higher altitude smoke plumes, and an increased probability of injection above the boundary layer. Lidar data collected during the 2013 Rim Fire, one of the most severe fire events in California's history, show that high FRP observed during extreme spread can facilitate long-distance smoke transport, but fails to loft smoke to the altitude of a large pyroCb. The most extreme fire spread was also observed on days without pyroCb activity or significant regional convection. By incorporating additional fire events across North America, conflicting hypotheses surrounding the primary source of moisture during pyroCb development are examined. The majority of large pyroCbs, and therefore the highest direct injection altitude of smoke particles, is shown to occur with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict (1) extreme fire spread events and (2) injection of smoke to high altitudes. While (1) and (2) are related, results show that they are not predicted by the same set of conditions and variables. The combination of meteorology from numerical forecast models and satellite observations exhibits great potential for improving regional forecasts of fire behavior and smoke production in automated systems, especially in remote areas where detailed observations are unavailable

  15. The role of fire in the pan-tropical carbon budget

    NASA Astrophysics Data System (ADS)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Baccini, A.; Morton, D. C.; DeFries, R. S.

    2012-12-01

    Fires are an important management tool in the tropics and subtropics, and are used in the deforestation process, to manage savanna areas, and burn agricultural waste. Satellite-derived datasets of precipitation, aboveground tree biomass, and burned area are now available with over a decade worth of data for precipitation and burned area. Here we used these datasets to assess fire carbon emissions, to better understand relations between interannual variability in precipitation rates and fire activity, and to test ecological hypotheses centered on the role of fire and climate in governing biomass loads in the tropics and subtropics. We show that while most fire carbon emissions are from savanna fires, fires in deforestation regions are crucial from a net carbon emissions perspective and for emissions of reduced trace gases. These tropical fires burning in the dry season increase the amplitude of the CO2 exchange seasonality, in contrast to fires in the boreal region. We then show the large interannual variability of fires and highlight the difference in response of fires to changes in precipitation rates between dry and wet regions. Finally, by studying relations between fire, climate, and biomass, we show that savanna areas that saw fires over the past decade had lower tree biomass than those that did not, but only in medium or high rainfall areas. In areas up to about a meter of rain annually, tree biomass increased monotonically whether there were fires or not. In higher rainfall areas, precipitation seasonality appeared to be a crucial factor in explaining potential biomass. These results show that a world without fires may change the savanna carbon landscape less dramatically than often thought.

  16. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya lowlands of Petén, Guatemala

    NASA Astrophysics Data System (ADS)

    Kirchgeorg, Torben; Schüpbach, Simon; Colombaroli, Daniele; Beffa, Giorgia; Radaelli, Marta; Kehrwald, Natalie; Barbante, Carlo

    2015-04-01

    Holocene vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining different proxies. We distinguished between three different morphotypes (grass, wood and leaves) in macroscopic charcoal. We also determined the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. Comparing the two biomass burning proxies may help increase our understanding about advantages and limitations of molecular markers as proxies for past fire reconstruction in lake sediments. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Petén Itzá, Guatemala (17°00'N, 89°50'W, 110 m above sea level), and compared our results with millennial-scale vegetation and climate change data available in this area. Some differences were observed between the two records and we assumed that while macroscopic charcoal represents a local fire signal, the molecular fire proxies records seem to be influenced by regional to supra-regional fire or low temperature fires. During the Holocene we detected three periods of high fire activity: 9500-6000 cal yr BP, 3800 cal yr BP and 2700 cal yr BP. We attributed the first maximum (9500-6000 cal yr BP) to only climate conditions, which corresponds with observations from previous studies in this region. The fast decrease in the relative abundance of woody charcoal to grass charcoal at the 3800 cal yr BP fire maximum may result from human activity, but we cannot exclude that this shift was related to climate conditions during this period. The last maximum (2700 cal yr BP) we attribute to the agricultural activity of the Maya at Lake Petén Itzá.

  17. Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape.

    PubMed

    Matthews, Jaya K; Stawski, Clare; Körtner, Gerhard; Parker, Cassandra A; Geiser, Fritz

    2017-02-01

    Wildfires can completely obliterate above-ground vegetation, yet some small terrestrial mammals survive during and after fires. As knowledge about the physiological and behavioural adaptations that are crucial for post-wildfire survival is scant, we investigated the thermal biology of a small insectivorous marsupial (Antechinus flavipes) after a severe forest fire. Some populations of antechinus survived the fire in situ probably by hiding deep in rocky crevices, the only fire-proof sites near where they were trapped. We hypothesised that survival in the post-fire landscape was achieved by decreasing daytime activity and using torpor frequently to save energy. Indeed, daytime activity was less common and torpor expression was substantially higher (≥2-fold) at the post-fire site than observed in an unburnt control site and also in comparison to a laboratory study, both when food was provided ad libitum and withheld. Basking in the post-fire site was also recorded, which was likely used to further reduce energy expenditure. Our data suggest that torpor and basking are used by this terrestrial mammal to reduce energy and foraging requirements, which is important in a landscape where food and shelter are limited and predation pressure typically is increased.

  18. A review of the relationships between drought and forest fire in the United States

    USGS Publications Warehouse

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  19. Fire history, related to climate and land use in three southern Appalachian landscapes in the eastern United States.

    PubMed

    Flatley, William T; Lafon, Charles W; Grissino-Mayer, Henri D; LaForest, Lisa B

    2013-09-01

    Fire-maintained ecosystems and associated species are becoming increasingly rare in the southern Appalachian Mountains because of fire suppression policies implemented in the early 20th century. Restoration of these communities through prescribed fire has been hindered by a lack of information on historical fire regimes. To characterize past fire regimes, we collected and absolutely dated the tree rings on cross sections from 242 fire-scarred trees at three different sites in the southern Appalachian Mountains of Tennessee and North Carolina. Our objectives were to (1) characterize the historical frequency of fire in southern Appalachian mixed pine-oak forests, (2) assess the impact of interannual climatic variability on the historical occurrence of fire, and (3) determine whether changes in human culture and land use altered the frequency of fire. Results demonstrate that fires burned frequently at all three sites for at least two centuries prior to the implementation of fire suppression and prevention in the early to mid 20th century. Composite mean fire return intervals were 2-4 yr, and point mean fire return intervals were 9-13 yr. Area-wide fires that burned across multiple stands occurred at 6-13-yr intervals. The majority of fires were recorded during the dormant season. Fire occurrence exhibited little relationship with reconstructed annual drought conditions. Also, fire activity did not change markedly during the transition from Native American to Euro-American settlement or during the period of industrial logging at the start of the 20th century. Fire activity declined significantly, however, during the fire suppression period, with a nearly complete absence of fire during recent decades. The characterization of past fire regimes should provide managers with specific targets for restoration of fire-associated communities in the southern Appalachian Mountains. The fire chronologies reported here are among the longest tree-ring reconstructions of fire history compiled for the eastern United States and support the hypothesis that frequent burning has played a long and important role in the development of forests in the southern Appalachian Mountains.

  20. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  1. Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

    NASA Astrophysics Data System (ADS)

    Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.

    2014-10-01

    Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.

  2. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, Daniel P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  3. Examining the strength and possible causes of the relationship between fire history and Sudden Oak Death.

    PubMed

    Moritz, Max A; Odion, Dennis C

    2005-06-01

    Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.

  4. Wildland fire management and air quality in the southern Sierra Nevada: using the Lion Fire as a case study with a multi-year perspective on PM(2.5) impacts and fire policy.

    PubMed

    Schweizer, Don; Cisneros, Ricardo

    2014-11-01

    Management of fire is an important and controversial policy issue. Active fire suppression has led to a backlog of fuels, limited the ecological benefits of fire, and reduced short-term smoke impacts likely delaying these emissions to future generations over a larger spatial extent. Smoke impacts can be expected to increase as fire size and intensity increase and the fuel backlog is consumed; whether through reintroduction of fire under desirable conditions or through stand replacing fire. Land Management Agencies would like to increase the use of naturally ignited fires to burn during favorable conditions as a way to reduce catastrophic fires. This study provides information about the levels of air quality impacts expected from these types of fires and discusses some of the policy controversies of managed fire that propagate inconsistencies between agencies and enter the public discourse. The Lion Fire, a primarily low intensity 8,370 ha fire that was extensively monitored for Particulate Matter less than 2.5 microns (PM2.5), is used to quantify impacts to air quality. PM2.5 monitoring sites are used to assess exposure, public health impacts, and subsequently quantify annual air quality during a year with a fire that is within the historic normal fire size and intensity for this area. Ground level PM2.5 impacts were found to be localized with 99% of the hourly Air Quality Index readings in the moderate or good category for the sites impacted by the fire. PM2.5 concentrations at sites nearest the fire were below annual federal air quality standards for PM2.5 with annual 98th percentile at the most impacted sites (Johnsondale, Kernville, and Camp Nelson) of 35.0, 34.0, and 28.0 μg m(-3) respectively. Smoke impacts to PM2.5 concentrations were not found to reach the populated Central Valley. The findings suggest that this type of fire can be implemented with minimal public health impacts thus allowing an opportunity for air and fire managers to alter policy to allow additional burning in an area with severe anthropogenic air pollution and where frequent widespread fire is both beneficial and inevitable. The more extensive air quality impacts documented with large high intensity fire may be averted by embracing the use of fire to prevent unwanted high intensity burns. A widespread increase in the use of fire for ecological benefit may provide the resiliency needed in Sierra Nevada forests as well as be the most beneficial to public health through the reduction of single dose exposure to smoke and limiting impacts spatially. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Synergistic effects of drought and fire on the carbon carrying capacity of tropical forests and woodlands

    NASA Astrophysics Data System (ADS)

    Boer, Matthias; Bradstock, Ross

    2014-05-01

    More than half of the global forest carbon stock is held in tropical forests. A relatively large proportion of the tropical forest carbon is stored in plant biomass rather than in the soil, making these stocks particularly vulnerable to disturbances such as droughts, fires and cyclones. The frequencies, duration and intensities of such disturbances may change under future climates with poorly resolved but potentially significant (synergistic) effects on the carbon carrying capacity of tropical forests and thereby on global geochemical cycles. In this study we analyse high-resolution global data sets for tropical forest biomass (Saatchi et al., 2011. PNAS) and fire affected areas (GFED4, Giglio et al.,2013. JGR 118), together with climate data (WorldClim, Hijmans et al., 2005. Int. J. Clim. 25), to quantify the sensitivity of tropical forest carbon stocks in South America, Africa and Asia/Australia to seasonal water deficits and fire. Here, the climatic water deficit (D), calculated as the difference between mean annual potential evapotranspiration and actual evapotranspiration, is used as a measure of seasonal water stress (i.e., evaporative demand not met by available water), while the mean annual burned area fraction (1995-2013) of grid cells is used as a measure of average fire activity. Tropical forest carbon stocks are maximal, as expected, where water deficits are negligible. In those densely forested environments fire tends to be extremely rare as fuels are too wet to burn for most of the time. In all three continents, potential tropical forest carbon stocks are well predicted by a non-linear decreasing function of the mean annual climatic water deficit, with a steep drop in carbon stocks at D of 700-800 mm per year. At this threshold in the climatic water deficit we observe a strong increase in fire activity that is indicative of a critical change in vegetation structure (i.e., tree/grass ratio) and associated shift in the dominant climatic constraint on fire activity from fuel dryness to fuel productivity. By comparing predictions of potential forest carbon stocks (i.e., as a function of D only) with actual carbon stocks, we quantify the sensitivity of those stocks to increasing fire activity. Finally, we map the risk of losses in carbon carrying capacity of tropical forests under scenarios of future climate.

  6. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    PubMed

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  7. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia

    PubMed Central

    Baker, Sarah J.; Hesselbo, Stephen P.; Lenton, Timothy M.; Duarte, Luís V.; Belcher, Claire M.

    2017-01-01

    The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth's oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO2) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO2 variations, and we argue this was primarily driven by increased pO2. Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO2 may have aided in terminating the T-OAE. PMID:28497785

  8. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia.

    PubMed

    Baker, Sarah J; Hesselbo, Stephen P; Lenton, Timothy M; Duarte, Luís V; Belcher, Claire M

    2017-05-12

    The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth's oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO 2 ) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO 2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO 2 variations, and we argue this was primarily driven by increased pO 2 . Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO 2 may have aided in terminating the T-OAE.

  9. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge.

    PubMed

    Wang, Yu-Feng; Sun, Min-Yu; Hou, Qiuling; Hamilton, Kathryn A

    2013-04-01

    The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Space-Based Sensorweb Monitoring of Wildfires in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel

    2011-01-01

    We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.

  11. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  12. Human amplification of drought-driven fire in tropical regions

    NASA Astrophysics Data System (ADS)

    Tosca, Michael

    2015-04-01

    The change in globally-measured radiative forcing from the pre-industrial to the present due to interactions between aerosol particles and cloud cover has the largest uncertainty of all anthropogenic factors. Uncertainties are largest in the tropics, where total cloud amount and incoming solar radiation are highest, and where 50% of all aerosol emissions originate from anthropogenic fire. It is well understood that interactions between smoke particles and cloud droplets modify cloud cover , which in turn affects climate, however, few studies have observed the temporal nature of aerosol-cloud interactions without the use of a model. Here we apply a novel approach to measure the effect of fire aerosols on convective clouds in tropical regions (Brazil, Africa and Indonesia) through a combination of remote sensing and meteorological data. We attribute a reduction in cloud fraction during periods of high aerosol optical depths to a smoke-driven inhibition of convection. We find that higher smoke burdens limit vertical updrafts, increase surface pressure, and increase low- level divergence-meteorological indicators of convective suppression. These results are corroborated by climate model simulations that show a smoke-driven increase in regionally averaged shortwave tropospheric heating and boundary layer stratification, and a decrease in vertical velocity and precipitation during the fire season (December-February). We then quantify the human response to decreased cloud cover using a combination of socioeconomic and climate data Our results suggest that, in tropical regions, anthropogenic fire initiates a positive feedback loop where increased aerosol emissions limit convection, dry the surface and enable increased fire activity via human ignition. This result has far-reaching implications for fire management and climate policy in emerging countries along the equator that utilize fire.

  13. Differences in human versus lightning fires between urban and rural areas of the boreal forest in interior Alaska

    USGS Publications Warehouse

    Calef, Monika; Varvak, Anna; McGuire, A. David

    2017-01-01

    In western North America, the carbon-rich boreal forest is experiencing warmer temperatures, drier conditions and larger and more frequent wildfires. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and weather that do not adequately account for the complexity of human–fire interactions. To achieve a better understanding of the intensity of human influence on fires in this sparsely populated area and to quantify differences between human and lightning fires, we analyzed fires by both ignition types in regard to human proximity in urban (the Fairbanks subregion) and rural areas of interior Alaska using spatial (Geographic Information Systems) and quantitative analysis methods. We found substantial differences in drivers of wildfire: while increases in fire ignitions and area burned were caused by lightning in rural interior Alaska, in the Fairbanks subregion these increases were due to human fires, especially in the wildland urban interface. Lightning fires are starting earlier and fires are burning longer, which is much more pronounced in the Fairbanks subregion than in rural areas. Human fires differed from lightning fires in several ways: they started closer to settlements and highways, burned for a shorter duration, were concentrated in the Fairbanks subregion, and often occurred outside the brief seasonal window for lightning fires. This study provides important insights that improve our understanding of the direct human influence on recently observed changes in wildfire regime with implications for both fire modeling and fire management.

  14. Human impact on wildfires varies between regions and with vegetation productivity

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Kloster, Silvia

    2017-11-01

    We assess the influence of humans on burned area simulated with a dynamic global vegetation model. The human impact in the model is based on population density and cropland fraction, which were identified as important drivers of burned area in analyses of global datasets, and are commonly used in global models. After an evaluation of the sensitivity to these two variables we extend the model by including an additional effect of the cropland fraction on the fire duration. The general pattern of human influence is similar in both model versions: the strongest human impact is found in regions with intermediate productivity, where fire occurrence is not limited by fuel load or climatic conditions. Human effects in the model increases burned area in the tropics, while in temperate regions burned area is reduced. While the population density is similar on average for the tropical and temperate regions, the cropland fraction is higher in temperate regions, and leads to a strong suppression of fire. The model shows a low human impact in the boreal region, where both population density and cropland fraction is very low and the climatic conditions, as well as the vegetation productivity limit fire. Previous studies attributed a decrease in fire activity found in global charcoal datasets to human activity. This is confirmed by our simulations, which only show a decrease in burned area when the human influence on fire is accounted for, and not with only natural effects on fires. We assess how the vegetation-fire feedback influences the results, by comparing simulations with dynamic vegetation biogeography to simulations with prescribed vegetation. The vegetation-fire feedback increases the human impact on burned area by 10% for present day conditions. These results emphasize that projections of burned area need to account for the interactions between fire, climate, vegetation and humans.

  15. Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape

    USGS Publications Warehouse

    Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M

    2015-01-01

    Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.

  16. Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons

    PubMed Central

    Kirschen, Gregory W.; Shen, Jia; Wang, Jia; Man, Guoming; Wu, Song

    2017-01-01

    The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs. SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition. PMID:28373391

  17. Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite

    PubMed Central

    Kim, Hojeong; Heckman, C. J.

    2014-01-01

    Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior. PMID:25309410

  18. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  19. Complexity of VTA DA neural activities in response to PFC transection in nicotine treated rats.

    PubMed

    Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin M; Akay, Metin

    2011-02-27

    The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are widely implicated in the addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including prefrontal cortex (PFC), nucleus accubens (NAc) and amygdala. The functional coupling between PFC and VTA has been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons. Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was administered after stable recording was established as baseline. In order to test how input from PFC affects the VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the interaction between VTA and PFC. The complexity of the recorded neural firing was subsequently assessed using a method based on the Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar results were obtained when entropy values were estimated. Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor alterations of VTA DA neural firing when nicotine is acutely administered.

  20. BK channels are required for multisensory plasticity in the oculomotor system

    PubMed Central

    Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-01

    SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457

  1. Regional likelihood of very large wildfires over the 21st century across the western United States: Motivation to study individual events like the Rim Fire, a unique opportunity with unprecedented remote sensing data

    Treesearch

    E. Natasha Stavros; John Abatzoglou; Zachary Tane; Van Kane; Sander Veraverbeke; Bob McGaughey; James A. Lutz; Narasimhan K. Larkin; Donald McKenzie; E. Ashley Steel; Carlos Ramirez; Justin Boland; Dave Schimel

    2015-01-01

    Studies project that a warming climate will likely increase wildfire activity in many areas (Westerling and others 2002; Flannigan and others 2005, 2009; Littell and others 2009). These analyses are often of aggregate statistics like annual area burned, which are insufficient for analyzing changes in seasonality of fire events, the temporal resolution useful for fire...

  2. Holocene fire occurrence and alluvial responses at the leading edge of pinyon–juniper migration in the Northern Great Basin, USA

    USGS Publications Warehouse

    Weppner, Kerrie N.; Pierce, Jennifer L.; Betancourt, Julio L.

    2013-01-01

    Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.

  3. Effect of inhibitory feedback on correlated firing of spiking neural network.

    PubMed

    Xie, Jinli; Wang, Zhijie

    2013-08-01

    Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.

  4. A human-driven decline in global burned area.

    PubMed

    Andela, N; Morton, D C; Giglio, L; Chen, Y; van der Werf, G R; Kasibhatla, P S; DeFries, R S; Collatz, G J; Hantson, S; Kloster, S; Bachelet, D; Forrest, M; Lasslop, G; Li, F; Mangeon, S; Melton, J R; Yue, C; Randerson, J T

    2017-06-30

    Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Functional role of A-type potassium currents in rat presympathetic PVN neurones

    PubMed Central

    Sonner, Patrick M; Stern, Javier E

    2007-01-01

    Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current IA is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with IA, is present in these neurones. Pharmacological blockade of IA depolarized resting Vm and prolonged Na+ action potential duration, by increasing its width and by slowing down its decay time course. Interestingly, blockade of IA either increased or decreased the firing activity of PVN-RVLM neurones, supporting the presence of subsets of PVN-RVLM neurones differentially modulated by IA. In all cases, the effects of IA on firing activity were prevented by a broad spectrum Ca2+ channel blocker. Immunohistochemical studies suggest that IA in PVN-RVLM neurons is mediated by Kv1.4 and/or Kv4.3 channel subunits. Overall, our results demonstrate the presence of IA in PVN-RVLM neurones, which actively modulates their action potential waveform and firing activity. These studies support IA as an important intrinsic mechanism controlling neuronal excitability in this central presympathetic neuronal population. PMID:17525115

  6. A review of the main driving factors of forest fire ignition over Europe.

    PubMed

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  7. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

    NASA Astrophysics Data System (ADS)

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  8. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia

    PubMed Central

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests. PMID:22523580

  9. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    PubMed

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  10. Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm.

    PubMed

    Day, Jeremy J; Wheeler, Robert A; Roitman, Mitchell F; Carelli, Regina M

    2006-03-01

    Environmental stimuli predictive of appetitive events can elicit Pavlovian approach responses that enhance an organism's ability to track and secure natural rewards, but may also contribute to the compulsive nature of drug addiction. Here, we examined the activity of individual nucleus accumbens (NAc) neurons during an autoshaping paradigm. One conditioned stimulus (CS+, a retractable lever presented for 10 s) was immediately followed by the delivery of a 45-mg sucrose pellet to a food receptacle, while another stimulus (CS-, a separate retractable lever presented for 10 s) was never followed by sucrose. Approach responses directed at the CS+ and CS- were recorded as lever presses and had no experimental consequence. Rats (n = 9) selectively approached the CS+ on more than 80% of trials and were surgically prepared for electrophysiological recording. Of 76 NAc neurons, 57 cells (75%) exhibited increases and/or decreases in firing rate (i.e. termed 'phasically active') during the CS+ presentation and corresponding approach response. Forty-seven percent of phasically active cells (27 out of 57) were characterized by time-locked but transient increases in cell firing, while 53% (30 out of 57) showed a significant reduction in firing for the duration of the CS+. In contrast, the same excitatory subpopulation exhibited smaller increases in activity relative to CS- onset, while the inhibitory subpopulation showed no change in firing during the CS- period. The magnitude and prevalence of cue-related neural responses reported here indicates that the NAc encodes biologically significant, repetitive approach responses that may model the compulsive nature of drug addiction in humans.

  11. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; van Leeuwen, Jacqueline F. N.; Colombaroli, Daniele; Vescovi, Elisa; van der Knaap, W. O.; Henne, Paul D.; Pasta, Salvatore; D'Angelo, Stefania; La Mantia, Tommaso

    2009-07-01

    We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests ( Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic ( Ficus carica-Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000-6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilex- O. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.

  12. Active Fire Mapping Program

    MedlinePlus

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  13. Fire regimes and vegetation responses in two Mediterranean-climate regions

    USGS Publications Warehouse

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental pressures, such as severe and long summer droughts, herbivory, and volcanism. Although both Mediterranean-type ecosystems have shown to be resilient to anthropogenic fires, increasing fire frequency may be an important factor that needs to be considered as it may result in strong negative effects on plant successional trends and on plant diversity.

  14. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex

    PubMed Central

    Keller, Corey J.; Truccolo, Wilson; Gale, John T.; Eskandar, Emad; Thesen, Thomas; Carlson, Chad; Devinsky, Orrin; Kuzniecky, Ruben; Doyle, Werner K.; Madsen, Joseph R.; Schomer, Donald L.; Mehta, Ashesh D.; Brown, Emery N.; Hochberg, Leigh R.; Ulbert, István; Halgren, Eric

    2010-01-01

    Epileptic cortex is characterized by paroxysmal electrical discharges. Analysis of these interictal discharges typically manifests as spike–wave complexes on electroencephalography, and plays a critical role in diagnosing and treating epilepsy. Despite their fundamental importance, little is known about the neurophysiological mechanisms generating these events in human focal epilepsy. Using three different systems of microelectrodes, we recorded local field potentials and single-unit action potentials during interictal discharges in patients with medically intractable focal epilepsy undergoing diagnostic workup for localization of seizure foci. We studied 336 single units in 20 patients. Ten different cortical areas and the hippocampus, including regions both inside and outside the seizure focus, were sampled. In three of these patients, high density microelectrode arrays simultaneously recorded between 43 and 166 single units from a small (4 mm × 4 mm) patch of cortex. We examined how the firing rates of individual neurons changed during interictal discharges by determining whether the firing rate during the event was the same, above or below a median baseline firing rate estimated from interictal discharge-free periods (Kruskal–Wallis one-way analysis, P<0.05). Only 48% of the recorded units showed such a modulation in firing rate within 500 ms of the discharge. Units modulated during the discharge exhibited significantly higher baseline firing and bursting rates than unmodulated units. As expected, many units (27% of the modulated population) showed an increase in firing rate during the fast segment of the discharge (±35 ms from the peak of the discharge), while 50% showed a decrease during the slow wave. Notably, in direct contrast to predictions based on models of a pure paroxysmal depolarizing shift, 7.7% of modulated units recorded in or near the seizure focus showed a decrease in activity well ahead (0–300 ms) of the discharge onset, while 12.2% of units increased in activity in this period. No such pre-discharge changes were seen in regions well outside the seizure focus. In many recordings there was also a decrease in broadband field potential activity during this same pre-discharge period. The different patterns of interictal discharge-modulated firing were classified into more than 15 different categories. This heterogeneity in single unit activity was present within small cortical regions as well as inside and outside the seizure onset zone, suggesting that interictal epileptiform activity in patients with epilepsy is not a simple paroxysm of hypersynchronous excitatory activity, but rather represents an interplay of multiple distinct neuronal types within complex neuronal networks. PMID:20511283

  15. Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice.

    PubMed

    Vanacker, Charlotte; Moya, Manuel Ricu; DeFazio, R Anthony; Johnson, Michael L; Moenter, Suzanne M

    2017-10-01

    Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions. Arcuate neurons that synthesize kisspeptin, neurokinin B, and dynorphin (KNDy) may be involved in both of these processes. We tested the hypotheses that action potential firing in KNDy neurons is episodic and that gonadal steroids regulate this pattern. Targeted extracellular recordings were made of green fluorescent protein-identified KNDy neurons in brain slices from adult male mice that were intact, castrated, or castrated and treated with estradiol or dihydrotestosterone (DHT). KNDy neurons exhibited marked peaks and nadirs in action potential firing activity during recordings lasting 1 to 3.5 hours. Peaks, identified by Cluster analysis, occurred more frequently in castrated than intact mice, and either estradiol or DHT in vivo or blocking neurokinin type 3 receptor in vitro restored peak frequency to intact levels. The frequency of peaks in firing rate and estradiol regulation of this frequency is similar to that observed for GnRH neurons, whereas DHT suppressed firing in KNDy but not GnRH neurons. We further examined the patterning of action potentials to identify bursts that may be associated with increased neuromodulator release. Burst frequency and duration are increased in castrated compared with intact and steroid-treated mice. The observation that KNDy neurons fire in an episodic manner that is regulated by steroid feedback is consistent with a role for these neurons in GnRH pulse generation and regulation. Copyright © 2017 Endocrine Society.

  16. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  17. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  18. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  19. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA.

    PubMed

    Coughlan, Michael R

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  20. Fire history of the San Francisco East Bay region and implications for landscape patterns

    USGS Publications Warehouse

    Keeley, J.E.

    2005-01-01

    The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.

  1. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    PubMed

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    PubMed

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  3. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  4. Stimulatory effect of harmane and other beta-carbolines on locus coeruleus neurons in anaesthetized rats.

    PubMed

    Ruiz-Durántez, E; Ruiz-Ortega JA; Pineda, J; Ugedo, L

    2001-08-10

    Harmane, harmaline and norharmane are beta-carboline related compounds which have been proposed to be endogenous ligands for imidazoline receptors. The effect of these compounds on the activity of locus coeruleus (LC) neurons was studied by extracellular recordings techniques. Intracerebroventricular administration of harmane and harmaline increased the firing rate of LC neurons. Systemic administration of efaroxan, a mixed alpha(2)-adrenoceptor/I(1)-imidazoline antagonist or vagotomy failed to modify the harmane effect. Furthermore, local applications of harmane and harmaline increased the firing rate of LC neurons in a dose-related manner. Finally, intravenous administration of norharmane also increased the activity of LC neurons. Our results demonstrate that beta-carbolines stimulate LC neuron activity and indicate that this stimulation occurs directly in the LC by a mechanism independent of I(1)- and I(2)-imidazoline receptors.

  5. Fire history and human activity in last 2000 years reconstructed from varved lake sediments (N Poland)

    NASA Astrophysics Data System (ADS)

    Slowinski, M. M.; Pienczewska, A.; Obremska, M.; Ott, F.; Dietze, E.; Feurdean, A.; Theuerkauf, M.; Brauer, A.

    2016-12-01

    Humans in the last two thousand years affect profound changes to ecosystem structure and function sometimes causing fire regimes. The aim of the study was to reconstruct fire history and human activity in the Tuchola Pinewoods (Northern Poland) during the last 2000 years. The robust chronology of the sediment record is based on varve counting, AMS 14C dating, 137Cs activity concentration measurements and tephrochronology (Askja AD 1875). Pollen and microscopic charcoal data were obtained from varved lake sediments at a resolution of consistently 5 years and 10 years. Data from Czechowskie lake suggest next to climate change that increased human activity was one of the main factors that influenced fire frequency (e.g. 50-450 AD and 900-1200 AD). This is particularly evident between 1776-1905 AD, when intensified forest management led to a transformation from mixed to pine dominated forests (fire-prone vegetation). Using high-resolution pollen and charcoal data we aim to identify the most probable causes of changes during the last 2000 years. Finally, we discuss the observed fire frequency and vegetation change in relation to climate changes and the socio-economic development of the area. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA- of the Helmholtz Association and National Science Centre, Poland (grant No. 2011/01/B/ST10/07367 and 2015/17/B/ST10/03430).

  6. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  7. Human ecological intervention and the role of forest fires in human ecology.

    PubMed

    Caldararo, N

    2002-06-26

    The present text is a summary of research on the relationship between forest fires and human activities. Numerous theories have been created to explain changes in forests during the late Pleistocene and early Holocene, and a general understanding has developed in the past 50 years regarding natural fire regimes. The present summary is directed to assess the validity of these theories. A re-analysis of the literature argues that the intense forest fires we experience today are an artifact of human intervention in forest ecology, especially by the reduction of herbivores and are relatively recent, approximately 100,000-250,000 BP. The history of fire, especially in the context of the increased dominance of humans, has produced a progressively fire-adapted ecology, which argues for human-free wildlife areas and against prescribed burns under many circumstances.

  8. Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure

    PubMed Central

    Claussen, Catherine M; Dafny, Nachum

    2016-01-01

    The misuse and abuse of the psychostimulant, methylphenidate (MPD) the drug of choice in the treatment of attention deficit hyperactivity disorder (ADHD) has seen a sharp uprising in recent years among both youth and adults for its cognitive enhancing effects and for recreational purposes. This uprise in illicit use has lead to many questions concerning the long term consequences of MPD exposure. The objective of this study was to record animal behavior concomitantly with the caudate nucleus (CN) neuronal activity following acute and repetitive (chronic) dose response exposure to methylphenidate (MPD). A saline control and three MPD dose (0.6, 2.5, and 10.0 mg/kg) groups were used. Behaviorally, the same MPD dose in some animals following chronic MPD exposure elicited behavioral sensitization and other animals elicited behavioral tolerance. Based on this finding, the CN neuronal population recorded from animals expressing behavioral sensitization were also evaluated separately from CN neurons recorded from animals expressing behavioral tolerance to chronic MPD exposure, respectively. Significant differences in CN neuronal population responses between the behaviorally sensitized and the behaviorally tolerant animals was observed for the 2.5 and 10.0 mg/kg MPD exposed groups. For 2.5 mg/kg MPD, behaviorally sensitized animals responded by decreasing their firing rates while behaviorally tolerant animals showed mainly an increase in their firing rates. The CN neuronal responses recorded from the behaviorally sensitized animals following 10.0 mg/kg MPD responded by increasing their firing rates whereas the CN neuronal recordings from the behaviorally tolerant animals showed that approximately half decreased their firing rates in response to 10.0 mg/kg MPD exposure. The comparison of percentage change in neuronal firing rates showed that the behaviorally tolerant animals trended to exhibit increases in their neuronal firing rates at ED1 following initial MPD exposure and oppositely at ED10 MPD rechallenge. While the behaviorally sensitized animals in general increased in their percentage change of firing rats were observed following acute 10.0 mg/kg MPD and the behaviorally sensitized 10.0 mg/kg MPD animals and a robust increase in neuronal firing rates at ED1 and ED10 rechallenge. These results suggest the need to first individually analyze animal behavioral activity, and than to evaluate the neuronal responses to the drug based on the animals behavioral response to chronic MPD exposure. PMID:26101057

  9. [The effect of modulators of SK channels on simple spike firing frequency in the discharge of the cerebellar Purkinje cells in laboratory mice].

    PubMed

    Egorova, P A; Karelina, T V; Vlasova, O L; Antonov, S M; Besprozvanny, I B

    2014-01-01

    The effect of CyPPA, a positive modulator of small conductance calcium-activated potassium channels of type 3 and 2 (SK3/SK2), and of NS309, an activator of intermediate and small conductance calcium-activated potassium channels (IK/SK), on the activity of cerebellar Purkinje cells was studied in 2-month-old male mice. The use of 1 mM of CyPPA has led to a decrease of simple spike firing frequency in the discharge of Purkinje cells by 25%, on average, during 1 h after application. At the same time, application of 100 μM of NS309 has promoted a decrease in simple spike firing frequency by 47 %, on average, during 1 h after the beginning of the action. The obtained results confirm the hypothesis that SK channels participate in regulation of simple spike firing frequency in the discharge of Purkinje cells and are responsible for restriction of signal frequency. The effect of NS309 on simple spike firing frequency was more pronounced; therefore, the IK/SK channels may be suggested to play the cardinal role in regulation of spike activity of Purkinje cells. Since increasing simple spike frequency in the discharge of Purkinje cells is observed at many disturbances of motor activity, in particular, at spinocerebellar ataxia, it can be suggested that the studied compounds or substances of similar action are of interest as potential medicinal agents.

  10. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  11. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes

    Treesearch

    Emma C. Underwood; Joshua H. Viers; James F. Quinn; Malcolm North

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet...

  12. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  13. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, John S

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  14. Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives.

    PubMed

    You, Chao; Xu, Chao

    2018-03-01

    Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A hydroclimatic model of global fire patterns

    NASA Astrophysics Data System (ADS)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F (i.e. F_0.99 ) was explained by two terms of the climatic water balance: i) mean annual actual evapotranspiration (AET), which is a proxy for fuel productivity, and ii) mean annual water deficit (D=PET-AET, where PET is mean annual potential evapotranspiration), which is a measure of fuel drying potential. As expected, F_0.99 was close to zero in environments of low AET (e.g. deserts) or low D (e.g. wet forests), due to strong fuel productivity or fuel dryness constraints, and maximum for environments of intermediate AET and D (e.g. tropical savannas). The topography of the F_0.99 response surface was analysed to explore how the relative importance of fuel productivity and fuel dryness constraints varied with the climatic water balance, and geographically across the continents. Consistent with current understanding of global pyrogeography, the hydroclimatic fire model predicted that fire activity is mostly constrained by fuel productivity in arid environments with grassy fuels and by fuel dryness in humid environments with litter fuels derived from woody shrubs and trees. The model provides a simple, yet biophysically-based, approach to evaluating potential for incremental change in fire activity or transformational change in fire types under future climate conditions.

  16. Post-fire drought effects and their legacy on soil functionality and microbial community structure in a Mediterranean shrubland

    NASA Astrophysics Data System (ADS)

    Belen Hinojosa, M.; Parra, Antonio; Laudicina, V. Armando; Moreno, José M.

    2017-04-01

    Climate change in subtropical areas, like the Mediterranean, is projected to decrease precipitation and to lengthen the seasonal drought period. Fire danger is also projected to increase under the most severe conditions. Little is known about the effects of increasing drought and, particularly, its legacy when precipitation resumes to normal, on the recovery of burned ecosystems. Here we studied the effects of post-fire drought and its legacy two years after it stopped on soil microbial community structure and functionality of a Cistus-Erica shrubland. To do this, a manipulative experiment was setup in which rainfall total patterns were modified by means of a rain-out shelters and irrigation system in a fully replicated set of previously burned plots. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). One set of unburned plots under natural rainfall served as an additional control. Availability of the main soil nutrients and microbial community composition and functionality were monitored over 4 years under these rainfall manipulation treatments. Thereafter, treatments were discontinued and plots were subjected to ambient rainfall for two additional years. Post-fire drought had not effect on total C or N. Fire increased soil P and N availability. However, post-fire drought reduced available soil P and increased nitrate in the short term. Post- fire reduction of available K was accentuated by continued drought. Fire significantly reduced soil organic matter, enzyme activities and carbon mineralization, mainly in drought treated soils. Fire also decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased in the short term. Post-fire drought accentuated the decrease of soil total microbial biomass and fungi, with bacteria becoming more abundant. After discontinuing the drought treatments, the effect of the previous drought was significant for available P and enzyme activities. Although the microbial biomass did not show a drought legacy effect of the previous drought period, the proportion of fungi was still lower in post-fire drought treatments and the proportion of bacteria (mainly Gram+) higher. Our results show that post-fire drought had an effect on soil functionality and microbial community structure, and that once the drought ceased its effects on some biogeochemical constituents and microbial groups were still visible two years thereafter. The fact that in a lapse of two years some variables had resume to normal while others still differed among drought treatment signifies that the legacies will last for some additional years, impairing during this time the normal functioning of the soil. However, these legacy was related to the magnitude of drought and, although not tested in our study, on the time since the occurrence of the phenomenon, and the sensitivity of the ecological system.

  17. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  18. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  19. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-

  20. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.

  1. Gran Sabana fires (SE Venezuela): a paleoecological perspective

    NASA Astrophysics Data System (ADS)

    Montoya, Encarni; Rull, Valentí

    2011-11-01

    Fires are among the most important risks for tropical ecosystems in a future climatic change scenario. Recently, paleoecological research has been addressed to discern the role played by fire in neotropical landscapes. However, given the magnitude of the Neotropics, many studies are relegated to infer just local trends. Here we present the compilation of the paleo-fire records developed until now in the southern Gran Sabana (SE Venezuela) with the aim to describe the fire history as well as to infer the possible forcing factors implied. In this sense, southern Gran Sabana has been under fire perturbation since the Lateglacial, with the concomitant effects upon vegetation, and persisted during the Holocene. Around 2000 cal yr BP onwards, the fire activity highly increased promoting the expansion of pre-existing savannas, the decrease of forests and the appearance and establishment of Mauritia palm swamps. The continuous fire incidence registered for several thousands of years has likely promoted the supremacy of treeless savannas upon other vegetation types and the degradation to secondary landscapes. Based on the available evidence, the anthropogenic nature of this high fire activity has been postulated. If so, it could be hypothesized that the timing arrival of Pemón, the present-day indigenous culture in the Gran Sabana, would be ca 2000 cal yr BP onwards, rather than the last centuries, as it has been formerly assumed. The implications of these ancient practices in the area are also discussed for present Gran Sabana landscapes sustainability and future conservation strategies.

  2. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    PubMed

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  3. Health Impacts of Climate Change-Induced Subzero Temperature Fires

    PubMed Central

    Metallinou, Maria-Monika; Log, Torgrim

    2017-01-01

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km2 of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires. PMID:28726752

  4. Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for reducing fires on oil palm concessions in Indonesia from 2012 to 2015

    NASA Astrophysics Data System (ADS)

    Cattau, Megan E.; Marlier, Miriam E.; DeFries, Ruth

    2016-10-01

    Fire is a common tool for land conversion and management associated with oil palm production. Fires can cause biodiversity and carbon losses, emit pollutants that deteriorate air quality and harm human health, and damage property. The Roundtable on Sustainable Palm Oil (RSPO) prohibits the use of fire on certified concessions. However, efforts to suppress fires are more difficult during El Niño conditions and on peatlands. In this paper, we address the following questions for oil palm concessions developed prior to 2012 in Sumatra and Kalimantan, the leading producers of oil palm both within Indonesia and globally: (1) for the period 2012-2015, did RSPO-certified concessions have a lower density of fire detections, fire ignitions, or ‘escaped’ fires compared with those concessions that are not certified? and (2) did this pattern change with increasing likelihood of fires in concessions located on peatland and in dry years? These questions are particularly critical in fuel-rich peatlands, of which approximately 46% of the area was designated as oil palm concession as of 2010. We conducted propensity scoring to balance covariate distributions between certified and non-certified concessions, and we compare the density of fires in certified and non-certified concessions using Kolmogorov-Smirnov tests based on moderate resolution imaging spectroradiometer Active Fire Detections from 2012-2015 clustered into unique fire events. We find that fire activity is significantly lower on RSPO certified concessions than non-RSPO certified concessions when the likelihood of fire is low (i.e., on non-peatlands in wetter years), but not when the likelihood of fire is high (i.e., on non-peatlands in dry years or on peatlands). Our results provide evidence that RSPO has the potential to reduce fires, though it is currently only effective when fire likelihood is relatively low. These results imply that, in order for this mechanism to reduce fire, additional strategies will be needed to control fires in oil palm plantations in dry years and on peatlands.

  5. El Niño and health risks from landscape fire emissions in Southeast Asia.

    PubMed

    Marlier, Miriam E; DeFries, Ruth S; Voulgarakis, Apostolos; Kinney, Patrick L; Randerson, James T; Shindell, Drew T; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality 1 . In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change 2,3 . We show that during strong El Niño years, fires contribute up to 200 μg/m 3 and 50 ppb in annual average fine particulate matter (PM 2.5 ) and ozone (O 3 ) surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization (WHO) 50 μg/m 3 24-hour PM 2.5 interim target (IT-2) 4 and an estimated 10,800 (6,800-14,300) person (~2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity, and maintaining ecosystem services.

  6. El Niño and health risks from landscape fire emissions in southeast Asia

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-02-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Niño-induced droughts and anthropogenic land-use change. We show that during strong El Niño years, fires contribute up to 200μgm-3 and 50ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50μgm-3 24-hr PM2.5 interim target and an estimated 10,800 (6,800-14,300)-person (~ 2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  7. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  8. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  9. Impacts of changing fire weather conditions on reconstructed trends in U.S. wildland fire activity from 1979 to 2014

    Treesearch

    Patrick H. Freeborn; W. Matt Jolly; Mark A. Cochrane

    2016-01-01

    One component of climate‐fire interactions is the relationship between weather conditions concurrent with burning (i.e., fire danger) and the magnitude of fire activity. Here daily environmental conditions are associated with daily observations of fire activity within ecoregions across the continental United States (CONUS) by aligning the latter 12 years of a 36 year...

  10. Reconstructions of Fire Activity in North America and Europe over the Past 250 Years: A comparison of the Global Charcoal Database with Historical Records

    NASA Astrophysics Data System (ADS)

    Magi, B. I.; Marlon, J. R.; Mouillot, F.; Daniau, A. L.; Bartlein, P. J.; Schaefer, A.

    2017-12-01

    Fire is intertwined with climate variability and human activities in terms of both its causes and consequences, and the most complete understanding will require a multidisciplinary approach. The focus in this study is to compare data-based records of variability in climate and human activities, with fire and land cover change records over the past 250 years in North America and Europe. The past 250 years is a critical period for contextualizing the present-day impact of human activities on climate. Data are from the Global Charcoal Database and from historical reconstructions of past burning. The GCD is comprised of sediment records of charcoal accumulation rates collected around the world by dozens of researchers, and facilitated by the PAGES Global Paleofire Working Group. The historical reconstruction extends back to 1750 CE is based on literature and government records when available, and completed with non-charcoal proxies including tree ring scars or storylines when data are missing. The key data sets are independent records, and the methods and results are independent of any climate or fire-model simulations. Results are presented for Europe, and subsets of North America. Analysis of fire trends from GCD and the historical reconstruction shows broad agreement, with some regional variations as expected. Western USA and North America in general show the best agreement, with departures in the GCD and historical reconstruction fire trends in the present day that may reflect limits in the data itself. Eastern North America shows agreement with an increase in fire from 1750 to 1900, and a strong decreasing trend thereafter. We present ideas for why the trends agree and disagree relative to historical events, and to the sequence of land-cover change in the regions of interest. Together with careful consideration of uncertainties in the data, these results can be used to constrain Earth System Model simulations of both past fire, which explicitly incorporate historical fire emissions, and the pathways of future fire on a warmer planet.

  11. Addition of deep brain stimulation signal to a local field potential driven Izhikevich model masks the pathological firing pattern of an STN neuron.

    PubMed

    Michmizos, Kostis P; Nikita, Konstantina S

    2011-01-01

    The crucial engagement of the subthalamic nucleus (STN) with the neurosurgical procedure of deep brain stimulation (DBS) that alleviates medically intractable Parkinsonian tremor augments the need to refine our current understanding of STN. To enhance the efficacy of DBS as a result of precise targeting, STN boundaries are accurately mapped using extracellular microelectrode recordings (MERs). We utilized the intranuclear MER to acquire the local field potential (LFP) and drive an Izhikevich model of an STN neuron. Using the model as the test bed for clinically acquired data, we demonstrated that stimulation of the STN neuron produces excitatory responses that tonically increase its average firing rate and alter the pattern of its neuronal activity. We also found that the spiking rhythm increases linearly with the increase of amplitude, frequency, and duration of the DBS pulse, inside the clinical range. Our results are in agreement with the current hypothesis that DBS increases the firing rate of STN and masks its pathological bursting firing pattern.

  12. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada

    NASA Astrophysics Data System (ADS)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.

    2016-12-01

    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  13. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    PubMed

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  14. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  15. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  16. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  17. Assessing risks to spotted owls from forest thinning in fire-adapted forests of the western United States

    Treesearch

    Danny C. Lee; Larry L. Irwin

    2005-01-01

    Concern for viable spotted owl (Strix occidentalis) populations has played prominently in the management of western forests in the United States. Historically, much of the debate has focused on the impacts of commercial timber harvest. Increasingly, the conflict is shifting to the habitat needs of owls versus the need for active management of fire-...

  18. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  19. Effects of season and scale on response of elk and mule deer to habitat manipulation

    Treesearch

    Ryan A. Long; Janet L. Rachlow; John G. Kie

    2008-01-01

    Manipulation of forest habitat via mechanical thinning or prescribed fire has become increasingly common across western North America. Nevertheless, empirical research on effects of those activities on wildlife is limited, although prescribed fire in particular often is assumed to benefit large herbivores. We evaluated effects of season and spatial scale on response of...

  20. Risk management: Core principles and practices, and their relevance to wildland fire

    Treesearch

    Matthew P. Thompson; Donald G. MacGregor; Dave Calkin

    2016-01-01

    The Forest Service, U.S. Department of Agriculture faces a future of increasing complexity and risk, pressing financial issues, and the inescapable possibility of loss of human life. These issues are perhaps most acute for wildland fire management, the highest risk activity in which the Forest Service engages. Risk management (RM) has long been put forth as an...

  1. Evidence-based review of seeding in post-fire rehabilitation and native plant market feasibility

    Treesearch

    Donna L. Peppin

    2009-01-01

    A changing climate and fire regime shifts in the western United States have led to an increase in revegetation activities, in particular post-wildfire rehabilitation and the need for locally-adapted plant materials. Broadcast seeding is one of the most widely used post-wildfire emergency response treatments to minimize soil erosion, promote plant community recovery,...

  2. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2007-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern Piedmont forests and the risk of wildfire is becoming increasingly...

  3. 75 FR 64348 - BOEMRE Information Collection Activity: 1010-0182, Increased Safety Measures for Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... No. BOEM-2010-0052] BOEMRE Information Collection Activity: 1010-0182, Increased Safety Measures for... the likelihood of blowouts, loss of well control, fires, spillages, physical obstruction to other... subsequent oil spill in the Gulf of Mexico. These events highlight the importance of ensuring safe operations...

  4. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.

    PubMed

    Zhang, Mingming; Zhao, Zongya; He, Ping; Wang, Jue

    2014-01-01

    Gap junctions are the mechanism for striatal fast-spiking interneurons (FSIs) to interconnect with each other and play an important role in determining the physiological functioning of the FSIs. To investigate the effect of gap junctions on the firing activities and synchronization of the network for different external inputs, a simple network with least connections and a Newman-Watts small-world network were constructed. Our research shows that both properties of neural networks are related to the conductance of the gap junctions, as well as the frequency and correlation of the external inputs. The effect of gap junctions on the synchronization of network is different for inputs with different frequencies and correlations. The addition of gap junctions can promote the network synchrony in some conditions but suppress it in others, and they can inhibit the firing activities in most cases. Both the firing rate and synchronization of the network increase along with the increase of the electrical coupling strength for inputs with low frequency and high correlation. Thus, the network of coupled FSIs can act as a detector for synchronous synaptic input from cortex and thalamus.

  5. Adapt to more wildfire in western North American forests as climate changes.

    PubMed

    Schoennagel, Tania; Balch, Jennifer K; Brenkert-Smith, Hannah; Dennison, Philip E; Harvey, Brian J; Krawchuk, Meg A; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A; Rasker, Ray; Turner, Monica G; Whitlock, Cathy

    2017-05-02

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.

  6. Adapt to more wildfire in western North American forests as climate changes

    PubMed Central

    Schoennagel, Tania; Balch, Jennifer K.; Brenkert-Smith, Hannah; Harvey, Brian J.; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A.; Rasker, Ray; Turner, Monica G.; Whitlock, Cathy

    2017-01-01

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are (i) recognizing that fuels reduction cannot alter regional wildfire trends; (ii) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; (iii) actively managing more wild and prescribed fires with a range of severities; and (iv) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland–urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire. PMID:28416662

  7. Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin.

    PubMed

    Thomas, Evan A; Petrou, Steven

    2013-07-01

    A common notion of the mechanism by which the antiepileptic drugs (AEDs) carbamazepine and phenytoin act is that they block sodium channels by binding preferentially to the inactivated state, thereby allowing normal neuronal firing while blocking ictal activity. However, these drugs have unpredictable efficacy and, in some cases, may exacerbate seizures. Previous studies have suggested that reducing sodium channel availability in the dentate gyrus (DG) paradoxically increases excitability. We used a biophysically detailed computer model of the DG to test the hypothesis that AEDs increase excitability by disproportionately reducing negative feedback mechanisms. We built a Markov model of sodium channel gating that reproduces responses to voltage clamp experiments in the presence of carbamazepine and phenytoin. We incorporated this validated Markov model into a biophysically realistic computer model of DG neurons and networks. Simulated drug concentrations were similar to those measured in cerebral spinal fluid in medicated patients. Single neuron models were stimulated with current injections, and networks were stimulated with perforant path synaptic input. In the network model, environmental effects were studied by introducing mossy fiber sprouting. As expected, drugs reduced sodium channel availability, which in turn reduced action potential amplitude. This had only a small effect on action potential (AP) firing rate during brief (100 msec) current injections. Paradoxically, long current injections (2,500 msec) increased AP firing rates. This was caused by reduced calcium entry and consequently reduced activation of calcium activated potassium channels. It is important to note that the main determinant of drug effect was resting membrane potential (RMP) and not action potential firing rate. Binding of phenytoin and carbamazepine is slow and, thus drug effects are largely determined by the long term state of the RMP. This paradoxical AP firing increase was dependent on the unusually large calcium-activated potassium conductances expressed by DG granule cells. This predicts that drug efficacy in a given network will depend on the precise makeup of conductances in the network. RMP is expected to vary with the level of activity in the network. We simulated the effects of drugs on single shot stimulus responses in networks with mossy fiber sprouting and varied the RMP in all neurons as a model for network activity. For an RMP of -50 mV, representing an active network, drugs had no effect, or in some cases, increased excitability. Drugs had an increasingly larger inhibitory effect on network responses as RMP decreased. An important prediction is that drugs will be unable to block ictal activity invading an active network. Our key findings are that drug effects depend on both intrinsic properties of the network and its behavioral state. This may explain the paradoxical and unpredictable effects of some AEDs on seizure control in some patients. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  8. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.

  9. Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships

    NASA Astrophysics Data System (ADS)

    Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott

    2018-02-01

    Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

  10. Fire-climate interactions in the American West since 1400 CE

    NASA Astrophysics Data System (ADS)

    Trouet, Valerie; Taylor, Alan H.; Wahl, Eugene R.; Skinner, Carl N.; Stephens, Scott L.

    2010-02-01

    Despite a strong anthropogenic fingerprint on 20th Century wildland fire activity in the American West, climate remains a main driver. A better understanding of the spatio-temporal variability in fire-climate interactions is therefore crucial for fire management. Here, we present annually resolved, tree-ring based fire records for four regions in the American West that extend back to 1400 CE. In all regions, years with high fire activity were characterized by widespread yet regionally distinct summer droughts. Overall fire activity was high in late Medieval times, when much of the American West was affected by mega-droughts. A distinct decline in fire activity in the late 16th Century corresponds with anomalously low temperatures during the Little Ice Age and a decline in Native American fire use. The high spatiotemporal resolution of our fire record discloses a time-frequency dependent climatic influence on wildfire regimes in the American West that needs to be accounted for in fire models.

  11. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  12. Effects of wild fires on the emissions of reactive gases from boreal and subarctic soils

    NASA Astrophysics Data System (ADS)

    Zhang-Turpeinen, Huizhong; Pumpanen, Jukka; Kivimäenpää, Minna

    2017-04-01

    Wild fire has long-term effects on the ecosystem and biological processes of boreal forest, and the frequency of wild fires is increasing as a consequence of climate change. Boreal forests lie largely on permafrost area, and the increase in fire frequency or intensity will affect the depth of the active layer on top of permafrost. The thawing of permafrost soils and increase in the active layer depth could induce significant reactive trace gas emissions. Biogenic volatile organic compounds (BVOCs) and nitrous acid (HONO) are closely associated with air chemistry in the troposphere. They react easily with ozone, hydroxyl radicals, and the reaction products may condense into aerosol particles or affect the growth of atmospheric aerosols which act as cloud condensation nuclei. Forests, and in particular permafrost soils, could be potentially large sources of BVOCs and HONO, because of the large amount of decomposing litter and soil organic matter. However, the forest soil BVOC emissions are poorly known, in contrast to BVOCs emitted from branch and canopy levels in boreal forests. The production rates of HONO in various soils are also poorly known. We studied BVOC and HONO fluxes from boreal forest soils and the effects of wild fires and the time since the last fire on them. We measured BVOCs emissions in west Siberia larch forest stands on permafrost soil in a fire chronosequence where the last forest fires had occurred 2, 24, and more than 100 years ago. HONO emissions in northern boreal subarctic Scots pine forest stands in Eastern Lapland in Finland in a fire chronosequence where the last fires had occurred 7, 47, 72 and 157 years ago. BVOC flux measurements were carried out by drawing air samples from chamber headspace into a steel adsorbent tube containing Tenax TA and carbopack B. The sampling tubes were analyzed on gas chromatography-mass spectrometry (GC-MS). Soil samples were measured for HONO flux in laboratory with LOPAP (Long path absorption photometer). According to our preliminary results the influence and the duration of the impact of forest fires were not observed in HONO emissions. However, the HONO emissions were sensitive to soil moisture. The unexpectedly high rate of release of isoprene measured in the middle age forest sites with warm scenario. Environmental parameters were correlated with the presence of BVOCs. We compared the BVOC fluxes with environmental parameters such as temperature, humidity and PAR, and with ground vegetation coverage and with litter input. The BVOC data is under processing still and more detail results is coming later.

  13. Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents

    NASA Astrophysics Data System (ADS)

    Miesel, Jessica; Reiner, Alicia; Ewell, Carol; Maestrini, Bernardo; Dickinson, Matthew

    2018-05-01

    Positive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C) from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on total C and PyC stocks in California mixed-conifer forest, and to investigate relationships between C and PyC stocks and changes across gradients of fire severity, using metrics derived from remote sensing and field observations. Our unique study accessed active wildfires to establish and measure plots within days before and after fire, prior to substantial erosion. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, C and PyC, and collected forest floor and 0-5 cm mineral soil samples. Tree mortality increased with severity, but overstory C loss was minimal and limited primarily to foliage. Fire released 85% of understory and herbaceous C (comprising <1.0% of total ecosystem C). The greatest C losses occurred from downed wood and forest floor pools (19.3±5.1 Mg ha-1 and 25.9±3.2 Mg ha-1, respectively). Tree bark and downed wood contributed the greatest PyC gains (1.5±0.3 Mg ha-1 and 1.9±0.8 Mg ha-1, respectively), and PyC in tree bark showed non-significant positive trends with increasing severity. Overall PyC losses of 1.9±0.3 Mg ha-1 and 0.5±0.1 Mg ha-1 occurred from forest floor and 0-5 cm mineral soil, with no clear patterns across severity. Fire resulted in a net ecosystem PyC gain (0.96±0.98 Mg ha-1) across aboveground and belowground components of these forests, and there were no differences among severity levels. Carbon emissions represented only 21.6% of total forest C; however, extensive conversion of C from live to dead pools will contribute to large downed wood C pools susceptible to release in a subsequent fire, indicating that there may be a delayed relationship between fire severity and C emissions. This research advances understanding of forest C loss and stabilization as PyC in wildfires; however, poor relationships between C and PyC gains or losses and fire severity highlight the complexity of fire impacts on forest C.

  14. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex.

    PubMed

    Kendrick, Keith M; Zhan, Yang; Fischer, Hanno; Nicol, Alister U; Zhang, Xuejuan; Feng, Jianfeng

    2011-06-09

    How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A network model which can reproduce these changes suggests that a key function of such learning-evoked alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs.

  15. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex

    PubMed Central

    2011-01-01

    Background How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Results Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Conclusions Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A network model which can reproduce these changes suggests that a key function of such learning-evoked alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs. PMID:21658251

  16. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  17. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  18. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    PubMed

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  19. Ghrelin Induces Leptin Resistance by Activation of Suppressor of Cytokine Signaling 3 Expression in Male Rats: Implications in Satiety Regulation

    PubMed Central

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il

    2014-01-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) –bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior. PMID:25060362

  20. A review of the relationships between drought and forest fire in the United States.

    PubMed

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency

    PubMed Central

    Patel, Prasanta K.; Kommajosyula, Naveen; Rosebrock, Adam; Bensimon, Aaron; Leatherwood, Janet; Bechhoefer, John

    2008-01-01

    Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency. PMID:18799612

  2. Relationships between human population density and burned area at continental and global scales.

    PubMed

    Bistinas, Ioannis; Oom, Duarte; Sá, Ana C L; Harrison, Sandy P; Prentice, I Colin; Pereira, José M C

    2013-01-01

    We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.

  3. Relationships between Human Population Density and Burned Area at Continental and Global Scales

    PubMed Central

    Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.

    2013-01-01

    We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108

  4. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel

    NASA Astrophysics Data System (ADS)

    Turco, Marco; Levin, Noam; Tessler, Naama; Saaroni, Hadas

    2017-04-01

    On-going changes in drought, vegetation and wildfires in Israel provide a key example of possible future evolution in transition areas at the border between Mediterranean and arid climates. Here we present multiple lines of evidence suggesting that drought conditions in Israel, representing the eastern Mediterranean, have increased during the period 1980-2014. Drought conditions were calculated using the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI). A 30-year series (1982-2011) of monthly Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) indicates generally positive trends in winter and spring and negative ones in summer and autumn, except in the transition zone between the southern Negev desert and the Mediterranean climate region, where a statistically significant negative trend in all seasons was found. Available ground observations suggest that fire activity has decreased during the period 1987-2011. Apparent year-to-year oscillations are superposed onto these long-term trends. We show that inter-annual variability of summer fires is related to antecedent wet conditions and to above normal vegetation conditions. These relationships suggest the summer fires in Israel are mainly limited by fuel availability rather than by fuel flammability. On the other hand, the year-to-year variations of spring and autumn fires are significantly related with drought indices. Thus, the increase of drought conditions together with climate projections for further warming and drying in this region, point at a potential increase of fire risk in the intermediate seasons.

  5. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  6. Heterogeneous firing responses predict diverse couplings to presynaptic activity in mice layer V pyramidal neurons

    PubMed Central

    2017-01-01

    In this study, we present a theoretical framework combining experimental characterizations and analytical calculus to capture the firing rate input-output properties of single neurons in the fluctuation-driven regime. Our framework consists of a two-step procedure to treat independently how the dendritic input translates into somatic fluctuation variables, and how the latter determine action potential firing. We use this framework to investigate the functional impact of the heterogeneity in firing responses found experimentally in young mice layer V pyramidal cells. We first design and calibrate in vitro a simplified morphological model of layer V pyramidal neurons with a dendritic tree following Rall's branching rule. Then, we propose an analytical derivation for the membrane potential fluctuations at the soma as a function of the properties of the synaptic input in dendrites. This mathematical description allows us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchronized, purely proximal or purely distal synaptic activity. We find that those different forms of dendritic input activity lead to various impact on the somatic membrane potential fluctuations properties, thus raising the possibility that individual neurons will differentially couple to specific forms of activity as a result of their different firing response. We indeed found such a heterogeneous coupling between synaptic input and firing response for all types of presynaptic activity. This heterogeneity can be explained by different levels of cellular excitability in the case of the balanced, unbalanced, synchronized and purely distal activity. A notable exception appears for proximal dendritic inputs: increasing the input level can either promote firing response in some cells, or suppress it in some other cells whatever their individual excitability. This behavior can be explained by different sensitivities to the speed of the fluctuations, which was previously associated to different levels of sodium channel inactivation and density. Because local network connectivity rather targets proximal dendrites, our results suggest that this aspect of biophysical heterogeneity might be relevant to neocortical processing by controlling how individual neurons couple to local network activity. PMID:28410418

  7. BK Channels Are Required for Multisensory Plasticity in the Oculomotor System.

    PubMed

    Nelson, Alexandra B; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-04

    Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High severity experimental burns in Siberian larch forests increase permafrost thaw and larch tree regeneration

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.

    2013-12-01

    Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.

  9. The role of wildfires and forest succession in stream biogeochemistry within the continuous permafrost zone of Central Siberia

    NASA Astrophysics Data System (ADS)

    Prokushkin, Anatoly

    2016-04-01

    Wildfires transform boreal and subarctic forested landscapes leading to the changes in organic matter and inorganic nutrient turnover in terrestrial ecosystems. To get an insight to the fire effect on C fluxes and general hydrochemical characteristics of streams draining continuous permafrost terrains of Central Siberian Plateau (64o N 100o E), we have selected the chronosequence of basins (n = 17) which were severely affected by fires (>80% of basin area) in the time range from 1 to 116 years ago. Stream waters were sampled continuously during frost free seasons (May-September) of 2006-2015. Four streams have been equipped with water level, temperature and conductivity probes for continuous monitoring. The strongest negative effect of wildfires on dissolved organic carbon (DOC) concentrations in streams has occurred right after a fire event, and minimum mean annual concentrations of DOC appeared between 15 and 20 years elapsed after a fire. The most pronounced decrease in DOC concentrations during an annual cycle found in freshet period (May-June) and summer-fall storm events: differences of DOC concentrations among "intact" (>100 years after fire) and recent fire basins (<6 years) reached as much as 2-fold. Less differentiation among basins appears under lowflow conditions, as DOC-depleted solutes from deeper soil layers become dominating in stream flow. Following the post-fire forest recovery, the seasonal mean DOC concentrations in streams demonstrated linear growth at the rate of ca. 0.11 mgC/l/a and approached the initial values already after ca. 60 years after fire disturbance. An opposite trend (i.e. increasing load to streams after fire impact) was observed for dissolved inorganic carbon, major anions and cations. Sulfate was found to be a good tracer of fire affect as increased 200-fold in stream waters right after a fire and steady decreased at the rate [SO42-] = 3.65 x (year after fire)^-0.75 as terrestrial ecosystems were recovering after a fire. For study area, Na+ and Cl- in streams appear to be good indicators of permafrost degradation as they reflect talik formation and connection of a stream to underlying evaporitic deposits. While evidence of permafrost degradation is currently not apparent in the region, we expect increasing concentrations of Na+ and Cl- in streams of Central Siberian Plateau as permafrost degrades due to decreased fire return interval and warming temperatures. The generalized data of active layer thickness (ALT) within analyzed watersheds have demonstrated that fire-driven deepening of ALT results in increasing stream inorganic compounds concentrations. The inverse relationship found between DOC and ALT might be attributed to deeper infiltration of solutions, sorption of DOC on clay minerals, and an increasing rate of DOC microbiological mineralization to CO2 due to increased soil temperatures. Post-fire forest recovery and, particularly, the accumulation of organic mater in the moss-lichen layer and soil organic horizon on watersheds accounted for increasing mean DOC concentrations in the streams. In opposite, increased insulation of soils by organic matter accumulating on the soil surface leads to steadily decreasing ALT and constrains an infiltration of solutes to subsoil. As a result, inorganic solute loading to stream channels is tended to decrease during post-fire forest succession in permafrost affected terrains.

  10. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  11. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    PubMed

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  12. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting

    PubMed Central

    Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240

  13. New aspects of firing pattern autocontrol in oxytocin and vasopressin neurones.

    PubMed

    Moos, F; Gouzènes, L; Brown, D; Dayanithi, G; Sabatier, N; Boissin, L; Rabié, A; Richard, P

    1998-01-01

    In the rat, oxytocin (OT) and vasopressin (AVP) neurones exhibit specific electrical activities which are controlled by OT and AVP released from soma and dendrites within the magnocellular hypothalamic nuclei. OT enhances amplitude and frequency of suckling-induced bursts, and changes basal firing characteristics: spike patterning becomes very irregular (spike clusters separated by long silences), firing rate is highly variable, oscillating before facilitated bursts. This unstable behaviour which markedly decreases during hyperosmotic stimulation (interrupting bursting) could be a prerequisite for bursting. The effects of AVP depend on the initial phasic pattern of AVP neurones: AVP excites weakly active neurones (increasing burst duration, decreasing silences) and inhibits highly active neurones; neurones with intermediate phasic activity are unaffected. Thus, AVP ensures all AVP neurones discharge with moderate phasic activity (bursts and silences lasting 20-40 s), known to optimise systemic AVP release. V1a-type receptors are involved in AVP actions. In conclusion, OT and AVP control their respective neurones in a complex manner to favour the patterns of activity which are the best suited for an efficient systemic hormone release.

  14. Permafrost as an additional driving factor for the extreme fire event in the boreal Baikal region in 2003

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C.

    2012-04-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires degrade the forest, affect human values, emit huge amount of carbon and aerosols and alter the land surface albedo. Usually, wind, slope, and dry conditions have been recognized as factors determining fire spread. In the Baikal region, 127,000 km2 burned in 2003, while the annual average burned area is approx. 8100 km2. In average years, 16% of the burned area occurred in the continuous permafrost zone but in 2003, 33% of these burned areas coincide with the existence of permanently frozen grounds. Permafrost and the associated upper active layer, which thaws during summer and refreezes during winter, is an important supply for soil moisture in boreal ecosystems. This leads to the question if permafrost hydrology is a potential additional driving factor for extreme fire events in boreal forests. Using temperature and precipitation data, we calculated the Nesterov index as indicator for fire weather conditions. Further, we used satellite observations of burned area and surface moisture, a digital elevation model, a land cover and a permafrost map to evaluate drivers for the temporal dynamic and spatial variability of surface moisture conditions and burned area in spring 2003. On the basis of time series decomposition, we separated the effect of drivers for fire activity on different time scales. We next computed cross-correlations to identify potential time lags between weather conditions, surface moisture and fire activity. Finally, we assessed the predictive capability of different combinations of driving variables for surface moisture conditions and burned area using multivariate spatial-temporal regression models. The results from this study demonstrate that permafrost in larch-dominated ecosystems regulates the inter-annual variability of surface moisture and thus increases the inter-annual variability of burned area. The drought conditions in spring 2003 were accelerated by the presence of permafrost because less water was stored in the upper active layer from the dry previous summer 2002 and the permafrost table prevents vegetative water uptake from deeper layers. In contrast, weather conditions (precipitation anomaly, Nesterov index) are weaker predictors for the 2003 fire event. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil on how feedback mechanisms can lead to extreme fire events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, and fire activity in earth system models for projecting climate change impacts over the next century.

  15. Impacts of prescribed fires on air quality over the Southeastern United States in spring based on modeling and ground/satellite measurements.

    PubMed

    Zeng, Tao; Wang, Yuhang; Yoshida, Yasuko; Tian, Di; Russell, Amistead G; Barnard, William R

    2008-11-15

    Prescribed burning is a large aerosol source in the southeastern United States. Its air quality impact is investigated using 3-D model simulations and analysis of ground and satellite observations. Fire emissions for 2002 are calculated based on a recently developed VISTAS emission inventory. March was selected for the investigation because it is the most active prescribed fire month. Inclusion of fire emissions significantly improved model performance. Model results show that prescribed fire emissions lead to approximately 50% enhancements of mean OC and EC concentrations in the Southeast and a daily increase of PM2.5 up to 25 microg m(-3), indicating that fire emissions can lead to PM2.5 nonattainment in affected regions. Surface enhancements of CO up to 200 ppbv are found. Fire count measurements from the moderate resolution imaging spectroradiometer (MODIS) onboard the NASA Terra satellite show large springtime burning in most states, which is consistent with the emission inventory. These measurements also indicate that the inventory may underestimate fire emissions in the summer.

  16. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.

    PubMed

    Chan, S A; Smith, C

    2001-12-15

    1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.

  17. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells

    PubMed Central

    Chan, Shyue-An; Smith, Corey

    2001-01-01

    Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761

  18. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  19. Climate- and disturbance-driven changes in vegetation composition and structure limit future potential carbon storage in the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang

    2016-04-01

    The Greater Yellowstone Ecosystem (GYE) provides unique opportunities to understand how changing climate, land use, and disturbance affect ecosystem carbon balance. The GYE is one of the largest, most intact ecosystems in the United States. However, distinct management histories on National Park, National Forest, and private lands, elevational climate gradients, and variable fire activity, have created a mosaic of stand ages and forest types. It is uncertain how greenhouse forcing may alter the carbon balance of the GYE. Whereas increasing temperatures may enhance productivity and perpetuate the GYE as a carbon sink, climate-driven increases in fire frequency may offset productivity gains by limiting biomass accumulation. We investigated how changes in fire frequency and size may affect vegetation dynamics and carbon sequestration potential in the GYE using the LANDIS-II dynamic landscape vegetation model. LANDIS-II provides sufficient spatial resolution to capture landscape-level variation in forest biomass and forest types (i.e. 90 × 90 m grid cells), but can integrate disturbance regimes and vegetation dynamics across the entire GYE (92,000 km2). We initiated our simulations with biomass and stand conditions that preceded the exceptional 1988 fire, when 16% of the GYE burned. We inferred the biomass, species abundances, and stand demographics of each model cell by combining satellite imagery with forest inventory data, and developed two fire regime scenarios from historical fire records. We developed a historic wildfire scenario with infrequent fires by excluding 1988 from our calibration of fire sizes and frequencies, and a future scenario with more frequent and larger fires by including 1988 in our calibrations. Fire frequency increased in all forest types in our future scenario, with a 152% increase in the annual forest area burned relative to observed area burned during recent decades. However, the changes in fire frequency varied among forest types, with the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.

  20. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Treesearch

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  1. Modelled vs. reconstructed past fire dynamics - how can we compare?

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.

    2015-04-01

    Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the CLIMBER-2 Earth system model of intermediate complexity and the JSBACH land component of the Max Planck Institute Earth System Model. The fire algorithm in JSBACH assumes a constant annual lightning cycle as the sole fire ignition mechanism (Arora and Boer 2005). To eliminate data processing differences as a source for potential discrepancies, the processing of both reconstructed and modeled data, including e.g. normalisation with respect to a given base period and aggregation of time series was done in exactly the same way. Here, we compare the aggregated time series on a hemispheric and regional scale.

  2. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    NASA Astrophysics Data System (ADS)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided with statistically significant high fire activity, concentrations in Delhi averaged 304 μg m-3, or more than 1000% above the 24-h PM2.5 guideline (25 μg m-3) of the World Health Organization. These results suggest that providing viable alternatives to agricultural residue burning could help improve post-monsoon air quality for a growing population of 63 million (39% in urban areas) within Delhi's airshed.

  3. Seasonal Impact of Regional Outdoor Biomass Burning on Air Pollution in Three Indian Cities: Delhi, Bengaluru, and Pune

    NASA Technical Reports Server (NTRS)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2017-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or "airsheds," for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM(sub 10) anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM(sub 10) increases by 16.34 micrograms per cubic meter, visibility decreases by 0.097 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM(sub 2.5) in the 2013 post-monsoon burning season, which coincided with statistically significant high fire activity, concentrations in Delhi averaged 304 micrograms per cubic meter, or more than 1000% above the 24-h PM(sub 2.5) guideline (25 micrograms per cubic meter) of the World Health Organization. These results suggest that providing viable alternatives to agricultural residue burning could help improve post-monsoon air quality for a growing population of 63 million (39% in urban areas) within Delhi's airshed.

  4. Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells.

    PubMed

    Hone, Arik J; Michael McIntosh, J; Rueda-Ruzafa, Lola; Passas, Juan; de Castro-Guerín, Cristina; Blázquez, Jesús; González-Enguita, Carmen; Albillos, Almudena

    2017-01-01

    Varenicline is a nicotinic acetylcholine receptor (nAChR) agonist used to treat nicotine addiction, but a live debate persists concerning its mechanism of action in reducing nicotine consumption. Although initially reported as α4β2 selective, varenicline was subsequently shown to activate other nAChR subtypes implicated in nicotine addiction including α3β4. However, it remains unclear whether activation of α3β4 nAChRs by therapeutically relevant concentrations of varenicline is sufficient to affect the behavior of cells that express this subtype. We used patch-clamp electrophysiology to assess the effects of varenicline on native α3β4* nAChRs (asterisk denotes the possible presence of other subunits) expressed in human adrenal chromaffin cells and compared its effects to those of nicotine. Varenicline and nicotine activated α3β4* nAChRs with EC 50 values of 1.8 (1.2-2.7) μM and 19.4 (11.1-33.9) μM, respectively. Stimulation of adrenal chromaffin cells with 10 ms pulses of 300 μM acetylcholine (ACh) in current-clamp mode evoked sodium channel-dependent action potentials (APs). Under these conditions, perfusion of 50 or 100 nM varenicline showed very little effect on AP firing compared to control conditions (ACh stimulation alone), but at higher concentrations (250 nM) varenicline increased the number of APs fired up to 436 ± 150%. These results demonstrate that therapeutic concentrations of varenicline are unlikely to alter AP firing in chromaffin cells. In contrast, nicotine showed no effect on AP firing at any of the concentrations tested (50, 100, 250, and 500 nM). However, perfusion of 50 nM nicotine simultaneously with 100 nM varenicline increased AP firing by 290 ± 104% indicating that exposure to varenicline and nicotine concurrently may alter cellular behavior such as excitability and neurotransmitter release. © 2016 International Society for Neurochemistry.

  5. Urban-wildland fires: how California and other regions of the US can learn from Australia

    NASA Astrophysics Data System (ADS)

    Stephens, Scott L; Adams, Mark A; Handmer, John; Kearns, Faith R; Leicester, Bob; Leonard, Justin; Moritz, Max A

    2009-01-01

    Most urban-wildland interface (UWI) fires in California and the other regions of the US are managed in a similar fashion: fire agencies anticipate the spread of fire, mandatory evacuations are ordered, and professional fire services move in and attempt to suppress the fires. This approach has not reduced building losses in California. Conversely, losses and the associated suite of environmental impacts, including reduced air quality, have dramatically increased over the last three decades. In contrast to California, Australia has developed a more effective 'Prepare, stay and defend, or leave early' policy. Using this approach, trained residents decide whether they will stay and actively defend their well-prepared property or leave early before a fire threatens them. Australian strategies have the distinct advantage of engaging and preparing those most affected by such fires: homeowners. Investing more in fire suppression alone, the common response after large UWI fires in California, will not reduce losses. US society has attempted to accommodate many of the natural hazards inherent to the landscapes that we inhabit; by examining the Australian model, we may approach a more sustainable coexistence with fire as well. However, it should be noted that some California communities are so vulnerable that a 'Prepare and leave early' strategy may be the only option.

  6. Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity

    PubMed Central

    Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E

    2007-01-01

    The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000

  7. Siberian and North American Biomass Burning Contributions to the Processes that Influenced the 2008 Arctic Aircraft and Satellite Field Campaigns

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Stocks, B. J.; Carr, R.; Pierce, R. B.; Natarajan, M.; Fromm, M.

    2009-05-01

    Current climate change scenarios predict increases in biomass burning in terms of increases in fire frequency, area burned, fire season length and fire season severity, particularly in boreal regions. Climate and weather control fire danger, which strongly influences the severity of fire events, and these in turn, feed back to the climate system through direct and indirect emissions, modifying cloud condensation nuclei and altering albedo (affecting the energy balance) through vegetative land cover change and deposition. Additionally, fire emissions adversely influence air quality and human health downwind of burning. The boreal zone is significant because this region stores the largest reservoir of terrestrial carbon, globally, and will experience climate change impacts earliest. Boreal biomass burning is an integral component to several of the primary goals of the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 2008 field campaigns, which include its implication for atmospheric composition and climate, aerosol radiative forcing, and chemical processes with a focus on ozone and aerosols. Both the spring and summer phases of ARCTAS and ARCPAC offered substantial opportunities for sampling fresh and aged biomass burning emissions. However, the extent to which spring biomass burning influenced arctic haze was unexpected, which could inform our knowledge of the formation of arctic haze and the early deposition of black carbon on the icy arctic surface. There is already evidence of increased extreme fire seasons that correlate with warming across the circumboreal zone. In this presentation, we discuss seasonal and annual fire activity and anomalies that relate to the ARCTAS and ARCPAC spring (April 1 - 20) and summer (June 18 - July 13) periods across Siberia and North America, with particular emphasis on fire danger and fire behavior as they relate to smoke emissions. Fire severity and subsequent emission levels are directly related to fire danger conditions, which reflect and incorporate both antecedent and current weather. In this century, it is predicted that fire regime increases will be the catalyst for ecosystem change, which will force ecosystems to move more rapidly towards a new equilibrium with climate. However, the reasons for ecosystem change are often accompanied by social and political drivers of land cover change, which complicate the relationship between fire and weather. For instance, since the collapse of the former Soviet Union, financial support for fire fighting is minimal, communal agricultural lands have been abandoned and a number of species are no longer protected (e.g. Saiga in Kalmykia), and each of these factors strongly influences vegetation cover and fire regimes, leading to a complicated interaction of processes that control fire and its affect on the larger environment.

  8. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size

    PubMed Central

    Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.

    2016-01-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940

  9. Incorporating anthropogenic influences into fire probability models: Effects of development and climate change on fire activity in California

    NASA Astrophysics Data System (ADS)

    Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.

    2014-12-01

    The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the level of uncertainty surrounding the influence that natural and anthropogenic systems have on wildfire.

  10. Cork Oak Vulnerability to Fire: The Role of Bark Harvesting, Tree Characteristics and Abiotic Factors

    PubMed Central

    Catry, Filipe X.; Moreira, Francisco; Pausas, Juli G.; Fernandes, Paulo M.; Rego, Francisco; Cardillo, Enrique; Curt, Thomas

    2012-01-01

    Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems. PMID:22787521

  11. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.

    PubMed

    Keeley, Jon E; Zedler, Paul H

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating.

  12. Large, high-intensity fire events in Southern California shrublands: Debunking the fine-grain age patch model

    USGS Publications Warehouse

    Keeley, J.E.; Zedler, P.H.

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating. ?? 2009 by the Ecological Society of America.

  13. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    PubMed Central

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  14. Evaluating the intensity of fire at the Acheulian site of Gesher Benot Ya'aqov-Spatial and thermoluminescence analyses.

    PubMed

    Alperson-Afil, Nira; Richter, Daniel; Goren-Inbar, Naama

    2017-01-01

    This manuscript presents an attempt to evaluate the intensity of fire through spatial patterning and thermoluminescence methodology. Previous studies of Layer II-6 Level 2 at the Acheulian site of Gesher Benot Ya'aqov suggested that hominins differentiated their activities across space, including multiple activities around a hearth reconstructed on the basis of the distribution of burned flint artifacts. A transect of ~4 m was extended from the center of the reconstructed hearth of Level 2 to its periphery in order to examine the intensity of fire. Burned and unburned flint microartifacts were sampled along this transect. The results of earlier and current thermoluminescence (TL) analysis demonstrate a general agreement with the macroscopic determination of burning, indicating that the possibility of misinterpretation based on macroscopic observations is negligible. The TL signal from flint microartifacts close to the hearth's center shows unambiguous signs of strong heating, whereas with increasing distance from the hearth the TL signal can be interpreted as a result of decreasing temperatures and/or shorter durations of exposure to fire in addition to a decreasing number of flints showing fire damage. Our study shows that TL analysis can identify some variation in fire intensity, which allows a more precise classification of burned flint microartifacts with respect to their heating history.

  15. Warfare rather than agriculture as a critical influence on fires in the late Holocene, inferred from northern Vietnam

    PubMed Central

    Li, Zhen; Saito, Yoshiki; Dang, Phong X.; Matsumoto, Eiji; Vu, Quang Lan

    2009-01-01

    Fire has played an essential role in the development of human civilization. Most previous research suggests that frequent-fire regimes in the late Holocene were associated with intensification of human activities, especially agriculture development. Here, we analyze fire regimes recorded in the Song Hong delta area of Vietnam over the past 5,000 years. In the prehistoric period, 2 long-term, low-charcoal abundance periods have been linked to periods of low humidity and cool climate, and 5 short-term fire regimes of 100–150 years in duration occurred at regular intervals of ≈700 years. However, over the last 1,500 years, the number, frequency, and intensity of fire regimes clearly increased. Six intensified-fire regime periods in northern Vietnam during this time coincided with changes of Vietnamese dynasties and associated warfare and unrest. In contrast, agricultural development supported by rulers of stable societies at this time does not show a positive correlation with intensified-fire regime periods. Thus, warfare rather than agriculture appears to have been a critical factor contributing to fire regimes in northern Vietnam during the late Holocene. PMID:19597148

  16. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  17. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  18. Influence of logging on the effects of wildfire in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E. A.; Buryak, L. V.; Ivanova, G. A.; Conard, S. G.; Kalenskaya, O. P.; Zhila, S. V.; McRae, D. J.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and affect burning conditions and fuel consumption. We investigated 100 individual sites with different histories of logging and fire on a total of 23 study areas in three different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, and tree regeneration in pine and larch forests. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Logged areas in the Angara region had the highest surface and ground fuel loads (up to 135 t ha-1), mainly due to logging debris. This resulted in high carbon emissions where fires occurred on logged sites (up to 41 tC ha-1). The Shushenskoe/Minusinsk and Zabaikal regions are characterized by better slash removal and a smaller amount of carbon emitted to the atmosphere during fires. Illegal logging, which is widespread in the Zabaikal region, resulted in an increase in fire hazard and higher carbon emissions than legal logging. The highest fuel loads (on average 108 t ha-1) and carbon emissions (18-28 tC ha-1) in the Zabaikal region are on repeatedly burned unlogged sites where trees fell on the ground following the first fire event. Partial logging in the Shushenskoe/Minusinsk region has insufficient impact on stand density, tree mortality, and other forest conditions to substantially increase fire hazard or affect carbon stocks. Repeated fires on logged sites resulted in insufficient tree regeneration and transformation of forest to grasslands. We conclude that negative impacts of fire and logging on air quality, the carbon cycle, and ecosystem sustainability could be decreased by better slash removal in the Angara region, removal of trees killed by fire in the Zabaikal region, and tree planting after fires in drier conditions where natural regeneration is hampered by soil overheating and grass proliferation.

  19. Effects of stimulation of muscarinic receptors on bladder afferent nerves in the in vitro bladder-pelvic afferent nerve preparation of the rat.

    PubMed

    Yu, Yongbei; de Groat, William C

    2010-11-18

    Effects of a muscarinic receptor agonist oxotremorine-M (oxo-M) on bladder afferent nerve (BAN) activity were studied in an in vitro bladder-pelvic nerve preparation. Distension of the bladder induced rhythmic bladder contractions that were accompanied by multiunit afferent firing. Intravesical administration of 25 and 50 μM oxo-M significantly increased afferent firing from 41 ± 2 spikes/s to 51 ± 4 spikes/s and 60.5 ± 5 spikes/s, respectively, but did not change the maximum amplitude of spontaneous bladder contractions. The afferent nerve firing induced by isotonic distension of the bladder (10-40 cmH(2)O) was increased 22-100% by intravesical administration of 50 μM oxo-M. Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Oxo-M significantly decreased the voltage threshold by 40% (p<0.05) and increased by 157% (p<0.05) the area of the AP evoked at a submaximal stimulus intensity. These effects were blocked by intravesical injection of 5 μM atropine methyl nitrate (AMN). Intravesical administration of 5 μM AMN alone did not alter BAN firing or the amplitude of bladder contractions. The facilitatory effects induced by oxo-M on BAN activity were also suppressed (p<0.05) by intravesical administration of 2',3'-0-trinitrophenyl-ATP (TNP-ATP) (30 μM). In preparations pretreated with capsaicin (125 mg/kg, s.c.) the facilitatory effects of 50 μM oxo-M on BAN activity were absent. These results suggest that activation of muscarinic receptors facilitates mechano-sensitive, capsaicin-sensitive BAN activity in part by mechanisms involving purinergic receptors located near the luminal surface of the bladder and ATP release which presumably occurs in the urothelium. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism.

    PubMed

    Garcia-Junco-Clemente, Pablo; Chow, David K; Tring, Elaine; Lazaro, Maria T; Trachtenberg, Joshua T; Golshani, Peyman

    2013-11-05

    De novo phosphatase and tensin homolog on chromosome ten (PTEN) mutations are a cause of sporadic autism. How single-copy loss of PTEN alters neural function is not understood. Here we report that Pten haploinsufficiency increases the expression of small-conductance calcium-activated potassium channels. The resultant augmentation of this conductance increases the amplitude of the afterspike hyperpolarization, causing a decrease in intrinsic excitability. In vivo, this change in intrinsic excitability reduces evoked firing rates of cortical pyramidal neurons but does not alter receptive field tuning. The decreased in vivo firing rate is not associated with deficits in the dendritic integration of synaptic input or with changes in dendritic complexity. These findings identify calcium-activated potassium channelopathy as a cause of cortical dysfunction in the PTEN model of autism and provide potential molecular therapeutic targets.

  1. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  2. Analysis of causal factors of fire regimes in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Palumbo, I.; Lehsten, V.; Balzter, H.

    2009-04-01

    Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by bioclimatic and demographic factors in African ecosystems.

  3. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  4. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS), as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20-30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC) programme within the CAMS.

  5. Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells.

    PubMed

    Múnera, A; Cuestas, D M; Troncoso, J

    2012-10-25

    Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    PubMed

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  7. Wildfire atlas of the northeastern and north central states.

    Treesearch

    Donald A. Haines; Von J. Johnson; William A. Main

    1975-01-01

    Describes patterns of forest fire activity across the northeastern and north central United States. Gives average dates of greening ad curing of herbaceous plants, medium size of fires in various fuels, and annual profiles of peak fire activity. It also examines combinations of major fire cause and day-of-week activity.

  8. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  9. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 5: Fire suppression activities

    Treesearch

    Charles W. McHugh; Paul Gleason

    2003-01-01

    The purpose of this report is to document the suppression actions taken during the Hayman Fire. The long duration of suppression activities (June 8 through July 18), and multiple incident management teams assigned to the fire, makes this a challenging task. Original records and reports produced independently by the various teams assigned to different portions of the...

  10. Changes in future fire regimes under climate change

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut

    2013-04-01

    Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.

  11. Unitary synaptic connections among substantia nigra pars reticulata neurons

    PubMed Central

    Wilson, Charles J.

    2016-01-01

    Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was −64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate. PMID:26961101

  12. Air Quality and Health Impacts of an Aviation Biofuel Supply Chain in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Ravi, V.; Lamb, B. K.

    2016-12-01

    The Northwest Advanced Renewables Alliance (NARA) is a multi-institutional program aimed at the development of a supply chain for aviation biofuel using woody residues from logging operations as a feedstock. In this paper, we present results based on a comprehensive regional air quality modelling framework (AIRPACT) showing the effects of reduced prescribed fires due to harvesting of the woody biomass feedstock and air quality impacts from the biofuel supply chain. We will present results from two different scenarios - (1) a biorefinery scenario with all emissions associated with supply chain (i.e. vehicular, logging-activity, and biorefinery operations) with two biorefineries in eastern and western Washington and (2) a prescribed burn scenario with all and reduced prescribed fire emissions. Prescribed fire activities peak during Oct-Nov in the region, and prescribed fire simulations for this period in 2011 show significant improvement in particulate air quality in western Oregon for the case with reduced fire emissions. Harvesting woody residue and reducing the amount of prescribed fire activity decreased PM2.5 by 10-20 µg/m3 at several locations. Using BenMAP, an air quality benefit mapping tool, we show that a decrease in PM2.5 concentrations due to reduced prescribed and slash burning activity is associated with decrease in several health end points analysed. Decreases in PM2.5 concentrations also help to improve visibility in protected natural environments, such as national parks. For the biofuel supply chain, summertime simulations were completed and initial results indicate only a small increase (≤1 ppbv) in hourly ozone concentration downwind of a large biorefinery near the Puget Sound region. Impacts from a smaller biorefinery located in eastern Washington are much smaller. Impacts from mobile sources for biomass hauling are negligible.

  13. Satellite Observation Highlights of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Douglass, Anne R.; Duncan, Bryan N.; daSilva, Arlindo; Torres, Omar

    2010-01-01

    From late-July through mid-August 2010, wildfires raged in western Russia. The resulting thick smoke and biomass burning products were transported over the highly populated Moscow city and surrounding regions, seriously impairing visibility and affecting human health. We demonstrate the uniqueness of the 2010 Russian wildfires by using satellite observations from NASA's Earth Observing System (EOS) platforms. Over Moscow and the region of major fire activity to the southeast, we calculate unprecedented increases in the MODIS fire count record of 178 %, an order of magnitude increase in the MODIS fire radiative power (308%) and OMI absorbing aerosols (255%), and a 58% increase in AIRS total carbon monoxide (CO). The exceptionally high levels of CO are shown to be of comparable strength to the 2006 El Nino wildfires over Indonesia. Both events record CO values exceeding 30x10(exp 7) molec/ square cm.

  14. Active fire detection using a peat fire radiance model

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Honma, T.; Kaku, K.; Fukuda, M.

    2011-12-01

    The fire fractional area and radiances at 4 and 11 μm of active fires in Indonesia were estimated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Based on these fire information, a stochastic fire model was used for evaluating two fire detection algorithms of Moderate Resolution Imaging Spectroradiometer (MODIS). One is single-image stochastic fire detection, and the other is multitemporal stochastic fire detection (Kushida, 2010 - IEEE Geosci. Remote Sens. Lett.). The average fire fractional area per one 1 km2 ×1 km2 pixel was 1.7%; this value corresponds to 32% of that of Siberian and Mongolian boreal forest fires. The average radiances at 4 and 11 μm of active fires were 7.2 W/(m2.sr.μm) and 11.1 W/(m2.sr.μm); these values correspond to 47% and 91% of those of Siberian and Mongolian boreal forest fires, respectively. In order to get false alarms less than 20 points per 106 km2 area, for the Siberian and Mongolian boreal forest fires, omission errors (OE) of 50-60% and about 40% were expected for the detections by using the single and multitemporal images, respectively. For Indonesian peat fires, OE of 80-90% was expected for the detections by using the single images. For the peat-fire detections by using the multitemporal images, OE of about 40% was expected, provided that the background radiances were estimated from past multitemporal images with less than the standard deviation of 1K. The analyses indicated that it was difficult to obtain sufficient active-fire information of Indonesian peat fires from single MODIS images for the fire fighting, and that the use of the multitemporal images was important.

  15. Death and rebirth of neural activity in sparse inhibitory networks

    NASA Astrophysics Data System (ADS)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  16. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain.

    PubMed

    El Mansari, Mostafa; Sánchez, Connie; Chouvet, Guy; Renaud, Bernard; Haddjeri, Nasser

    2005-07-01

    The present study was undertaken to compare the acute and long-term effects of escitalopram and citalopram on rat brain 5-HT neurotransmission, using electrophysiological techniques. In hippocampus, after 2 weeks of treatment with escitalopram (10 mg/kg/day, s.c.) or citalopram (20 mg/kg/day, s.c.), the administration of the selective 5-HT(1A) receptor antagonist WAY-100,635 (20-100 microg/kg, i.v.) dose-dependently induced a similar increase in the firing activity of dorsal hippocampus CA(3) pyramidal neurons, thus revealing direct functional evidence of an enhanced tonic activation of postsynaptic 5-HT(1A) receptors. In dorsal raphe nucleus, escitalopram was four times more potent than citalopram in suppressing the firing activity of presumed 5-HT neurons (ED(50)=58 and 254 mug/kg, i.v., respectively). Interestingly, the suppressant effect of escitalopram (100 microg/kg, i.v.) was significantly prevented, but not reversed by R-citalopram (250 microg/kg, i.v.). Sustained administration of escitalopram and citalopram significantly decreased the spontaneous firing activity of presumed 5-HT neurons. This firing activity returned to control rate after 2 weeks in rats treated with escitalopram, but only after 3 weeks using citalopram, and was associated with a desensitization of somatodendritic 5-HT(1A) autoreceptors. These results suggest that the time course of the gradual return of presumed 5-HT neuronal firing activity, which was reported to account for the delayed effect of SSRI on 5-HT transmission, is congruent with the earlier onset of action of escitalopram vs citalopram in validated animal models of depression and anxiety.

  17. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  18. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    PubMed

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  19. Examining the influence of biophysical conditions on wildland-urban interface homeowners' wildfire risk mitigation activities in fire-prone landscapes

    Treesearch

    Christine S. Olsen; Jeffrey D. Kline; Alan A. Ager; Keith A. Olsen; Karen C. Short

    2017-01-01

    Expansion of the wildland–urban interface (WUI) and the increasing size and number of wildfires has policy-makers and wildfire managers seeking ways to reduce wildfire risk in communities located near fire-prone forests. It is widely acknowledged that homeowners can reduce their exposure to wildfire risk by using nonflammable building materials and reducing tree...

  20. The effects of hazardous fuel reduction treatments in the wildland urban interface on the activity of bark beetles infesting ponderosa pine

    Treesearch

    Christopher J. Fettig; Joel D. McMillin; John. A. Anhold; Shakeeb M. Hamud; Steven J. Seybold; Robert R. Borys

    2008-01-01

    (Please note, this is an abstract only) Selective logging, fire suppression, forest succession, and climatic changes have resulted in high fire hazards over large areas of the western United States. Federal and state hazardous fuel reduction programs have increased accordingly to reduce the risk, extent and severity of these events, particularly in the wildland urban...

Top