A fluorescent molecular rotor probes the kinetic process of degranulation of mast cells.
Furuno, T; Isoda, R; Inagaki, K; Iwaki, T; Noji, M; Nakanishi, M
1992-08-01
A confocal fluorescence microscope was used to study the exocytotic secretory processes of mast cells in combination with an fluorescent molecular rotor, 9-(dicyanovinyl)julolidine (DCVJ). DCVJ is known to be an unique fluorescent dye which increases its quantum yield with decreasing intramolecular rotation. Here, DCVJ-loaded peritoneal rat mast cells were stimulated with compound 48/80 and their fluorescence images were compared with fluorescence calcium images of fluo-3-loaded mast cells. Subsequent to transient increases in intracellular free calcium ion concentration, DCVJ fluorescence increased dramatically in the cytoplasm and formed a ring-like structure around the nucleus, suggesting the possibility that the dye bound to the proteins composing the cytoskeletal architecture. Furthermore, the increases of DCVJ fluorescence intensities were mostly blocked in the presence of cytochalasin D (10 microM). However, fluo-3 fluorescence intensities still increased after addition of compound 48/80.
Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice.
Huang, Liang-Ti; Yeh, Tsu-Fu; Kuo, Yu-Lin; Chen, Pin-Chuan; Chen, Chung-Ming
2015-02-01
Surfactant is a useful vehicle for the intratracheal delivery of medicine to the distal lung. The aim of this study was to analyze the effect of intratracheal surfactant and budesonide instillation on the pulmonary distribution of fluorescent dye in mice. Male athymic nude mice were assigned randomly as controls, fluorescent dye, fluorescent dye + surfactant (50 mg/kg), fluorescent dye + budesonide (0.25 mg/kg), and fluorescent dye + surfactant + budesonide groups. A total volume of 60 μL fluorescent solutions was intratracheally injected and followed by 60 μL of air. We photographed and measured fluorescence in the lungs, from the back, 15 minutes after intratracheal administration using an IVIS Xenogen imaging instrument. The fluorescent dye (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide) was most strongly detected near the trachea and weakly detected in the lungs in mice administered with fluorescent solutions. Almost no fluorescence was seen in the lung region of control mice. Intratracheal administration of surfactant or budesonide increased fluorescent intensity compared with control mice. Combined administration of surfactant and budesonide further increased fluorescent intensity compared with mice given surfactant or budesonide alone. Surfactant and budesonide enhance the pulmonary distribution of fluorescent dye in mice. Copyright © 2014. Published by Elsevier B.V.
A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein
Rodriguez, Erik A.; Tran, Geraldine N.; Gross, Larry A.; Crisp, Jessica L.; Shu, Xiaokun; Lin, John Y.; Tsien, Roger Y.
2016-01-01
Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because less light is scattered, absorbed, or reemitted by endogenous biomolecules. A new class of FP was developed from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, named small Ultra-Red FP (smURFP), covalently attaches biliverdin (BV) without a lyase, and has 642/670 nm excitation/emission peaks, a large extinction coefficient (180,000 M−1cm−1) and quantum yield (18%), and comparable photostability to eGFP. SmURFP has significantly increased BV incorporation rate and protein stability compared to the bacteriophytochrome (BPH) FPs. BV supply is limited by membrane permeability, so expression of heme oxygenase-1 with heme precursors increases fluorescence of BPH/APCα FPs. SmURFP (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence in situ comparable to FPs from jellyfish/coral. A far-red/near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP. PMID:27479328
Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui
2014-02-01
The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.
Rückriemen, Jana; Hohmann, Christoph; Hellwig, Michael; Henle, Thomas
2017-09-01
This study compared the fluorescence properties (λ ex/em =350/450nm) and molecular size of proteins from manuka and non-manuka honey. The fluorescence characteristics of non-manuka and manuka proteins differ markedly, whereby manuka honey protein fluorescence increases with increasing methylglyoxal (MGO) content of the honey. It was concluded that manuka honey proteins are modified due to MGO-derived glycation and crosslinking reactions, thus resulting in fluorescent structures. The molecular size of honey proteins was studied using size exclusion chromatography. Manuka honey proteins contain a significantly higher amount of high molecular weight (HMW) fraction compared to non-manuka honey proteins. Moreover, HMW fraction of manuka honey proteins was stable against reducing agents such as dithiothreitol, whereas HMW fraction of non-manuka honey proteins was significantly decreased. Thus, the chemical nature of manuka honey HMW fraction is probably covalent MGO crosslinking, whereas non-manuka HMW fraction is caused by disulfide bonds. Storage of a non-manuka honey, which was artificially spiked with MGO and DHA, did not induce above mentioned fluorescence properties of proteins during 84days of storage. Hence, MGO-derived fluorescence and crosslinking of honey proteins can be useful parameters to characterize manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delineating Normal from Diseased Brain by Aminolevulinic Acid-Induced Fluorescence
NASA Astrophysics Data System (ADS)
Stepp, Herbert; Stummer, Walter
5-Aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX (PpIX) has been established as an orally applied drug to guide surgical resection of malignant brain tumors by exciting the red fluorescence of PpIX. The accumulation of PpIX in glioblastoma multiforme (GBM) is highly selective and provides excellent contrast to normal brain when using surgical microscopes with appropriately filtered light sources and cameras. The positive predictive value of fluorescent tissue is very high, enabling safe gross total resection of GBM and other brain tumors and improving prognosis of patients. Compared to other intraoperative techniques that have been developed with the aim of increasing the rate of safe gross total resections of malignant gliomas, PpIX fluorescence is considerably simpler, more cost effective, and comparably reliable. We present the basics of 5-ALA-based fluorescence-guided resection, and discuss the clinical results obtained for GBM and the experience with the fluorescence staining of other primary brain tumors and metastases as well as the results for spinal cord tumors. The phototoxicity of PpIX, increasingly used for photodynamic therapy of brain tumors, is mentioned briefly in this chapter.
NASA Astrophysics Data System (ADS)
Foster, Robert C.; Krell, Asher M.; Chung, Thomas K.; Warram, Jason M.; Zinn, Kurt R.; Rosenthal, Eben L.
2014-03-01
Introduction: Proteins conjugated to the near infrared (NIR) moieties for detection of head and neck cancers are being translated to the clinic. However, little is known about the fluorescent properties of IRDye800CW after conjugation to antibodies. We investigated factors that may alter the real-time observed fluorescence of antibody conjugated dye and the rate of fluorescent signal loss. Methods: Signal loss was examined using three FDA approved monoclonal antibodies conjugated to IRDye800CW (LICOR) over a period of 15 days. Temperature effects on fluorescence were examined for conjugated dye in both solution and a mouse tumor model. Samples were cooled to -20°C then warmed to predetermined temperatures up to 60°C with imaging performed using the PEARL Impulse (LI-COR) and LUNA (Novadaq) systems. Results: Short term fluorescent signal loss (< 1 hour) was linear, while long term loss (15 days) was exponential with significant increases in rate observed with light exposure and increased temperatures. Cooling of tumor tissue at -20°C was shown to significantly increase tumor fluorescence on both imaging modalities when compared to room temperature (p=0.008, p=0.019). Concurrently the ratio of tumor to background fluorescent signal (TBR) increased with decreasing temperature with statistically significant increases seen at -20°C and 4°C (p=0.0015, p=0.03). Conclusions: TBR is increased with decreasing sample temperature, suggesting that the clinical exam of fluorescently labeled tissues may be improved at cooler temperatures. Our results indicate that both the rate of signal loss and the change in fluorescence with temperature observed for IRDye800CW are independent of the conjugating antibody.
Accumulation of Maillard reaction products in skin collagen in diabetes and aging.
Dyer, D G; Dunn, J A; Thorpe, S R; Bailie, K E; Lyons, T J; McCance, D R; Baynes, J W
1993-01-01
To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins. PMID:8514858
Metal-enhanced fluorescence of single green fluorescent protein (GFP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Yi; Zhang Jian; Lakowicz, Joseph R.
2008-11-28
The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer durationmore » time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.« less
Tryptophan autofluorescence imaging of neoplasms of the human colon
NASA Astrophysics Data System (ADS)
Banerjee, Bhaskar; Renkoski, Timothy; Graves, Logan R.; Rial, Nathaniel S.; Tsikitis, Vassiliki Liana; Nfonsom, Valentine; Pugh, Judith; Tiwari, Piyush; Gavini, Hemanth; Utzinger, Urs
2012-01-01
Detection of flat neoplasia is a major challenge in colorectal cancer screening, as missed lesions can lead to the development of an unexpected `incident' cancer prior to the subsequent endoscopy. The use of a tryptophan-related autofluorescence has been reported to be increased in murine intestinal dysplasia. The emission spectra of cells isolated from human adenocarcinoma and normal mucosa of the colon were studied and showed markedly greater emission intensity from cancerous cells compared to cells obtained from the surrounding normal mucosa. A proto-type multispectral imaging system optimized for ultraviolet macroscopic imaging of tissue was used to obtain autofluorescence images of surgical specimens of colonic neoplasms and normal mucosa after resection. Fluorescence images did not display the expected greater emission from the tumor as compared to the normal mucosa, most probably due to increased optical absorption and scattering in the tumors. Increased fluorescence intensity in neoplasms was observed however, once fluorescence images were corrected using reflectance images. Tryptophan fluorescence alone may be useful in differentiating normal and cancerous cells, while in tissues its autofluorescence image divided by green reflectance may be useful in displaying neoplasms.
NASA Astrophysics Data System (ADS)
Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom
2017-02-01
5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.
Zhang, Xu; Wadkins, Randy M.
2009-01-01
Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D. PMID:19254547
Zhang, Xu; Wadkins, Randy M
2009-03-04
Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D.
Fabila, Diego; de la Rosa, José Manuel; Stolik, Suren; Moreno, Edgard; Suárez-Álvarez, Karina; López-Navarrete, Giuliana; Guzmán, Carolina; Aguirre-García, Jesús; Acevedo-García, Christian; Kershenobich, David; Escobedo, Galileo
2012-12-01
A novel application of diffuse reflectance and fluorescence spectroscopy in the assessment of liver fibrosis is here reported. To induce different stages of liver fibrosis, a sufficient number of male Wistar rats were differentially exposed to chronic administration with carbon tetrachloride. Then, diffuse reflectance and fluorescence spectra were in vivo measured from the liver surface of each animal by a minimal invasive laparoscopic procedure. The liver fibrosis degree was conventionally determined by means of histological examination using the Mason's Trichrome stain, accompanied by hepatic expression of α-sma, and evaluation of the ALT/AST serum levels. The liver from rats exhibiting higher grades of fibrosis showed a significant increase in diffuse reflectance and fluorescence intensity when compared with control animals. At 365 nm, the diffuse reflectance spectrum exhibited an increase of 4 and 3-fold in mild and advanced fibrotic rats, respectively, when compared to the control group. Similarly, the fluorescence emission at 493 nm was 2-fold higher in fibrotic animals than in controls. By using fluorescence intensity, discrimination algorithms indicated 73% sensitivity and 94% specificity for recognition of hepatic fibrosis, while for diffuse reflectance, these values increased up to 85% and 100%, respectively. Taking into consideration there is a special need for developing new diagnostic approaches focused on detecting different stages of liver fibrosis with minimal invasiveness, these results suggest that diffuse reflectance and fluorescence spectroscopy could be worthy of further exploration in patients with liver disease. Copyright © 2012 Elsevier B.V. All rights reserved.
Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping
NASA Astrophysics Data System (ADS)
Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.
2016-10-01
Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.
Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents
Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.
2016-01-01
A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748
Pulp tissue in sex determination: A fluorescent microscopic study
Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati
2014-01-01
Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912
Solvent dependent photophysical properties of dimethoxy curcumin
NASA Astrophysics Data System (ADS)
Barik, Atanu; Indira Priyadarsini, K.
2013-03-01
Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.
Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)
NASA Astrophysics Data System (ADS)
Christov, Alexander; Ottman, Todd; Grammas, Paula
2004-07-01
Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.
Quantification of tumor fluorescence during intraoperative optical cancer imaging.
Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil
2015-11-13
Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.
Fluorescent nanoparticles based on AIE fluorogens for bioimaging.
Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing
2016-02-07
Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.
Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M
2014-11-01
The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.
Infection-Mediated Vasoactive Peptides Modulate Cochlear Uptake of Fluorescent Gentamicin
Koo, Ja-Won; Wang, Qi; Steyger, Peter S.
2011-01-01
Inflammatory mediators released during bacterial infection include vasoactive peptides such as histamine and serotonin, and their serum levels are frequently elevated. These peptides also modulate the vascular permeability of endothelial cells lining the blood-brain and blood-labyrinth barriers (BLB). These peptides may also modulate the permeability of the BLB to ototoxic aminoglycoside antibiotics prescribed to resolve bacterial sepsis. To test this hypothesis, we compared the effect of histamine and serotonin on the cochlear distribution of fluorescently conjugated gentamicin (GTTR) in control animals at 0.5, 1 and 3 h after injection of GTTR. The intensity of GTTR fluorescence was attenuated at 1 h in the histamine group compared to control mice, and more intense 3 h after injection (p < 0.05). In the serotonin group, the intensity of GTTR fluorescence was attenuated at 0.5 and 1 h (p < 0.05) and was increased at 3 h compared to control animals, where GTTR intensities peaked at 1 h and then plateaued or was slightly decreased at 3 h. This biphasic pattern of modulation was statistically significant in the apical turn of the cochlea. No difference in the intensity of GTTR fluorescence was observed in kidney proximal tubules. Systemic increases in serum levels of vasoactive peptides can modulate cochlear uptake of gentamicin, likely via permeability changes in the BLB. Conditions that influence serum levels of vasoactive peptides may potentiate aminoglycoside ototoxicity. PMID:21196726
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.
Rösner, J; Liotta, A; Angamo, E A; Spies, C; Heinemann, U; Kovács, R
2016-11-01
Dynamic alterations in flavin adenine dinucleotide (FAD) fluorescence permit insight into energy metabolism-dependent changes of intramitochondrial redox potential. Monitoring FAD fluorescence in living tissue is impeded by photobleaching, restricting the length of microfluorimetric recordings. In addition, photodecomposition of these essential electron carriers negatively interferes with energy metabolism and viability of the biological specimen. Taking advantage of pulsed LED illumination, here we determined the optimal excitation settings giving the largest fluorescence yield with the lowest photobleaching and interference with metabolism in hippocampal brain slices. The effects of FAD bleaching on energy metabolism and viability were studied by monitoring tissue pO 2 , field potentials and changes in extracellular potassium concentration ([K + ] o ). Photobleaching with continuous illumination consisted of an initial exponential decrease followed by a nearly linear decay. The exponential decay was significantly decelerated with pulsed illumination. Pulse length of 5 ms was sufficient to reach a fluorescence output comparable to continuous illumination, whereas further increasing duration increased photobleaching. Similarly, photobleaching increased with shortening of the interpulse interval. Photobleaching was partially reversible indicating the existence of a transient nonfluorescent flavin derivative. Pulsed illumination decreased FAD photodecomposition, improved slice viability and reproducibility of stimulus-induced FAD, field potential, [K + ] o and pO 2 changes as compared to continuous illumination. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, M; Ahmad, M; Fahrig, R
Purpose: To evaluate x-ray fluorescence computed tomography induced with proton beams (pXFCT) for imaging of gold contrast agent. Methods: Proton-induced x-ray fluorescence was studied by means of Monte Carlo (MC) simulations using TOPAS, a MC code based on GEANT4. First, proton-induced K-shell and L-shell fluorescence was studied as a function of proton beam energy and 1) depth in water and 2) size of contrast object. Second, pXFCT images of a 2-cm diameter cylindrical phantom with four 5- mm diameter contrast vials and of a 20-cm diameter phantom with 1-cm diameter vials were simulated. Contrast vials were filled with water andmore » water solutions with 1-5% gold per weight. Proton beam energies were varied from 70-250MeV. pXFCT sinograms were generated based on the net number of gold K-shell or L-shell x-rays determined by interpolations from the neighboring 0.5keV energy bins of spectra collected with an idealized 4π detector. pXFCT images were reconstructed with filtered-back projection, and no attenuation correction was applied. Results: Proton induced x-ray fluorescence spectra showed very low background compared to x-ray induced fluorescence. Proton induced L-shell fluorescence had a higher cross-section compared to K-shell fluorescence. Excitation of L-shell fluorescence was most efficient for low-energy protons, i.e. at the Bragg peak. K-shell fluorescence increased with increasing proton beam energy and object size. The 2% and 5% gold contrast vials were accurately reconstructed in K-shell pXFCT images of both the 2-cm and 20-cm diameter phantoms. Small phantom L-shell pXFCT image required attenuation correction and had a higher sensitivity for 70MeV protons compared to 250MeV protons. With attenuation correction, L-shell pXFCT might be a feasible option for imaging of small size (∼2cm) objects. Imaging doses for all simulations were 5-30cGy. Conclusion: Proton induced x-ray fluorescence CT promises to be an alternative quantitative imaging technique to the commonly considered XFCT imaging with x-ray beams.« less
NASA Astrophysics Data System (ADS)
Vetrova, Elena; Kudryasheva, N.; Cheng, K.
2006-10-01
Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.
Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.
Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong
2017-02-28
Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Increased fluorescence intensity in CaTiO 3:Pr 3+ phosphor due to NH 3 treatment and Nb Co-doping
Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; ...
2016-08-28
Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In our work, we compare co-doping with Nb to NH 3 treatment of CaTiO 3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb 5+ in the phosphor. Furthermore, the oxidationmore » state of the Pr was probed by NEXAFS and revealed that both Nb 5+ co-doping and NH 3 treatment reduced the number of non-fluorescing Pr 4+ centers. We performed calculations in order to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH 3 treatments reduce the number of Pr 4+ non-fluorescing centers, while Nb 5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.« less
Yuan, Che; Li, Hui-Zhen; Tang, Kun; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong
2016-04-01
The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.
Polymer-and glass-based fluorescence standards for the near infrared (NIR) spectral region.
Würth, Christian; Hoffmann, Katrin; Behnke, Thomas; Ohnesorge, Marius; Resch-Genger, Ute
2011-05-01
The widespread use and acceptance of fluorescence techniques especially in regulated areas like medical diagnostics is closely linked to standardization concepts that guarantee and improve the comparability and reliability of fluorescence measurements. At the core of such concepts are dependable fluorescence standards that are preferably certified. The ever rising interest in fluorescence measurements in the near-infrared (NIR) spectral region renders the availability of spectral and intensity standards for this wavelength region increasingly important. This encouraged us to develop approaches to solid NIR standards based upon dye-doped polymers and assess their application-relevant properties in comparison to metal ion-doped glasses. The overall goal is here to provide inexpensive, easily fabricated, and robust internal and external calibration tools for a broad variety of fluorescence instruments ranging e.g. from spectrofluorometers over fluorescence microscopes to miniaturized fluorescence sensors. © Springer Science+Business Media, LLC 2010
NASA Astrophysics Data System (ADS)
Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong
2010-01-01
There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.
Okamura, Yukio; Watanabe, Yuichiro
2006-01-01
Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.
Pavlova, Ina; Williams, Michelle; El-Naggar, Adel; Richards-Kortum, Rebecca; Gillenwater, Ann
2009-01-01
Purpose Autofluorescence imaging is increasingly used to noninvasively identify neoplastic oral cavity lesions. Improving the diagnostic accuracy of these techniques requires a better understanding of the biological basis for optical changes associated with neoplastic transformation in oral tissue. Experimental Design A total of 49 oral biopsies were considered in this study. The autofluorescence patterns of viable normal, benign, and neoplastic oral tissue were imaged using high-resolution confocal fluorescence microscopy. Results The autofluorescence properties of oral tissue vary significantly based on anatomic site and pathologic diagnosis. In normal oral tissue, most of the epithelial autofluorescence originates from the cytoplasm of cells in the basal and intermediate regions, whereas structural fibers are responsible for most of the stromal fluorescence. A strongly fluorescent superficial layer was observed in tissues from the palate and the gingiva, which contrasts with the weakly fluorescent superficial layer found in other oral sites. Upon UV excitation, benign inflammation shows decreased epithelial fluorescence, whereas dysplasia displays increased epithelial fluorescence compared with normal oral tissue. Stromal fluorescence in both benign inflammation and dysplasia drops significantly at UV and 488 nm excitation. Conclusion Imaging oral lesions with optical devices/probes that sample mostly stromal fluorescence may result in a similar loss of fluorescence intensity and may fail to distinguish benign from precancerous lesions. Improved diagnostic accuracy may be achieved by designing optical probes/devices that distinguish epithelial fluorescence from stromal fluorescence and by using excitation wavelengths in the UV range. PMID:18413830
Day, Richard N.; Booker, Cynthia F.; Periasamy, Ammasi
2008-01-01
The genetically encoded fluorescent proteins (FP), used in combination with Förster resonance energy transfer (FRET) microscopy, provide the tools necessary for the direct visualization of protein interactions inside living cells. Typically, the Cerulean and Venus variants of the cyan and yellow FPs are used for FRET studies, but there are limitations to their use. Here, Cerulean and the newly developed monomeric Teal FP (mTFP) are compared as FRET donors for Venus using spectral and fluorescence lifetime measurements from living cells. The results demonstrate that when compared to Cerulean, mTFP has increased brightness, optimal excitation using the standard 458-nm laser line, increased photostability, and improved spectral overlap with Venus. In addition, the two-photon excitation and fluorescence lifetime characteristics are determined for mTFP. Together, these measurements indicate that mTFP is an excellent donor fluorophore for FRET studies, and that its use may improve the detection of interactions involving proteins that are difficult to express, or that need to be produced at low levels in cells. PMID:18601527
Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang
2014-02-15
Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pramod, A. G.; Renuka, C. G.; Shivashankar, K.; Boregowda, P.; Nadaf, Y. F.
2018-05-01
Steady-state absorption and the fluorescence properties of the synthesized Benzofuran derivatives were studied. Absorption and fluorescence spectra of 4-(2-Oxo-2H-benzo[h]chromen-4-ylm ethoxy)-benzaldehyde (4-OBCM) have been recorded at room temperature in extensive variety of solvents of various polarities. 4-OBCM Fluorescence band maxima of the solvents are small amount spectral shifted to hypsochromic when the solvent polarity will increase, compared to absorption band under the identical circumstance. This suggests an increase in dipole moment of excited state compared to ground state. The ground-state dipole moment of 4-OBCM was found from quantum mechanical methods and the excited state dipole moment of 4-OBCM was evaluated from Lippert-Mataga Bakhshiev's, Kawski-Chamma-Viallet's and Reichardt conditions by methods for solvatochromic shift. Kamlet-Taft coefficients which affect this absorption profiles.
Wolf, B H; Weening, R S; Schutgens, R B; van Noorden, C J; Vogels, I M; Nagelkerke, N J
1987-09-30
The results of a quantitative spectrophotometric enzyme assay, a fluorescent spot test and a cytochemical assay for glucose-6-phosphate dehydrogenase deficiency were compared systematically. The high sensitivity of the spectrophotometric assay and the fluorescent spot test in the detection of severely deficient individuals was confirmed. For the detection of heterozygote females, however both tests were unreliable; the sensitivities of the fluorescent spot test and the spectrophotometric assay being 32% and 11% respectively. Specificities for both tests were high (99%). Introduction of the ratio of glucose-6-phosphate dehydrogenase and pyruvate kinase (G-6-PD/PK ratio) activities increased the sensitivity of the spectrophotometric assay to nearly 100%. It is concluded that the fluorescent spot test should be used for the diagnosis of G-6-PD deficiency in developing countries; whereas if spectrophotometric enzyme assays are available, the G-6-PD/PK ratio should always be performed. In cases where the ratio is less than 0.70, cytochemical analysis is indicated.
NASA Astrophysics Data System (ADS)
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-01
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-05
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S 0 ) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol) 2 smooth the pathway of surface hopping from TICT to T-S 0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol) 2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54nm compared to PD. This red-shift increases to 66nm for PD-(methanol) 2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol) 2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-11-01
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b
Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.
Yerramilli, V Siddartha; Kim, Kyung Hyuk
2018-03-16
RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.
Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In our work, we compare co-doping with Nb to NH 3 treatment of CaTiO 3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb 5+ in the phosphor. Furthermore, the oxidationmore » state of the Pr was probed by NEXAFS and revealed that both Nb 5+ co-doping and NH 3 treatment reduced the number of non-fluorescing Pr 4+ centers. We performed calculations in order to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH 3 treatments reduce the number of Pr 4+ non-fluorescing centers, while Nb 5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.« less
Silver nanorod structures for metal enhanced fluorescence
NASA Astrophysics Data System (ADS)
Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min
2016-09-01
Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.
Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao
2016-04-01
An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.
Quantification of tumor fluorescence during intraoperative optical cancer imaging
Judy, Ryan P.; Keating, Jane J.; DeJesus, Elizabeth M.; Jiang, Jack X.; Okusanya, Olugbenga T.; Nie, Shuming; Holt, David E.; Arlauckas, Sean P.; Low, Phillip S.; Delikatny, E. James; Singhal, Sunil
2015-01-01
Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth. PMID:26563091
Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.
Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J
2009-03-24
Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.
Study of experimental endometriosis using fluorescence of eosin-tamoxifen association
NASA Astrophysics Data System (ADS)
Brogniez, A.; Mordon, Serge R.; Devoisselle, Jean-Marie; Querleu, Denis; Brunetaud, Jean Marc
1993-08-01
The main problem of endometriosis is the detection of microscopic and atypical lesions. The successful destruction of these endometriotic sites depends on their detection. This study aimed to develop a spectrofluorometric method to increase the sensitivity of detection of endometriosis. A surgical-induced endometriosis was performed in ten rabbits. Five weeks later, the fluorescence of these endometriotic lesions was studied after injection of tamoxifen and local application of eosin. This fluorescence was compared with that of healthy broad ligament and that obtained without tamoxifen and without eosin. A spectral analysis showed a specific fluorescence of eosin-tamoxifen association, more intense than autofluorescence and selectively observed within endometriosis.
In vivo analysis of intestinal permeability following hemorrhagic shock
Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B
2015-01-01
AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic shock may allow for systemic absorption of otherwise retained proteolytically-generated peptides, with consequent hemodynamic instability and remote organ failure. PMID:26557479
BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity.
Dorh, Nethaniah; Zhu, Shilei; Dhungana, Kamal B; Pati, Ranjit; Luo, Fen-Tair; Liu, Haiying; Tiwari, Ashutosh
2015-12-18
Mapping surface hydrophobic interactions in proteins is key to understanding molecular recognition, biological functions, and is central to many protein misfolding diseases. Herein, we report synthesis and application of new BODIPY-based hydrophobic sensors (HPsensors) that are stable and highly fluorescent for pH values ranging from 7.0 to 9.0. Surface hydrophobic measurements of proteins (BSA, apomyoglobin, and myoglobin) by these HPsensors display much stronger signal compared to 8-anilino-1-naphthalene sulfonic acid (ANS), a commonly used hydrophobic probe; HPsensors show a 10- to 60-fold increase in signal strength for the BSA protein with affinity in the nanomolar range. This suggests that these HPsensors can be used as a sensitive indicator of protein surface hydrophobicity. A first principle approach is used to identify the molecular level mechanism for the substantial increase in the fluorescence signal strength. Our results show that conformational change and increased molecular rigidity of the dye due to its hydrophobic interaction with protein lead to fluorescence enhancement.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
Numerical optix: A time-domain simulator of fluorescent light diffusion in turbid medium
NASA Astrophysics Data System (ADS)
Ma, Guobin; Delorme, Jean-François; Guilman, Olga; Leblond, Frédéric; Khayat, Mario
2007-02-01
The interest in fluorescence imaging has increased steadily in the last decade. Using fluorescence techniques, it is feasible to visualize and quantify the function of genes and the expression of enzymes and proteins deep inside tissues. When applied to small animal research, optical imaging based on fluorescent marker probes can provide valuable information on the specificity and efficacy of drugs at reduced cost and with greater efficiency. Meanwhile, fluorescence techniques represent an important class of optical methods being applied to in vitro and in vivo biomedical diagnostics, towards noninvasive clinical applications, such as detecting and monitoring specific pathological and physiological processes. ART has developed a time domain in vivo small animal fluorescence imaging system, eXplore Optix. Using the measured time-resolved fluorescence signal, fluorophore location and concentration can be quickly estimated. Furthermore, the 3D distribution of fluorophore can be obtained by fluorescent diffusion tomography. To accurately analyze and interpret the measured fluorescent signals from tissue, complex theoretical models and algorithms are employed. We present here a numerical simulator of eXplore Optix. It generates virtual data under well-controlled conditions that enable us to test, verify, and improve our models and algorithms piecewise separately. The theoretical frame of the simulator is an analytical solution of the fluorescence diffusion equation. Compared to existing models, the coupling of fluorophores with finite volume size is taken into consideration. Also, the influences of fluorescent inclusions to excitation and emission light are both accounted for. The output results are compared to Monte-Carlo simulations.
A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.
2014-05-01
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.
Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa
2014-01-01
We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.
NASA Astrophysics Data System (ADS)
Chakraborty, Sandeep; Ou, Meng-Hsin; Kuo, Jean-Cheng; Chiou, Arthur
2016-10-01
Cellular metabolic state can serve as a biomarker to indicate the differentiation potential of stem cells into other specialized cell lineages. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was applied to determine the fluorescence lifetime and the amounts of the auto-fluorescent metabolic co-factor reduced nicotinamide adenine dinucleotide (NADH) to elucidate the cellular metabolism of human mesenchymal stem cells (hMSCs) in osteogenic and adipogenic differentiation processes. 2P-FLIM provides the free to protein-bound NADH ratio which can serve as the indicator of cellular metabolic state. We measured NADH fluorescence lifetime at 0, 7, and 14 days after hMSCs were induced for either osteogenesis or adipogenesis. In both cases, the average fluorescence lifetime increased significantly at day 14 (P < 0.001), while the ratio of free to protein-bound NADH ratio decreased significantly in 7- days (P < 0.001) and 14-days (P < 0.001). Thus, our results indicated a higher metabolic rate in both osteogenic and adipogenic differentiation processes when compared with undifferentiated hMSCs. This approach may be further utilized to study proliferation efficiency and differentiation potential of stem cells into other specialized cell lineages.
NASA Astrophysics Data System (ADS)
Skala, Melissa Caroline
2007-12-01
Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in the ultraviolet to visible wavelength range indicated that the most diagnostic optical signals originate from sub-surface tissue layers. Optical properties extracted from these spectroscopy measurements showed a significant decrease in the hemoglobin saturation, absorption coefficient, reduced scattering coefficient and fluorescence intensity (at 400 nm excitation) in neoplastic compared to normal tissues. The results from these studies indicate that multiphoton microscopy and optical spectroscopy can non-invasively provide information on tissue structure and function in vivo that is related to tissue pathology.
Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A
2009-12-01
The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.
Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study.
Arfat, Mir Yasir; Arif, Zarina; Chaturvedi, Sumit Kumar; Moinuddin; Alam, Khursheed
2016-08-01
IgG is an important defence protein. To exhibit optimum function the molecule must maintain its native structure. Peroxynitrite is a potent oxidizing and nitrating agent produced in vivo under pathophysiological conditions. It can oxidize and/or nitrate various amino acids causing changes in the structure and function of proteins. Such proteins may be involved in the pathogenesis of many inflammatory diseases, including rheumatoid arthritis. In the present work, peroxynitrite-induced structural changes in IgG have been studied by UV-visible, fluorescence, CD, FT-IR, DLS spectroscopy and DSC as well as by SDS-PAGE. Peroxynitrite-modified IgG exhibited hyperchromicity at 280 nm, quenching of tryptophan fluorescence, increase in ANS fluorescence, loss of β-sheet, shift in the positions of amide I and amide II bands, appearance of new peak in FT-IR, attachment of nitro residues and increase in melting temperature, compared to native IgG. Furthermore, peroxynitrite-modified IgG exhibited an additional peak at 420 nm, quenching in tyrosine fluorescence and enhancement in dityrosine fluorescence compared to native IgG. Generation of nitrotyrosine, dityrosine and nitrotryptophan was also observed in peroxynitrite-modified IgG. Gross structural changes in IgG caused by peroxynitrite and observed in vitro may favour autoantibodies induction in vivo under similar conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T
2018-04-24
Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.
Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D
2018-05-01
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-12-14
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.
NASA Astrophysics Data System (ADS)
Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam
2017-01-01
Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair.
2016-01-01
Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551
A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003
2014-05-15
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less
Comparison of fluorescent and high-pressure sodium lamps on growth of leaf lettuce
NASA Technical Reports Server (NTRS)
Koontz, H. V.; Prince, R. P.; Koontz, R. F.; Knott, W. M. (Principal Investigator)
1987-01-01
Radiation from high-pressure sodium (HPS) lamps provided more than a 50% increased yield (fresh and dry weight of tops) of loose-leaf lettuce cultivars Grand Rapids Forcing and RubyConn, compared to that obtained by radiation from cool-white fluorescent (CWF) lamps at equal photosynthetic photon flux; yet, input wattage was approximately 36% less. It was postulated that the considerable output of 700 to 850 nm radiation from the HPS lamp was a significant factor of the increased yield. Under HPS lamps, the leaves of both cultivars were slightly less green with very little red pigmentation ('RubyConn') and slightly elongated, compared to CWF, but plant productivity per unit electrical energy input was vastly superior with HPS.
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean
2015-03-01
High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrated fluorescence correlation spectroscopy device for point-of-care clinical applications
Olson, Eben; Torres, Richard; Levene, Michael J.
2013-01-01
We describe an optical system which reduces the cost and complexity of fluorescence correlation spectroscopy (FCS), intended to increase the suitability of the technique for clinical use. Integration of the focusing optics and sample chamber into a plastic component produces a design which is simple to align and operate. We validate the system by measurements on fluorescent dye, and compare the results to a commercial instrument. In addition, we demonstrate its application to measurements of concentration and multimerization of the clinically relevant protein von Willebrand factor (vWF) in human plasma. PMID:23847733
Optical tomograph optimized for tumor detection inside highly absorbent organs
NASA Astrophysics Data System (ADS)
Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc
2011-05-01
This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.
ICG-enhanced imaging of arthritis with an integrated Optical Imaging/X-ray System
Meier, Reinhard; Krug, Christian; Golovko, Daniel; Boddington, Sophie; Piontek, Guido; Rudelius, Martina; Sutton, Elizabeth J.; Baur-Melnyk, Andrea; Jones, Ella F.; Daldrup-Link, Heike E.
2010-01-01
Background Optical Imaging (OI) is a promising technique that is quick, inexpensive and, in combination with Indocyanine Green (ICG), an FDA-approved fluorescent dye, could provide early detection of rheumatoid arthritis. Objective The purpose of this study was to evaluate a combined X-ray/OI imaging system for ICG-enhanced detection of arthritic joints in a rat model of antigen induced arthritis. Methods Arthritis of the knee and ankle joints was induced in six Harlan rats with peptidoglycan polysaccharide polymers (PGPS). Three rats served as non-treated controls. Optical imaging of the knee and ankle joints was done with an integrated OI/X-ray system before and up to 24h post intravenous injection (p.i.) of 10mg/kg ICG. The fluorescence signal intensities of arthritic and normal joints were compared for significant differences using generalized estimation equation models. Specimen of knee and ankle joints were further processed and evaluated by histology. Results ICG provided a significant increase in fluorescence signal of arthritic joints compared to baseline values immediately after administration (p<0.05). The fluorescence signal of arthritic joints was significantly higher compared to the non-arthritic control joints at 1 - 720 min p.i. (p<0.05). Fusion of ICG-enhanced OI and X-rays allowed for anatomical co-registration of the inflamed tissue with the associated joint. H&E stains confirmed marked synovial inflammation of arthritic joints and absence of inflammation in control joints. Conclusion ICG-enhanced OI is a clinically applicable tool for detection of arthritic tissue. Using relatively high doses of ICG, a long term fluorescence enhancement of arthritic joints can be achieved. This may facilitate simultaneous evaluations of multiple joints in a clinical setting. Fusion of ICG-OI scans with X-ray imaging increases anatomical resolution. PMID:20506388
Glycation of human lens proteins: preferential glycation of alpha A subunits.
Swamy, M S; Abraham, A; Abraham, E C
1992-03-01
Glycation of crystallins and high molecular weight (HMW) aggregates was followed during aging (16-85 years) and in diabetes (44 and 70 years old). Lens soluble and insoluble fractions were reduced with [3H]NaBH4 and separated by molecular sieve HPLC. The protein content in each HPLC peak was measured by the Lowry method. The tritium incorporation, expressed as cpm mg-1 protein, was taken as a measure of early glycation and specific non-tryptophan fluorescence (Ex: 370 nm; Em: 440 nm), expressed as relative fluorescence U mg-1 protein, was taken as a measure of advanced glycation. The youngest lenses analysed were 16 and 17 years old and these provided the baseline values. The results showed that during aging there was about a three-fold increase in tritium incorporation and fluorescence of alpha-crystallin, while the increases in beta and gamma were only two-fold from the levels seen in 16- and 17-year-old lenses. On the other hand, both the soluble and insoluble HMW aggregate fractions showed up to five-fold increase in tritium incorporation during aging. The fluorescence was about two-fold higher in the insoluble HMW aggregates as compared to the soluble HMW aggregates in 16- and 17-year-old lenses and both showed an increase of about three-fold during aging. Diabetes resulted in an approximately 10-50% increase in tritium incorporation and non-tryptophan fluorescence of various crystallins and HMW aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)
Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.
Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M
2015-02-18
G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.
Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka
2007-10-01
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.
Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K
2008-11-06
Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.
A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions
NASA Astrophysics Data System (ADS)
Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.
2009-06-01
In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.
Bilská, Kamila; Šteffeková, Zuzana; Birková, Anna; Mareková, Mária; Ledecký, Valent; Hluchý, Marián; Kisková, Terézia
2016-05-01
We assumed that proteins are most likely responsible for synovial fluid fluorescence and that changes detected in fluorescence intensity are most likely the result of changes in the concentration of fluorescent proteins. Synchronous fluorescent matrices from synovial fluid samples were measured in the excitation wavelength range of 200-350 nm using a luminescence spectrophotometer. The synchronous matrix of synovial fluid consists of 2 dominant fluorescent centers (F1 and F2) in the ultraviolet region. The fluorescence intensities of both centers were significantly higher in pathological samples, with p = 0.001 (a 59% increase of the median value) for the F1 center and p = 0.002 (a 52% increase of the median value) for the F2 center. Receiver operating characteristic analysis confirmed that synovial fluid autofluorescence is a significant predictor of medial compartment disease in dogs, with the area under the curve at 0.776 (F1) and 0.778 (F2). We did not detect any differences in the autofluorescence of synovial fluid between male and female, or any breed-based changes. No position changes of fluorescent centers were recorded in the synovial fluid in diseased dogs compared with healthy dogs. The synovial fluid metabolic fingerprint of canine patients with medial compartment disease differed from that of healthy dogs. Our study demonstrated the feasibility of synovial fluid fingerprinting to identify disease-specific profiles of synovial fluid metabolites. © 2016 The Author(s).
A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.
Rösner, Jörg; Liotta, Agustin; Schmitz, Dietmar; Heinemann, Uwe; Kovács, Richard
2013-01-30
Nicotinamide- and flavine-adenine-dinucleotides (NAD(P)H and FADH₂) are electron carriers involved in cellular energy metabolism and in a multitude of enzymatic processes. As reduced NAD(P)H and oxidised FAD molecules are fluorescent, changes in tissue auto-fluorescence provide valuable information on the cellular redox state and energy metabolism. Since fluorescence excitation, by mercury arc lamps (HBO) is inherently coupled to photo-bleaching and photo-toxicity, microfluorimetric monitoring of energy metabolism might benefit from the replacement of HBO lamps by light emitting diodes (LEDs). Here we describe a LED-based custom-built setup for monitoring NAD(P)H and FAD fluorescence at the level of single cells (HEK293) and of brain slices. We compared NAD(P)H bleaching characteristics with two light sources (HBO lamp and LED) as well as sensitivity and signal to noise ratio of three different detector types (multi-pixel photon counter (MPPC), photomultiplier tube (PMT) and photodiode). LED excitation resulted in reduced photo-bleaching at the same fluorescence output in comparison to excitation with the HBO lamp. Transiently increasing LED power resulted in reversible bleaching of NAD(P)H fluorescence. Recovery kinetics were dependent on metabolic substrates indicating coupling of NAD(P)H fluorescence to metabolism. Electrical stimulation of brain slices induced biphasic redox changes, as indicated by NAD(P)H/FAD fluorescence transients. Increasing the gain of PMT and decreasing the LED power resulted in similar sensitivity as obtained with the MPPC and the photodiode, without worsening the signal to noise ratio. In conclusion, replacement of HBO lamp with LED might improve conventional PMT based microfluorimetry of tissue auto-fluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice
Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.
2016-01-01
The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483
Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.
Harant, Ulrike Katharina; Michiels, Nicolaas Karel
2017-04-20
Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.
Day, Kristine E.; Sweeny, Larissa; Kulbersh, Brian; Zinn, Kurt R.; Rosenthal, Eben L.
2014-01-01
Purpose: Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). Procedures: Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n=22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. Results: Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (KD=0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p=0.08 SPY, p=0.48 Pearl; SCC-1: p=0.77 SPY, p=0.59 Pearl; paired t tests). Conclusions: There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC. PMID:23715932
Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi
2017-07-19
An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.
Wu, Jing-Jing; Liu, Yu-Wen; Sun, Meng-Xiang
2011-07-01
Green fluorescent proteins (GFPs) are widely used in tracing transgene expression and have been known as convenient and efficient markers for plant transformation. However, sometimes researchers are still puzzled by the weak fluorescence since it makes the observation of GFP signals and confirmation of transgenic plants difficult. In this investigation, we explored the possibility of enhancing the weak signals by changing the pH environment of detection and took microplate reader as a more effective instrument compared to traditional fluorescent microscope to detect the weak signals. It was found that the fluorescence intensity of enhanced GFP (EGFP) in transgenic plants can be increased 2-6 folds by altering the environmental pH, and the concentration of EGFP at a large scale (ranged from 20 ng/ml to 20 μg/ml) can be detected and quantified. It can exclude the influence of degradation fragment and hence facilitate later analysis; these advantages were further verified by comparing with western blotting and confocal microscopy. It was reliable and effective for the qualitative and quantitative analysis of transgenic plants and was more suitable for the detection of very weak fluorescent signals.
Molecular engineering of two-photon fluorescent probes for bioimaging applications
NASA Astrophysics Data System (ADS)
Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing
2017-03-01
During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.
NASA Astrophysics Data System (ADS)
Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua
2010-10-01
The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.
Blending DNA binding dyes to improve detection in real-time PCR.
Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes
2017-03-01
The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.
Interaction of the iron(II) cage complexes with proteins: protein fluorescence quenching study.
Losytskyy, Mykhaylo Y; Kovalska, Vladyslava B; Varzatskii, Oleg A; Sergeev, Alexander M; Yarmoluk, Sergiy M; Voloshin, Yan Z
2013-09-01
Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), β-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of β-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.
Metildi, Cristina A; Kaushal, Sharmeela; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael
2014-04-01
The aim of this study was to evaluate a new fluorescently labeled chimeric anti-CEA antibody for improved detection and resection of colon cancer. Frozen tumor and normal human tissue samples were stained with chimeric and mouse antibody-fluorophore conjugates for comparison. Mice with patient-derived orthotopic xenografts (PDOX) of colon cancer underwent fluorescence-guided surgery (FGS) or bright-light surgery (BLS) 24 hr after tail vein injection of fluorophore-conjugated chimeric anti-CEA antibody. Resection completeness was assessed using postoperative images. Mice were followed for 6 months for recurrence. The fluorophore conjugation efficiency (dye/mole ratio) improved from 3-4 to >5.5 with the chimeric CEA antibody compared to mouse anti-CEA antibody. CEA-expressing tumors labeled with chimeric CEA antibody provided a brighter fluorescence signal on frozen human tumor tissues (P = 0.046) and demonstrated consistently lower fluorescence signals in normal human tissues compared to mouse antibody. Chimeric CEA antibody accurately labeled PDOX colon cancer in nude mice, enabling improved detection of tumor margins for more effective FGS. The R0 resection rate increased from 86% to 96% with FGS compared to BLS. Improved conjugating efficiency and labeling with chimeric fluorophore-conjugated antibody resulted in better detection and resection of human colon cancer in an orthotopic mouse model. © 2013 Wiley Periodicals, Inc.
LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN
2016-01-01
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622
NASA Astrophysics Data System (ADS)
Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.
2000-06-01
The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.
Remus, Timothy P; Zima, Aleksey V; Bossuyt, Julie; Bare, Dan J; Martin, Jody L; Blatter, Lothar A; Bers, Donald M; Mignery, Gregory A
2006-01-06
Phosphoinositides participate in many signaling cascades via phospholipase C stimulation, which hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). Destructive chemical approaches required to measure [InsP3] limit spatiotemporal understanding of subcellular InsP3 signaling. We constructed novel fluorescence resonance energy transfer-based InsP3 biosensors called FIRE (fluorescent InsP3-responsive element) by fusing plasmids encoding the InsP3-binding domain of InsP3 receptors (types 1-3) between cyan fluorescent protein and yellow fluorescent protein sequences. FIRE was expressed and characterized in COS-1 cells, cultured neonatal cardiac myocytes, and incorporated into an adenoviral vector for expression in adult cardiac ventricular myocytes. FIRE-1 exhibits an approximately 11% increase in the fluorescence ratio (F530/F480) at saturating [InsP3] (apparent K(d) = 31.3 +/- 6.7 nm InsP3). In COS-1 cells, neonatal rat cardiac myocytes and adult cat ventricular myocytes FIRE-1 exhibited comparable dynamic range and a 10% increase in donor (cyan fluorescent protein) fluorescence upon bleach of yellow fluorescent protein, indicative of fluorescence resonance energy transfer. In FIRE-1 expressing ventricular myocytes endothelin-1, phenylephrine, and angiotensin II all produced rapid and spatially resolved increases in [InsP3] using confocal microscopy (with free [InsP3] rising to approximately 30 nm). Local entry of intracellular InsP3 via membrane rupture by a patch pipette (containing InsP3)in myocytes expressing FIRE-1 allowed detailed spatiotemporal monitoring of intracellular InsP3 diffusion. Both endothelin-1-induced and direct InsP3 application (via pipette rupture) revealed that InsP3 diffusion into the nucleus occurs with a delay and blunted rise of [InsP3] versus cytosolic [InsP3]. These new biosensors allow studying InsP3 dynamics at high temporal and spatial resolution that will be powerful in under-standing InsP3 signaling in intact cells.
Hervonen, H; Eränkö, O
1975-01-01
Lumbar sympathetic ganglia of 12-day-old chick embryos were cultured in organ cultures for 14 days with 1, 10 or 100 mg/l of hydrocortisone or without it. Catecholamines were demonstrated by the formaldehyde-induced fluorescence method. For electron microscopy, the cultures were fixed with glutarialdehyde and osmium tetroxide. Two types of cells with catecholamine fluoresecence were observed in the control cultures: (1) weakly fluorescent sympathetic neurons and sympathicoblasts with long nerve fibres, which were the most common cell type in the explant, and (2) brightly fluorescent cells with or without fluorescent processes, which were less common and were scattered in the explant. Hydrocortisone caused a great increase in the number of the brightly fluorescent cells. With 10 mg/l of hydrocortisone the increase was about ten-fold as compared with the control cultures. There was no change in the morphology of the cells, nor could any change be observed in the fluorescence intensity by eye. Electron microscopically the mature neurons were the most common cell type on the surface of the culture, while more immature sympathicoblasts were seen in the deeper layers. Cells were also found which contained large numbers of catecholamine-strong granular vesicles 105-275 nm in diameter. These cells were infrequent. They had round vesicular nuclei and resembled also in other respects sympathicoblasts or young nerve cells. One such cell was found in mitotic division by electron microscopy. Hydrocortisone caused a marked increase in the number of these granule-containing cells and their processes. Cells which could have been classified as the small intensely fluorescent cells of the mammalian ganglion type or their electron microscopic equivalent, the granule-containing cells were found neither in the control cultures nor in the hydrocortisone-containing cultures. It is concluded that most brightly fluorescent cells in cultured sympathetic ganglia of the chick are nerve cells or sympathicoblasts rich in amine-storing granular vesicles.
Zucker, R M; Daniel, K M; Massaro, E J; Karafas, S J; Degn, L L; Boyes, W K
2013-10-01
The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc. Published 2013 Wiley‐Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Metabolic imaging of tumor for diagnosis and response for therapy
NASA Astrophysics Data System (ADS)
Zagaynova, Elena; Shirmanova, Marina; Lukina, Maria; Dudenkova, Varvara; Ignatova, Nadezgda; Elagin, Vadim; Shlivko, Irena; Scheslavsky, Vladislav; Orlinskay, Natalia
2018-02-01
Nonlinear optical microscopy combined with fluorescence lifetime imaging is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a noninvasive investigation of the biological tissue with subcellular resolution. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. In this study features of tumor metabolism in different systems of organization (from cell culture to patient lesion) was showed. The observed differences in the relative contributions of free NAD(P)H and FAD testify to an increased a glycolytic metabolism in cancer cells compare to fibroblasts. In 3D spheroids, the cells of the proliferating zone had greater a1 and lower tm values than the cells of the quiescent zone, which likely is a consequence of their higher glycolytic rate. During the growth of colorectal cancer in the experimental mouse model, the contribution of the free component of NAD(P)H was increased. Dysplastic nevus and melanoma is characterized by raised contribution of free NADH compare to healthy skin. Therefore, melanoma cells had very short value of τ1.
NASA Astrophysics Data System (ADS)
Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey
2016-02-01
Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.
NASA Astrophysics Data System (ADS)
Carbinatto, Fernanda M.; Inada, Natalia Mayumi; Lombardi, Welington; Cossetin, Natália Fernandez; Varoto, Cinthia; Kurachi, Cristina; Bagnato, Vanderlei Salvador
2015-06-01
The use of portable electronic devices, in particular mobile phones such as smartphones is increasing not only for all known applications, but also for diagnosis of diseases and monitoring treatments like topical Photodynamic Therapy. The aim of the study is to evaluate the production of the photosensitizer Protoporphyrin IX (PpIX) after topical application of a cream containing methyl aminolevulinate (MAL) in the cervix with diagnosis of Cervical Intraepithelial Neoplasia (CIN) through the fluorescence images captured after one and three hours and compare the images using two devices (a Sony Xperia® mobile and an Apple Ipod®. Was observed an increasing fluorescence intensity of the cervix three hours after cream application, in both portable electronic devices. However, because was used a specific program for the treatment of images using the Ipod® device, these images presented better resolution than observed by the Sony cell phone without a specific program. One hour after cream application presented a more selective fluorescence than the group of three hours. In conclusion, the use of portable devices to obtain images of PpIX fluorescence shown to be an effective tool and is necessary the improvement of programs for achievement of better results.
Gambihler, S; Delius, M; Ellwart, J W
1994-09-01
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900-2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000. Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Localization of near-infrared contrast agents in tumors by intravital microscopy
NASA Astrophysics Data System (ADS)
Becker, Andreas; Schneider, Guenther; Riefke, Bjoern; Licha, Kai; Semmler, Wolfhard
1999-01-01
In this contribution we use intravital microscopy to study the dynamics of extravasation into normal and tumor tissue of several hydrophilic cyanine dyes used as near-infrared (NIR) contrast agents. The technique provides information about the angiographic properties of the dyes and about their interaction with tumor tissue under dynamic conditions in vivo. In our previous work we demonstrated that several NIR- absorbing fluorescent dyes enable in vivo fluorescence detection of tumors in mice and rats. However, the mechanism leading to dye accumulation and enhanced fluorescence in tumors is not fully understood. Increased extravasation of dyes into tumor tissue due to pathologically altered tumor vessels may be an important factor in this process. Indocyanine green (ICG) displayed predominantly intravascular distribution and rapid elimination resulting in enhanced fluorescence signal of vessels during the first 15 min after administration only. No elevated extravasation into tumor tissue was observed with ICG. A hydrophilic indotricarbocyanine derivative with a high molecular weight displayed prolonged intravascular distribution and increased fluorescence signal of the vasculature compared to surrounding tissue for up to five hours. Rapid extravasation and accumulation in tumor areas, yielding elevated contrast of tumors up to 15 min after administration, was observed with hydrophilic, low molecular weight indotricarbocyanine derivatives.
Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit
2018-04-01
Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.
Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions
Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav
2011-01-01
Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532
Fluorescence of carotenoids. Effect of oxygenation and cis/trans isomerization
NASA Astrophysics Data System (ADS)
Jørgensen, Kevin; Stapelfeldt, Henrik; Skibsted, Leif H.
1992-03-01
C 40 carotenoids fall, with respect to fluorescence in homogeneous solution, into two distinct groups depending on the presence of a CO group in the molecule. Excitation spectra agree with absorption spectra for the carbonyl derivatives astaxanthin and canthaxanthin. In contrast, zeaxanthin and isomers of β-carotene have a twentyfold increase in fluorescence quantum yield for excitation around 350 nm compared to excitation near the absorption maximum (at approximatively 430 nm). These differences are interpreted in terms of the role of non-emitting 1(n, π*) states related to the CO group in facilitating non-radiative deactivation of higher 1(π, π*) states.
Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors
NASA Astrophysics Data System (ADS)
Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole
2015-09-01
The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.
Cerebral energy metabolism in diving and non-diving birds during hypoxia and apnoeic asphyxia.
Bryan, R M; Jones, D R
1980-01-01
1. Cerebral energy metabolism during apnoeic asphyxia and steady-state hypoxia was compared in ducks and chickens; ducks tolerate apnoeic asphyxia 3-8 times longer than chickens. 2. Fluctuations in the reduced form of respiratory chain nicotinamide adenine dinucleotide (NADH) were monitored from the left cerebral hemisphere by a noninvasive fluorometric technique and used as an indicator of mitochondrial hypoxia. NADH fluorescence was expressed in aribtrary units (a.u.) where 100 a.u. was defined as the fluorescence change from normoxia to anoxia. Electroencephalogram (e.e.g.) and surface Po2 were recorded from the right hemisphere. 3. After 1 min of asphyxia NADH fluorescence increased by 37 a.u.+/-3.60 S.E. of mean (n=54) in paralysed chickens and 8 a.u.+/-1.41 (n=55) in aralysed ducks. After 2 min the fluorescence increased by only 15 a.u.+/-1.95 in ducks. 4. Both species showed an isoelectric e.e.g. when fluorescence increased by approximately 35 a.u., indicating that anaerobic ATP production in ducks did not maintain brain function (e.e.g.) for a greater accumulation of respiratory chain NADH. 5. At a given decrease in tissue Po2 ducks and chickens showed the same level of NADH increase, indicating that both species are equally dependent on tissue Po2 for the maintenance of redox state. 6. We conclude that biochemical adjustment which enhance anaerobic ATP production and/or prolong oxidative phosphorylation during progressive hypoxia are not responsible for increased cerebral tolerance to apnoeic asphyxia in the duck. PMID:7381772
Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations.
Mochida, Ai; Ogata, Fusa; Nagaya, Tadanobu; Choyke, Peter L; Kobayashi, Hisataka
2018-02-15
Fluorescence-guided imaging during surgery is a promising technique that is increasingly used to aid surgeons in identifying sites of tumor and surgical margins. Of the two types of fluorescent probes, always-on and activatable, activatable probes are preferred because they produce higher target-to-background ratios, thus improving sensitivity compared with always-on probes that must contend with considerable background signal. There are two types of activatable probes: 1) enzyme-reactive probes that are normally quenched but can be activated after cleavage by cancer-specific enzymes (activity-based probes) and 2) molecular-binding probes which use cancer targeting moieties such as monoclonal antibodies to target receptors found in abundance on cancers and are activated after internalization and lysosomal processing (binding-based probes). For fluorescence-guided intraoperative surgery, enzyme-reactive probes are superior because they can react quickly, require smaller dosages especially for topical applications, have limited side effects, and have favorable pharmacokinetics. Enzyme-reactive probes are easier to use, fit better into existing work flows in the operating room and have minimal toxicity. Although difficult to prove, it is assumed that the guidance provided to surgeons by these probes results in more effective surgeries with better outcomes for patients. In this review, we compare these two types of activatable fluorescent probes for their ease of use and efficacy. Published by Elsevier Ltd.
Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi
2016-11-01
A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.
Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis
2013-05-01
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.
Damai, Rajani S; Anbazhagan, V; Rao, K Babu; Swamy, Musti J
2009-12-01
The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.
Belykh, Evgenii; Miller, Eric J; Hu, Danying; Martirosyan, Nikolay L; Woolf, Eric C; Scheck, Adrienne C; Byvaltsev, Vadim A; Nakaji, Peter; Nelson, Leonard Y; Seibel, Eric J; Preul, Mark C
2018-05-01
Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline
2016-04-01
The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Multicolor fluorescence enhancement from a photonics crystal surface
NASA Astrophysics Data System (ADS)
Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.
2010-09-01
A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.
NASA Astrophysics Data System (ADS)
Barolet, Augustin C.; Cormack, Gregory; Barolet, Daniel
2018-02-01
The effect of near infrared light (940 nm) on the conversion of 5-aminolevulinic acid (5-ALA) to PpIX, a compound involved in photodynamic therapy (PDT), was examined. The back skin of three test subjects was irradiated with continuous wavelength and pulsed infrared light at 940 nm. These irradiations took place 50-53, 24-29, and 8-14 hours prior to the application of the 5-ALA. After a three-hour incubation period with 5-ALA, a FluoDerm™device was used to measure the fluorescence of the skin (emitting wavelength: 400-420 nm; measuring excitation wavelength: 610-720 nm), a direct indication of the activity of 5-ALA. 5-ALA must penetrate the skin and then be converted to PpIX before any fluorescence increase can be observed. Results: For two patients (one was disqualified), the continuous wavelength, 50 hour pre-irradiation condition, the FluoDerm readings showed a 19 to 23% increase in fluorescence (p = 0.05) compared to the no-irradiation, 5-ALA only control.
Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.
Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas
2015-09-01
In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources.
Multicolor fluorescence enhancement from a photonics crystal surface
Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.
2010-01-01
A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067
NASA Astrophysics Data System (ADS)
Li, Jian-jun; Chen, Yu; Wang, A.-qing; Zhu, Jian; Zhao, Jun-wu
2011-01-01
The effect of colloid gold nanoparticles (AuNPs) on the fluorescence excitation spectrum of α-fetoprotein (AFP) has been investigated experimentally. The excitation spectral peaks of AFP with low concentration from 0.01 ng ml -1 to 12 ng ml -1 increase monotonically with increasing of AFP concentration. When some gold colloids were added to the AFP solution, the excitation peak at 285 nm decreases distinctly. By comparing the excitation peak intensity of AFP solution with gold colloids and without gold colloids at different AFP concentrations, the quenching effect from gold nanoparticle was more effective at lower AFP concentration. So the range of concentration from 0.01 ng ml -1 to 0.09 ng ml -1 will be the potential range of applications because of the higher sensitivity. The physical origin based on local field effect was investigated to illuminate this local environment dependent fluorescence quenching. The changing extent of quenching with different AFP concentrations can be attributed to the nonlinear decreasing of the local field factor of gold nanoparticles as a function of environmental dielectric constant.
Ashraf, Imran; Konrad, Alexander; Lokstein, Heiko; Skandary, Sepideh; Metzger, Michael; Djouda, Joseph M; Maurer, Thomas; Adam, Pierre M; Meixner, Alfred J; Brecht, Marc
2017-03-23
We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs. For each temperature, the enhancement factor (EF) is calculated by comparing the intensity of individual AuNP-coupled PSI to the mean intensity of 'uncoupled' PSI. At cryogenic temperature (1.6 K) the average EF was 4.3-fold. Upon increasing the temperature to 250 K the EF increases to 84-fold. Single complexes show even higher EFs up to 441.0-fold. At increasing temperatures the different spectral pools of PSI from T. elongatus become distinguishable. These pools are affected differently by the plasmonic interactions and show different enhancements. The remarkable increase of the EFs is explained by a rate model including the temperature dependence of the fluorescence yield of PSI and the spectral overlap between absorption and emission spectra of AuNPs and PSI, respectively.
Durek, J; Fröhling, A; Bolling, J; Thomasius, R; Durek, P; Schlüter, O K
2016-05-01
A non-destructive mobile system for meat quality monitoring was developed and investigated for the possible application along the whole production chain of fresh meat. Pork and lamb meat was stored at 5 °C for up to 20 days post mortem and measured with a fluorescence spectrometer. Additionally, the bacterial influence on the fluorescence signals was evaluated by different experimental procedures. Fluorescence of NADH and different porphyrins could be correlated to the growth of diverse bacteria and hence used for contamination monitoring. The increase of porphyrin fluorescence started after 9 days p.m. for pork and after 2 days p.m. for lamb meat. Based on the results, a mobile fluorescence system was built and compared with the laboratory system. The corrected function of the meat slices showed a root mean square error of 1156.97 r.u. and a mean absolute percentage error of 12.59%; for lamb the values were 470.81 r.u. and 15.55%, respectively. A mobile and non-invasive measurement system would improve the microbial security of fresh meat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae
2015-04-29
Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.
Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O
2017-11-08
3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.
NASA Astrophysics Data System (ADS)
He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald
2016-03-01
As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.
Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties
Liu, Yujing; Zang, Huidong; Wang, Ling; ...
2016-09-25
Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less
Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.
2017-01-01
We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756
Sivaprakasam, Vasanthi; Lin, Horn-Bond; Huston, Alan L; Eversole, Jay D
2011-03-28
A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.
Wang, Fangfang; Huang, Lingyun; Na, Na; He, Dacheng; Sun, Dezhi; Ouyang, Jin
2012-05-21
In this paper, a simple and sensitive small-molecule fluorescent probe, 2,5-dihydroxy-4'-dimethylaminochalcone (DHDMAC), was designed and synthesized for the detection of human serum proteins via hydrophobic interactions after polyacrylamide gel electrophoresis (PAGE). This probe produced lower fluorescence emission in the absence of proteins, and the emission intensity was significantly increased after the interaction with serum proteins. To demonstrate the imaging performance of this probe as a fluorescent dye, a series of experiments was conducted that included sensitivity comparison and 2D-PAGE. The results indicated that the sensitivity of DHDMAC staining is comparable to that of the most widely used fluorescent dye, SYPRO Ruby, and more protein spots (including thyroxine-binding globulin, angiotensinogen, afamin, zinc-α-2-glycoprotein and α-1-antichymotrypsin) were detected after 2D-PAGE. Therefore, DHDMAC is a good protein reporter due to its fast staining procedure, low detection limits and high resolution.
Setting Standards for Reporting and Quantification in Fluorescence-Guided Surgery.
Hoogstins, Charlotte; Burggraaf, Jan Jaap; Koller, Marjory; Handgraaf, Henricus; Boogerd, Leonora; van Dam, Gooitzen; Vahrmeijer, Alexander; Burggraaf, Jacobus
2018-05-29
Intraoperative fluorescence imaging (FI) is a promising technique that could potentially guide oncologic surgeons toward more radical resections and thus improve clinical outcome. Despite the increase in the number of clinical trials, fluorescent agents and imaging systems for intraoperative FI, a standardized approach for imaging system performance assessment and post-acquisition image analysis is currently unavailable. We conducted a systematic, controlled comparison between two commercially available imaging systems using a novel calibration device for FI systems and various fluorescent agents. In addition, we analyzed fluorescence images from previous studies to evaluate signal-to-background ratio (SBR) and determinants of SBR. Using the calibration device, imaging system performance could be quantified and compared, exposing relevant differences in sensitivity. Image analysis demonstrated a profound influence of background noise and the selection of the background on SBR. In this article, we suggest clear approaches for the quantification of imaging system performance assessment and post-acquisition image analysis, attempting to set new standards in the field of FI.
Prenner, E; Sommer, A; Maurer, N; Glatter, O; Gorges, R; Paltauf, F; Hermetter, A
2000-04-01
Choline phospholipids are the major constituents of the outer layer of the erythrocyte membrane. To investigate their lateral membrane organization we determined the fluorescence lifetime properties of diphenylhexatriene analogues of phosphatidylcholine, choline plasmalogen, (the respective enolether derivative), and sphingomyelin inserted into the outer layer of hemoglobin-free ghosts. Fluorescence lifetimes were recorded by time-resolved phase and modulation fluorometry and analyzed in terms of Continuous Lorentzian distributions. To assess the influence of membrane proteins on the fluorescence lifetime of the labeled lipids in the biomembrane, lipid vesicles were used as controls. In general, the lifetime distributions in the ghost membranes are broad compared to vesicles. Phosphatidylcholine and sphingomyelin exhibit very similar lifetime distributions in contrast to an increased plasmalogen lifetime heterogeneity in both systems. Orientational effects of side chain mobilities on the observed lifetimes can be excluded. Fluorescence anisotropies revealed identical values for all three labeled phospholipids in the biomembrane.
Fluorescence image-guided photodynamic therapy of cancer cells using a scanning fiber endoscope
NASA Astrophysics Data System (ADS)
Woldetensae, Mikias H.; Kirshenbaum, Mark R.; Kramer, Greg M.; Zhang, Liang; Seibel, Eric J.
2013-03-01
A scanning fiber endoscope (SFE) and the cancer biomarker 5-aminolevulinic acid (5-ALA) were used to fluorescently detect and destroy superficial cancerous lesions, while experimenting with different dosimetry levels for concurrent or sequential imaging and laser therapy. The 1.6-mm diameter SFE was used to fluorescently image a confluent monolayer of A549 human lung cancer cells from culture, previously administered with 5 mM solution of 5-ALA for 4 hours. Twenty hours after therapy, cell cultures were stained to distinguish between living and dead cells using a laser scanning confocal microscope. To determine relative dosimetry for photodynamic therapy (PDT), 405-nm laser illumination was varied from 1 to 5 minutes with power varying from 5 to 18 mW, chosen to compare equal amounts of energy delivered to the cell culture. The SFE produced 500-line images of fluorescence at 15 Hz using the red detection channel centered at 635 nm. The results show that PDT of A549 cancer cell monolayers using 405nm light for imaging and 5-ALAinduced PpIX therapy was possible using the same SFE system. Increased duration and power of laser illumination produced an increased area of cell death upon live/dead staining. The ultrathin and flexible SFE was able to direct PDT using wide-field fluorescence imaging of a monolayer of cultured cancer cells after uptaking 5-ALA. The correlation between light intensity and duration of PDT was measured. Increased length of exposure and decreased light intensity yields larger areas of cell death than decreased length of exposure with increased light intensity.
Ren, Xiao M; Guo, Liang-Hong
2012-04-17
Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions on experimental animals, and one of the proposed disruption mechanisms is the competitive binding of PBDE metabolites to TH transport proteins. In this report, a nonradioactive, site-specific fluorescein-thyroxine (F-T4) conjugate was designed and synthesized as a fluorescence probe to study the binding interaction of hydroxylated PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR), two major TH transport proteins in human plasma. Compared with free F-T4, the fluorescence intensity of TTR-bound conjugate was enhanced by as much as 2-fold, and the fluorescence polarization value of TBG-bound conjugate increased by more than 20-fold. These changes provide signal modulation mechanisms for F-T4 as a fluorescence probe. Based on fluorescence quantum yield and lifetime measurements, the fluorescence intensity enhancement was likely due to the elimination of intramolecular fluorescence quenching of fluorescein by T4 after F-T4 was bound to TTR. In circular dichroism and intrinsic tryptophan fluorescence measurements, F-T4 induced similar spectroscopic changes of the proteins as T4 did, suggesting that F-T4 bound to the proteins at the T4 binding site. By using F-T4 as the fluorescence probe in competitive binding assays, 11 OH-PBDEs with different levels of bromination and different hydroxylation positions were assessed for their binding affinity with TBG and TTR, respectively. The results indicate that the binding affinity generally increased with bromine number and OH position also played an important role. 3-OH-BDE-47 and 3'-OH-BDE-154 bound to TTR and TBG even stronger, respectively, than T4. With rising environmental level and high bioaccumulation capability, PBDEs have the potential to disrupt thyroid homeostasis by competitive binding with TH transport proteins.
A Novel Yeast Surface Display Method for Large-Scale Screen Inhibitors of Sortase A.
Wu, Lin; Li, Huijun; Tang, Tianle
2017-01-24
Fluorescence resonance energy transfer substrates of sortase A are too expensive to be used to roughly screen high-throughput sortase A inhibitors. This makes therapeutic strategies difficult to realize in a clinical therapeutic use. Instead, we design here an LPETG-EGFP (leucine, proline, glutamic, threonine and glycine-enhanced green fluorescence) protein displayed on a yeast surface as a substrate by adaptively reducing the cost. We do this by optimizing the induction conditions of sortase A expression in Escherichia coli DE3(BL21) and catalyzing LPETG proteins, which are displayed on surface of Pichia pastoris . Different expression conditions of sortase A include: induction temperature (22 °C, 28 °C, 37 °C and 40 °C), induction time (4 h, 5 h, 6 h and 7 h) and induction concentration of isopropyl β-d-thiogalactoside IPTG (0.25 mmol/L, 0.5 mmol/L, 1 mmol/L, and 2 mmol/L). The fluorescence change of the LPETG-EGFP protein on the surface of P. pastoris over time was detected by flow cytometry and fluorescence spectrophotometry, and then the sensitivities of the two methods were compared. Using berberine chloride as an inhibitor, the activity of sortase A was investigated with the substrates of LPETG-EGFP protein, and compared to Dabcyl-QALPETGEE-Edans. A high yield of sortase A was achieved by inducing 1.0 mmol/L IPTG at 28 °C for 6 h. The intensity of green fluorescence of substrates displayed on the yeast surface was increased over time, while the stability was decreased slightly. Both fluorescence spectrophotometery and flow cytometry were fit for detection because of their high sensitivity. We utilized two different substrates of sortase A to investigate sortase A activity, which resulted in the increase of fluorescence intensity with respect to the increased time of growth. However, the method with Dabcyl-QALPETGEE-Edans as its substrate was more robust. Thus, the method described in this paper is a simple and cheap method which is very suitable for high-throughput analysis, but the conventional method is much more sensitive. The method described in this paper is expected to lead to large-scale screening of sortase A inhibitors which can be used to decrease the risk of drug resistance development.
Kolitz-Domb, Michal; Corem-Salkmon, Enav; Grinberg, Igor; Margel, Shlomo
2014-01-01
Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with colon cancer. Near-infrared (NIR) fluorescent nanoparticles are promising candidates for use as contrast agents for tumor detection. Using NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum: lower autofluorescence of biological tissues and lower absorbance and, consequently, deeper penetration into biomatrices. The present study describes the preparation of new NIR fluorescent proteinoid-poly(L-lactic acid) (PLLA) nanoparticles. For this purpose, a P(EF-PLLA) random copolymer was prepared by thermal copolymerization of L-glutamic acid (E) with L-phenylalanine (F) and PLLA. Under suitable conditions, this proteinoid-PLLA copolymer can self-assemble to nanosized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of the NIR dye indocyanine green. The encapsulation process increases significantly the photostability of the dye. These NIR fluorescent nanoparticles were found to be stable and nontoxic. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline containing 4% human serum albumin was not detected. Tumor-targeting ligands such as peanut agglutinin and anticarcinoembryonic antigen antibodies were covalently conjugated to the surface of the NIR fluorescent P(EF-PLLA) nanoparticles, thereby increasing the fluorescent signal of tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent P(EF-PLLA) nanoparticles was demonstrated in a chicken embryo model. In future work, we plan to extend this study to a mouse model, as well as to encapsulate a cancer drug such as doxorubicin within these nanoparticles for therapeutic applications. PMID:25382975
Munshi, Soumyabrata; Twining, Robert C; Dahl, Russell
2014-01-01
The cell viability assay by alamar blue is based on the principle of reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) by the intracellular reducing environment of living cells over time. In the present study, we have for the first time shown that even in the absence of cells, there occurs significant interaction between alamar blue and cell-culture media causing an increase in fluorescence. We have used Opti-MEM, DMEM and 1:1 DMEM:Opti-MEM as three different media and determined the changes in their relative fluorescence units (RFUs) over time after the addition of 10% (v/v) alamar blue using two-way repeated measures analysis of variance (RM-ANOVA) followed by Tukey's post-hoc test. Our results show that upon the addition of alamar blue, there occurs a significant increase in RFUs in all the three media over time along with a significantly higher RFU for the Opti-MEM overall (p<0.05). We also show that the time-dependent change in RFU of 1:1 DMEM:Opti-MEM was more gradual compared to that of the other two media. These findings indicate that the reagent can itself interact with the media causing significantly different fluorescence over time in a manner independent from the effect of intracellular reducing environment of living cells on alamar blue. In addition our results indicate that fluorescence varies as a function of incubation time with the reagent. These findings signify the need for routine subtraction of the background fluorescence of media-only with alamar blue reagent during measurement of cell viability by this method in order to determine an accurate measurement of cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.
Red and Green Fluorescence from Oral Biofilms
Hoogenkamp, Michel A.; Krom, Bastiaan P.; Janus, Marleen M.; ten Cate, Jacob M.; de Soet, Johannes J.; Crielaard, Wim; van der Veen, Monique H.
2016-01-01
Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries. PMID:27997567
Red and Green Fluorescence from Oral Biofilms.
Volgenant, Catherine M C; Hoogenkamp, Michel A; Krom, Bastiaan P; Janus, Marleen M; Ten Cate, Jacob M; de Soet, Johannes J; Crielaard, Wim; van der Veen, Monique H
2016-01-01
Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.
Dendrimer probes for enhanced photostability and localization in fluorescence imaging.
Kim, Younghoon; Kim, Sung Hoon; Tanyeri, Melikhan; Katzenellenbogen, John A; Schroeder, Charles M
2013-04-02
Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Crawford, I.; Lloyd, G.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.
2015-09-01
The fluorescent nature of aerosol at a high Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultra violet-light induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor but statistically insignificant increase in the fluorescent aerosol fraction during in-cloud cases compared to out of cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27±0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosol were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1±0.4 L-1. Given the low concentration of this cluster and the typically low ice active fraction of studied PBAP (e.g. pseudomonas syringae) we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.
Pan, Jiahong; Zheng, Zengyao; Yang, Jianying; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua
2017-05-01
A novel fluorescence sensor based on controlling the surface passivation degree of carbon quantum dots (CQDs) was developed for glutathione (GSH) detection. First, we found that the fluorescence intensity of the CQDs which was obtained by directly pyrolyzing citric acid would increased largely after the surface passivation treatment by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). In the light of this phenomenon, we designed a simple, rapid and selective fluorescence sensor based on the surface passivated CQDs. A certain and excess amount of EDC were mixed with GSH, part of EDC would form a stable complex with GSH owing to the exposed sulfhydryl group of GSH. As the synthesized CQDs were added into the above mixture solution, the fluorescence intensity of the (EDC/GSH)/CQDs mixture solution could be directly related to the amount of GSH. Compared to other fluorescence analytical methods, the fluorescence sensor we design is neither the traditional fluorescent "turn on" probes nor "turn off" probes. It is a new fluorescence analytical method that target object indirectly control the surface passivation degree of CQDs so that it can realize the detection of the target object. Moreover, the proposed method manifested great advantages including short analysis time, low cost and ease of operation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawski, A.; Kuklinski, B.; Bojarski, P.
2003-03-01
The effect of temperature on absorption and fluorescence spectra of p-cyano-N,N-diethylaniline (CDEA) in ethyl acetate has been studied for temperatures ranging from 293 K to 418 K. At T = 293 K two fluorescence bands are observed: long wavelength emission (LE) and short wavelength emission (SE) of much lower intensity compared to the first one.With temperature increase (which leads to the decrease of dielectric constant ɛ of the solvent) the intensity of SE band strongly increases, however its hypsochromic shift compared to the shift of LE band is rather slight. The electric dipole moments for CDEA determined based on this thermochromic method are: μLEe = 13.4 D and μSEe = 7.5 D for μg = 5.5 D, and μLE e = 13.9 D and μSEe = 8.3 D for μg = 6.6 D. The values obtained are compared with those of p-cyano-N,N-dimethylaniline (CDMA) determined using different methods.
Hu, Qinqin; Xu, Xiahong; Li, Zhanming; Zhang, Ying; Wang, Jianping; Fu, Yingchun; Li, Yanbin
2014-04-15
Acrylamide is a neurotoxin and potential carcinogen, but is found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple and sensitive methods for on-line detection of acrylamide are needed to ensure food safety. In this paper, a novel fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots (QDs) was proposed for detecting acrylamide in potato chips. The functional QDs were prepared by their binding with N-acryloxysuccinimide (NAS), which was characterized by Fourier transform infrared (FR-IR) spectra. The carbon-carbon double bonds of NAS modified QDs polymerized with assistance of photo initiator under UV irradiation, leading to QDs getting closer along with fluorescence intensity decreasing. Acrylamide in the sample participated in the polymerization and induced an increase of fluorescence intensity. This method possessed a linear range from 3.5×10(-5) to 3.5 g L(-1) (r(2)=0.94) and a limit of detection of 3.5×10(-5) g L(-1). Although the sensitivity and specificity cannot be compared with standard LC-MS/MS analysis, this new method requires much less time and cost, which is promising for on-line rapid detection of acrylamide in food processing. © 2013 Published by Elsevier B.V.
Activation energy of light induced isomerization of resveratrol.
Figueiras, Teresa Sofia; Neves-Petersen, Maria Teresa; Petersen, Steffen B
2011-09-01
Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4',5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260 nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH 4 at 20, 25, 30, 35, 40, 45 and 50 °C. Continuous 260 nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14 nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260 nm excitation time. 330 min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260 nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7 ± 0.3 kcal.mol(-1) and 10.6 ± 1.6 s(-1), respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.
Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu
2012-05-09
We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.
Connally, Russell; Veal, Duncan; Piper, James
2004-01-01
The ubiquity of naturally fluorescing components (autofluorophores) encountered in most biological samples hinders the detection and identification of labeled targets through fluorescence-based techniques. Time-resolved fluorescence (TRF) is a technique by which the effects of autofluorescence are reduced by using specific fluorescent labels with long fluorescence lifetimes (compared with autofluorophores) in conjunction with time-gated detection. A time-resolved fluorescence microscope (TRFM) is described that is based on a standard epifluorescence microscope modified by the addition of a pulsed excitation source and an image-intensified time-gateable CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flash lamp with rapid discharge characteristics was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, the flash output decayed with an approximate lifetime of 18 micros and the TRFM required a long-lived lanthanide chelate label to ensure that probe fluorescence was visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the waterborne parasite Giardia lamblia. For a 600-nm bandpass filter set and a gate delay of 60 micros, the TRFM provided an 11.3-fold improvement in the signal-to-noise ratio (S/N) of labeled Giardia over background. A smaller gain in an SNR of 9.69-fold was achieved with a 420-nm longpass filter set; however, the final contrast ratio between labeled cyst and background was higher (11.3 versus 8.5). Despite the decay characteristics of the light pulse, flash lamps have many practical advantages compared with optical chopper wheels and modulated lasers for applications in TRFM.
[Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].
Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu
2014-02-01
The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.
Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.
Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K
2018-04-01
Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.
Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.
Ferrer, Maria L; del Monte, Francisco
2005-01-13
Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi < 54.7 degrees) prior to their assembly in the supramolecular architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).
Földes-Papp, Zeno; Liao, Shih-Chu Jeff; You, Tiefeng; Barbieri, Beniamino
2009-08-01
We first report on the development of new microscope means that reduce background contributions in fluorescence fluctuation methods: i) excitation shutter, ii) electronic switches, and iii) early and late time-gating. The elements allow for measuring molecules at low analyte concentrations. We first found conditions of early and late time-gating with time-correlated single-photon counting that made the fluorescence signal as bright as possible compared with the fluctuations in the background count rate in a diffraction-limited optical set-up. We measured about a 140-fold increase in the amplitude of autocorrelated fluorescence fluctuations at the lowest analyte concentration of about 15 pM, which gave a signal-to-background advantage of more than two-orders of magnitude. The results of this original article pave the way for single-molecule detection in solution and in live cells without immobilization or hydrodynamic/electrokinetic focusing at longer observation times than are currently available.
Model for fluorescence quenching in light harvesting complex II in different aggregation states.
Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira
2009-02-01
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.
Investigation of the usefulness of fluorescein sodium fluorescence in stereotactic brain biopsy.
Thien, Ady; Han, Julian Xinguang; Kumar, Krishan; Ng, Yew Poh; Rao, Jai Prashanth; Ng, Wai Hoe; King, Nicolas Kon Kam
2018-02-01
Intraoperative frozen section assessment, to confirm acquisition of pathological tissues, is used in stereotactic brain biopsy to minimise sampling errors. Limitations include the dependence on dedicated neuro-oncology pathologists and an increase in operative duration. We investigated the use of intraoperative fluorescein sodium, and compared it to frozen section assessment, for confirming pathological tissue samples in the stereotactic biopsy of gadolinium-contrast-enhancing brain lesions. This prospective observational study consisted of 18 consecutive patients (12 men; median age, 63 years) who underwent stereotactic biopsy of gadolinium-contrast-enhancing brain lesions with intravenous fluorescein sodium administration. Twenty-three specimens were obtained and examined for the presence of fluorescence using a microscope with fluorescence visualisation capability. Positive and negative predictive values were calculated based on the fluorescence status of the biopsy samples with its corresponding intraoperative frozen section and definitive histopathological diagnosis. Nineteen specimens (83%) were fluorescent and four (17%) were non-fluorescent. All 19 fluorescent specimens were confirmed to be lesional on intraoperative frozen section assessment and were suitable for histopathological diagnosis. Three of the non-fluorescent specimens were confirmed to be lesional on intraoperative frozen section assessment. One non-fluorescent specimen was non-diagnostic on frozen section and histological assessments. The positive predictive value was 100% and the negative predictive value was 25%. Fluorescein sodium fluorescence is as accurate as frozen section assessment in confirming sampling of pathological tissue in the stereotactic biopsy of gadolinium-contrast-enhancing brain lesions. Fluorescein sodium fluorescence-guided stereotactic biopsy is a useful addition to the neurosurgical armamentarium.
Gong, Changxiu; Jiang, Jianguo; Li, De’an; Tian, Sicong
2015-01-01
We examined the effects of ultrasound and Fenton reagent on ultrasonic coupling Fenton oxidation (U+F) pre-treatment processes for the disintegration of wastewater treatment plant sludge. The results demonstrated that U+F treatment could significantly increase soluble chemical oxygen demand (SCOD), total organic carbon (TOC), and extracellular polymeric substances (EPS) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U+F treatment increased the release of SCOD by 2.1- and 1.4-fold compared with U and F alone, respectively. U+F treatment increased the release of EPS by 1.2-fold compared with U alone. After U+F treatment, sludge showed a considerably finer particle size and looser microstructure based on fluorescence microscopy, and the concentration of hydroxyl radicals (OH•) increased from 0.26 mM by F treatment to 0.43 mM by U+F treatment based on fluorescence spectrophotometer. This demonstrated that U+F treatment improves the release of organic matter from sludge. PMID:26066562
Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro
2000-01-01
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494
Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Valsaraj, K.; Birdwell, J.
2010-07-01
Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and themore » IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.« less
Concentration Dependence of Gold Nanoparticles for Fluorescence Enhancement
NASA Astrophysics Data System (ADS)
Solomon, Joel; Wittmershaus, Bruce
Noble metal nanoparticles possess a unique property known as surface plasmon resonance in which the conduction electrons oscillate due to incoming light, dramatically increasing their absorption and scattering of light. The oscillating electrons create a varying electric field that can affect nearby molecules. The fluorescence and photostability of fluorophores can be enhanced significantly when they are near plasmonic nanoparticles. This effect is called metal enhanced fluorescence (MEF). MEF from two fluorescence organic dyes, Lucifer Yellow CH and Riboflavin, was measured with different concentrations of 50-nm colloidal gold nanoparticles (Au-NP). The concentration range of Au-NP was varied from 2.5 to 250 pM. To maximize the interaction, the dyes were chosen so their emission spectra had considerable overlap with the absorption spectra of the Au-NP, which is common in MEF studies. If the dye molecules are too close to the surface of Au-NP, fluorescence quenching can occur instead of MEF. To try to observe this difference, silica-coated Au-NP were compared to citrate-based Au-NP; however, fluorescence quenching was observed with both Au-NP. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.
In vivo tomographic imaging of deep seated cancer using fluorescence lifetime contrast
Rice, William L.; Shcherbakova, Daria M; Verkusha, Vladislav V.; Kumar, Anand T.N.
2015-01-01
Preclinical cancer research would benefit from non-invasive imaging methods that allow tracking and visualization of early stage metastasis in vivo. While fluorescent proteins revolutionized intravital microscopy, two major challenges which still remain are tissue autofluorescence and hemoglobin absorption, which act to limit intravital optical techniques to large or subcutaneous tumors. Here we employ time-domain technology for the effective separation of tissue autofluorescence from extrinsic fluorophores, based on their distinct fluorescence lifetimes. Additionally, we employ cancer cells labelled with near infra-red fluorescent proteins (iRFP) to allow deep-tissue imaging. Our results demonstrate that time-domain imaging allows the detection of metastasis in deep-seated organs of living mice with a more than 20-fold increase in sensitivity compared to conventional continuous wave techniques. Furthermore, the distinct fluorescence lifetimes of each iRFP enables lifetime multiplexing of three different tumors, each expressing unique iRFP labels in the same animal. Fluorescence tomographic reconstructions reveal 3D distributions of iRFP720-expressing cancer cells in lungs and brain of live mice, allowing ready longitudinal monitoring of cancer cell fate with greater sensitivity than otherwise currently possible. PMID:25670171
NASA Astrophysics Data System (ADS)
Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten
2015-07-01
Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.
Clinical application of indocyanine green-fluorescence imaging during hepatectomy
Ishizawa, Takeaki; Saiura, Akio
2016-01-01
In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025−0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25−2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144
Uptake of Fluorescent Gentamicin by Peripheral Vestibular Cells after Systemic Administration
Liu, Jianping; Kachelmeier, Allan; Dai, Chunfu; Li, Hongzhe; Steyger, Peter S.
2015-01-01
Objective In addition to cochleotoxicity, systemic aminoglycoside pharmacotherapy causes vestibulotoxicity resulting in imbalance and visual dysfunction. The underlying trafficking routes of systemically-administered aminoglycosides from the vasculature to the vestibular sensory hair cells are largely unknown. We investigated the trafficking of systemically-administered gentamicin into the peripheral vestibular system in C56Bl/6 mice using fluorescence-tagged gentamicin (gentamicin-Texas-Red, GTTR) imaged by scanning laser confocal microscopy to determine the cellular distribution and intensity of GTTR fluorescence in the three semicircular canal cristae, utricular, and saccular maculae at 5 time points over 4 hours. Results Low intensity GTTR fluorescence was detected at 0.5 hours as both discrete puncta and diffuse cytoplasmic fluorescence. The intensity of cytoplasmic fluorescence peaked at 3 hours, while punctate fluorescence was plateaued after 3 hours. At 0.5 and 1 hour, higher levels of diffuse GTTR fluorescence were present in transitional cells compared to hair cells and supporting cells. Sensory hair cells typically exhibited only diffuse cytoplasmic fluorescence at all time-points up to 4 hours in this study. In contrast, non-sensory cells rapidly exhibited both intense fluorescent puncta and weaker, diffuse fluorescence throughout the cytosol. The numbers and size of fluorescent puncta in dark cells and transitional cells increased over time. There is no preferential GTTR uptake by the five peripheral vestibular organs’ sensory cells. Control vestibular tissues exposed to Dulbecco’s phosphate-buffered saline or hydrolyzed Texas Red had negligible fluorescence. Conclusions All peripheral vestibular cells rapidly take up systemically-administered GTTR, reaching peak intensity 3 hours after injection. Sensory hair cells exhibited only diffuse fluorescence, while non-sensory cells displayed both diffuse and punctate fluorescence. Transitional cells may act as a primary pathway for trafficking of systemic GTTR from the vasculature to endolymph prior to entering hair cells. PMID:25793391
Measurement of plasma cell-free DNA concentrations in dogs with sepsis, trauma, and neoplasia.
Letendre, Jo-Annie; Goggs, Robert
2017-05-01
To determine if cell-free DNA (cfDNA) was identifiable in canine plasma, to evaluate 3 techniques for the measurement of plasma cfDNA concentrations in dogs presented to an emergency service, and to compare the plasma cfDNA concentrations of healthy dogs to those with sepsis, trauma, and neoplasia. Retrospective study of banked canine plasma samples collected between May 2014 and December 2014. Dogs presented to the emergency service of a university veterinary teaching hospital. Plasma cfDNA was measured on residual plasma samples obtained from 15 dogs with sepsis, 15 dogs with moderate-severe trauma, 15 dogs diagnosed with a sarcoma. Plasma cfDNA was also measured in 15 healthy dogs. None. Assay linearity, repeatability, and reproducibility were evaluated. Quantification of cfDNA was performed in duplicate on diluted citrated plasma and following DNA purification using 2 fluorescence assays (SYBR-Gold; Quant-iT) and by ultraviolet absorbance spectroscopy. Fluorescence intensities (FIs) were converted to cfDNA concentrations using standard curves. Median FI values and cfDNA concentrations were compared to healthy controls using the Kruskal-Wallis test, with adjustment for multiple comparisons. Alpha was set at 0.05. Both assays had excellent linearity, and acceptable repeatability and reproducibility. Compared to controls, plasma cfDNA concentrations were significantly increased in dogs with sepsis or moderate-severe trauma with both assays (P ≤ 0.003). Dogs with neoplasia had significantly increased cfDNA concentrations with the Quant-iT assay only (P = 0.003). When measurements were performed on purified DNA, only dogs with moderate-severe trauma had significantly increased cfDNA concentrations (P < 0.001; SYBR-Gold assay). cfDNA can be readily identified in canine plasma using 2 fluorescence assays. DNA extraction offers no advantage over direct measurement. Compared to healthy controls, dogs with sepsis or moderate-severe trauma have significantly increased plasma cfDNA concentrations. © Veterinary Emergency and Critical Care Society 2017.
Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay
NASA Astrophysics Data System (ADS)
Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.
2013-06-01
Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.
Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.
2015-01-01
Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182
Detection of bacterial infection of agave plants by laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando
2002-05-01
Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.
Detection of bacterial infection of agave plants by laser-induced fluorescence.
Cervantes-Martínez, Jesús; Flores-Hernández, Ricardo; Rodríguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando
2002-05-01
Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.
Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination
NASA Astrophysics Data System (ADS)
Zhong, Xin; Wang, Xinwei; Zhou, Yan
2018-01-01
A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.
Sonin, Dmitry; Papayan, Garry; Pochkaeva, Evgeniia; Chefu, Svetlana; Minasian, Sarkis; Kurapeev, Dmitry; Vaage, Jarle; Petrishchev, Nickolay; Galagudza, Michael
2016-01-01
The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size. PMID:28101408
Sonin, Dmitry; Papayan, Garry; Pochkaeva, Evgeniia; Chefu, Svetlana; Minasian, Sarkis; Kurapeev, Dmitry; Vaage, Jarle; Petrishchev, Nickolay; Galagudza, Michael
2017-01-01
The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size.
Jones, Guy; Hunter, Finnie; Hancock, Hilary A; Kapoor, Ankur; Stone, Michael J; Wood, Bradford J; Xie, Jianwu; Dreher, Matthew R; Frenkel, Victor
2010-01-01
Investigations were carried out on the manner by which pulsed-high intensity focused ultrasound (HIFU) enhances the effectiveness of tissue plasminogen activator (tPA) in whole blood clots, in vitro. Scanning electronic microscope (SEM) of the surface of the clots showed that the exposures increased exposed fibrin, as well as the number of openings to more interior regions. These findings were supported by fluorescent antibody labeling of tPA in frozen sections of clots treated post-HIFU. Here, improved accumulation at the surface and penetration of the tPA into the clots were observed in those treated with HIFU. Fluorescence recovery after photobleaching was also performed, indicating that the diffusion coefficient increased 6.3-fold for fluorescently labeled dextrans, comparable in size to tPA, in the HIFU-treated clots. Improved understanding of the manner by which pulsed--HIFU exposures can improve the effectiveness of thrombolytics will help optimize the exposures for this application and potentially facilitate translation to the clinic.
Jones, Guy; Hunter, Finnie; Hancock, Hilary A.; Kapoor, Ankur; Stone, Michael J.; Wood, Bradford J.; Xie, Jianwu; Dreher, Matthew R.
2012-01-01
Investigations were carried out on the manner by which pulsed–high intensity focused ultrasound (HIFU) enhances the effectiveness of tissue plasminogen activator (tPA) in whole blood clots, in vitro. Scanning electronic microscope (SEM) of the surface of the clots showed that the exposures increased exposed fibrin, as well as the number of openings to more interior regions. These findings were supported by fluorescent antibody labeling of tPA in frozen sections of clots treated post-HIFU. Here, improved accumulation at the surface and penetration of the tPA into the clots were observed in those treated with HIFU. Fluorescence recovery after photobleaching was also performed, indicating that the diffusion coefficient increased 6.3-fold for fluorescently labeled dextrans, comparable in size to tPA, in the HIFU-treated clots. Improved understanding of the manner by which pulsed–HIFU exposures can improve the effectiveness of thrombolytics will help optimize the exposures for this application and potentially facilitate translation to the clinic. PMID:20064753
NASA Astrophysics Data System (ADS)
Ganesan, Singaravelu; Ebenezar, Jeyasingh; Hemamalini, Srinivasan; Aruna, Prakasa R.
2002-05-01
Steady state fluorescence spectroscopic characterization of endogenous porphyrin emission from DMBA treated skin carcinogenesis in Swiss albino mice was carried out. The emission of endogenous porphyrin from normal and abnormal skin tissues was studied both in the presence and absence of exogenous ALA to compare the resultant porphyrin emission characterictics. The mice skin is excited at 405nm and emission spectra are scanned from 430 to 700nm. The average fluorescence emission spectra of mice skin at normal and various tissues transformation conditions were found to be different. Two peaks around 460nm and 636nm were observed and they may be attributed to NADH, Elastin and collagen combination and endogenous porphyrin emission. The intensity at 636nm increases as the stage of the cancer increases. Although exogenous ALA enhances the PPIX level in tumor, the synthesis of PPIX was also found in normal surrounding skin, in fact, with higher concentration than that of tumor tissues.
Bay, Christiane; Lerche, Catharina Margrethe; Ferrick, Bradford; Philipsen, Peter Alshede; Togsverd-Bo, Katrine; Haedersdal, Merete
2017-04-01
Skin pretreatment is recommended for adequate penetration of topical photosensitizing agents and subsequent protoporphyrin IX (PPIX) accumulation in photodynamic therapy (PDT). To compare the relative potential of different physical pretreatments to enhance PPIX fluorescence in normal skin. This intraindividual, randomized clinical trial was performed from November 28 to December 20, 2014, at Bispebjerg Hospital, Copenhagen, Denmark, among 12 healthy volunteers 18 years or older. Analysis was based on intention to treat. All participants completed the study protocol. Participants were each exposed to standardized skin preparation with curettage, microdermabrasion with abrasive pads, microneedling with dermarollers, ablative fractional laser (AFXL), non-AFXL, and no pretreatment, followed by 3 hours of methyl aminolevulinate hydrochloride incubation and subsequent red light illumination. The primary outcome measure was methyl aminolevulinate-induced PPIX fluorescence accumulation. Secondary outcome measures were PPIX photobleaching and clinical local skin reactions, supported by noninvasive reflectance measurements of percentage of skin redness, transepidermal water loss, and participant-assessed pain. Among the 12 healthy study participants (8 men; 4 women; mean [SD] age, 33 [15] years), histologic findings confirmed standardization of interventions with partial removal of the stratum corneum after curettage and microdermabrasion and similar vertical penetration depths for microneedling, AFXL, and non-AFXL (median, 125 μm). PPIX fluorescence reached highest intensities in skin pretreated with AFXL (median, 8661 arbitrary units [AU]) compared with microdermabrasion (median, 6731 AU), microneedling (median, 5609 AU), and curettage (median, 4765 AU) (P < .001), among which similar enhancement was shown. Comparatively lower fluorescence levels were demonstrated for skin pretreated with non-AFXL (median, 2898 AU), methyl aminolevulinate-treated controls (median, 2254 AU), and untreated controls (median, 239 AU) (P < .03). Increasing laser densities (2% vs 4% vs 6%) and the number of pretreatment passes (1, 2, and 3 passes) did not enhance PPIX fluorescence. Local skin reactions were most intensified in AFXL-pretreated skin and correlated with PPIX fluorescence and degree of PPIX photobleaching. Under standardized conditions, PPIX accumulation was most enhanced after AFXL pretreatment, followed by microdermabrasion, microneedling, and curettage. Increasing the number of pretreatment passes and laser densities did not further augment PPIX accumulation. These results may indicate relatively enhanced PDT response by AFXL pretreatment in diseased skin. clinicaltrials.gov Identifier: NCT02372370.
Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms
NASA Astrophysics Data System (ADS)
Manjunath, S.; Rao, Bola Sadashiva Satish; Satyamoorthy, Kapaettu; Mahato, Krishna Kishore
2014-02-01
Autofluorescence characteristics of human serum albumin (HSA) are highly sensitive to its local environment. Identification and characterization of the proteins in normal and disease conditions may have great clinical implications. Aim of the present study was to understand how autofluorescence properties of HSA varies with denaturation under urea (3.0M, 6.0M, 9.0M) and guanidine hydrochloride (GnHCl) (2.0M, 4.0M, 6.0M) as well as digestion with trypsin. Towards this, we have recorded the corresponding autofluorescence spectra of HSA at 281nm laser excitation and compared the outcomes. Although, HSA contains 1 tryptophan and 17 tyrosine residues, it has shown intense autofluorescence due to tryptophan as compared to the tyrosine in native form, which may be due to the fluorescence resonance energy transfer (FRET) from tyrosine to tryptophan. As the unfolding progresses in denatured and digested forms of the protein, a clear increase in tyrosine fluorescence as compared to tryptophan was observed, which may be due to the increase of tryptophan - tyrosine separation disturbing the FRET between them resulting in differences in the overall autofluorescence properties. The decrease in tryptophan fluorescence of around 17% in urea denatured, 32% in GnHCl denatured and 96% in tryptic digested HSA was observed as compared to its native form. The obtained results show a clear decrease in FRET between tyrosine and tryptophan residues with the progression of unfolding and urea seems to be less efficient than GnHCl in unfolding of HSA. These results demonstrate the potential of autofluorescence in characterizing proteins in general and HSA in particular.
NASA Astrophysics Data System (ADS)
Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.
2014-09-01
Carcinogenic and toxic contaminants in food and feed products are nowadays mostly detected by destructive, time-consuming chemical analyses, like HPLC and LC-MS/MS methods. However, as a consequence of the severe and growing regulations on food products by the European Union, there arose an increased demand for the ultra-fast, high-sensitive and non-destructive detection of contaminants in food and feed products. Therefore, we have investigated fluorescence spectroscopy for the characterization of carcinogenic aflatoxins. With the use of a tunable titanium-sapphire laser in combination with second and third harmonic wavelength generation, both one- and two-photon induced fluorescence excitation wavelengths could be generated using the same setup. We characterized and compared the one- and two-photon induced fluorescence spectra of pure aflatoxin powder, after excitation with 365nm and 730nm respectively. Moreover, we investigated the absolute fluorescence intensity as function of the excitation power density. Afterwards, we applied our characterization setup to the detection of aflatoxins in maize grains. The fluorescence spectra of both healthy and contaminated maize samples were experimentally characterized. In addition to the fluorescence spectrum of the pure aflatoxin, we observed an unwanted influence of the intrinsic fluorescence of the maize. Depending on the excitation wavelength, a varying contrast between the fluorescence spectra of the healthy and contaminated samples was obtained. After a comparison of the measured fluorescence signals, a detection criterion for the optical identification of the contaminated maize samples could be defined. As a result, this illustrates the use of fluorescence spectroscopy as a valuable tool for the non-destructive, real-time and high-sensitive detection of aflatoxins in maize.
Ikeura, Tsukasa; Takaoka, Makoto; Uchida, Kazushige; Shimatani, Masaaki; Miyoshi, Hideaki; Kato, Kota; Ohe, Chisato; Uemura, Yoshiko; Kaibori, Masaki; Kwon, A-Hon; Okazaki, Kazuichi
2015-01-01
EUS-guided FNA (EUS-FNA) has been increasingly performed to obtain specimens for the pathological evaluation of patients with GI and pancreaticobiliary masses as well as lymphadenopathies of unknown origin. Photodynamic diagnosis by using 5-aminolebulinic acid (ALA) has been reported to be useful for enabling the visual differentiation between malignant and normal tissue in various cancers. To evaluate the diagnostic accuracy of fluorescence cytology with ALA in EUS-FNA. A prospective study. A single center. A total of 28 consecutive patients who underwent EUS-FNA for the pathological diagnosis of a pancreaticobiliary mass lesion or intra-abdominal lymphadenopathy of unknown origin. Patients were orally administered ALA 3 to 6 hours before EUS-FNA. The sample was obtained via EUS-FNA for fluorescence cytology and conventional cytology. A single gastroenterologist performed the fluorescence cytology by using fluorescence microscopy after the procedure, independently of the conventional cytology by pathologists. The accuracy of fluorescence cytology with ALA in the differentiation between benign and malignant lesions by comparing the results of fluorescence cytology with the final diagnosis. Of the 28 patients included in the study, 22 were considered as having malignant lesions and 6 patients as having benign lesions. Fluorescence cytology could correctly discriminate between benign and malignant lesions in all patients. Therefore, both the sensitivity and specificity of fluorescence cytology were 100% in our study. Fluorescence cytology was performed by only 1 gastroenterologist with a small number of patients. Fluorescence cytology with ALA in EUS-FNA may be an effective and simple method for differentiating between benign and malignant lesions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob
2007-09-01
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.
In Vivo Visualization of Endoplasmic Reticulum Stress in the Retina Using the ERAI Reporter Mouse.
Alavi, Marcel V; Chiang, Wei-Chieh; Kroeger, Heike; Yasumura, Douglas; Matthes, Michael T; Iwawaki, Takao; LaVail, Matthew M; Gould, Douglas B; Lin, Jonathan H
2015-10-01
Endoplasmic reticulum (ER) stress activates inositol requiring enzyme 1 (IRE1), a key regulator of the unfolded protein response. The ER stress activated indicator (ERAI) transgenic mouse expresses a yellow fluorescent GFP variant (Venus) when IRE1 is activated by ER stress. We tested whether ERAI mice would allow for real-time longitudinal studies of ER stress in living mouse eyes. We chemically and genetically induced ER stress, and qualitatively and quantitatively studied the Venus signal by fluorescence ophthalmoscopy. We determined retinal cell types that contribute to the signal by immunohistology, and we performed molecular and biochemical assays using whole retinal lysates to assess activity of the IRE1 pathway. We found qualitative increase in vivo in fluorescence signal at sites of intravitreal tunicamycin injection in ERAI eyes, and quantitative increase in ERAI mice mated to RhoP23H mice expressing ER stress-inducing misfolded rhodopsin protein. As expected, we found that increased Venus signal arose primarily from photoreceptors in RhoP23H/+;ERAI mice. We found increased Xbp1S and XBP1s transcriptional target mRNA levels in RhoP23H/+;ERAI retinas compared to Rho+/+;ERAI retinas, and that Venus signal increased in ERAI retinas as a function of age. Fluorescence ophthalmoscopy of ERAI mice enables in vivo visualization of retinas undergoing ER stress. ER stress activated indicator mice enable identification of individual retinal cells undergoing ER stress by immunohistochemistry. ER stress activated indicator mice show higher Venus signal at older ages, likely arising from amplification of basal retinal ER stress levels by GFP's inherent stability.
Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska
2012-12-05
The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.
Vieira Ferreira, Luís F.; Ferreira, Diana P.; Duarte, Paulo; Oliveira, A. S.; Torres, E.; Machado, I. Ferreira; Almeida, P.; Reis, Lucinda V.; Santos, Paulo F.
2012-01-01
In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission ΦF and τF, on powdered solid samples a decrease of ΦF and τF was observed. The use of an integrating sphere enabled us to obtain absolute ΦF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the ΦF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples. PMID:22312274
Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y
2015-02-01
To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.
Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas
2015-09-14
In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less
Red fluorescent biofilm: the thick, the old, and the cariogenic
Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.
2016-01-01
Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056
Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.
Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu
2013-05-01
The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.
Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A
2015-09-01
A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Detection and Interpretation of Fluorescence Signals Generated by Excitable Cells and Tissues
NASA Astrophysics Data System (ADS)
Costantino, Anthony J.
Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence . Monitoring electrical activity and Cai 2+ transients in biological tissues and individual cells increasingly utilizes optical sensors based on voltage-dependent and Cai 2+-dependent fluorescent dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other adverse effects limiting the utility of optical recordings. The most challenging are the recordings from individual cardiac myocytes and neurons. Here we demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent on application). We provide a detailed comparative analysis of the dynamic and noise characteristics of different transimpedance amplifier topologies as well as the example(s) of their practical implementation. Part 2: Light-Scattering Models for Interpretation of Fluorescence Data. Current interest in understanding light transport in cardiac tissue has been motivated in part by increased use of voltage-sensitive and Ca i2+-sensitive fluorescent probes to map electrical impulse propagation and Cai2+-transients in the heart. The fluorescent signals are recorded using such probes represent contributions from different layers of myocardial tissue and are greatly affected by light scattering. The interpretation of these signals thus requires deconvolution which would not be possible without detailed models of light transport in the respective tissue. Which involves the experimental measurements of the absorption, scattering, and anisotropy coefficients, mua, mu s, and g respectively. The aim of the second part of our thesis was to derive a new method for deriving these parameters from high spatial resolution measurements of forward-directed flux (FDF). To this end, we carried out high spatial resolution measurements of forward-directed flux (FDF) in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. We demonstrated that in the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable to the decay rate of ballistic photons. Using a Monte Carlo model we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. The advantages of the new method are its simplicity and low-cost.
Maafi, Foued; Li, Baoqiang; Gebhard, Catherine; Brodeur, Mathieu R; Nachar, Walid; Villeneuve, Louis; Lesage, Frédéric; Rhainds, David; Rhéaume, Eric; Tardif, Jean-Claude
2017-03-01
The potential benefits of high-density lipoproteins (HDL) against atherosclerosis are attributed to its major protein component, apolipoprotein A-I (apoA-I). Most of the apoA-I in the vascular wall appears to be in its lipid-poor form. The latter, however, is subjected to degradation by proteases localized in atherosclerotic plaques, which, in turn, has been shown to negatively impact its atheroprotective functions. Here, we report the development and in vivo use of a bioactivatable near-infrared full-length apoA-I-Cy5.5 fluorescent probe for the assessment of apoA-I-degrading proteolytic activities. Fluorescence quenching was obtained by saturation of Cy5.5 fluorophore molecules on apoA-I protein. ApoA-I cleavage led to near-infrared fluorescence enhancement. In vitro proteolysis of the apoA-I probe by a variety of proteases including serine, cysteine, and metalloproteases resulted in an up to 11-fold increase in fluorescence (n = 5, p ≤ 0.05). We detected activation of the probe in atherosclerotic mice aorta sections using in situ zymography and showed that broad-spectrum protease inhibitors protected the probe from degradation, resulting in decreased fluorescence (-54%, n = 6 per group, p ≤ 0.0001). In vivo, the injected probe showed stronger fluorescence emission in the aorta of human apoB transgenic Ldlr - /- atherosclerotic mice (ATX) as compared to wild-type mice. In vivo observations were confirmed by ex vivo aorta imaging quantification where a 10-fold increase in fluorescent signal in ATX mice (p ≤ 0.05 vs. control mice) was observed. The use of this probe in different applications may help to assess new molecular mechanisms of atherosclerosis and may improve current HDL-based therapies by enhancing apoA-I functionality. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.
Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource-limited environments.« less
NASA Astrophysics Data System (ADS)
Cope, K. R.; Bugbee, B.
2011-12-01
Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.
Boronic acids for fluorescence imaging of carbohydrates.
Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D
2016-02-28
"Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.
Percutaneous fiber-optic sensor for the detection of chemotherapy-induced apoptosis in vivo
NASA Astrophysics Data System (ADS)
O'Kelly, James; Liao, Kuo-Chih; Clifton, William; Lu, Daning; Koeffler, Phillip; Loeb, Gerald
2010-02-01
Early imaging of tumor response to chemotherapy has the potential for significant clinical benefits. We are developing a family of fiber-optic sensors called SencilsTM (sensory cilia), which are disposable, minimally invasive, and can provide in vivo monitoring of various analytes for several weeks. The objective of this study was to develop and test our sensor to image the labeling of phosphatidylserine by apoptotic cells in response to chemotherapeutic drugs. FM1-43 was a better fluorescent marker for detecting phosphatidylserine expression than Annexin V-FITC; both the proportion of labeled cells (Annexin V, 15%; FM1-43, 58%) and the relative fluorescent increase (Annexin V-FITC, 1.5-fold; FM1-43, 4.5-fold) was greater when FM1-43 was used to detect apoptosis. Initial testing of the optical sensing technology using Taxol-treated MCF-7 cells demonstrated that injection of FM1-43 resulted in a rapid, transient increase in fluorescence that was greater in apoptotic cells compared to control cells (apoptotic cells, 4-fold increase; control cells, 2-fold increase). Using an established animal model, mice were injected with cyclophosphamide and hepatic apoptosis was assessed by imaging of PS expression. Both the amplitude of fluorescence increase and the time taken for the amplitude to decay to half of its peak were increased in livers from animals treated with cyclophosphamide. Our optical sensing technology can be used to detect the early apoptotic response of cells to chemotherapeutic drugs both in vitro and in vivo. This novel technology represents a unique option for the imaging of tumor responses in vivo, and provides an inexpensive, specific system for the detection of early-stage apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, M.J.; Brawer, S.A.
1982-07-02
The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-raymore » diffraction, and NMR experiments are compared with simulated glass structures.« less
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Photophysics and catalysis of porphyrinoids
NASA Astrophysics Data System (ADS)
Aggarwal, Amit
Organic nanoparticles (ONP) of metalloporphyrins can be versatile catalysts for the selective oxidation of alkenes and other hydrocarbons. Herein, we report the catalytic activity of ONP of 5,10,15,20-tetrakis-[4-(1'H,1'H,2'H,2'H-heptadecafluorodecane-1-thiol)-2,3,5,6-tetrafluorophenyl] porphyrinato iron(III), Fe(III)TPPF84, and 5,10,15,20-tetakis-(2,3,4,5,6-pentafluorophenyl) porphyrinato manganese(III), Mn(III)TPPF20, for cyclohexene oxidation using molecular oxygen as an oxidant in water under ambient conditions. Sequential dipping of indium-tin-oxide electrodes into solutions of tetra cationic porphyrins and tetra anionic polyoxometalates results in the controlled formation of nm thick films. The potential applications of these robust films on electrodes range from catalysts to sensors. This chapter focuses on the electrochemistry of the multilayered films where it is found that the oxidation and reduction potentials of each species remain largely the same as found in solution. Photophysical properties of Porphyrinoids bearing four rigid hydrogen bonding motifs on the meso positions, self-assembled into a cofacial cage with four complementary bis(decyl)melamine units in dry solvents are presented here. Self-assembly was investigated by NMR spectroscopy, dynamic light scattering, and atomic force microscopy. The phototphysical properties of the cage formation involve the measurement of their absorption and emission spectra and the fluorescence life time in dry THF. The hydrocarbon chains on the bis(decyl)melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A systematic study of the photophysical properties of a series of porphyrinoids is presented. The role of the location of a heavy atom in shunting the excited state from the singlet to the triplet manifolds is compared for three cases. It is well known that Pt(II) metalloporphyrins do not fluoresce. For meso pyridyl porphyrins, the fluorescence quantum yield decreases as the number of coordinatively attached Pt(II) complexes increase from 0-4, but the tetracoordinated species retains about 30% of the fluorescence. Covalently attaching a heavy metal complex e.g. Pt(II) complex to the macrocycle by an organometalic bond at the peripheral meso position causes greater than a 20-fold decrease in fluorescence quantum yield and may enhance some internal conversion to the ground state. For comparison, the fluorescence quantum yield decreases somewhat as the number of pyridyl groups on the meso positions increase 0-4. We also evaluate the photophysical properties of a series of porphyrins with nitro groups on the beta pyrrole position and on the meso phenyl group, which also quenches the fluorescence. These studies bear on the use of metal ions to enhance the photophysical properties of these dyes as photodynamic therapeutics and for supramolecular systems, while the nitrated macrocycles have potential application in non linear optics. The photophysical properties of non-hydrolysable tetra- thioglycosylated conjugates of chlorin (CGlc4), isobacteriochlorin (IGlc4) and bacteriochlorin (BGlc4) and core F20 platforms are reported here. These studies involve the measurement of absorption and emission spectra, fluorescence quantum yield, singlet oxygen quantum yield, and singlet state life time in three different solvents: phosphate buffer saline (PBS), ethanol, and ethylacetate. Compared to the porphyrin in PBS, CGlc4 has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield; whereas IGlc4 has broad Q bands and a 12-fold increase in fluorescence quantum yield. Since IGlc4 CGlc4 very slowly bleach, these properties may enable their use as fluorescent tags to track biological processes. BGlc4 has a similar fluorescence quantum yield to PGlc4, (<10%), but the lowest energy absorption/emission peaks of BGlc4 are considerably red shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.
2008-04-01
A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.
Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L
2015-01-01
Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative indicators of IOM release in natural waters and following oxidation and may provide a more robust real-time indication of the presence of IOM than conventional dissolved organic carbon or UV absorbance measurements.
Ghio, Andrew J; Sangani, Rahul G; Brighton, Luisa E; Carson, John L
2010-06-01
Macrophages from smokers demonstrate an increased auto-fluorescence. Similarly, auto-fluorescence follows in vitro exposure of macrophages to cigarette smoke condensate (i.e., the particulate fraction of cigarette smoke). The composition of particles in cigarette smoke can be comparable to air pollution particles. We tested the postulate that macrophages exposed to air pollution particles could demonstrate auto-fluorescence. Healthy nonsmoking and healthy smoking volunteers (both 18-40 years of age) underwent fiberoptic bronchoscopy with bronchoalveolar lavage and alveolar macrophages isolated. Macrophages were incubated at 37 degrees C in 5% CO(2) with either PBS or 100 microg/mL particle for both 1 and 24 h. Particles included a residual oil fly ash, Mt. St. Helens volcanic ash, and ambient air particles collected from St. Louis, Missouri and Salt Lake City, Utah. At the end of incubation, 50 microL of the cell suspension was cytocentrifuged and examined at modes for viewing fluorescein isothiocyanate (FITC) and rhodamine fluorescence. Both emission source air pollution particles demonstrated FITC and rhodamine auto-fluorescence at 1 and 24 h, but the signal following incubation of the macrophages with oil fly ash appeared greater. Similarly, the ambient particles were associated with auto-fluorescence by the alveolar macrophages and this appeared to be dose-dependent. We conclude that exposure of macrophages to air pollution particles can be associated with auto-fluorescence in the FITC and rhodamine modes. c) 2009 Wiley-Liss, Inc
ALA-induced PpIX spectroscopy for brain tumor image-guided surgery
NASA Astrophysics Data System (ADS)
Valdes, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.
2011-03-01
Maximizing the extent of brain tumor resection correlates with improved survival and quality of life outcomes in patients. Optimal surgical resection requires accurate discrimination between normal and abnormal, cancerous tissue. We present our recent experience using quantitative optical spectroscopy in 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence-guided resection. Exogenous administration of ALA leads to preferential accumulation in tumor tissue of the fluorescent compound, PpIX, which can be used for in vivo surgical guidance. Using the state of the art approach with a fluorescence surgical microscope, we have been able to visualize a subset of brain tumors, but the sensitivity and accuracy of fluorescence detection for tumor tissue with this system are low. To take full advantage of the biological selectivity of PpIX accumulation in brain tumors, we used a quantitative optical spectroscopy system for in vivo measurements of PpIX tissue concentrations. We have shown that, using our quantitative approach for determination of biomarker concentrations, ALA-induced PpIX fluorescence-guidance can achieve accuracies of greater than 90% for most tumor histologies. Here we show multivariate analysis of fluorescence and diffuse reflectance signals in brain tumors with comparable diagnostic performance to our previously reported quantitative approach. These results are promising, since they show that technological improvements in current fluorescence-guided surgical technologies and more biologically relevant approaches are required to take full advantage of fluorescent biomarkers, achieve better tumor identification, increase extent of resection, and subsequently, lead to improve survival and quality of life in patients.
Catheter-based time-gated near-infrared fluorescence/OCT imaging system
NASA Astrophysics Data System (ADS)
Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric
2018-02-01
We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.
de Paula Campos, Carolina; de Paula D'Almeida, Camila; Nogueira, Marcelo Saito; Moriyama, Lilian Tan; Pratavieira, Sebastião; Kurachi, Cristina
2017-12-01
Ultraviolet (UV) radiation may induce skin alterations as observed in photoaging. Some recognized modifications are epidermal hyperplasia, amorphous deposition of degraded elastic fibers and reduction in the number of collagen fibers. They alter the tissue biochemical properties that can be interrogated by steady state fluorescence spectroscopy (SSFS). In this study, we monitored the changes in endogenous fluorescence emission from hairless mice skin during a protocol of photoaging using UVB irradiation. To perform the fluorescence spectroscopy, it was used a violet laser (408nm) to induce the native fluorescence that is emitted in the visible range. Under 408nm excitation, the emission spectrum showed bands with peaks centered around 510, 633 and 668nm for irradiated and control groups. A relative increase of the fluorescence at 633nm emission on the flank was observed with time when compared to the ventral skin at the same animal and the non-irradiated control group. We correlated the emission at 633nm with protoporphyrin IX (PpIX), and our hypothesis is that the PpIX metabolism in the photoaged and aged skin are different. PpIX fluorescence intensity in the photoaged skin is higher and more heterogeneous than in the aged skin. Notwithstanding, more spectroscopic and biochemistry studies investigating the 510 and 633nm emission are needed to confirm this hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.
A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.
Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu
2014-02-13
Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.
Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon
2015-01-01
Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864
Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond
NASA Astrophysics Data System (ADS)
Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.
2017-05-01
Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.
Cell-free measurements of brightness of fluorescently labeled antibodies
Zhou, Haiying; Tourkakis, George; Shi, Dennis; Kim, David M.; Zhang, Hairong; Du, Tommy; Eades, William C.; Berezin, Mikhail Y.
2017-01-01
Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures. PMID:28150730
Danylovych, H V
2016-01-01
We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
NASA Astrophysics Data System (ADS)
Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.
2017-03-01
We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.
Laser fluorescence of dentin caries covered with a novel nano-filled sealant.
Braun, Andreas; Beisel, Christian; Brede, Olivier; Krause, Felix
2013-01-01
The aim of the present study was to assess the possibility to measure caries-induced laser fluorescence underneath a novel nano-filled fissure sealant. Sixty freshly extracted human teeth with occlusal dentine carious lesions were horizontally divided, exposing the respective lesion. Teeth were randomly assigned to three groups: (I) white fissure sealant with filler particles (Fissurit F, Voco), (II) clear fissure sealant without filler particles (Fissurit, Voco) and (III) novel experimental fissure sealant with nano-filler particles (Voco). Starting with a sealant thickness of 3 mm, laser fluorescence measurements (DIAGNOdent, KaVo) were performed after finishing the sealant surfaces with polishing papers, reducing the material at intervals of 0.5 mm until the sealant was removed completely. Evaluating a thickness of 0.5 mm, both the clear (83 % of the baseline fluorescence after fine grit polishing) and the white sealant (25 %) did not allow to measure baseline fluorescence (p < 0.05) with no fluorescence reduction in the experimental sealant group (p > 0.05). With increasing sealer thickness, fluorescence was influenced even by the experimental material (89 % of the baseline value at 1 mm). However, by using the experimental material, statistically significant higher fluorescence values than those for the other materials under study (p < 0.05) were obtained. Thicker sealant layers and coarse grit polishing caused a decrease of laser fluorescence in all groups (p < 0.05). Employing the experimental nano-filled sealant, laser fluorescence measurements for caries detection can be performed through thicker sealant layers compared to conventional sealant materials. Thus, it might be possible to use this material to assess a caries progression underneath the sealant and administer an appropriate therapy in due time.
A Green Fluorescent Protein with Photoswitchable Emission from the Deep Sea
Vogt, Alexander; D'Angelo, Cecilia; Oswald, Franz; Denzel, Andrea; Mazel, Charles H.; Matz, Mikhail V.; Ivanchenko, Sergey; Nienhaus, G. Ulrich; Wiedenmann, Jörg
2008-01-01
A colorful variety of fluorescent proteins (FPs) from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP)-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that ∼15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37°C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins. PMID:19018285
Measuring thermodynamic details of DNA hybridization using fluorescence.
You, Yong; Tataurov, Andrey V; Owczarzy, Richard
2011-07-01
Modern real-time PCR systems make it easy to monitor fluorescence while temperature is varied for hundreds of samples in parallel, permitting high-throughput studies. We employed such system to investigate melting transitions of ordered nucleic acid structures into disordered random coils. Fluorescent dye and quencher were attached to oligonucleotides in such a way that changes of fluorescence intensity with temperature indicated progression of denaturation. When fluorescence melting data were compared with traditional ultraviolet optical experiments, commonly used dye/quencher combinations, like fluorescein and tetramethylrhodamine, showed substantial discrepancies. We have therefore screened 22 commercially available fluorophores and quenchers for their ability to reliably report annealing and melting transitions. Dependence of fluorescence on temperature and pH was also investigated. The optimal performance was observed using Texas Red or ROX dyes with Iowa Black RQ or Black Hole quenchers. These labels did not alter two-state nature of duplex melting process and provided accurate melting temperatures, free energies, enthalpies, and entropies. We also suggest a new strategy for determination of DNA duplex thermodynamics where concentration of a dye-labeled strand is kept constant and its complementary strand modified with a quencher is added at increasing excess. These methodological improvements will help build predictive models of nucleic acid hybridization. Copyright © 2011 Wiley Periodicals, Inc., a Wiley company.
Towards a successful clinical implementation of fluorescence-guided surgery.
Snoeks, T J A; van Driel, P B A A; Keereweer, S; Aime, S; Brindle, K M; van Dam, G M; Löwik, C W G M; Ntziachristos, V; Vahrmeijer, A L
2014-04-01
During the European Molecular Imaging Meeting (EMIM) 2013, the fluorescence-guided surgery study group held its inaugural session to discuss the clinical implementation of fluorescence-guided surgery. The general aim of this study group is to discuss and identify the steps required to successfully and safely bring intraoperative fluorescence imaging to the clinics. The focus group intends to use synergies between interested groups as a tool to address regulatory and implementation hurdles in Europe and operates within the intraoperative focus group of the World Molecular Imaging Society (WMIS) that promotes the same interests at the WMIS level. The major topics on the critical path of implementation identified within the study group were quality controls and standards for ensuring accurate imaging and the ability to compare results from different studies, regulatory affairs, and strategies to increase awareness among physicians, regulators, insurance companies, and a broader audience. These hurdles, and the possible actions discussed to overcome them, are summarized in this report. Furthermore, a number of recommendations for the future shape of the fluorescence-guided study group are discussed. A main driving conclusion remains that intraoperative imaging has great clinical potential and that many of the solutions required are best addressed with the community working together to optimally promote and accelerate the clinical implementation of fluorescence imaging towards improving surgical procedures.
Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer
Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro
2016-01-01
Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections Results The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Conclusion Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery. PMID:27584018
Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer.
Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-Pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro
2016-01-01
Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections. The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery.
NASA Astrophysics Data System (ADS)
Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy
2015-05-01
Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.
Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.
Rossi, G; Omenetto, N
1969-02-01
A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.
NASA Astrophysics Data System (ADS)
Adavallan, K.; Gurushankar, K.; Nazeer, Shaiju S.; Gohulkumar, M.; Jayasree, Ramapurath S.; Krishnakumar, N.
2017-06-01
Fluorescence spectroscopic techniques have the potential to assess the metabolic changes during disease development and evaluation of treatment response in a non-invasive and label-free manner. The present study aims to evaluate the effect of mulberry-mediated gold nanoparticles (MAuNPs) in comparison with mulberry leaf extract alone (MLE) for monitoring endogenous fluorophores and to quantify the metabolic changes associated with mitochondrial redox states during streptozotocin-induced diabetic liver tissues using fluorescence spectroscopy. Two mitochondrial metabolic coenzymes, reduced nicotinamide dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) are autofluorescent and are important optical biomarkers to estimate the redox state of a cell. Significant differences in the autofluorescence spectral signatures between the control and the experimental diabetic animals have been noticed under the excitation wavelength at 320 nm with emission ranging from 350-550 nm. A direct correlation between the progression of diabetes and the levels of collagen and optical redox ratio was observed. The results revealed that a significant increase in the emission of collagen in diabetic liver tissues as compared with the control liver tissues. Moreover, there was a significant decrease in the optical redox ratio (FAD/(FAD + NADH)) observed in diabetic control liver tissues, which indicates an increased oxidative stress compared to the liver tissues of control rats. Further, the extent of increased oxidative stress was confirmed by the reduced levels of reduced glutathione (GSH) in diabetic liver tissues. On a comparative basis, treatment with MAuNPs was found to be more effective than MLE for reducing the progression of diabetes and improving the optical redox ratio to a near normal range in streptozotocin-induced diabetic liver tissues. Furthermore, principal component analysis followed by linear discriminant analysis (PC-LDA) has been used to classify the autofluorescence emission spectra from the control and the experimental group of diabetic rats. The results of this study raise the important possibility that fluorescence spectroscopy in conjunction with multivariate statistical analysis has tremendous potential for monitoring or potentially predicting responses to therapy.
Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji
2015-08-01
Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.
Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan
2017-11-22
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.
Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers
NASA Astrophysics Data System (ADS)
Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba
2001-07-01
Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.
Smith, Kathryn A.; Conboy, John C.
2011-01-01
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 bindingin DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner. PMID:21376014
Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.
2008-01-01
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380
Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo
2014-08-01
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P < 0.05). In vivo optical imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P < 0.05), while the probes showed similarly low fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.
2015-03-01
Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time. Electronic supplementary information (ESI) available: The deconvoluted reference spectra are given in ESI Fig. 1-9. See DOI: 10.1039/c4nr07051h
Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She
2013-09-01
By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.
Laser-induced fluorescence measurement of the oil film thickness in an internal combustion engine
NASA Astrophysics Data System (ADS)
Ostroski, Greg M.; Ghandhi, Jaal B.
1997-11-01
The use of a fluorescent dopant molecule to enhance the natural fluorescence of motor oils, and allow quantitative determination of temperature and film thickens in internal combustion engines has been investigated. Measurement of the fluorescence as a function of temperature were made with neat Mobil 1, and solutions of the dopant BTBP in mineral oil and Mobil 1. The fluorescence yield of neat Mobil 1 was found to vary by 30 percent over the temperature range explored, but the spectral characteristics, as measured with bandpass filters, were unaffected by temperature. The BTBP fluorescence was found to increase significantly with temperature, and it was found the narrower regions in the spectrum increased proportionally more than the fluorescence collected over the entire spectrum, allowing a determination of temperature to be made which can then be used to correct for the change in fluorescence yield. Solutions in Mobil 1 showed a smaller increase than that observed in mineral oil.
Diffusion affected magnetic field effect in exciplex fluorescence
NASA Astrophysics Data System (ADS)
Burshtein, Anatoly I.; Ivanov, Anatoly I.
2014-07-01
The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Diffusion affected magnetic field effect in exciplex fluorescence.
Burshtein, Anatoly I; Ivanov, Anatoly I
2014-07-14
The fluorescence of the exciplex, (1)[D(+δ)A(-δ)], formed at contact of photoexcited acceptor (1)A(*) with an electron donor (1)D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, (1, 3)[D(+)…A(-)]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Liu, Lixin; Qin, Feng; Lv, Tianquan; Zhang, Zhiguo; Cao, Wenwu
2016-10-15
A biological temperature measurement method based on the fluorescence intensity ratio (FIR) was developed to reduce uncertainty. The upconversion luminescence of NaYF4:Yb, Er nanocrystals was studied as a function of temperature around the physiologically relevant range of 300-330 K. We found that the green-green FIR Fe and red-green FIR (I660/I540) varied linearly as temperature increased. The thermometric uncertainties using the two FIRs were discussed and were determined to be almost constant at 0.6 and 0.09 K for green-green and red-green, respectively. The lower thermometric uncertainty comes from the intense signal-to-noise ratio of the measured FIRs owing to their comparable fluorescence intensities.
AOTF microscope for imaging with increased speed and spectral versatility.
Wachman, E S; Niu, W; Farkas, D L
1997-01-01
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289
Karschnia, P; Scheuer, C; Heß, A; Später, T; Menger, M D; Laschke, M W
2018-05-09
The seeding of tissue constructs with adipose tissue-derived microvascular fragments (ad-MVF) is an emerging pre-vascularisation strategy. Ad-MVF rapidly reassemble into new microvascular networks after in vivo implantation. Herein it was analysed whether this process was improved by erythropoietin (EPO). Ad-MVF were isolated from green fluorescent protein (GFP)+ as well as wild-type C57BL/6 mice and cultivated for 24 h in medium supplemented with EPO (20 IU/mL) or vehicle. Freshly isolated, non-cultivated ad-MVF served as controls. Protein expression, cell viability and proliferation of ad-MVF were assessed by proteome profiler array and fluorescence microscopy. GFP+ ad-MVF were seeded on collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of C57BL/6 mice, to analyse their vascularisation over 14 d by intravital fluorescence microscopy, histology and immunohistochemistry. Cultivation up-regulated the expression of pro- and anti-angiogenic factors within both vehicle- and EPO-treated ad-MVF when compared with non-cultivated controls. Moreover, EPO treatment suppressed cultivation-associated apoptosis and significantly increased the number of proliferating endothelial cells in ad-MVF when compared with vehicle-treated and non-cultivated ad-MVF. Accordingly, implanted matrices seeded with EPO-treated ad-MVF exhibited an improved vascularisation, as indicated by a significantly higher functional microvessel density. The matrices of the three groups contained a comparably large fraction of GFP+ microvessels originating from the ad-MVF, whereas the tissue surrounding the matrices seeded with EPO-treated ad-MVF exhibited a significantly increased microvessel density when compared with the other two groups. These findings indicated that EPO represents a promising cytokine to further boost the excellent vascularisation properties of ad-MVF in tissue-engineering applications.
Chwirot, B W; Chwirot, S; Sypniewska, N; Michniewicz, Z; Redzinski, J; Kurzawski, G; Ruka, W
2001-12-01
Multicenter study of the diagnostic parameters was conducted by three groups in Poland to determine if in situ fluorescence detection of human cutaneous melanoma based on digital imaging of spectrally resolved autofluorescence can be used as a tool for a preliminary selection of patients at increased risk of the disease. Fluorescence examinations were performed for 7228 pigmented lesions in 4079 subjects. Histopathologic examinations showed 56 cases of melanoma. A sensitivity of fluorescence detection of melanoma was 82.7% in agreement with 82.5% found in earlier work. Using as a reference only the results of histopathologic examinations obtained for 568 cases we found a specificity of 59.9% and a positive predictive value of 17.5% (melanomas versus all pigmented lesions) or 24% (melanomas versus common and dysplastic naevi). The specificity and positive predictive value found in this work are significantly lower than reported earlier but still comparable with those reported for typical screening programs. In conclusion, the fluorescence method of in situ detection of melanoma can be used in screening large populations of patients for a selection of patients who should be examined by specialists.
Microlensed dual-fiber probe for depth-resolved fluorescence measurements
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo
2011-07-01
We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.
Super-resolution fluorescence microscopy by stepwise optical saturation
Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.
2018-01-01
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306
Walls, Kelvin L.; Benke, Geza
2011-01-01
Increased use of fluorescent lighting as a climate change mitigation strategy may increase eye disease. The safe range of light to avoid exposing the eye to potentially damaging ultraviolet (UV) radiation is 2000 to 3500K and greater than 500 nanometers. Some fluorescent lights fall outside this safe range. Fluorescent lighting may increase UV-related eye diseases by up to 12% and, according to our calculations, may cause an additional 3000 cases of cataracts and 7500 cases of pterygia annually in Australia. Greater control of UV exposure from fluorescent lights is required. This may be of particular concern for aging populations in developed countries and countries in northern latitudes where there is a greater dependence on artificial lighting. PMID:22021286
Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N
1998-02-01
Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of a placental supply of oxygen.
Kałka, Andrzej J; Turek, Andrzej M
2018-04-03
'White' and 'grey' methods of data modeling have been employed to resolve the heterogeneous fluorescence from a fluorophore mixture of 9-cyanoanthracene (CNA), 10-chloro-9-cyanoanthracene (ClCNA) and 9,10-dicyanoanthracene (DCNA) into component individual fluorescence spectra. The three-component spectra of fluorescence quenching in methanol were recorded for increasing amounts of lithium bromide used as a quencher. The associated intensity decay profiles of differentially quenched fluorescence of single components were modeled on the basis of a linear Stern-Volmer plot. These profiles are necessary to initiate the fitting procedure in both 'white' and 'grey' modeling of the original data matrices. 'White' methods of data modeling, called also 'hard' methods, are based on chemical/physical laws expressed in terms of some well-known or generally accepted mathematical equations. The parameters of these models are not known and they are estimated by least squares curve fitting. 'Grey' approaches to data modeling, also known as hard-soft modeling techniques, make use of both hard-model and soft-model parts. In practice, the difference between 'white' and 'grey' methods lies in the way in which the 'crude' fluorescence intensity decays of the mixture components are estimated. In the former case they are given in a functional form while in the latter as digitized curves which, in general, can only be obtained by using dedicated techniques of factor analysis. In the paper, the initial values of the Stern-Volmer constants of pure components were evaluated by both 'point-by-point' and 'matrix' versions of the method making use of the concept of wavelength dependent intensity fractions as well as by the rank annihilation factor analysis applied to the data matrices of the difference fluorescence spectra constructed in two ways: from the spectra recorded for a few excitation lines at the same concentration of a fluorescence quencher or classically from a series of the spectra measured for one selected excitation line but for increasing concentration of the quencher. The results of multiple curve resolution obtained by all types of the applied methods have been scrutinized and compared. In addition, the effect of inadequacy of sample preparation and increasing instrumental noise on the shape of the resolved spectral profiles has been studied on several datasets mimicking the measured data matrices. Graphical Abstract ᅟ.
Adaptive platform for fluorescence microscopy-based high-content screening
NASA Astrophysics Data System (ADS)
Geisbauer, Matthias; Röder, Thorsten; Chen, Yang; Knoll, Alois; Uhl, Rainer
2010-04-01
Fluorescence microscopy has become a widely used tool for the study of medically relevant intra- and intercellular processes. Extracting meaningful information out of a bulk of acquired images is usually performed during a separate post-processing task. Thus capturing raw data results in an unnecessary huge number of images, whereas usually only a few images really show the particular information that is searched for. Here we propose a novel automated high-content microscope system, which enables experiments to be carried out with only a minimum of human interaction. It facilitates a huge speed-increase for cell biology research and its applications compared to the widely performed workflows. Our fluorescence microscopy system can automatically execute application-dependent data processing algorithms during the actual experiment. They are used for image contrast enhancement, cell segmentation and/or cell property evaluation. On-the-fly retrieved information is used to reduce data and concomitantly control the experiment process in real-time. Resulting in a closed loop of perception and action the system can greatly decrease the amount of stored data on one hand and increases the relative valuable data content on the other hand. We demonstrate our approach by addressing the problem of automatically finding cells with a particular combination of labeled receptors and then selectively stimulate them with antagonists or agonists. The results are then compared against the results of traditional, static systems.
Bok, Sangho; Korampally, Venumadhav; Darr, Charles M; Folk, William R; Polo-Parada, Luis; Gangopadhyay, Keshab; Gangopadhyay, Shubhra
2013-03-15
We report a simple, robust fluorescence biosensor for the ultra-sensitive detection of Clostridium botulinum Neurotoxin Type A (BoNT/A) in complex, real-world media. High intrinsic signal amplification was achieved through the combined use of ultra-bright, photostable dye-doped nanoparticle (DOSNP) tags and high surface area nanoporous organosilicate (NPO) thin films. DOSNP with 22 nm diameter were synthesized with more than 200 times equivalent free dye fluorescence and conjugated to antibodies with average degree of substitution of 90 dyes per antibody, representing an order of magnitude increase compared with conventional dye-labeled antibodies. The NPO films were engineered to form constructive interference at the surface where fluorophores were located. In addition, DOSNP-labeled antibodies with NPO films increased surface roughness causing diffuse scattering resulting in 24% more scattering intensity than dye-labeled antibody with NPO films. These substrates were used for immobilization of capture antibodies against BoNT/A, which was further quantified by DOSNP-labeled signal antibodies. The combination of optical effects enhanced the fluorescence and, therefore, the signal-to-noise ratio significantly. BoNT/A was detected in PBS buffer down to 21.3 fg mL(-1) in 4 h. The assay was then extended to several complex media and the four-hour detection limit was found to be 145.8 fg mL(-1) in orange juice and 164.2 fg mL(-1) in tap water, respectively, demonstrating at least two orders of magnitude improvement comparing to the reported detection limit of other enzyme-linked immunosorbent assays (ELISA). This assay, therefore, demonstrates a novel method for rapid, ultra-low level detection of not only BoNT/A, but other analytes as well. Copyright © 2012 Elsevier B.V. All rights reserved.
Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia
2016-01-01
The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078
The effect of antibacterial acting extracorporeal shockwaves on bacterial cell integrity.
Horn, Carsten; Mengele, Karin; Gerdesmeyer, Ludger; Gradinger, Reiner; Gollwitzer, Hans
2009-12-01
Antibacterial effects of extracorporeal shockwaves (ESWs) have been demonstrated in vitro against bacteria under static and dynamic growth conditions. This study assessed the effects of ESWs on the cell wall integrity of bacteria. Standardized suspensions of Staphylococcus aureus were exposed to various shockwave impulses (2000-12,000) of different energy flux densities (EFD, 0.38-0.96 mJ/mm(2)). Bacterial suspensions of equal concentration that had been permeabilized (to >99%) with isopropanol were used as positive controls. The bacteria of all groups were stained with Sytox Green nucleic acid stain. The fluorescence of the shockwave-treated, permeabilized, and untreated suspensions was measured and compared for bacterial survival, quantified by colony-forming units after plating. Although ESWs showed a significant energy-dependent antibacterial effect that reduced CFUs in the treated suspensions by between 56% and 99%, only maximum energies (4000 impulses at 0.96 mJ/mm(2) and 12,000 impulses at 0.59 mJ/mm(2)) were followed by a significant increase in fluorescence compared with the untreated control (p<0.05). However, the fluorescence of these treated groups was still far less than that of the alcohol-permeabilized positive control groups (p<0.05). Lower energies and impulse rates did not show increased intracellular uptake of the fluorescent dye (p>0.05). This is the first study to assess bacterial cell wall permeability after ESW treatment. It was found that the permeabilization of bacterial cells after ESW treatment was far less than expected due to the corresponding antibacterial effect. Other mechanisms, such as intracellular effects, might be involved in bacterial killing after ESWs and still must be elucidated.
Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates
NASA Astrophysics Data System (ADS)
Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.
2013-11-01
We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".
Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor
2016-12-01
Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Non-invasive assessment of the liver using imaging
NASA Astrophysics Data System (ADS)
Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.
2016-12-01
Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.
Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua
2015-12-15
A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
McGowan, K B; Kurtis, M S; Lottman, L M; Watson, D; Sah, R L
2002-07-01
To compare two fluorometric assays, utilizing (1) the bisbenzimidazole Hoechst 33258 and (2) PicoGreen, for determining DNA content in human cartilage. Human articular and nasal septal cartilage explants were digested using proteinase K. Portions of sample digest were analysed for intrinsic and dye-enhanced fluorescence with either Hoechst 33258 or PicoGreen. Intrinsic tissue fluorescence in both articular and septal cartilage increased with age and was prominent at wavelengths used for Hoechst 33258 but relatively low at wavelengths used for PicoGreen. The relative contribution of intrinsic fluorescence to total dye-enhanced fluorescence of human cartilage was markedly greater for Hoechst 33258 (19-57%) than for PicoGreen (2-7%). Thus, in many situations, DNA in human cartilage can be assayed using PicoGreen without the need to correct for intrinsic cartilage fluorescence. The enhancement of fluorescence by each dye was found to be specific for DNA, as shown by fluorescence spectra, >90% sensitivity to DNase, and resistance to RNase. In addition, little or no interference was caused by non-DNA tissue components, since DNA caused an equal enhancement in the absence or presence of proteinase K digested human cartilage, once intrinsic cartilage fluorescence was subtracted. PicoGreen was more sensitive for assaying DNA (0.9ng DNA/ml) than Hoechst 33258 (6ng DNA/ml) and can also be used in a microplate reader. PicoGreen can be used in a rapid and sensitive assay to quantify DNA in small samples of human cartilage. Copyright 2002 Published by Elsevier Science Ltd on behalf of OsteoArthritis Research Society International.
A fluorescence-based imaging approach to pharmacokinetic analysis of intracochlear drug delivery.
Ayoob, Andrew M; Peppi, Marcello; Tandon, Vishal; Langer, Robert; Borenstein, Jeffrey T
2018-04-05
Advances in microelectromechanical systems (MEMS) technologies are enhancing the development of intracochlear delivery devices for the treatment of hearing loss with emerging pharmacological therapies. Direct intracochlear delivery addresses the limitations of systemic and intratympanic delivery. However, optimization of delivery parameters for these devices requires pharmacokinetic assessment of the spatiotemporal drug distribution inside the cochlea. Robust methods of measuring drug concentration in the perilymph have been developed, but lack spatial resolution along the tonotopic axis or require complex physiological measurements. Here we describe an approach for quantifying distribution of fluorescent drug-surrogate probe along the cochlea's sensory epithelium with high spatial resolution enabled by confocal fluorescence imaging. Fluorescence from FM 1-43 FX, a fixable endocytosis marker, was quantified using confocal fluorescence imaging of whole mount sections of the organ of Corti from cochleae resected and fixed at several time points after intracochlear delivery. Intracochlear delivery of FM 1-43 FX near the base of the cochlea produces a base-apex gradient of fluorescence in the row of inner hair cells after 1 h post-delivery that is consistent with diffusion-limited transport along the scala tympani. By 3 h post-delivery there is approximately an order of magnitude decrease in peak average fluorescence intensity, suggesting FM 1-43 FX clearance from both the perilymph and inner hair cells. The increase in fluorescence intensity at 72 h post-delivery compared to 3 h post-delivery may implicate a potential radial transport pathway into the scala media. Copyright © 2018 Elsevier B.V. All rights reserved.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko
2016-11-01
In investigations of sexual assaults, as well as in identifying a suspect, the detection of human sperm is important. Recently, a kit for fluorescent staining of human spermatozoa, SPERM HY-LITER™, has become available. This kit allows for microscopic observation of the heads of human sperm using an antibody tagged with a fluorescent dye. This kit is specific to human sperm and provides easy detection by luminescence. However, criteria need to be established to objectively evaluate the fluorescent signals and to evaluate the staining efficiency of this kit. These criteria will be indispensable for investigation of forensic samples. In the present study, the SPERM HY-LITER™ Express kit, which is an improved version of SPERM HY-LITER™, was evaluated using an image analysis procedure using Laplacian and Gaussian methods. This method could be used to automatically select important regions of fluorescence produced by sperm. The fluorescence staining performance was evaluated and compared under various experimental conditions, such as for aged traces and in combination with other chemical staining methods. The morphological characteristics of human sperm were incorporated into the criteria for objective identification of sperm, based on quantified features of the fluorescent spots. Using the criteria, non-specific or insignificant fluorescent spots were excluded, and the specificity of the kit for human sperm was confirmed. The image analysis method and criteria established in this study are universal and could be applied under any experimental conditions. These criteria will increase the reliability of operator judgment in the analysis of human sperm samples in forensics.
ALA-induced fluorescence in the canine oral cavity.
Vaidyanathan, Vijay; Wiggs, Robert; Stohl, Josh; Baxi, Mehul
2006-06-01
We examined whether 5-aminolevulinic acid (ALA) could enhance the spectroscopic contrast between normal and diseased oral tissues, without prolonged photosensitivity. ALA is a promising photosensitizing agent. Adose of 25 mg/kg of ALA was administered intravenously to five dogs with gingivitis and three dogs with oral cancer, respectively. Fluorescence was recorded from the diseased sites in the oral cavity in addition to normal sites. ALA-induced proto-porphyrin IX fluorescence at all gingivitis sites reached a peak in 2-3 h and returned to baseline in 24 h. Fluorescence from the gingivitis site was observed earlier and was higher than the fluorescence from the normal site. For dogs with cancer, fluorescence from the cancerous sites occurred earlier in time compared to gingivitis sites and was comparatively higher in intensity. The fluorescence from the diseased sites was found to be higher than the normal site. Clinical and fluorescence data suggest that a dose of 25 mg/kg may be satisfactory for diagnostic purposes and would have minimal side effects.
Blake, E; Campbell, S; Allen, J; Mathew, J; Helliwell, P; Curnow, A
2012-12-05
Topical protoporphyrin (PpIX)-induced photodynamic therapy (PDT) relies on the penetration of the prodrug into the skin lesion and subsequent accumulation of the photosensitizer. Methyl aminolevulinate (MAL)-PDT is an established treatment for thinner and superficial non-melanoma skin cancers (NMSCs) but for the treatment of the thicker nodular basal cell carcinoma (nBCC) enhanced penetration of the prodrug is required. This study employed a new higher pressure, oxygen pressure injection (OPI) device, at the time of Metvix® application with a view to enhancing the penetration of MAL into the tumors. Each patient had Metvix® applied to a single nBCC followed by application of a higher pressure OPI device. Following different time intervals (0, 30, 60, 120 or 180 min) the tumors were excised. The maximum depth and area of MAL penetration achieved in each lesion was measured using PpIX fluorescence microscopy. As expected, an increase in the depth of MAL-induced PpIX accumulation and area of tumor sensitized was observed over time; when the Metvix® cream was applied for 0, 30, 60, 120 and 180 min the median depth of PpIX fluorescence was 0%, 21%, 26.5%, 75.5% and 90%, respectively and the median area of tumor sensitized was 0%, 4%, 6%, 19% and 60%, respectively. As the investigation presented here did not include a control arm, the relative depths of fluorescence observed in this study were statistically compared (using the non-parametric Mann Whitney U test) with the results of our previous study where patients had Metvix® cream applied either with or without the standard pressure OPI device. When the higher pressure OPI device was employed compared to without OPI this increase was observed to be greater following 30, 120, and 180 min although overall not significantly (p=0.835). In addition, no significant difference between the higher pressure OPI device employed here and the previously investigated standard pressure OPI device was observed (p=0.403). However, when the results for both OPI devices were combined and compared to the standard treatment (no OPI employed) group, although the difference did not reach significance (p=0.531) a consistent and substantial increase in the depth of PpIX fluorescence was observed, therefore employment of an OPI device during topical MAL-PDT protocols warrants further investigation as a technique for enhancing MAL penetration. Copyright © 2012 Elsevier B.V. All rights reserved.
Al-Mayahi, Ahmed Madi Waheed
2016-10-01
The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.
Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J
2014-04-15
Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.
Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger
2017-01-24
The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA FITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA FITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA FITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp 2 -defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA FITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.
NASA Astrophysics Data System (ADS)
O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.
2012-02-01
Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.
Lewis, Jo E; Brameld, John M; Hill, Phil; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H
2015-12-30
The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker
2016-12-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate from the RPE and may be modified by the overlaying retinal layers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feldman, Tatiana B; Yakovleva, Marina A; Larichev, Andrey V; Arbukhanova, Patimat M; Radchenko, Alexandra Sh; Borzenok, Sergey A; Kuzmin, Vladimir A; Ostrovsky, Mikhail A
2018-05-22
The aim of this work is the determination of quantitative diagnostic criteria based on the spectral characteristics of fundus autofluorescence to detect early stages of degeneration in the retina and retinal pigment epithelium (RPE). RPE cell suspension samples were obtained from the cadaver eyes with and without signs of age-related macular degeneration (AMD). Fluorescence analysis at an excitation wavelength of 488 nm was performed. The fluorescence lifetimes of lipofuscin-granule fluorophores were measured by counting time-correlated photon method. Comparative analysis of fluorescence spectra of RPE cell suspensions from the cadaver eyes with and without signs of AMD showed a significant difference in fluorescence intensity at 530-580 nm in response to fluorescence excitation at 488 nm. It was notably higher in eyes with visual pathology than in normal eyes regardless of the age of the eye donor. Measurements of fluorescence lifetimes of lipofuscin fluorophores showed that the contribution of photooxidation and photodegradation products of bisretinoids to the total fluorescence at 530-580 nm of RPE cell suspensions was greater in eyes with visual pathology than in normal eyes. Because photooxidation and photodegradation products of bisretinoids are markers of photodestructive processes, which can cause RPE cell death and initiate degenerative processes in the retina, quantitative determination of increases in these bisretinoid products in lipofuscin granules may be used to establish quantitative diagnostic criteria for degenerative processes in the retina and RPE.
Enhanced speed in fluorescence imaging using beat frequency multiplexing
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke
2016-03-01
Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.
In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones
Sharma, Robin; Schwarz, Christina; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.
2016-01-01
Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas. PMID:26903225
NASA Astrophysics Data System (ADS)
Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.
2016-08-01
Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.
Brandt, Erin E; Masta, Susan E
2017-01-01
Fluorescence is increasingly recognized to be widespread in nature. In particular, some arachnids fluoresce externally, and in spiders the hemolymph fluoresces. In this study, we examined the external fluorescence and the fluorophores of different sexes and life stages of the crab spider Misumena vatia (Clerk 1757), a sit-and-wait predator that feeds on insects as they visit flowers. We designed novel instrumentation to measure external fluorescence in whole specimens. We found that although males and females possess internal fluorophores with similar properties, the external expression of fluorescence varies across sexes and life stages. Spiders fluoresce brightly as immatures. Females maintain their brightness to adulthood, whereas males become increasingly dim as they mature. We suggest that external fluorescence likely contributes to visual signaling in these animals, and that it differs between the sexes as a result of differences in foraging ecology and behavior.
Brandt, Erin E.
2017-01-01
Fluorescence is increasingly recognized to be widespread in nature. In particular, some arachnids fluoresce externally, and in spiders the hemolymph fluoresces. In this study, we examined the external fluorescence and the fluorophores of different sexes and life stages of the crab spider Misumena vatia (Clerk 1757), a sit-and-wait predator that feeds on insects as they visit flowers. We designed novel instrumentation to measure external fluorescence in whole specimens. We found that although males and females possess internal fluorophores with similar properties, the external expression of fluorescence varies across sexes and life stages. Spiders fluoresce brightly as immatures. Females maintain their brightness to adulthood, whereas males become increasingly dim as they mature. We suggest that external fluorescence likely contributes to visual signaling in these animals, and that it differs between the sexes as a result of differences in foraging ecology and behavior. PMID:28467416
Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho
2014-01-01
Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).
Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...
Chuang, Cheng-Hsin; Wu, Ting-Feng; Chen, Cheng-Ho; Chang, Kai-Chieh; Ju, Jing-Wei; Huang, Yao-Wei; Van Nhan, Vo
2015-07-21
A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis.
Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa
NASA Astrophysics Data System (ADS)
Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa
2013-01-01
Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.
Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.
Camposeo, Andrea; Jurga, Radoslaw; Moffa, Maria; Portone, Alberto; Cardarelli, Francesco; Della Sala, Fabio; Ciracì, Cristian; Pisignano, Dario
2018-05-01
Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.
Laser-saturated fluorescence measurements in laminar sooting diffusion flames
NASA Technical Reports Server (NTRS)
Wey, Changlie
1993-01-01
The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.
Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T
2001-05-01
Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.
Hong, Guosong; Lee, Jerry C.; Jha, Arshi; Diao, Shuo; Nakayama, Karina H.; Hou, Luqia; Doyle, Timothy C.; Robinson, Joshua T.; Antaris, Alexander L.; Dai, Hongjie; Cooke, John P.; Huang, Ngan F.
2014-01-01
Background Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000–1400 nm) of photon wavelengths. Methods and Results Owing to the reduced photon scattering of NIR-II fluorescence compared to traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microCT. Furthermore, imaging over 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P < 0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. Conclusions The penetration depth of millimeters, high spatial resolution and fast acquisition rate of NIR-II imaging makes it a useful imaging tool for murine models of vascular disease. PMID:24657826
Miljevic, B; Heringa, M F; Keller, A; Meyer, N K; Good, J; Lauber, A; Decarlo, P F; Fairfull-Smith, K E; Nussbaumer, T; Burtscher, H; Prevot, A S H; Baltensperger, U; Bottle, S E; Ristovski, Z D
2010-09-01
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Hong, Guosong; Lee, Jerry C; Jha, Arshi; Diao, Shuo; Nakayama, Karina H; Hou, Luqia; Doyle, Timothy C; Robinson, Joshua T; Antaris, Alexander L; Dai, Hongjie; Cooke, John P; Huang, Ngan F
2014-05-01
Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P<0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. The penetration depth of millimeters, high spatial resolution, and fast acquisition rate of NIR-II imaging make it a useful imaging tool for murine models of vascular disease. © 2014 American Heart Association, Inc.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.
2017-12-01
OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of PAH fluorescence. Preliminary results on stalagmite samples, lake sediments and soils will be reported. PAH content variations along the sample were compared with PAH concentration and with bulk OM content deduced from SSF records. The accuracy of the PAH fluorescence as source marker of fluxes will be discussed for each type of sample.
340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.
Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian
2016-09-19
We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.
Dang, Xibei; Young, Nicolas L
2014-05-01
Ultraviolet photodissociation (UVPD) is a compelling fragmentation technique with great potential to enhance proteomics generally and top-down MS specifically. In this issue, Cannon et al. (Proteomics 2014, 14, XXXX-XXXX) use UVPD to perform top-down MS on several sequence variants of green fluorescent protein and compare the results to CID, higher energy collision induced dissociation, and electron transfer dissociation. As compared to the other techniques UVPD produces a wider variety of fragment ion types that are relatively evenly distributed across the protein sequences. Overall, their results demonstrate enhanced sequence coverage and higher confidence in sequence assignment via UVPD MS. Based on these and other recent results UVPD is certain to become an increasingly widespread and valuable tool for top-down proteomics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Blaustein, M P; Goldring, J M
1975-01-01
1. Some physiological properties of tissue fractions from rat brain homogenates have been examined. Of the three fractions studied (presynaptic nerve terminals, mitochondria and fragmented membranes), only the nerve terminals (synaptosomes) have the ability to accumulate 42K from physiological salt solutions. 2. The ability to accumulate and retain K is lost if synaptosomes are exposed to very hypotonic solutions. The K uptake and total K content is reduced by ouabain and by inhibitors of glycolysis and oxidative phosphorylation. 3. These results suggest that synaptosomes in physiological saline accumulate K against a concentration gradient, and may have K diffusion potentials across their surface membranes. The voltage-sensitive fluorescent probe, 3,3'-dipentyl 2,2'-oxacarbocyanine (CC5), was used to test this possibility. 4. In the squid axon, the fluorescent emission of CC5 is directly proportional to membrane potential; depolarization causes an increase in fluorescence. 5. The fluorescence of synaptosomes ('synaptosome fluorescence') treated with CC5 is increased when [K]o is increased or [K]o is reduced; replacement of external Na by Li or choline has little effect on the synaptosome fluorescence. In quantitative terms, synaptosome fluorescence is proportional to log ([K]o plus 0-05[Na]o). Rb is about as effective as K in enhancing synaptosome fluorescence; Cs is about 1/4 as effective. The effect of increased [K]o is reversible. 6. The fluorescence data provide corroborative evidence that there is normally a large K gradient ([K]o smaller than [I]i) across the synaptosome surface membrane. The data suggest the [K]i may be in excess of 100 mM. 7. Replacement of Cl- by methylsulphate did not significantly affect the relationship between synaptosome fluorescence and [K]o, nor did removal of external Ca. 8. The fluorescence of CC5-treated mitochondria, membrane fragmnets, or lysed synaptosomes is unaffected by changes in the K concentration of the medium. 9. Veratridine and gramicidin D, both of which enhance Na permeability (PNa) in some intact tissues, increase synaptosome fluorescence when added to the standard medium. The increment is greatly reduced or abolished when external Na is replaced by choline. 10. If synaptosomes are first Na-loaded (by pre-treatment with cyanide + iodoacetate), and then placed in a choline medium, addition of gramicidin D significantly decreases fluorescence. This effect could be explained if, with [Na]o smaller than [Na]i, the increase in PNa causes the synaptosomes to hyperpolarize. 11. The veratridine-induced increase in synaptosome fluorescence was prevented by 3 times 10- minus 7M tetrodotoxin, which also blocks the depolarizing effect of veratridine in intact neurones. 12. The main conclusion is that synaptosomes may retain resting membrane potentials and the ability to increase Na permeability. PMID:49421
Small-Molecule Photostabilizing Agents are Modifiers of Lipid Bilayer Properties
Alejo, Jose L.; Blanchard, Scott C.; Andersen, Olaf S.
2013-01-01
Small-molecule photostabilizing or protective agents (PAs) provide essential support for the stability demands on fluorescent dyes in single-molecule spectroscopy and fluorescence microscopy. These agents are employed also in studies of cell membranes and model systems mimicking lipid bilayer environments, but there is little information about their possible effects on membrane structure and physical properties. Given the impact of amphipathic small molecules on bilayer properties such as elasticity and intrinsic curvature, we investigated the effects of six commonly used PAs—cyclooctatetraene (COT), para-nitrobenzyl alcohol (NBA), Trolox (TX), 1,4-diazabicyclo[2.2.2]octane (DABCO), para-nitrobenzoic acid (pNBA), and n-propyl gallate (nPG)—on bilayer properties using a gramicidin A (gA)-based fluorescence quench assay to probe for PA-induced changes in the gramicidin monomer↔dimer equilibrium. The experiments were done using fluorophore-loaded large unilamellar vesicles that had been doped with gA, and changes in the gA monomer↔dimer equilibrium were assayed using a gA channel-permeable fluorescence quencher (Tl+). Changes in bilayer properties caused by, e.g., PA adsorption at the bilayer/solution interface that alter the equilibrium constant for gA channel formation, and thus the number of conducting gA channels in the large unilamellar vesicle membrane, will be detectable as changes in the rate of Tl+ influx—the fluorescence quench rate. Over the experimentally relevant millimolar concentration range, TX, NBA, and pNBA, caused comparable increases in gA channel activity. COT, also in the millimolar range, caused a slight decrease in gA channel activity. nPG increased channel activity at submillimolar concentrations. DABCO did not alter gA activity. Five of the six tested PAs thus alter lipid bilayer properties at experimentally relevant concentrations, which becomes important for the design and analysis of fluorescence studies in cells and model membrane systems. We therefore tested combinations of COT, NBA, and TX; the combinations altered the fluorescence quench rate less than would be predicted assuming their effects on bilayer properties were additive. The combination of equimolar concentrations of COT and NBA caused minimal changes in the fluorescence quench rate. PMID:23746513
Bitton, Pierre-Paul; Harant, Ulrike K; Fritsch, Roland; Champ, Connor M; Temple, Shelby E; Michiels, Nico K
2017-03-01
The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.
Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices
NASA Astrophysics Data System (ADS)
Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai
2018-04-01
Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.
Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata
2014-11-10
Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liao, Meng-xia; Deng, Tian-long
2006-01-01
It was observed that the atomic fluorescence emission due to As(V) could has a 10% to 40% of fluorescence emission signal during the determination of As(III) in the mixture of As(III) and As(V). Besides, interferes from heavy metals such as Pb(lIl), Cu(ll) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(II), Zn(ll), Mn(II) and Fe(Ill). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(V) emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples of porewaters and sediments in Poyang Lake, China.
Spectrally resolved visualization of fluorescent dyes permeating into skin
NASA Astrophysics Data System (ADS)
Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin
2012-03-01
We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.
NASA Astrophysics Data System (ADS)
Akchurin, Igor O.; Yakhutina, Anna I.; Bochkov, Andrei Y.; Solovjova, Natalya P.; Medvedev, Michael G.; Traven, Valerii F.
2018-05-01
Novel push-pull fluorescent dyes - 7-(diethylamino)furo- and 7-(diethylamino)thieno[3,2-c]coumarins derivatives have been synthesized using formyl derivatives of furo- and thieno[3,2-c]coumarins as starting materials. Electron absorption and fluorescent spectra of the dyes have been recorded in different solvents. Structure and solvent effects on the dyes spectral characteristics were analyzed. The fusion of five-membered heterocycle to coumarin provides a definite increase of Stokes shifts in all solvents and results in higher quantum yields of fluorescence. The absorption and emission bands of thieno[3,2-c] coumarin derivatives are definitely shifted to the red region (3-30 nm) compared to similar derivatives of furo[3,2-c]coumarin. TD-DFT calculations of some of the studied compounds have shown that hybrid DFT functionals and adequate representation of molecular environment are essential for obtaining accurate UV-Vis absorption spectra for the dyes with extended π-system. The longest-wave electron transitions in the studied compounds were computationally shown to be of push-pull nature.
Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology
NASA Astrophysics Data System (ADS)
Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.
2005-04-01
Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.
Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows
Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore
2010-01-01
In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall. PMID:22163540
Characterization of buoyant fluorescent particles for field observations of water flows.
Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore
2010-01-01
In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres' fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.
NASA Astrophysics Data System (ADS)
Zhou, Liyi; Gong, Liang; Hu, Shunqin
2018-06-01
Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500 μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15 min, CM-NO2 displayed a 90-fold fluorescence enhancement at 505 nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760 nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.
Iijima, Issei; Hohsaka, Takahiro
2009-04-17
Position-specific incorporation of fluorescent groups is a useful method for analysis of the functions and structures of proteins. We have developed a method for the incorporation of visible-wavelength-fluorescent non-natural amino acids into proteins in a cell-free translation system. Using this technique, we introduced one or two BODIPY-linked amino acids into maltose-binding protein (MBP) to obtain MBP derivatives showing ligand-dependent changes in fluorescence intensity or intensity ratio. BODIPY-FL-aminophenylalanine was incorporated in place of 15 tyrosines, as well as the N-terminal Lys1, and the C-terminal Lys370 of MBP. Fluorescence measurements revealed that MBP containing a BODIPY-FL moiety in place of Tyr210 showed a 13-fold increase in fluorescence upon binding of maltose. Tryptophan-to-phenylalanine substitutions suggest that the increase in fluorescence was the result of a decrease in the quenching of BODIPY-FL by tryptophan located around the binding site. MBP containing a BODIPY-558 moiety also showed a maltose-dependent increase in fluorescence. BODIPY-FL was then additionally incorporated in place of Lys1 of the BODIPY-558-containing MBP as a response to the amber codon. Fluorescence measurements with excitation of BODIPY-FL showed a large change in fluorescence intensity ratio (0.13 to 1.25) upon binding of maltose; this change can be attributed to fluorescence resonance energy transfer (FRET) and maltose-dependent quenching of BODIPY-558. These results demonstrate the usefulness of the position-specific incorporation of fluorescent amino acids in the fluorescence-based detection of protein functions.
NASA Astrophysics Data System (ADS)
Piland, Geoffrey B.; Burdett, Jonathan J.; Hung, Tzu-Yao; Chen, Po-Hsun; Lin, Chi-Feng; Chiu, Tien-Lung; Lee, Jiun-Haw; Bardeen, Christopher J.
2014-05-01
Tetracene, a molecule that undergoes singlet fission, is deposited on Si with variable thickness LiF spacer layers. In agreement with earlier work (Hayashi et al., 1983 [10]), the fluorescence intensity of the tetracene greatly increases as the LiF thickness approaches 100 nm. This increase is partly due to a 30% increase in the prompt fluorescence decay time but mostly results from weaker coupling of the luminescence into the Si substrate. A decrease in the prompt fluorescence lifetime is observed as the tetracene thickness is increased on bare Si. We find no evidence for triplet energy transfer to the Si.
Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy
2001-01-01
A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.
Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi
2018-06-12
Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.
Ying, Lin; Tahara, Kohei; Takeuchi, Hirofumi
2013-09-10
This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment. Copyright © 2013. Published by Elsevier B.V.
Cai, Chen; Liu, Huiling
2018-04-15
Land application of treated cephalosporin mycelial dreg (CMD) as a soil amendment is an alternative to its disposal in landfills and incineration because it has environmental and agronomic benefits. This study validated the efficacy of using the dewatered, microwave-pretreated CMD as a soil amendment. Pot experiments were conducted to assess the temporal changes in soil organic matter (SOM) profiles via chemical and fluorescent parameters. During the ageing period, the CMD-treated soil experienced a sudden rise in soil pH and soil electrical conductivity, along with a rapid decline in soil organic carbon and soil organic nitrogen content. The specific Ex/Em peak related to protein-like substances gradually disappeared, while those related to humic acid-like substances continued to increase thereafter. Fluorescence regional integration (FRI) results showed an ascended P V,n /P III,n index (1.94) and significant correlations with chemical data (M 2 =0.2875, r=0.8441, P<0.001, 999 permutations for Procrustes analysis). Taken together, despite the temporal changes in chemical and fluorescent data after soil conditioning, the increased content of SOM containing humic acid-like substances was observed at the end of the incubation period compared with control soil samples, indicating that the microwave-pretreated CMD might be applied as a soil amendment. Copyright © 2017. Published by Elsevier B.V.
[Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].
Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa
2015-06-01
In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.
Razinger, Jaka; Drinovec, Luka; Zrimec, Alexis
2010-12-01
An ultra-sensitive digital imaging system was employed to visualize oxidative stress in intact L. minor plants exposed to Cd, Cu, menadione, AAPH, and ascorbate in real time. The increase of ROS production was assessed by measuring the rate of fluorescence intensity increases of the test medium supplemented with a fluorescing probe (dichlorofluorescein diacetate). The addition of 100 μM CdCl₂ or 100 μM CuSO₄ to the growth medium resulted in a significant increase of medium fluorescence. Additionally, CuSO₄ caused a significantly higher fluorescence intensity than CdCl₂ did. A strong positive correlation (R² = 0.99) between menadione concentration and fluorescence intensity was observed. The positive correlation between AAPH concentration and fluorescence intensity was not as strong as in the case of menadione (R² = 0.81). Menadione induced a stronger oxidative stress than similar concentration of AAPH. The addition of 100 μM ascorbate to L. minor treated with 50 μM menadione significantly reduced the fluorescence intensity increase. A linear trend of the fluorescence increase was observed in all treatments, indicating that chemical-induced oxidative stress is a gradual process and that the applied concentrations of the chemicals caused a constant increased production of ROS with different intensities, depending on the treatment. This is the combined result of a gradual diminishing of antioxidant reserves and accumulating oxidative damage. The observed rates of ROS production were slower than those in the studies using cell cultures. Copyright © 2009 Wiley Periodicals, Inc.
Qin, Xiaoting; Hartung, John S
2004-09-01
Xylella fastidiosa, a Gram-negative bacterial plant pathogen, causes Pierce's disease of grapevine in North America. In South America the pathogen causes citrus variegated chlorosis, which is widespread in Brazil. We have introduced into Xylella fastidiosa a mini-Tn5 transposon that encodes a green fluorescent protein (GFP) gene optimized for expression in bacteria. The mini-Tn5 derivative was inserted into different sites of the genome in independent transconjugants as determined by Southern blotting. The GFP gene was expressed well and to different levels in different transconjugants. Four independent transconjugants were separately used to inoculate sweet orange and tobacco seedlings. The transconjugants were able to colonize the plants and were subsequently isolated from points distal to the inoculation sites. When the relative fluorescence of the transconjugants that had been passed through either tobacco or sweet orange was compared with that of the same transconjugant maintained continuously in vitro, we observed that passage through either plant host significantly increased the level of expression of the GFP. The increased level of expression of GFP was transient, and was lost upon further culture in vitro. Xylella fastidiosa forms biofilms in planta which are believed to represent a metabolically differentiated state. The increased expression of GFP observed after passage through plants may be accounted for by this phenomenon.
Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc
2017-01-01
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen–HPTS (4,4′-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4–25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4′-o-BBV–HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc. PMID:29130464
Depth-resolved fluorescence of human ectocervical tissue
NASA Astrophysics Data System (ADS)
Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.
2005-04-01
The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.
2018-02-01
Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.
Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946
KleinJan, Gijs H; van den Berg, Nynke S; Brouwer, Oscar R; de Jong, Jeroen; Acar, Cenk; Wit, Esther M; Vegt, Erik; van der Noort, Vincent; Valdés Olmos, Renato A; van Leeuwen, Fijs W B; van der Poel, Henk G
2014-12-01
The hybrid tracer was introduced to complement intraoperative radiotracing towards the sentinel nodes (SNs) with fluorescence guidance. Improve in vivo fluorescence-based SN identification for prostate cancer by optimising hybrid tracer preparation, injection technique, and fluorescence imaging hardware. Forty patients with a Briganti nomogram-based risk >10% of lymph node (LN) metastases were included. After intraprostatic tracer injection, SN mapping was performed (lymphoscintigraphy and single-photon emission computed tomography with computed tomography (SPECT-CT)). In groups 1 and 2, SNs were pursued intraoperatively using a laparoscopic gamma probe followed by fluorescence imaging (FI). In group 3, SNs were initially located via FI. Compared with group 1, in groups 2 and 3, a new tracer formulation was introduced that had a reduced total injected volume (2.0 ml vs. 3.2 ml) but increased particle concentration. For groups 1 and 2, the Tricam SLII with D-Light C laparoscopic FI (LFI) system was used. In group 3, the LFI system was upgraded to an Image 1 HUB HD with D-Light P system. Hybrid tracer-based SN biopsy, extended pelvic lymph node dissection, and robot-assisted radical prostatectomy. Number and location of the preoperatively identified SNs, in vivo fluorescence-based SN identification rate, tumour status of SNs and LNs, postoperative complications, and biochemical recurrence (BCR). Mean fluorescence-based SN identification improved from 63.7% (group 1) to 85.2% and 93.5% for groups 2 and 3, respectively (p=0.012). No differences in postoperative complications were found. BCR occurred in three pN0 patients. Stepwise optimisation of the hybrid tracer formulation and the LFI system led to a significant improvement in fluorescence-assisted SN identification. Preoperative SPECT-CT remained essential for guiding intraoperative SN localisation. Intraoperative fluorescence-based SN visualisation can be improved by enhancing the hybrid tracer formulation and laparoscopic fluorescence imaging system. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid
NASA Astrophysics Data System (ADS)
Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.
2011-03-01
Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.
Yi, Huangjian; Chen, Duofang; Li, Wei; Zhu, Shouping; Wang, Xiaorui; Liang, Jimin; Tian, Jie
2013-05-01
Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the inverse problem. In past years, various regularization methods have been employed for fluorescence target reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluorescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detection of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs better for the reconstruction of the distribution of fluorescent substance.
Ristow, O; Otto, S; Geiß, C; Kehl, V; Berger, M; Troeltzsch, M; Koerdt, S; Hohlweg-Majert, B; Freudlsperger, C; Pautke, C
2017-02-01
Recent studies have indicated that bone shows auto-fluorescence under an appropriate fluorescence lamp. The aim of this preliminary study was to compare the success rates of the established tetracycline fluorescence-guided bone surgery with auto-fluorescence-guided bone surgery in the treatment of medication-related osteonecrosis of the jaw (MRONJ). Forty patients suffering from MRONJ were referred for surgical treatment and were divided randomly into two groups: auto-fluorescence (n=20) or tetracycline fluorescence (n=20) guided bone surgery. The primary endpoint was treatment success, defined as the absence of exposed bone at 8 weeks after surgery. Secondary outcomes assessed were mucosal integrity, signs of infection, pain, and loss of sensitivity; these were evaluated descriptively at 10 days, 8 weeks, 6 months, and 1 year after surgery. At 8 weeks postoperative, 18/20 patients (90%) in the auto-fluorescence group and 17/20 patients (85%) in the tetracycline fluorescence group showed mucosal integrity (P>0.05). At the last follow-up, 94% in the auto-fluorescence group and 89% in the tetracycline fluorescence group presented complete mucosal coverage with no exposed bone, infection, or pain (P>0.05). There was no significant difference between the two techniques for any of the secondary outcomes (P>0.05). The results of this preliminary study show that auto-fluorescence-guided bone surgery has comparable success rates to the established tetracycline fluorescence-guided bone surgery. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.
Chen, Sha; Zhang, Jiaxing; Kim, Junbeum
2017-01-01
China is the world's largest emitter of carbon dioxide, and it is also one of the largest fluorescent lamp consuming and producing country in the world. However, there are few studies evaluating greenhouse gas (GHG) emissions of fluorescent lamps in China. This analysis compared GHG emissions of compact fluorescent lamps with linear fluorescent lamps using life cycle assessment method in China's national conditions. The GHG emissions of fluorescent lamps from their manufacture to the final disposal phase on the national level of China were also quantified. The results indicate that the use phase dominates the GHG emissions for both lamps. Linear fluorescent lamp is a better source of light compared to compact fluorescent lamp with respect to GHG emissions. The analysis found that in 2011, China generated around 710.90milliontons CO 2 -eq associated with fluorescent lamps. The raw material production and use phases accounted for major GHG emissions. More than half of GHG emissions during the domestic production were embodied in the exported lamps in recent years. This urges the government to take necessary measures that lead to more environmental friendly production, consumption and trade patterns. Copyright © 2016 Elsevier B.V. All rights reserved.
Jablonski, Tatiana; Takahashi, Marcos Kenzo; Brum, Rafeal Torres; Rached, Rodrigo Nunes; Souza, Evelise M
2014-01-01
The aim of this study was to evaluate quantitatively the fluorescence of resin composites and human teeth, and to determine the stability of fluorescence after aging. Ten specimens were built using a 1 mm thick increment of dentin composite overlapped by a 0.5 mm thick increment of enamel composite. Ten sound human molars were sectioned and silicon carbide-polished to obtain enamel and dentin slabs 1.5 mm in thickness. Fluorescence measurements were carried out by a fluorescence spectrophotometer before and after thermocycling (2000 cycles, 5°C and 55°C). One-way analysis of variance (ANOVA) with repeated measures and Tukey's test were performed at a significance level of 5%. Most of the tested composites showed significant differences in fluorescence both before and after aging (P < 0.05). Opallis was the only composite whose fluorescence was similar to that of human teeth at both periods of evaluation (P > 0.05), and was the only composite that showed comparable results of fluorescence to the tooth structure before and after thermocycling. With the exception of Filtek Supreme, there were significant reductions in fluorescence intensity for all the tested composites (P < 0.05).
Indo, Hiroko P; Davidson, Mercy; Yen, Hsiu-Chuan; Suenaga, Shigeaki; Tomita, Kazuo; Nishii, Takeshi; Higuchi, Masahiro; Koga, Yasutoshi; Ozawa, Toshihiko; Majima, Hideyuki J
2007-01-01
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.
[The Influence of Runoff Pollution to DOM Features in an Urban Wastewater Treatment Plant].
He, Li; Ji, Fang-ying; Lai, Ming-sheng; Xu, Xuan; Zhou, Wei-wei; Mao, Bo-lin; Yang, Ming-jia
2015-03-01
Combined with wastewater treatment process, the sewage in sunny and rainy day was collected from a wastewater treatment plant in Chongqing. Three-dimensional fluorescence spectra was used to investigate the characteristic fluorescence of dissolved organic matter (DOM). DOM dissolved organic carbon (DOC), chemical oxygen demand (COD), fluorescence index (ƒ450/500) and fluorescence intensity ratio γ (A, C) of fulvic acid in ultraviolet and visible region were used to analyze the impact of rain runoff pollution on sewage DOM. According to the experimental data, the DOM fluorescence fingerprints of this wastewater treatment plant were quite different from typical municipal sewage, and the main component was tryptophan with low excitation wavelength (Peak S), then the tryptophan with long wavelength excitation (Peak T) followed. A2/O process had an approximative degradation of the protein-like both in sunny day and rainy day, but had a better degradation of fulvic-like, DOC and COD in rainy day than that in sunny day. Morever, the fluorescence peaks got red-shifted after the biological treatment. The differences of DOM fluorescence fingerprint between sunny and rainy day were significant, the fluorescence center of UV fulvic (Peak A) in rainy day getting blue-shifted obviously, shifting from 240 - 248/390 - 440 to 240 - 250/370 - 400 nm. Although the DOM types in sunny and rainy day were the same, the source of fulvic got more complex by runoff and the component ratio of DOM also changed. Compared with the sunny day, the proportion of Peak S in DOM dereased by 10%, and the proportion of Peak A increased by 7% in rainy day.
Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder
NASA Astrophysics Data System (ADS)
Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.
2006-02-01
Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.
Pannipara, Mehboobali; Asiri, Abdullah M; Alamry, Khalid A; Salem, Ibrahim A; El-Daly, Samy A
2015-01-01
The spectral and photophysical properties of a new chalcone derivative (2E)-3-[4-(dimethylamino) phenyl]-1-(naphthalen-1-yl) prop-2-en-1-one (DPNP) containing donor-acceptor group has been synthesized and characterized on the basis of the spectral (IR, (1)HNMR & (13)C NMR) and X- ray crystallographic data. The effect of solvents on photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of DPNP have been investigated comprehensively. Significant red shift was observed in the emission spectrum of DPNP compared to the absorption spectrum upon increasing the solvent polarity, indicating a higher dipole moment in the excited state than in the ground state. The difference between the excited and ground state dipole moments (Δμ) were obtained from Lippert-Mataga and Reichardts correlations by means of solvatochromic shift method. The effects of medium acidity on the electronic absorption and emission spectra of DPNP were studied. The interaction of DPNP with colloidal silver nanoparticles (AgNPs) was also studied in ethanol and ethylene glycol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of DPNP by Ag NPs.
Sanjeeva, Shilpa Kammaradi; Korrapati, Swathi; Nair, Chandrasekhar B; Rao, P V Subba; Pullela, Phani Kumar; Vijayalakshmi, U; Siva, Ramamoorthy
2014-07-01
Donor-linker-acceptor (DSSA) is a concept in fluorescence chemistry with acceptor being a fluorescent compound (FRET) or quencher. The DSSA probes used to measure thiol levels in vitro and in vivo. The reduction potential of these dyes are in the range of -0.60 V, much lower than the best thiol reductant reported in literature, the DTT (-0.33 V). DSSA disulphide having an unusually low reduction potential compared to the typical thiol reductants is a puzzle. Secondly, DSSA probes have a cyclized rhodamine ring as acceptor which does not have any spectral overlap with fluorescein, but quenches its absorbance and fluorescence. To understand the structural features of DSSA probes, we have synthesized DSSANa and DSSAOr. The calculated reduction potential of these dyes suggest that DSSA probes have an alternate mechanism from the FRET based quenching, namely hydrophobic interaction or dye to dye quenching. The standard reduction potential change with increasing complexity and steric hindrance of the molecule is small, suggesting that ultra- low Eo' has no contribution from the disulphide linker and is based on structural interactions between fluorescein and cyclized rhodamine. Our results help to understand the DSSA probe quenching mechanism and provide ways to design fluorescent probes.
Iino, R; Koyama, I; Kusumi, A
2001-01-01
Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443
Improving confocal microscopy with solid-state semiconductor excitation sources
NASA Astrophysics Data System (ADS)
Sivers, Nelson L.
To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.
Schreur, J H; Figueredo, V M; Miyamae, M; Shames, D M; Baker, A J; Camacho, S A
1996-01-01
Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence. PMID:8744296
NASA Astrophysics Data System (ADS)
Hope, Christopher K.; Higham, Susan M.
2016-08-01
A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.
Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342.
Petersen, Timothy W; Ibrahim, Sherrif F; Diercks, Alan H; van den Engh, Ger
2004-08-01
Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.
Assessment of tissue ischemia of nail fold precapillary zones using a fluorescence capillaroscopy
NASA Astrophysics Data System (ADS)
Dremin, Viktor V.; Margaryants, Nikita B.; Volkov, Mikhail V.; Zhukova, Ekaterina V.; Zherebtsov, Evgeny A.; Dunaev, Andrey V.; Rafailov, Edik U.
2017-07-01
An optical instrument for nailfold fluorescence capillaroscopy and image registration has been developed. With this instrument, an effect of increasing fluorescence intensity in the spectral range of NADH fluorescence during ischemia was detected.
A Preliminary Study of the Effects of pH upon Fluorescence in Suspensions of Prevotella intermedia.
Hope, Christopher K; Billingsley, Karen; de Josselin de Jong, Elbert; Higham, Susan M
2016-01-01
The quantification of fluorescence in dental plaque is currently being developed as a diagnostic tool to help inform and improve oral health. The oral anaerobe Prevotella intermedia exhibits red fluorescence due to the accumulation of porphyrins. pH affects the fluorescence of abiotic preparations of porphyrins caused by changes in speciation between monomers, higher aggregates and dimers, but this phenomenon has not been demonstrated in bacteria. Fluorescence spectra were obtained from suspensions of P. intermedia that were adjusted to pHs commensurate with the range found within dental plaque. Two fluorescent motifs were identified; 410 nm excitation / 634 nm emission (peak A) and 398 nm excitation / 622 nm emission (peak B). A transition in the fluorescence spectra was observed from peak A to peak B with increasing pH which was also evident as culture age increased from 24 hours to 96 hours. In addition to these 'blue-shifts', the intensity of peak A increased with pH whilst decreasing with culture age from 24 to 96 hours. A bacterium's relationship with the local physiochemical environment at the time of image capture may therefore affect the quantification of dental plaque fluorescence.
Guo, Wei-dong; Cheng, Yuan-yue
2008-06-01
Low salinity water sample collected from Jiulong River Estuary filtered using 0.2 microm Millipore filter was exposed to natural solar radiation from 10:00 to 16:00 each day during one week period in early and late May, 2005. Photodegradation of fluorescence and absorption properties of CDOM (chromophoric dissolved organic matter) was observed. The results showed that humic-like fluorescence (lambda Ex/lambda Em = 350/450 nm), tryptophan-like fluorescence (lambda Ex/lambda Em = 225/350 nm) and absorption coefficient of CDOM can be significantly photodegraded during short-term solar exposure in early summer. These photodegradation processes followed the first-order dynamic equation. The degradation half time of humic-like fluorescence, tryptophan-like fluorescence and a (280) were calculated as 3.5-5.1 d, 3.0-4.5 d and 6.3 d. The absorption loss spectra of CDOM indicated that the solar UV radiation was responsible for the photochemical degradation of CDOM. The loss of humic-like fluorescence (70%) was obviously higher than loss of a (280) (about 40%), suggesting that photobleaching ability of CDOM fluorophores were much stronger than CDOM chromophores. However, the correlation relationship between humic-like fluorescence and absorption coefficient are still kept. A250/A350 of CDOM increased till the end of radiation experiment compared with the control group, suggesting photodegradation may decrease the average molecular size of CDOM. These findings show that terrestrial CDOM can be transformed and removed by photochemical decomposition after transport into the sea, and photodegradation might be an important sink for terrestrial CDOM.
Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions
NASA Astrophysics Data System (ADS)
Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.
2003-03-01
Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.
Lai, Chih Wei; Schwab, Mark; Hill, Steven C; Santarpia, Joshua; Pan, Yong-Le
2016-05-30
Tryptophan is a fluorescent amino acid common in proteins. Its absorption is largest for wavelengths λ ≲ 290 nm and its fluorescence emissions peak around 300-350 nm, depending upon the local environment. Here we report the observation of red fluorescence near 600 nm emerging from 488-nm continuous-wave (CW) laser photoexcitation of dry tryptophan (Trp) particles. With an excitation intensity below 0.5 kW/cm2, dry Trp particles yield distinctive Raman scattering peaks in the presence of relatively weak and spectrally broad emissions with λ ∼500-700 nm, allowing estimation of particle temperature at low excitation intensities. When the photoexcitation intensity is increased to 1 kW/cm2 or more for a few minutes, fluorescence intensity dramatically increases by more than two orders of magnitude. The fluorescence continues to increase in intensity and gradually shift to the red when photoexcitation intensity and the duration of exposure are increased. The resulting products absorb at visible wavelengths and generate red fluorescence with λ ∼ 650-800 nm with 633-nm CW laser excitation. We attribute the emergence of orange and red fluorescence in the Trp products to a photochemical transformation that is instigated by weak optical transitions to triplet states in Trp with 488-nm excitation and which may be expedited by a photothermal effect.
NASA Astrophysics Data System (ADS)
Alas, Melis Ozge; Genc, Rukan
2017-05-01
In this study, comparative evaluation of fluorescent carbon nanodots (C-Dots) prepared using carob molasses was reported by screening various biocompatible macromolecules as passivating agent (PA). Incorporation of PAs with different molecular weight, polarity, and chemical structure was examined, and compared with the polyethylene glycol (PEG, Mn = 10 kN) passivated and pristine C-Dots. Not only the fluorescence properties but also many other features including size, crystal structure, colloidal conductivity, resistance to photobleaching, quantum yield, and UV-modulated surface interaction of them with the reactive oxygen species (ROS) as well as ROS production were investigated. Photoluminescence (PL) capacity of C-Dots was found to be associated with the number of surface alkyl groups and polymeric hydrogen bounding present on the C-Dot surface (increased number is associated with decreased PL) while surface conductivity of C-Dots in water was proportional to the PL intensity. More importantly, C-Dots with relatively poorer fluorescent were investigated in various organic solvents (hexane, methanol, acetone, ethanol, dimethylformamide (DMF), and DMSO). As happens with the fluorescent dyes, their PL intensities were significantly enhanced (even for pristine C-Dots) depending on the solvent characteristics. All of the C-Dots synthesized were further evaluated by means of UV-induced generation of ROS and inhibition of ROS by using H2O2 as model. In contrary to other carbonaceous nanomaterials, they did not show any ROS generation, on the contrary, they showed ROS scavenging activity that can be modulated by UV-irradiation ( λ exc = 365 nm). PEG and alginate passivated C-Dots inhibited H2O2 activity at LC50 values below 10 mg/mL.
Influence of Macrophages on the Rooster Spermatozoa Quality.
Kuzelova, L; Vasicek, J; Chrenek, P
2015-08-01
The goal of this study was to evaluate the occurrence of macrophages in rooster semen and to investigate their impact on the spermatozoa quality. Ross 308 breeder males (n = 30) with no evidence of genital tract infections were used to determine the concentration of macrophages using fluorescently conjugated acetylated low-density lipoprotein (AcLDL). Subsequently, the roosters were divided into two groups on the basis of semen macrophage concentration, and semen quality was compared in two heterospermic samples. We applied computer-assisted semen analysis (CASA) system to determine motility parameters. Fluorescence microscopy and flow cytometry were used to evaluate occurrence of apoptotic and dead spermatozoa. Spermatozoa fertility potential was examined after intravaginal artificial insemination of hens. Eighteen roosters (control group) contained 0.2-3% of macrophages within spermatozoa population and ten roosters (macrophage group) had 10-15% of macrophages. Males from macrophage group had lower (p < 0.05) motility parameters (total and progressive movement, velocity curved line) and increased concentration of dead spermatozoa detected by flow cytometry and fluorescence microscopy (p < 0.001 and p ˂ 0.05, respectively). Differences (p < 0.05) between fluorescent microscopy and flow cytometry in results on spermatozoa apoptosis and viability were observed. No significant difference was found between groups in fertility of spermatozoa. In conclusion, the higher presence of macrophages in rooster semen may have a negative effect on some parameters of rooster spermatozoa evaluated in vitro. Furthermore, our study suggests that flow cytometry allows more precise examination of spermatozoa viability and apoptosis in a very short time compared with the fluorescent microscopy. © 2015 Blackwell Verlag GmbH.
Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
Thomas, Franziska A; Visco, Ilaria; Petrášek, Zdeněk; Heinemann, Fabian; Schwille, Petra
2015-11-01
The affinity of peripheral membrane proteins for a lipid bilayer can be described using the partition coefficient (KP). Although several methods to determine KP are known, all possess limitations. To address some of these issues, we developed both: a versatile method based on single molecule detection and fluorescence imaging for determining KP, and a simple measurement standard employing hexahistidine-tagged enhanced green fluorescent protein (eGFP-His6) and free standing membranes of giant unilamellar vesicles (GUVs) functionalized with NTA(Ni) lipids as binding sites. To ensure intrinsic control, our method features two measurement modes. In the single molecule mode, fluorescence correlation spectroscopy (FCS) is applied to quantify free and membrane associated protein concentrations at equilibrium and calculate KP. In the imaging mode, confocal fluorescence images of GUVs are recorded and analyzed with semi-automated software to extract protein mean concentrations used to derive KP. Both modes were compared by determining the affinity of our standard, resulting in equivalent KP values. As observed in other systems, eGFP-His6 affinity for membranes containing increasing amounts of NTA(Ni) lipids rises in a stronger-than-linear fashion. We compared our dual approach with a FCS-based assay that uses large unilamellar vesicles (LUVs), which however fails to capture the stronger-than-linear trend for our NTA(Ni)-His6 standard. Hence, we determined the KP of the MARCKS effector domain with our FCS approach on GUVs, whose results are consistent with previously published data using LUVs. We finally provide a practical manual on how to measure KP and understand it in terms of molecules per lipid surface. Copyright © 2015. Published by Elsevier B.V.
Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.
2012-01-01
Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 = 41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078
NASA Astrophysics Data System (ADS)
Nemkovich, N. A.; Kruchenok, Yu. V.; Sobchuk, A. N.; Detert, H.; Wrobel, N.; Chernyavskiĭ, E. A.
2009-08-01
The spectral and temporal characteristics of new 6,12-dimethoxyindolo[3,2- b]carbazole, 5,11-dimethyl-6,12-dimethoxyindolo[3,2- b]carbazole, and 5,11-dihexyl-6,12-di(hexyloxy)indolo[3,2- b]carbazole fluorescence probes in organic solvents and protein complexes are studied. The dipole moments of indolocarbazoles in 1,4-dioxane were measured by electrooptical absorption method. The measured dipole moments have values within the range of (3.1-3.6) × 10-30 C m in the equilibrium ground state and increase to (4.8-5.6) × 10-30 C m after excitation. The excited state lifetime of indolocarbazole derivatives increases with increasing polarity and viscosity of the environment. The binding of indolocarbazoles with trypsinogen and human serum albumin increases the fluorescence intensity, changes the intensity ratio of fluorescence bands, and increases the average excited state lifetime of indolocarbazoles. The analysis of the instantaneous fluorescence spectra and fluorescence decay parameters at different wavelengths revealed the existence of several types of probe binding sites in proteins. It is found that the fluorescence characteristics of indolocarbazole derivatives depend on the conformation rearrangements of trypsinogen due to its thermal denaturation.
Loughman, Kathleen; Hall, Jesse; Knowlton, Samantha; Sindeldecker, Devin; Gilson, Tricia; Schmitt, Deanna M.; Birch, James W.-M.; Gajtka, Tara; Kobe, Brianna N.; Florjanczyk, Aleksandr; Ingram, Jenna; Bakshi, Chandra S.; Horzempa, Joseph
2016-01-01
Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia – the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature. PMID:26858709
Loughman, Kathleen; Hall, Jesse; Knowlton, Samantha; Sindeldecker, Devin; Gilson, Tricia; Schmitt, Deanna M; Birch, James W-M; Gajtka, Tara; Kobe, Brianna N; Florjanczyk, Aleksandr; Ingram, Jenna; Bakshi, Chandra S; Horzempa, Joseph
2016-01-01
Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia - the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature.
Kasajima, Ichiro
2017-04-26
Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.
Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.
Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I
2017-06-01
Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.
van den Berg, Frans; Racher, Andrew J.; Martin, Elaine B.; Jaques, Colin
2017-01-01
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L−1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L−1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017 PMID:28271638
Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S
2014-10-08
The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu
2010-09-01
Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.
Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.
1994-01-01
The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117
Buda, Alessandro; Papadia, Andrea; Zapardiel, Ignacio; Vizza, Enrico; Ghezzi, Fabio; De Ponti, Elena; Lissoni, Andrea Alberto; Imboden, Sara; Diestro, Maria Dolores; Verri, Debora; Gasparri, Maria Luisa; Bussi, Beatrice; Di Martino, Giampaolo; de la Noval, Begoña Diaz; Mueller, Michael; Crivellaro, Cinzia
2016-09-01
The credibility of sentinel lymph node (SLN) mapping is becoming increasingly more established in cervical cancer. We aimed to assess the sensitivity of SLN biopsy in terms of detection rate and bilateral mapping in women with cervical cancer by comparing technetium-99 radiocolloid (Tc-99(m)) and blue dye (BD) versus fluorescence mapping with indocyanine green (ICG). Data of patients with cervical cancer stage 1A2 to 1B1 from 5 European institutions were retrospectively reviewed. All centers used a laparoscopic approach with the same intracervical dye injection. Detection rate and bilateral mapping of ICG were compared, respectively, with results obtained by standard Tc-99(m) with BD. Overall, 76 (53 %) of 144 of women underwent preoperative SLN mapping with radiotracer and intraoperative BD, whereas 68 of (47 %) 144 patients underwent mapping using intraoperative ICG. The detection rate of SLN mapping was 96 % and 100 % for Tc-99(m) with BD and ICG, respectively. Bilateral mapping was achieved in 98.5 % for ICG and 76.3 % for Tc-99(m) with BD; this difference was statistically significant (p < 0.0001). The fluorescence SLN mapping with ICG achieved a significantly higher detection rate and bilateral mapping compared to standard radiocolloid and BD technique in women with early stage cervical cancer. Nodal staging with an intracervical injection of ICG is accurate, safe, and reproducible in patients with cervical cancer. Before replacing lymphadenectomy completely, the additional value of fluorescence SLN mapping on both perioperative morbidity and survival should be explored and confirmed by ongoing controlled trials.
Mishanin, Vladimir I; Trubitsin, Boris V; Patsaeva, Svetlana V; Ptushenko, Vasily V; Solovchenko, Alexei E; Tikhonov, Alexander N
2017-09-01
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50-125 µmol photons m -2 s -1 ) or high light (HL, 875-1000 µmol photons m -2 s -1 ) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740 ). We also compared the light-induced oxidation of P 700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin + Antheraxantin + Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.
Reproducibility of flow mediated skin fluorescence to assess microvascular function.
Hellmann, Marcin; Tarnawska, Maria; Dudziak, Maria; Dorniak, Karolina; Roustit, Matthieu; Cracowski, Jean-Luc
2017-09-01
Recent technical developments enable skin fluorescence to be quantified in vivo in humans. The present study aimed at determining whether flow mediated skin fluorescence was reproducible, sensitive to changes within an individual, and if it could differ between patients with coronary artery disease and healthy volunteers. First, forearm flow mediated skin fluorescence recorded during and after brachial artery occlusion was assessed following successive forearm occlusion periods (1, 2, 3 and 5min) and expressed as ischemic and hyperemic responses (as % of baseline). Secondly, 3min flow mediated skin fluorescence was assessed before and after 10min local cooling to 15°C. In a third protocol, the inter-day reproducibility of ischemic and hyperemic responses to 3min occlusion was tested at an interval of 7days, and compared between healthy controls and patients with coronary artery disease (CAD). In the first protocol, we observed a time dependent increase in the ischemic and hyperemic responses to occlusion. Next, we observed a lower hyperemic response after local cooling (9.8±4.2 versus 17.8±2.5% respectively, P<0.001), while in contrast, the ischemic response was higher and exhibited greater variability (23±15 versus 11.8±6.4%; P=0.028). In the third protocol, the inter-day reproducibility of flow mediated skin fluorescence for a 3min occlusion period was excellent. The ischemic response was significantly lower in CAD patients than in healthy controls (6.7±4.8% vs 14.7±6.8% respectively, P<0.001). Similarly, the hyperemic response was significantly decreased in the CAD group compared to healthy controls (11.6±3.6% vs 19.5±5.4% respectively, P<0.001). We show that quantifying the ischemic and hyperemic flow mediated skin fluorescence is feasible, reproducible, sensitive to acute changes in skin blood flow, and distinguishes patients populations. However, more data are needed to evaluate the correlation with other methods or specific biochemical endothelial markers. Copyright © 2017 Elsevier Inc. All rights reserved.
Twardy, Vanessa; Becker, Felix; Geyer, Christiane; Schwegmann, Katrin; Mohr, Annika; Faust, Andreas
2018-01-01
Background Disturbance of intestinal wound closure leads to insufficient anastomotic healing and is associated with considerable morbidity following colorectal resections. Matrix metalloproteinases (MMPs) play a crucial role in regulation of wound closure. Here fluorescence endoscopy was evaluated for assessment of MMP-2/-9 expression during failed intestinal anastomotic healing. Methods Distal colonic anastomoses were performed as a model for disturbed healing in 36 Balb/c mice. Healing was evaluated endoscopically, macroscopically, and histologically after 1, 3 and 5 days. For detection of MMP-2/-9 expression fluorescence endoscopy (FE) was used following i.v.-administration of a Cy5.5-labeled MMP-2/-9 specific tracer. FE was complemented by quantification of the fluorescence signal using the MS-FX PRO Optical Imaging System. An overall leakage score was calculated and correlated with the results of FE. Results With increasing incidence of anastomotic leakage from POD1 (17%) to POD5 (83%) the uptake of the MMP tracer gradually increased (signal-to-noise ratio (SNR), POD1: 17.91 ± 1.251 vs. POD3: 30.56 ± 3.03 vs. POD5: 44.8 ± 4.473, P<0.0001). Mice with defective anastomotic healing showed significantly higher uptake compared to non-defective (SNR: 37.37± 3.63 vs. 26.16± 3.635, P = 0.0369). White light endoscopy and FE allowed evaluation of anastomotic healing and visualization of mucosal MMPs in vivo. Using FE based detection of MMPs in the anastomosis, an overall positive predictive value of 71.4% and negative predictive value of 66.6% was calculated for detection of anastomotic leakage. Conclusion During disturbed anastomotic healing increased expression of MMP-2/-9 was observed in the anastomotic tissue. Fluorescence endoscopy for detection of MMP-2/-9 during the healing process might be a promising tool for early identification of anastomotic leakage. PMID:29566031
Neumann, Philipp-Alexander; Twardy, Vanessa; Becker, Felix; Geyer, Christiane; Schwegmann, Katrin; Mohr, Annika; Faust, Andreas; Lenz, Philipp; Rijcken, Emile
2018-01-01
Disturbance of intestinal wound closure leads to insufficient anastomotic healing and is associated with considerable morbidity following colorectal resections. Matrix metalloproteinases (MMPs) play a crucial role in regulation of wound closure. Here fluorescence endoscopy was evaluated for assessment of MMP-2/-9 expression during failed intestinal anastomotic healing. Distal colonic anastomoses were performed as a model for disturbed healing in 36 Balb/c mice. Healing was evaluated endoscopically, macroscopically, and histologically after 1, 3 and 5 days. For detection of MMP-2/-9 expression fluorescence endoscopy (FE) was used following i.v.-administration of a Cy5.5-labeled MMP-2/-9 specific tracer. FE was complemented by quantification of the fluorescence signal using the MS-FX PRO Optical Imaging System. An overall leakage score was calculated and correlated with the results of FE. With increasing incidence of anastomotic leakage from POD1 (17%) to POD5 (83%) the uptake of the MMP tracer gradually increased (signal-to-noise ratio (SNR), POD1: 17.91 ± 1.251 vs. POD3: 30.56 ± 3.03 vs. POD5: 44.8 ± 4.473, P<0.0001). Mice with defective anastomotic healing showed significantly higher uptake compared to non-defective (SNR: 37.37± 3.63 vs. 26.16± 3.635, P = 0.0369). White light endoscopy and FE allowed evaluation of anastomotic healing and visualization of mucosal MMPs in vivo. Using FE based detection of MMPs in the anastomosis, an overall positive predictive value of 71.4% and negative predictive value of 66.6% was calculated for detection of anastomotic leakage. During disturbed anastomotic healing increased expression of MMP-2/-9 was observed in the anastomotic tissue. Fluorescence endoscopy for detection of MMP-2/-9 during the healing process might be a promising tool for early identification of anastomotic leakage.
Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang
2015-10-01
Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.
Multimodal fiber-probe spectroscopy for the diagnostics and classification of bladder tumors
NASA Astrophysics Data System (ADS)
Anand, Suresh; Cicchi, Riccardo; Fantechi, Riccardo; Gacci, Mauro; Nesi, Gabriella; Carini, Marco; Pavone, Francesco S.
2017-02-01
The gold standard for the detection of bladder cancer is white light cystoscopy, followed by an invasive biopsy and pathological examination. Tissue pathology is time consuming and often prone to sampling errors. Recently, optical spectroscopy techniques have evolved as promising techniques for the detection of neoplasia. The specific goal of this study is to evaluate the application of combined auto-fluorescence (excited using 378 nm and 445 nm wavelengths) and diffuse reflectance spectroscopy to discriminate normal bladder tissue from tumor at different grades. The fluorescence spectrum at both excitation wavelengths showed an increased spectral intensity in tumors with respect to normal tissues. Reflectance data indicated an increased reflectance in the wavelength range 610 nm - 700 nm for different grades of tumors, compared to normal tissues. The spectral data were further analyzed using principal component analysis for evaluating the sensitivity and specificity for diagnosing tumor. The spectral differences observed between various grades of tumors provides a strong genesis for the future evaluation on a larger patient population to achieve statistical significance. This study indicates that a combined spectroscopic strategy, incorporating fluorescence and reflectance spectroscopy, could improve the capability for diagnosing bladder tumor as well as for differentiating tumors in different grades.
A Sequence-Dependent DNA Condensation Induced by Prion Protein
2018-01-01
Different studies indicated that the prion protein induces hybridization of complementary DNA strands. Cell culture studies showed that the scrapie isoform of prion protein remained bound with the chromosome. In present work, we used an oxazole dye, YOYO, as a reporter to quantitative characterization of the DNA condensation by prion protein. We observe that the prion protein induces greater fluorescence quenching of YOYO intercalated in DNA containing only GC bases compared to the DNA containing four bases whereas the effect of dye bound to DNA containing only AT bases is marginal. DNA-condensing biological polyamines are less effective than prion protein in quenching of DNA-bound YOYO fluorescence. The prion protein induces marginal quenching of fluorescence of the dye bound to oligonucleotides, which are resistant to condensation. The ultrastructural studies with electron microscope also validate the biophysical data. The GC bases of the target DNA are probably responsible for increased condensation in the presence of prion protein. To our knowledge, this is the first report of a human cellular protein inducing a sequence-dependent DNA condensation. The increased condensation of GC-rich DNA by prion protein may suggest a biological function of the prion protein and a role in its pathogenesis. PMID:29657864
A Sequence-Dependent DNA Condensation Induced by Prion Protein.
Bera, Alakesh; Biring, Sajal
2018-01-01
Different studies indicated that the prion protein induces hybridization of complementary DNA strands. Cell culture studies showed that the scrapie isoform of prion protein remained bound with the chromosome. In present work, we used an oxazole dye, YOYO, as a reporter to quantitative characterization of the DNA condensation by prion protein. We observe that the prion protein induces greater fluorescence quenching of YOYO intercalated in DNA containing only GC bases compared to the DNA containing four bases whereas the effect of dye bound to DNA containing only AT bases is marginal. DNA-condensing biological polyamines are less effective than prion protein in quenching of DNA-bound YOYO fluorescence. The prion protein induces marginal quenching of fluorescence of the dye bound to oligonucleotides, which are resistant to condensation. The ultrastructural studies with electron microscope also validate the biophysical data. The GC bases of the target DNA are probably responsible for increased condensation in the presence of prion protein. To our knowledge, this is the first report of a human cellular protein inducing a sequence-dependent DNA condensation. The increased condensation of GC-rich DNA by prion protein may suggest a biological function of the prion protein and a role in its pathogenesis.
Valdés, Pablo A.; Kim, Anthony; Brantsch, Marco; Niu, Carolyn; Moses, Ziev B.; Tosteson, Tor D.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.; Harris, Brent T.
2011-01-01
Extent of resection is a major goal and prognostic factor in the treatment of gliomas. In this study we evaluate whether quantitative ex vivo tissue measurements of δ-aminolevulinic acid–induced protoporphyrin IX (PpIX) identify regions of increasing malignancy in low- and high-grade gliomas beyond the capabilities of current fluorescence imaging in patients undergoing fluorescence-guided resection (FGR). Surgical specimens were collected from 133 biopsies in 23 patients and processed for ex vivo neuropathological analysis: PpIX fluorimetry to measure PpIX concentrations (CPpIX) and Ki-67 immunohistochemistry to assess tissue proliferation. Samples displaying visible levels of fluorescence showed significantly higher levels of CPpIX and tissue proliferation. CPpIX was strongly correlated with histopathological score (nonparametric) and tissue proliferation (parametric), such that increasing levels of CPpIX were identified with regions of increasing malignancy. Furthermore, a large percentage of tumor-positive biopsy sites (∼40%) that were not visibly fluorescent under the operating microscope had levels of CPpIX greater than 0.1 µg/mL, which indicates that significant PpIX accumulation exists below the detection threshold of current fluorescence imaging. Although PpIX fluorescence is recognized as a visual biomarker for neurosurgical resection guidance, these data show that it is quantitatively related at the microscopic level to increasing malignancy in both low- and high-grade gliomas. This work suggests a need for improved PpIX fluorescence detection technologies to achieve better sensitivity and quantification of PpIX in tissue during surgery. PMID:21798847
Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses
Grainys, Audrius; Kranjc, Matej; Miklavčič, Damijan
2017-01-01
Background Cell membrane permeabilization by pulsed electromagnetic fields (PEMF) is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. Methods The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO) cells using short microsecond (15 µs) pulse bursts (100 or 200 pulses) at low frequency (1 Hz) and high dB/dt (>106 T/s). The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI) and YO-PRO®-1 (YP). The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs), i.e., positive control. Results The proposed PEMF protocols (both for 100 and 200 pulses) resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP). Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP) increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. Discussion The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner. PMID:28462057
Yun, Kyusik; Zhong, Linlin
2018-05-16
A novel fluorescence "Switch on" for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0-1.8 U·mL-1, with a low detection limit of 0.04 U·mL-1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new "switch-on" sensor applications in heparin-related biomedical detection. © 2018 IOP Publishing Ltd.
Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen
2013-11-12
We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.
Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L
2016-01-01
This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.
NASA Astrophysics Data System (ADS)
Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.
2016-03-01
Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Yun, Kyusik
2018-07-01
A novel fluorescence ‘Switch on’ for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0–1.8 U · ml‑1, with a low detection limit of 0.04 U · ml‑1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new ‘switch-on’ sensor applications in heparin-related biomedical detection.
Arthritis imaging using a near-infrared fluorescence folate-targeted probe
Chen, Wei-Tsung; Mahmood, Umar; Weissleder, Ralph; Tung, Ching-Hsuan
2005-01-01
A recently developed near-infrared fluorescence-labeled folate probe (NIR2-folate) was tested for in vivo imaging of arthritis using a lipopolysaccharide intra-articular injection model and a KRN transgenic mice serum induction mouse model. In the lipopolysaccharide injection model, the fluorescence signal intensity of NIR2-folate (n = 12) and of free NIR2 (n = 5) was compared between lipopolysaccharide-treated and control joints. The fluorescence signal intensity of the NIR2-folate probe at the inflammatory joints was found to be significantly higher than the control normal joints (up to 2.3-fold, P < 0.001). The NIR2-free dye injection group showed a persistent lower enhancement ratio than the NIR2-folate probe injection group. Excessive folic acid was also given to demonstrate a competitive effect with the NIR2-folate. In the KRN serum transfer model (n = 4), NIR2-folate was applied at different time points after serum transfer, and the inflamed joints could be detected as early as 30 hours after arthritogenic antibody transfer (1.8-fold increase in signal intensity). Fluorescence microscopy, histology, and immunohistochemistry validated the optical imaging results. We conclude that in vivo arthritis detection was feasible using a folate-targeted near-infrared fluorescence probe. This receptor-targeted imaging method may facilitate improved arthritis diagnosis and early assessment of the disease progress by providing an in vivo characterization of active macrophage status in inflammatory joint diseases. PMID:15743478
Direct fluorescence polarization assay for the detection of glycopeptide antibiotics.
Yu, Linliang; Zhong, Meng; Wei, Yinan
2010-08-15
Glycopeptide antibiotics are widely used in the treatment of infections caused by Gram-positive bacteria. They inhibit the biosynthesis of the bacterial cell wall through binding to the D-alanyl-D-alanine (D-Ala-D-Ala) terminal peptide of the peptidoglycan precursor. Taking advantage of this highly specific interaction, we developed a direct fluorescence polarization based method for the detection of glycopeptide antibiotics. Briefly, we labeled the acetylated tripeptide Ac-L-Lys-D-Ala-D-Ala-OH with a fluorophore to create a peptide probe. Using three glycopeptide antibiotics, vancomycin, teicoplanin, and telavancin, as model compounds, we demonstrated that the fluorescence polarization of the peptide probe increased upon binding to antibiotics in a concentration dependent manner. The dissociation constants (K(d)) between the peptide probes and the antibiotics were consistent with those reported between free d-Ala-d-Ala and the antibiotics in the literature. The assay is highly reproducible and selective toward glycopeptide antibiotics. Its detection limit and work concentration range are 0.5 microM and 0.5-4 microM for vancomycin, 0.25 microM and 0.25-2 microM for teicoplanin, and 1 microM and 1-8 microM for telavancin. Furthermore, we compared our assay in parallel with a commercial fluorescence polarization immunoassay (FPIA) kit in detecting teicoplanin spiked in human blood samples. The accuracy and precision of the two methods are comparable. We expect our assay to be useful in both research and clinical laboratories.
Bloksgaard, M; Brewer, J R; Pashkovski, E; Ananthapadmanabhan, K P; Sørensen, J A; Bagatolli, L A
2014-02-01
Understanding the structural and dynamical features of skin is critical for advancing innovation in personal care and drug discovery. Synthetic detergent mixtures used in commercially available body wash products are thought to be less aggressive towards the skin barrier when compared to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). Experiments were performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in the presence and absence of SCM and SDS detergents. Hydration of the intercellular lipid matrix to a depth of 10 μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. While our study indicates that the SC is very resistant to external stimuli, it also shows that, in contrast to the response to SDS, SCM to some extent modulates the in-depth hydration properties of the intercellular lipid matrix within excised skin SC. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Portable real-time fluorescence cytometry of microscale cell culture analog devices
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.
2006-02-01
A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.
Yahyaoui, W; Harnois, J; Carpentier, R
1998-11-27
When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.
Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system.
Chen, Yan-Yu; Chen, Zhao-Ming; Wang, Hsiang-Yu
2012-11-07
Reducing the fluorescence background in microfluidic assays is important in obtaining accurate outcomes and enhancing the quality of detections. This study demonstrates an integrated process including cell labelling, fluorescence background reduction, and biomolecule detection using liquid-liquid extraction in a microfluidic droplet system. The cellular lipids in Chlorella vulgaris and NIH/3T3 cells were labelled with a hydrophobic dye, Nile red, to investigate the performance of the proposed method. The fluorescence background of the lipid detection can be reduced by 85% and the removal efficiency increased with the volume of continuous phase surrounding a droplet. The removal rate of the fluorescence background increased as the surface area to volume ratio of a droplet increased. Before Nile red was removed from the droplet, the signal to noise ratio was as low as 1.30 and it was difficult to distinguish cells from the background. Removing Nile red increased the signal to noise ratio to 22 and 34 for Chlorella vulgaris and NIH/3T3, respectively, and these were 17 fold and 10 fold of the values before extraction. The proposed method successfully demonstrates the enhancement of fluorescence detection of cellular lipids and has great potential in improving other fluorescence-based detections in microfluidic systems.
Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun
2014-01-01
Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes. PMID:25281958
Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun
2014-10-01
To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.
2012-01-01
Background To assess the ability of fluorescence imaging to detect a dose response relationship between fluorosis severity and different levels of fluoride in water supplies compared to remote photographic scoring in selected populations participating in an observational, epidemiological survey in Chiang Mai, Thailand. Methods Subjects were male and female lifetime residents aged 8-13 years. For each child the fluoride content of cooking water samples (CWS) was assessed to create categorical intervals of water fluoride concentration. Fluorescence images were taken of the maxillary central incisors and analyzed for dental fluorosis using two different software techniques. Output metrics for the fluorescence imaging techniques were compared to TF scores from blinded photographic scores obtained from the survey. Results Data from 553 subjects were available. Both software analysis techniques demonstrated significant correlations with the photographic scores. The metrics for area effected by fluorosis and the overall fluorescence loss had the strongest association with the photographic TF score (Spearman’s rho 0.664 and 0.652 respectively). Both software techniques performed well for comparison of repeat fluorescence images with ICC values of 0.95 and 0.85 respectively. Conclusions This study supports the potential use of fluorescence imaging for the objective quantification of dental fluorosis. Fluorescence imaging was able to discriminate between populations with different fluoride exposures on a comparable level to remote photographic scoring with acceptable levels of repeatability. PMID:22908997
Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng
2016-03-01
This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2.5, 3.5, and 5.5 mg x L(-1), with r2 being 0.956, 0.946, and 0.953, respectively. This study demonstrated that excitation-emission matrix spectroscopy can distinguish the transformation characteristics of the DOM and identify the linear relationship between the fluorescence intensity of the high-excitation wavelength tyrosine peak A and total nitrogen concentration, thus providing a quick and effective technique and theoretical support for river water monitoring and water restoration.
Fluorescence image excited by a scanning UV-LED light
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng
2013-03-01
An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.
Komaromy-Hiller; von Wandruszka R
1996-01-15
The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.
Zhu, Shengchao; Zhang, Qin; Guo, Liang-Hong
2008-08-22
Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17beta-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17beta-estradiol is 1.9 pg mL(-1), which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.
2013-01-01
Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.
Laser diagnostics of an evaporating electrospray
NASA Astrophysics Data System (ADS)
Yi, Tongxun
2014-01-01
An electrospray atomizer generates monodisperse, dilute sprays when working in the cone-jet mode. Evolution of an electrospray with droplet diameter below 10 μm is studied with phase Doppler particle analyzer (PDPA) and the exciplex-PLIF technique. The evaporation rate constant is determined from droplet velocity and diameter measured with a PDPA and is found to sharply increase with the velocity slip and the coflow temperature. Fluorescence around 400 nm, usually referred to as TMPD fluorescence, is calibrated with a heated, laminar, coflow vapor jet diluted with nitrogen. The TMPD fluorescence yield nonlinearly increases with temperature up to 538 K and then declines. Single-shot images show that fluorescence around 400 nm is mainly generated from TMPD vapor and that from droplets can be neglected as a first analysis; however, fluorescence around 490 nm, usually referred to as exciplex fluorescence, is generated from both droplets and fuel vapor immediately around droplets. Exciplex fluorescence is correlated with PDPA measurements and TMPD fluorescence. Effects of temperature, fuel composition, overlap of fluorescent spectra, and chemical equilibrium for exciplex formation are discussed. Technical challenges for quantitative exciplex-PLIF measurements are highlighted.
Cohen, Sarit; Pellach, Michal; Kam, Yossi; Grinberg, Igor; Corem-Salkmon, Enav; Rubinstein, Abraham; Margel, Shlomo
2013-03-01
Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2017-02-01
Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.
Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.
Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed
2017-12-18
The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this effect is used for quantification of this food-borne pathogen.
NASA Astrophysics Data System (ADS)
Krumov, A.; Nikolova, A.; Vassilev, N.; Vassilev, V.
Monitoring of terrestrial vegetation for the needs of agriculture, forestry and scientific investigation has demonstrated significant contribution to Earth' sciences in general and particular in ecological surveys and disaster management. Remote sensing of specific vegetation signature by space-born instruments is the only technique allowing large scale (regional or global) repeated observation, which can be used for early warning of natural hazards. Nowadays reflectance spectra are the main optical signatures used for monitoring of plant biomes. However, such a spectrum provides only data primarily related to the total quantity of vegetation and the concentration of their constituents. In fact, changes in the reflectance signature appear only after serious damage of the bio-systems has occurred. Thus, the use of reflectance signal as an early indicator of stress factors is rather impossible. More recently, the interest of the scientific community is increasingly devoted to the vegetation fluorescence emission, known to be an intrinsic early indicator of plant photosynthetic activity. With respect to reflectance, fluorescence is more specific as an observable of the basic biophysical processes in the plant cells. Several projects dedicated to remote measurements of solar-induced plant fluorescence, have shown the feasibility the fluorescence signal to be remotely sensed from a satellite altitudes. However, the correlation between reflectance and fluorescence still needs to be investigated. This work presents a set of experiments aimed to investigate the link between reflectance and fluorescence emission under controlled illumination conditions. They were performed in a specially designed laboratory bio chamber. The hardware of the bio-chamber allows monitoring of the plants vitality both by fluorescence and reflectance spectral imaging. Different types of stress factors (water, drought stress, acid impact etc.) were investigated. The acquired fluorescence and spectral data are analysed, interpreted and compared by their sensibility, rapidity of changes in response to stress changes, and informational diversity. Selected images illustrate an early detection of plant dysfunction and also regeneration of plants after removing of the negative factors.
Mao, Pingdao; Ning, Yi; Li, Wenkai; Peng, Zhihui; Chen, Yongzhe; Deng, Le
2014-01-10
A simple, selective, sensitive and label-free fluorescent method for detecting trpS-harboring Salmonella typhimurium was developed in this study. This assay used the non-covalent interaction of single-stranded DNA (ssDNA) probes with SWNTs, since SWNTs can quench fluorescence. Fluorescence recovery (78% with 1.8 nM target DNA) was detected in the presence of target DNA as ssDNA probes detached from SWNTs hybridized with target DNA, and the resulting double-stranded DNA (dsDNA) intercalated with SYBR Green I (SG) dyes. The increasing fluorescence intensity reached 4.54-fold. In contrast, mismatched oligonucleotides (1- or 3-nt difference to the target DNA) did not contribute to significant fluorescent recovery, which demonstrated the specificity of the assay. The increasing fluorescence intensity increased 3.15-fold when purified PCR products containing complementary sequences of trpS gene were detected. These results confirmed the ability to use this assay for detecting real samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Deng, Hu; Zhou, Xun; Shang, Li-ping; Zhang, Ze-lin; Wang, Shun-li
2014-12-01
By analyzing HyJet V phosphate ester hydraulic oil environmental impacts (oil, etc.) and confounding factors (pH, temperature, etc.), the feasibility was studied for the fluorescence detection of aircraft hydraulic oil leaks. By using the fluorescence spectrophotometer at various acidities and temperatures, the fluorescence properties of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant were gained. The experimental results are shown as following: The fluorescence peaks of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant are at 362, 405 and 456 nm, respectively. The impact of temperature on HyJet V phosphate ester hydraulic oil is less effective; Jet Oil II lubricant and 2197 lubricant fluorescence intensity decreases with increasing temperature. When acidity increases, the fluorescence peak of HyJet V phosphate ester hydraulic oil gradient shifts from 370 to 362 nm, and the fluorescence intensity decreases; the fluorescence peak of Jet Oil II lubricant is always 405 nm, while the fluorescence intensity decreases; the fluorescence peak of 2197 lubricant at 456 nm red shifts to 523 nm, and double fluorescence peaks appeare. The results are shown as following: under the influence of the environment and interference factors, the fluorescence characteristics of HyJet V phosphate ester hydraulic oil remain unchanged, and distinguish from Jet Oil II lubricant and 2197 lubricant. Therefore, the experiments indicate that the detection of HyJet V phosphate ester hydraulic oil leak is feasible by using fluorescence method.
Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm
2004-07-01
Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.
NASA Astrophysics Data System (ADS)
Banjare, Manoj Kumar; Behera, Kamalakanta; Kurrey, Ramsingh; Banjare, Ramesh Kumar; Satnami, Manmohan L.; Pandey, Siddharth; Ghosh, Kallol K.
2018-06-01
Aggregation behavior of bio-surfactants (BS) sodium cholate (NaC) and sodium deoxycholate (NaDC) within aqueous solution of ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide [Emim][Br] has been investigated using surface tension, conductivity, steady state fluorescence, FT-IR and dynamic light scattering (DLS) techniques. Various interfacial and thermodynamic parameters are determined in the presence of different wt% of IL [Emim][Br]. Information regarding the local microenvironment and size of the aggregates is obtained from fluorescence and DLS, respectively. FT-IR spectral response is used to reveal the interactions taking place within aqueous NaC/NaDC micellar solutions. It is noteworthy to mention that increasing wt% of [Emim][Br] results in an increase in the spontaneity of micelle formation and the hydrophilic IL shows more affinity for NaC as compared to NaDC. Further, the micellar solutions of BS-[Emim][Br] are utilized for studying the aggregation of antidepressants drug promazine hydrochloride (pH). UV-vis spectroscopic investigation reveals interesting outcomes and the results show changes in spectral absorbance of PH drug on the addition of micellar solution (BS-[Emim][Br]). Highest binding affinity and most promising activity are shown for NaC as compared to NaDC.
Yamin, G; Borisover, M; Cohen, E; van Rijn, J
2017-01-01
Recirculating aquaculture systems (RAS), offering many economic and fish husbandry benefits, are characterized by an accumulation of dissolved organic matter (DOM) and, specifically, humic substances (HS). As reported in a number of studies, HS may affect biological activity in both invertebrates and vertebrates. Given the accumulation of HS in RAS, it is therefore of great interest to characterize DOM and, specifically, its HS fraction in the RAS. The present study was aimed at characterizing long-term changes in fluorescent DOM composition in the culture water of RAS systems, which were operated in a novel, zero water exchange mode. Two such zero-discharge recirculating systems (ZDS) were examined: a freshwater system, stocked with hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and a marine system, stocked with gilthead seabream (Sparus aurata). Excitation-emission matrices (EEMs) of fluorescence, coupled with parallel factor analysis (PARAFAC), were used to characterize and quantify the different DOM components in the ZDS. In the culture water, one tryptophan-like and four HS-like components were identified. The fluorescence intensities of three of the HS-like components as well as the tryptophan-like component increased at comparable rates during ZDS operation while a much slower accumulation of these compounds was observed in a parallel operated, flow-through, freshwater aquarium. The ZDS examined in this study comprised a sludge digestion stage where a considerable accumulation of all fluorescent components was detected. A HS-like components and a tryptophan-like component in blood of tilapia from the freshwater ZDS were similar to components found in the culture water. Blood levels of both components were higher in fish cultured in the DOM-rich ZDS than in fish raised in the control, flow-through freshwater aquarium. Fluorescence of the HS-like component found in the fish blood increased also with time of ZDS operation. The finding that fish blood contains a HS-like fluorescent component may have important implications for the understanding of the physiological effects of HS in fish and the possible benefits of these substances in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Bates, Brent D.; Tselepidakis, Niki N.; DSouza, Alisha V.; Gunn, Jason R.; Ramkumar, Dipak B.; Paulsen, Keith D.; Pogue, Brian W.; Henderson, Eric R.
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ˜1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ˜1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.
Che, Siying; Dao, Rina; Zhang, Weidong; Lv, Xiaoyu; Li, Haoran; Wang, Congmin
2017-03-30
A novel anion-functionalized fluorescent ionic liquid was designed and prepared, which was capable of capturing sulphur dioxide with high capacity and could also be used as a good colorimetric and fluorescent SO 2 sensor. Compared to conventional fluorescent sensors, this fluorescent ionic liquid did not undergo aggregation-caused quenching or aggregation-induced emission, and the fluorescence was quenched when exposed to SO 2 , and the fluorescence would quench when exposed to SO 2 . The experimental absorption, spectroscopic investigation, and quantum chemical calculations indicated that the quenching of the fluorescence originated from SO 2 physical absorption, not chemical absorption. Furthermore, this fluorescent ionic liquid exhibited high selectivity, good quantification, and excellent reversibility for SO 2 detection, and showed potential for an excellent liquid sensor.
Sun, Yulong; Chakrabartty, Avi
2016-12-01
Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.
NASA Astrophysics Data System (ADS)
Dienerowitz, Maria; Ilchenko, Mykhailo; Su, Bertram; Deckers-Hebestreit, Gabriele; Mayer, Günter; Henkel, Thomas; Heitkamp, Thomas; Börsch, Michael
2016-02-01
Observation times of freely diffusing single molecules in solution are limited by the photophysics of the attached fluorescence markers and by a small observation volume in the femtolitre range that is required for a sufficient signal-to-background ratio. To extend diffusion-limited observation times through a confocal detection volume, A. E. Cohen and W. E. Moerner have invented and built the ABELtrap -- a microfluidic device to actively counteract Brownian motion of single nanoparticles with an electrokinetic trap. Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA chip. This ABELtrap holds single fluorescent nanoparticles for more than 100 seconds, increasing the observation time of fluorescent nanoparticles compared to free diffusion by a factor of 10000. To monitor conformational changes of individual membrane proteins in real time, we record sequential distance changes between two specifically attached dyes using Förster resonance energy transfer (smFRET). Fusing the a-subunit of the FoF1-ATP synthase with mNeonGreen results in an improved signal-to-background ratio at lower laser excitation powers. This increases our measured trap duration of proteoliposomes beyond 2 s. Additionally, we observe different smFRET levels attributed to varying distances between the FRET donor (mNeonGreen) and acceptor (Alexa568) fluorophore attached at the a- and c-subunit of the FoF1-ATP synthase respectively.
Reactive thin polymer films as platforms for the immobilization of biomolecules.
Feng, Chuan Liang; Zhang, Zhihong; Förch, Renate; Knoll, Wolfgang; Vancso, G Julius; Schönherr, Holger
2005-01-01
Spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and gold surfaces were investigated as reactive layers for obtaining platforms for biomolecule immobilization with high molecular loading. The surface reactivity of PNHSMA films in coupling reactions with various primary amines, including amine-terminated poly(ethylene glycol) (PEG-NH2) and fluoresceinamine, was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and ellipsometry measurements, respectively. The rate constants of PEG-NH2 attachment on the PNHSMA films were found to be significantly increased compared to the coupling on self-assembled monolayers (SAMs) of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) on gold under the same conditions. More significantly, the PEG loading observed was about 3 times higher for the polymer thin films. These data indicate that the coupling reactions are not limited to the very surface of the polymer films, but proceed into the near-surface regions of the films. PNHSMA films were shown to be stable in contact with aqueous buffer; the swelling analysis, as performed by atomic force microscopy (AFM), indicated a film thickness independent swelling of approximately 2 nm. An increased loading was also observed by surface plasmon resonance for the covalent immobilization of amino-functionalized probe DNA. Hybridization of fluorescently labeled target DNA was successfully detected by fluorescence microscopy and surface plasmon resonance enhanced fluorescence spectroscopy (SPFS), thereby demonstrating that thin films of PNHSMA comprise an attractive and simple platform for the immobilization of biomolecules with high densities.
Zwartsen, Anne; Verboven, Anouk H A; van Kleef, Regina G D M; Wijnolts, Fiona M J; Westerink, Remco H S; Hondebrink, Laura
2017-12-01
The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC 50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC 50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bernut, Audrey; Le Moigne, Vincent; Lesne, Tiffany; Lutfalla, Georges; Herrmann, Jean-Louis
2014-01-01
Mycobacterium abscessus is responsible for a wide spectrum of clinical syndromes and is one of the most intrinsically drug-resistant mycobacterial species. Recent evaluation of the in vivo therapeutic efficacy of the few potentially active antibiotics against M. abscessus was essentially performed using immunocompromised mice. Herein, we assessed the feasibility and sensitivity of fluorescence imaging for monitoring the in vivo activity of drugs against acute M. abscessus infection using zebrafish embryos. A protocol was developed where clarithromycin and imipenem were directly added to water containing fluorescent M. abscessus-infected embryos in a 96-well plate format. The status of the infection with increasing drug concentrations was visualized on a spatiotemporal level. Drug efficacy was assessed quantitatively by measuring the index of protection, the bacterial burden (CFU), and the number of abscesses through fluorescence measurements. Both drugs were active in infected embryos and were capable of significantly increasing embryo survival in a dose-dependent manner. Protection from bacterial killing correlated with restricted mycobacterial growth in the drug-treated larvae and with reduced pathophysiological symptoms, such as the number of abscesses within the brain. In conclusion, we present here a new and efficient method for testing and compare the in vivo activity of two clinically relevant drugs based on a fluorescent reporter strain in zebrafish embryos. This approach could be used for rapid determination of the in vivo drug susceptibility profile of clinical isolates and to assess the preclinical efficacy of new compounds against M. abscessus. PMID:24798271
Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun
2014-01-01
Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.
Murphy, Kathleen R.; Butler, Kenna D.; Spencer, Robert G. M.; Stedmon, Colin A.; Boehme, Jennifer R.; Aiken, George R.
2010-01-01
The fluorescent properties of dissolved organic matter (DOM) are often studied in order to infer DOM characteristics in aquatic environments, including source, quantity, composition, and behavior. While a potentially powerful technique, a single widely implemented standard method for correcting and presenting fluorescence measurements is lacking, leading to difficulties when comparing data collected by different research groups. This paper reports on a large-scale interlaboratory comparison in which natural samples and well-characterized fluorophores were analyzed in 20 laboratories in the U.S., Europe, and Australia. Shortcomings were evident in several areas, including data quality-assurance, the accuracy of spectral correction factors used to correct EEMs, and the treatment of optically dense samples. Data corrected by participants according to individual laboratory procedures were more variable than when corrected under a standard protocol. Wavelength dependency in measurement precision and accuracy were observed within and between instruments, even in corrected data. In an effort to reduce future occurrences of similar problems, algorithms for correcting and calibrating EEMs are described in detail, and MATLAB scripts for implementing the study's protocol are provided. Combined with the recent expansion of spectral fluorescence standards, this approach will serve to increase the intercomparability of DOM fluorescence studies.
UCP2 muscle gene transfer modifies mitochondrial membrane potential.
Marti, A; Larrarte, E; Novo, F J; Garcia, M; Martinez, J A
2001-01-01
The aim of this work was to evaluate the effect of uncoupling protein 2 (UCP2) muscle gene transfer on mitochondrial activity. Five week-old male Wistar rats received an intramuscular injection of plasmid pXU1 containing UCP2 cDNA in the right tibialis anterior muscles. Left tibialis anterior muscles were injected with vehicle as control. Ten days after DNA injection, tibialis anterior muscles were dissected and muscle mitochondria isolated and analyzed. There were two mitochondrial populations in the muscle after UCP2 gene transfer, one of low fluorescence and complexity and the other, showing high fluorescence and complexity. UCP2 gene transfer resulted in a 3.6 fold increase in muscle UCP2 protein levels compared to control muscles assessed by Western blotting. Furthermore, a significant reduction in mitochondria membrane potential assessed by spectrofluorometry and flow cytometry was observed. The mitochondria membrane potential reduction might account for a decrease in fluorescence of the low fluorescence mitochondrial subpopulation. It has been demonstrated that UCP2 muscle gene transfer in vivo is associated with a lower mitochondria membrane potential. Our results suggest the potential involvement of UCP2 in uncoupling respiration. International Journal of Obesity (2001) 25, 68-74
Huth, Katharina; Heek, Timm; Achazi, Katharina; Kühne, Christian; Urner, Leonhard H; Pagel, Kevin; Dernedde, Jens; Haag, Rainer
2017-04-06
A series of water-soluble, hydroxylated and sulphated, polyglycerol (PG) dendronised, monofunctional perylene bisimides (PBIs) were synthesised in three generations. Their photophysical properties were determined by absorption and emission spectroscopy and their suitability as potential biolabels examined by biological in vitro studies after bioconjugation. It could be shown that the photophysical properties of the PBI labels can be improved by increasing the sterical demand and ionic charge of the attached dendron. Thereby, charged labels show superior suppression of aggregation over charge neutral labels owing to electrostatic repulsion forces on the PG-dendron. The ionic charges also enabled a reduction in dendron generation while retaining the labels' outstanding fluorescence quantum yields (FQYs) up to 100 %. These core-unsubstituted perylene derivatives were successfully applied as fluorescent labels upon bioconjugation to the therapeutic antibody cetuximab. The dye-antibody conjugates showed a strongly enhanced aggregation tendency compared to the corresponding free dyes. Biological evaluation by receptor-binding, cellular uptake, and cytotoxicity studies revealed that labelling did not affect the antibody's function, which renders the noncharged and charged dendronised PBIs suitable candidates as fluorescent labels in biological imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.
Huang, Wei; Smarsly, Emanuel; Han, Jinsong; Bender, Markus; Seehafer, Kai; Wacker, Irene; Schröder, Rasmus R; Bunz, Uwe H F
2017-01-25
We report two hyperbranched conjugated polymers (HCP) with truxene units as core and 1,4-didodecyl-2,5-diethynylbenzene as well as 1,4-bis(dodecyloxy)-2,5-diethynylbenzene as comonomers. Two analogous poly(para-phenyleneethynylene)s (PPE) are also prepared as comparison to demonstrate the difference between the truxene and the phenyl moieties in their optical properties and their sensing performance. The four polymers are tested for nitroaromatic analytes and display different fluorescence quenching responses. The quenching efficiencies are dependent upon the spectral overlap between the absorbance of the analyte and the emission of the fluorescent polymer. Optical fingerprints are obtained, based on the unique response patterns of the analytes toward the polymers. With this small sensor array, one can distinguish nine nitroaromatic analytes with 100% accuracy. The amphiphilic polymer F127 (a polyethylene glycol-polypropylene glycol block copolymer) carries the hydrophobic HCPs and self-assembles into micelles in water, forming highly fluorescent HCP micelles. The micelle-bound conjugated polymers detect nitroaromatic analytes effectively in water and show an increased sensitivity compared to the sensing of nitroaromatics in organic solvents. The nitroarenes are also discriminated in water using this four-element chemical tongue.
Zhou, Liyi; Gong, Liang; Hu, Shunqin
2018-06-15
Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH 2 , which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO 2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15min, CM-NO 2 displayed a ~90-fold fluorescence enhancement at 505nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO 2 to image NTR in tissues was demonstrated. Copyright © 2018 Elsevier B.V. All rights reserved.
Pelet, S; Previte, M J R; Laiho, L H; So, P T C
2004-10-01
Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society
Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.
Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu
2018-03-01
We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morant-Manceau, Annick; Pradier, Elisabeth; Tremblin, Gérard
2004-01-01
The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander
1999-05-01
Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.
NASA Astrophysics Data System (ADS)
Butterfield, Z.; Keppel-Aleks, G.
2015-12-01
The seasonality of carbon dioxide (CO2) concentrations in the northern hemisphere (NH) has increased by up to 50% over the previous five decades. A significant portion of this increase may be explained by enhanced agricultural productivity. The impact that increased crop production has on CO2 seasonality is dependent on the fraction of the crop Gross Primary Product (GPP) that occurs during the natural carbon uptake period (CUP). Solar Induced Fluorescence (SIF), an artifact of photosynthesis, can be used to assess GPP directly via remote sensing. New methods for measuring SIF from space provide tools for obtaining GPP data at regional and global levels. We use SIF data from the GOSAT and OCO-2 satellites to obtain observational estimates of the fraction of GPP occurring within the CUP in NH agricultural regions. We compare these fractions with estimates made using crop calendars and inventories and, where available, with CO2 flux data from eddy covariance towers. Our results offer insight into the impact that increased agricultural productivity has on the seasonal amplitude of NH CO2 concentrations.
Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza
2012-01-01
Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541
[Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].
Jin, Min; Huang, Yu-hua; Luo, Ji-xiang
2015-02-01
The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.
Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha
2010-10-01
Different methods to estimate the plasma membrane potential difference (PMP) of yeast cells with fluorescent monitors were compared. The validity of the methods was tested by the fluorescence difference with or without glucose, and its decrease by the addition of 10 mM KCl. Low CaCl₂ concentrations avoid binding of the dye to the cell surface, and low CCCP concentrations avoid its accumulation by mitochondria. Lower concentrations of Ba²+ produce a similar effect as Ca²+, without producing the fluorescence changes derived from its transport. Fluorescence changes without considering binding of the dyes to the cells and accumulation by mitochondria are overshadowed by their distribution between this organelle and the cytoplasm. Other factors, such as yeast starvation, dye used, parameters of the fluorescence changes, as well as buffers and incubation times were analyzed. An additional approach to measure the actual or relative values of PMP, determining the accumulation of the dye, is presented.
Is the flower fluorescence relevant in biocommunication?
NASA Astrophysics Data System (ADS)
Iriel, Analía; Lagorio, María Gabriela
2010-10-01
Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield ( Φ f) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides ( Φ f = 0.030) and for Citrus aurantium petals ( Φ f = 0.014) and stigma ( Φ f = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.
Small-molecule photostabilizing agents are modifiers of lipid bilayer properties.
Alejo, Jose L; Blanchard, Scott C; Andersen, Olaf S
2013-06-04
Small-molecule photostabilizing or protective agents (PAs) provide essential support for the stability demands on fluorescent dyes in single-molecule spectroscopy and fluorescence microscopy. These agents are employed also in studies of cell membranes and model systems mimicking lipid bilayer environments, but there is little information about their possible effects on membrane structure and physical properties. Given the impact of amphipathic small molecules on bilayer properties such as elasticity and intrinsic curvature, we investigated the effects of six commonly used PAs--cyclooctatetraene (COT), para-nitrobenzyl alcohol (NBA), Trolox (TX), 1,4-diazabicyclo[2.2.2]octane (DABCO), para-nitrobenzoic acid (pNBA), and n-propyl gallate (nPG)--on bilayer properties using a gramicidin A (gA)-based fluorescence quench assay to probe for PA-induced changes in the gramicidin monomer↔dimer equilibrium. The experiments were done using fluorophore-loaded large unilamellar vesicles that had been doped with gA, and changes in the gA monomer↔dimer equilibrium were assayed using a gA channel-permeable fluorescence quencher (Tl⁺). Changes in bilayer properties caused by, e.g., PA adsorption at the bilayer/solution interface that alter the equilibrium constant for gA channel formation, and thus the number of conducting gA channels in the large unilamellar vesicle membrane, will be detectable as changes in the rate of Tl⁺ influx-the fluorescence quench rate. Over the experimentally relevant millimolar concentration range, TX, NBA, and pNBA, caused comparable increases in gA channel activity. COT, also in the millimolar range, caused a slight decrease in gA channel activity. nPG increased channel activity at submillimolar concentrations. DABCO did not alter gA activity. Five of the six tested PAs thus alter lipid bilayer properties at experimentally relevant concentrations, which becomes important for the design and analysis of fluorescence studies in cells and model membrane systems. We therefore tested combinations of COT, NBA, and TX; the combinations altered the fluorescence quench rate less than would be predicted assuming their effects on bilayer properties were additive. The combination of equimolar concentrations of COT and NBA caused minimal changes in the fluorescence quench rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.
Moreno, Andrew; Knee, J L; Mukerji, Ishita
2016-12-08
The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.
Metal ion influence on eumelanin fluorescence and structure.
Sutter, Jens-Uwe; Birch, David J S
2014-04-10
Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.
Metal ion influence on eumelanin fluorescence and structure
NASA Astrophysics Data System (ADS)
Sutter, Jens-Uwe; Birch, David J. S.
2014-06-01
Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.
Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa
2014-08-14
Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.
Shah, Rachit; Zhou, Andrew; Wagner, Carston R
2017-12-13
Histidine Triad Nucleotide Binding Protein 1 (Hint1) has emerged to be an important post-synaptic protein associated with a variety of central nervous system disorders such as pain, addiction, and schizophrenia. Recently, inhibition of histidine nucleotide binding protein 1 (Hint1) with a small nucleoside inhibitor has shown promise as a new therapeutic strategy for the treatment of neuropathic pain. Herein, we describe the first rationally designed small molecule switch-on probes with dual fluorescence and FRET properties to study Hint1. Two non-natural fluorescent nucleosides with a fluorescent lifetime of 20 and 25 ns were each coupled through a linker to the indole ring, i.e. probes 7 and 8. Both probes were found to be water soluble and quenched intramolecularly via photoinduced electron transfer (PET) resulting in minimal background fluorescence. Upon incubating with Hint1, compound 7 and 8 exhibited a 40- and 16-fold increase in the fluorescence intensity compared to the control. Compounds 7 and 8 bind Hint1 with a dissociation constant of 0.121 ± 0.02 and 2.2 ± 0.36 μM, respectively. We demonstrate that probe 8 exhibits a switch-on FRET property with an active site tryptophan residue (W123). We show the utility of probes in performing quantitative ligand displacement studies, as well as in selective detection of Hint1 in the cell lysates. These probes should be useful for studying the dynamics of the active site, as well as for the development of fluorescence lifetime based high throughput screening assay to identify novel inhibitors for Hint1 in future.
Ultraviolet signals in birds are special.
Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F
2003-01-07
Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.
Ultraviolet signals in birds are special.
Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F
2003-01-01
Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals. PMID:12590772
Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael
2015-01-01
Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698
BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.
Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy
2014-01-01
Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.
Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun
2015-01-01
Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carbary-Ganz, Jordan L.; Welge, Weston A.; Barton, Jennifer K.; Utzinger, Urs
2015-09-01
Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.
Ormeci, Banu; Linden, Karl G
2008-11-01
Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content making it difficult to differentiate a probe-conferred signal from naturally fluorescing particles with reasonable certainty. Furthermore, some of the FISH steps involve harsh treatment of samples, and are likely to disrupt the floc structure. This study developed a FISH protocol for studying micro-organisms that are associated with particles and flocs. The results indicate that choice of a proper fluorochrome and labeling technique is a key step in reducing the background fluorescence and non-specific binding, and increasing the intensity of the probe signal. Compared to other fluorochromes tested, CY3 worked very well and enabled the observation of particles and debris in red and probe signal from microbes in yellow. Fixation, hybridization, and washing steps disturbed the floc structure and particle-microbe association. Modifications to these steps were necessary, and were achieved by replacing centrifugation with filtration and employment of nylon filters. Microscope slides generated excellent quality images, but polycarbonate membrane filters performed better in preserving the floc structure.
Ware, Maxwell A; Giovagnetti, Vasco; Belgio, Erica; Ruban, Alexander V
2015-11-01
Plants with varying levels of PsbS protein were grown on lincomycin. Enhanced levels of non-photochemical fluorescence quenching (NPQ) in over-expressers of the protein have been observed. This was accompanied by increased amplitude of the irreversible NPQ component, qI, previously considered to reflect mainly photoinhibition of PSII reaction centres (RCII). However, since RCIIs were largely absent the observed qI is likely to originate from the LHCII antenna. In chloroplasts of over-expressers of PsbS grown on lincomycin an abnormally large NPQ (∼7) was characterised by a 0.34 ns average chlorophyll fluorescence lifetime. Yet the lifetime in the Fm state was similar to that of wild-type plants. 77K fluorescence emission spectra revealed a specific 700 nm peak typical of LHCII aggregates as well as quenching of the PSI fluorescence at 730 nm. The aggregated state manifested itself as a clear change in the distance between LHCII complexes detected by freeze-fracture electron microscopy. Grana thylakoids in the quenched state revealed 3 times more aggregated LHCII particles compared to the dark-adapted state. Overall, the results directly demonstrate the importance of LHCII aggregation in the NPQ mechanism and show that the PSII supercomplex structure plays no role in formation of the observed quenching. Copyright © 2015 Elsevier B.V. All rights reserved.
Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich
2017-03-01
At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2014-01-01
Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825
NASA Astrophysics Data System (ADS)
Burroughs, Mary; Priestley, Rodney
2014-03-01
Polymers confined to the nanometer length scale have been shown to exhibit deviations in the glass transition temperature (Tg) from the bulk. With the increasing use of confined polymers in nanotechnology, understanding and predicting this behavior is extremely relevant to industries ranging from pharmaceuticals to organic electronics. Recent work (Napolitano, Wübbenhorst, Nature Communications, 2, 260 (2011)) has connected deviations in Tg under confinement with irreversible physical adsorption of polymer chains at substrate interfaces. Here we investigate the influence of irreversibly adsorbed layers on the Tg of polystyrene (PS) thin films supported on silica via fluorescence. We examine the Tg of the brushes as a function of annealing time and irreversibly adsorbed layer thickness. By incorporating fluorescently labeled polymer layers into multilayered films of unlabeled polymer, we will examine the influence of brushes on adjacent layers dynamics. Finally, we will compare the results on PS with those of poly(methyl methacrylate).
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2012-07-14
The fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is known to be very sensitive to a magnetic field, assisting the spin conversion in the resulting geminate radical ion pair (RIP), (1, 3)[D(+)...A(-)]. The relative increase of the fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the dielectric constant of the solvent, ɛ. This phenomenon first studied experimentally is at first reproduced here theoretically by means of the so called integral encounter theory. It was shown to be very sensitive to the position of the exciplex energy level relative to the levels of exciplex precursors and the charged products of its dissociation. The results obtained strongly depend on the dielectric properties of the solvents as well as on the exciplex and RIP formation rates.
NASA Astrophysics Data System (ADS)
Schweitzer, D.; Klemm, M.; Quick, S.; Deutsch, L.; Jentsch, S.; Hammer, M.; Dawczynski, J.; Kloos, C. H.; Mueller, U. A.
2011-07-01
Measurements of time-resolved autofluorescence (FLIM) at the human ocular fundus of diabetic patients permit the detection of early pathologic alterations before signs of diabetic retinopathy are visible. The measurements were performed by the Jena Fluorescence Lifetime Laser Scanner Ophthalmoscope applying time-correlated single photon counting (TCSPC) in two spectral channels (K1: 490-560 nm, K2:560-700ps). The fluorescence was excited by 70 ps pulses (FWHM) at 448 nm. The decay of fluorescence intensity was triple-exponentially approximated. The frequency of amplitudes, lifetimes, and relative contributions was compared in fields of the same size and position in healthy subjects and in diabetic patients. The most sensitive parameter was the lifetime T2 in the short-wavelength channel, which corresponds to the neuronal retina. The changes in lifetime point to a loss of free NADH and an increased contribution of protein-bound NADH in the pre-stage of diabetic retinopathy.
Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao
2007-09-01
Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.
A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO
NASA Astrophysics Data System (ADS)
Gu, Yingchun; Lin, Dayong; Tang, Yalin; Fei, Xuening; Wang, Cuihong; Zhang, Baolian; Zhou, Jianguo
2018-02-01
As its significant role, the selective recognition of G-quadruplex with specific structures and functions is important in biological and medicinal chemistry. Carbazole derivatives have been reported as a kind of fluorescent probe with many excellent optical properties. In the present study, the fluorescence of the dye (carbazole TO) increased almost 70 fold in the presence of bcl-2 2345 G4 compared to that alone in aqueous buffer condition with almost no fluorescence and 10-30 fold than those in the presence of other DNAs. The binding study results by activity inhibition of G4/Hemin peroxidase experiment, NMR titration and molecular docking simulation showed the high affinity and selectivity to bcl-2 2345 G4 arises from its end-stacking interaction with G-quartet. It is said that a facile approach with excellent sensitive, good selectivity and quick response for bcl-2 2345 G-quadruplex was developed and may be used for antitumor recognition or antitumor agents.
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2014-01-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2015-07-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.
Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta
2017-01-01
In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838
Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta
2017-10-06
In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.
Plant stress detection by remote measurement of fluorescence
McFarlane, J. C.; Watson, Robert D.; Theisen, Arnold F.; Jackson, R. D.; Ehrler, W. L.; Pinter, P. J.; Idso, S. B.; Reginato, R. J.
1980-01-01
Chlorophyll fluorescence of mature lemon trees was measured with a Fraunhofer line discriminator (FLD). An increase in fluorescence was correlated with plant water stress as measured by stomatal resistance and twig water potential.
High-mountain lakes as a hotspot of dissolved organic matter production in a changing climate
NASA Astrophysics Data System (ADS)
Abood, P. H.; Williams, M. W.; McKnight, D. M.; Hood, E. H.
2004-12-01
Changes in climate may adversely affect mountain environments before downstream ecosystems are affected. Steep topography, thin soils with limited extent, sparse vegetation, short growing seasons, and climatic extremes (heavy snowfalls, cold temperatures, high winds), all contribute to the sensitivity of high mountain environments to perturbations. Here we evaluate the role of oligatrophic high-elevation lakes as "hot spots" of aquatic production that may respond to changes in temperature, precipitation amount, and pollution deposition faster and more directly than co-located terrestrial ecosystems. Our research was conducted in the Rocky Mountains, USA. Water samples were collected for dissolved organic carbon (DOC), other solutes, and water isotopes over the course of the runoff season along a longitudinal transect of North Boulder Creek in the Colorado Front Range from the continental divide and alpine areas to downstream forested systems. Sources of DOC were evaluated using chemical fractionation with XAD-8 resins and fluorescence spectroscopy. There was net DOC production in the two alpine lakes but not for the forested subalpine lake. Oxygen-18 values showed that water residence times in lakes increased dramatically in late summer compared to snowmelt. Chemical fractionation of DOC showed there was a increase in the non-humic acid content across the summer of 2003 at all elevations, with alpine waters showing greater increases than subalpine waters. The fluorescence properties of DOC and water isotopes suggested that DOC in aquatic systems was primarily derived from terrestrial precursor material during snowmelt. However, fluorescence properties of DOC in high-elevation lakes on the recession limb of the hydrograph suggest DOC derived from algal and microbial biomass in the lakes was a more important source of DOC in late summer and fall. Alpine lakes produced 14 times more DOC on unit area basis compared to the surrounding terrestrial ecosystems. We hypothesize that much of the authochthonous production is a result of algal growth in alpine lakes caused by the increases in nitrogen deposition from wetfall.
Temperature dependence of laser-induced fluorescence of Tb3+Tb3+ in molten LiCl-KCl eutectic
NASA Astrophysics Data System (ADS)
C., E.; -E., Jung | S.; | W., Bae; Cha | I., A.; Bae | Y., J.; | K., Park; Song
2011-01-01
Fluorescence spectra and lifetimes originated from both 5D3 →7FJ and 5D4 →7FJ transitions of Tb3+ were measured using time-resolved laser fluorescence spectroscopy in order to investigate the excited state relaxation in a molten salt medium. A cross-relaxation energy transfer of 5D3 →5D4 resulted in rise and decay behaviors in fluorescence signal waveforms of 5D4 →7FJ transitions. The fluorescence intensity ratios of 5D4 →7F5 to 5D3 →7F4 decreased drastically when the temperature of molten salt increased. This result suggests that the cross-relaxation effect becomes weakened with increasing temperature. In addition, a strong increase of the 5D4 emission over the 5D3 emission was observed at high Tb3+ concentration.
NASA Astrophysics Data System (ADS)
Peters, Sven; Hammer, Martin; Schweitzer, Dietrich
2011-07-01
Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).
Differences in the intensity of light-induced fluorescence emitted by resin composites.
Kim, Bo-Ra; Kang, Si-Mook; Kim, Gyung-Min; Kim, Baek-Il
2016-03-01
The aims of this study were to compare the intensities of fluorescence emitted by different resin composites as detected using quantitative light-induced fluorescence (QLF) technology, and to compare the fluorescence intensity contrast with the color contrast between a restored composite and the adjacent region of the tooth. Six brands of light-cured resin composites (shade A2) were investigated. The composites were used to prepare composite discs, and fill holes that had been prepared in extracted human teeth. White-light and fluorescence images of all specimens were obtained using a fluorescence camera based on QLF technology (QLF-D) and converted into 8-bit grayscale images. The fluorescence intensity of the discs as well as the fluorescence intensity contrast and the color contrast between the composite restoration and adjacent tooth region were calculated as grayscale levels. The grayscale levels for the composite discs differed significantly with the brand (p<0.001): DenFil (10.84±0.35, mean±SD), Filtek Z350 (58.28±1.37), Premisa (156.94±1.58), Grandio (177.20±0.81), Charisma (207.05±0.77), and Gradia direct posterior (211.52±1.66). The difference in grayscale levels between a resin restoration and the adjacent tooth was significantly greater in fluorescence images for each brand than in white-light images, except for the Filtek Z350 (p<0.05). However, the Filtek Z350 restoration was distinguishable from the adjacent tooth in a fluorescence image. The intensities of fluorescence detected from the resin composites varied. The differences between the composite and adjacent tooth were greater for the fluorescence intensity contrast than for the colors observed in the white-light images. Copyright © 2016 Elsevier B.V. All rights reserved.
Reflectance and fluorescence spectroscopies in photodynamic therapy
NASA Astrophysics Data System (ADS)
Finlay, Jarod C.
In vivo fluorescence spectroscopy during photodynamic therapy (PDT) has the potential to provide information on the distribution and degradation of sensitizers, the formation of fluorescent photoproducts and changes in tissue autofluorescence induced by photodynamic treatment. Reflectance spectroscopy allows quantification of light absorption and scattering in tissue. We present the results of several related studies of fluorescence and reflectance spectroscopy and their applications to photodynamic dosimetry. First, we develop and test an empirical method for the correction of the distortions imposed on fluorescence spectra by absorption and scattering in turbid media. We characterize the irradiance dependence of the in vivo photobleaching of three sensitizers, protoporphyrin IX (PpIX), Photofrin and mTHPC, in a rat skin model. The photobleaching and photoproduct formation of PpIX exhibit irradiance dependence consistent with singlet oxygen (1O2)-mediated bleaching. The bleaching of mTHPC occurs in two phases, only one of which is consistent with a 1O 2-mediated mechanism. Photofrin's bleaching is independent of irradiance, although its photoproduct formation is not. This can be explained by a mixed-mechanism bleaching model. Second, we develop an algorithm for the determination of tissue optical properties using diffuse reflectance spectra measured at a single source-detector separation and demonstrate the recovery of the hemoglobin oxygen dissociation curve from tissue-simulating phantoms containing human erythrocytes. This method is then used to investigate the heterogeneity of oxygenation response in murine tumors induced by carbogen inhalation. We find that while the response varies among animals and within each tumor, the majority of tumors exhibit an increase in blood oxygenation during carbogen breathing. We present a forward-adjoint model of fluorescence propagation that uses the optical property information acquired from reflectance spectroscopy to obtain the undistorted fluorescence spectrum over a wide range of optical properties. Finally, we investigate the ability of the forward-adjoint theory to extract undistorted fluorescence and optical property information simultaneously from a single measured fluorescence spectrum. This method can recover the hemoglobin oxygen dissociation curve in tissue-simulating phantoms with an accuracy comparable to that of reflectance-based methods while correcting distortions in the fluorescence over a wide range of absorption and scattering coefficients.
An excitation wavelength-scanning spectral imaging system for preclinical imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul
2008-02-01
Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Optical fluorescence-guided imaging is increasingly used to guide surgery and endoscopic procedures. Sprayable enzyme-activatable probes are particularly useful because of high target-to-background ratios that increase sensitivity for tiny cancer foci. However, green fluorescent activatable probes suffers from interference from autofluorescence found in biological tissue. Dynamic imaging followed by the kinetic analysis could be detected local enzyme activity and used to differentiate specific fluorescence arising from an activated probe in a tumor from autofluorescence in background tissues especially when low concentrations of the dye are applied to detect tiny cancer foci. Serial fluorescence imaging was performed using various concentrations of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) which was sprayed on the peritoneal surface with tiny implants of SHIN3-dsRed ovarian cancer tumors. Temporal differences in signal between specific green fluorescence in cancer foci and non-specific autofluorescence in background tissue was measured and processed into three kinetic maps reflecting maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC), respectively. Especially at lower concentrations, kinetic maps derived from dynamic fluorescence imaging were clearly superior to unprocessed images for detection small cancer foci.
The Effect of Temperature on Photoluminescence Enhancement of Quantum Dots in Brain Slices.
Zhao, Fei; Kim, Jongsung
2017-04-01
In this paper, we investigated the effect of temperature on photoluminescence of quantum dots immobilized on the surface of an optical fiber in a rat brain slice. The optical fiber was silanized with 3-aminopropyl trimethoxysilane (APTMS), following which quantum dots with carboxyl functional group were immobilized on the optical fiber via amide bond formation. The effect of temperature on the fluorescence intensity of the quantum dots in rat brain slices was studied. This report shows that the fluorescence intensity of quantum dots increases with the increase of temperature of the brain slice. The fluorescence enhancement phenomenon appears to take place via electron transfer related to pH increase. With the gradual increase of temperature, the fluorescence intensity of quantum dots in solution decreased, while that in the brain slice increased. This enhanced thermal performance of QDs in brain slice makes suggestion for the study of QDs-based brain temperature sensors.
NADPH as a potential intrinsic probe for tumour margin estimation
NASA Astrophysics Data System (ADS)
Stewart, Hazel; Hupp, Ted R.; Birch, David J. S.
2018-03-01
The fluorescent properties of the reduced coenzyme NADH and its phosphorylated derivative (NADPH) have been explored in order to assess their potential as an intrinsic probe for cancer surgery. NADPH production is increased in cancer cells to quench reactive oxygen species and meet higher demands for biosynthesis, and has attractive fluorescent properties such as emission towards the visible part of the spectrum and a relatively long fluorescence lifetime upon binding to enzymes ( 1 - 6.5 ns) that helps discriminate against other endogenous species. Different environmental effects on NAD(P)H fluorescence are reported here, including an increase in lifetime upon oxygen removal, an ability to retain its fluorescent properties in a complex medium (a silica phantom) and its fluorescence lifetime also being distinguishable in a cell environment. In addition, the development of a miniaturized liquid light guide filter-based timecorrelated single photon counting fluorescence lifetime system is reported as a step towards time-resolved visual imaging in cancer surgery. This system has been demonstrated as being capable of accurately measuring NAD(P)H fluorescence lifetimes in both simple solvent and cellular environments.
NASA Astrophysics Data System (ADS)
Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien
2018-01-01
A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.
Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe
NASA Technical Reports Server (NTRS)
Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.
1993-01-01
A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.
NASA Astrophysics Data System (ADS)
Bogaards, Arjen; Varma, Abhay; Moriyama, Eduardo H.; Lin, Annie; Giles, Anoja; Bisland, Stuart K.; Lilge, Lothar D.; Bilbao, G. M.; Muller, Paul J.; Wilson, Brian C.
2003-06-01
Fluorescence-guided brain tumor resection may help the neurosurgeon to identify tumor margins that merge imperceptibly into the normal brain tissue and are difficult to identify under white light illumination even using an operating microscope. We compared the amount of residual tumor after white light resection using an operating microscope versus that after fluorescnece-guided resection of an intracranial VX2 tumor in a preclinical model using our previously developed co-axial fluorscence imaging and spectroscopy system, exciting and detecting PpIX fluorescence at 405nm and 635nm respectively. Preliminary results: No fluorescence was present in 3 non-tumor-bearing animals. Fluorescence was present in all 15 tumor-bearing animals after white light resection was completed. To date in 4 rabbits, a decrease in residual tumor was found when using additional fluorescence guided resection compared to white light resection only. Conclusions: ALA induced PpIX fluorescence detects tumor margins not seen under an operation microscope using while light. Using fluorescence imaging to guide tumor resection resulted in a 3-fold decrease in the amount of residual timor. However, these preliminary results indicate that also an additional amount of normal brain is resected, which will be further investigated.
Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis
2014-10-01
A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.
Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina
2011-01-01
Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622
Site-Dependent Fluorescence Decay of Malachite Green Doped in Onion Cell
NASA Astrophysics Data System (ADS)
Nakatsuka, Hiroki; Sekine, Masaya; Suzuki, Yuji; Hattori, Toshiaki
1999-03-01
Time-resolved fluorescence measurements of malachite green dye moleculesdoped in onion cells were carried out.The fluorescence decay time was dependent on the individual cell and on theposition of the dye in a cell, which reflect the microscopic dynamics of each boundsite.Upon cooling, the decay time increased and this increase was accelerated ataround the freezing point of the onion cell.
Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination
Wolenski, Joseph S.; Julich, Doerthe
2014-01-01
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334
Micelle-templated composite quantum dots for super-resolution imaging.
Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O
2014-05-16
Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.
Optimizing environmental conditions for mass application of mechano-dwarfing stimuli to Arabidopsis
NASA Technical Reports Server (NTRS)
Montgomery, Jill A.; Bressan, Ray A.; Mitchell, Cary A.
2004-01-01
Obtaining uniform mechano-dwarfing of Arabidopsis thaliana (L.) Heynh. seedlings within dense plantings is problematic. Alternative forms of mechano-stimulation were applied to seedlings in effort to obtain uniform growth reduction compared with undisturbed controls in both greenhouse and controlled growth environments. Arabidopsis grown under low photosynthetic photon flux (PPF) artificial light grew upright with limited leaf expansion, which enhanced mechano-responsiveness compared to that of rosette-growing plants under filtered sunlight or high PPF artificial light. Hypocotyls of seedlings grown at PPFs > 60 micromoles m-2 s-1 elongated less and had 6% less sensitivity to mechanical stress than seedlings grown at PPFs < 60 micromoles m-2 s-1. Fluorescent lamps alone (F) or fluorescent plus incandescent (F+I) lamps were compared for seedling responses to mechanical stress. Under F lighting, hypocotyl elongation was reduced 25% to 40% by twice-daily brush or plate treatments, and brushed seedlings exhibited more growth reduction than did plate treatments. Seedlings grown under F+I lamps exhibited similar stress-induced growth reduction compared to seedlings grown under F only, but stressed F+I seedlings lodged to a greater extent due to excessive hypocotyl elongation. Temperature-response studies using standardized F-only lighting indicated increased hypocotyl elongation but decreased leaf expansion, and decreased mechano-responsivity to brushing over the temperature range from 20 to 28 degrees C. Daylength studies indicated similar degrees of mechano-inhibition of hypocotyl elongation over the daylength range of 12, 16, 20, and 24 hours, whereas fresh weight of stressed seedling shoots declined compared to controls. A combination of environmental growth parameters that give repeatable, visual mechanical dwarfing of Arabidopsis include low-PPF fluorescent lighting from 55 to 60 micromoles m-2 s-1, ambient temperatures from 22 to 25 degrees C, and twice-daily brush treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jennifer; Mills, Evan
The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than halfmore » the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or kerosene lighting, reduced crowding which in turn created a less stressful environment for the chickens. The far higher levels of illumination also created a better environment for the workers, while eliminating the time required for obtaining fuel and maintaining kerosene lanterns. An additional advantage of the LED system relative to the solar fluorescent system was that the former does not require a skilled technician to carry out the installation. The portable LED system lighting layout is also more easily adjusted than that of the hardwired fluorescent systems. Furthermore, switching to the LED system avoids over one metric ton of carbon dioxide emissions per house on an annual basis compared to kerosene. There is high potential for replication of this particular LED lighting strategy in the developing world. In order to estimate the scale of kerosene use and the potential for savings, more information is needed on the numbers of chickens produced off-grid, as well as lighting uses for other categories of poultry production (egg layers, indigenous broilers ). Our discovery that weight gain did not slow in the solar-fluorescent house after it experienced extended lighting outages beginning on day 14 of the 35-day study suggests that conventional farming practices in Kenyan broiler operations may call for more hours of lighting than is needed to achieve least-cost production.« less
Samkoe, Kimberley S; Bates, Brent D; Tselepidakis, Niki N; DSouza, Alisha V; Gunn, Jason R; Ramkumar, Dipak B; Paulsen, Keith D; Pogue, Brian W; Henderson, Eric R
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chih Wei; Schwab, Mark; Hill, Steven C.
Tryptophan is a fluorescent amino acid common in proteins. Its absorption is largest for wavelengths λ ≲ 290 nm and its fluorescence emissions peak around 300–350 nm, depending upon the local environment. Here we report the observation of red fluorescence near 600 nm emerging from 488-nm continuous-wave (CW) laser photoexcitation of dry tryptophan (Trp) particles. With an excitation intensity below 0.5 kW/cm 2, dry Trp particles yield distinctive Raman scattering peaks in the presence of relatively weak and spectrally broad emissions with λ ~500–700 nm, allowing estimation of particle temperature at low excitation intensities. When the photoexcitation intensity is increasedmore » to 1 kW/cm 2 or more for a few minutes, fluorescence intensity dramatically increases by more than two orders of magnitude. The fluorescence continues to increase in intensity and gradually shift to the red when photoexcitation intensity and the duration of exposure are increased. The resulting products absorb at visible wavelengths and generate red fluorescence with λ ~ 650–800 nm with 633-nm CW laser excitation. In conclusion, we attribute the emergence of orange and red fluorescence in the Trp products to a photochemical transformation that is instigated by weak optical transitions to triplet states in Trp with 488-nm excitation and which may be expedited by a photothermal effect.« less
Lai, Chih Wei; Schwab, Mark; Hill, Steven C.; ...
2016-05-19
Tryptophan is a fluorescent amino acid common in proteins. Its absorption is largest for wavelengths λ ≲ 290 nm and its fluorescence emissions peak around 300–350 nm, depending upon the local environment. Here we report the observation of red fluorescence near 600 nm emerging from 488-nm continuous-wave (CW) laser photoexcitation of dry tryptophan (Trp) particles. With an excitation intensity below 0.5 kW/cm 2, dry Trp particles yield distinctive Raman scattering peaks in the presence of relatively weak and spectrally broad emissions with λ ~500–700 nm, allowing estimation of particle temperature at low excitation intensities. When the photoexcitation intensity is increasedmore » to 1 kW/cm 2 or more for a few minutes, fluorescence intensity dramatically increases by more than two orders of magnitude. The fluorescence continues to increase in intensity and gradually shift to the red when photoexcitation intensity and the duration of exposure are increased. The resulting products absorb at visible wavelengths and generate red fluorescence with λ ~ 650–800 nm with 633-nm CW laser excitation. In conclusion, we attribute the emergence of orange and red fluorescence in the Trp products to a photochemical transformation that is instigated by weak optical transitions to triplet states in Trp with 488-nm excitation and which may be expedited by a photothermal effect.« less
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-01-01
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-10-31
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.
The design and application of fluorophore–gold nanoparticle activatable probes
Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan
2013-01-01
Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462
Amplification of chromosomal DNA in situ
Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.
2002-01-01
Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.
Kannaujiya, Vinod K; Sinha, Rajeshwar P
2017-03-01
The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.
Plesniak, Leigh; Horiuchi, Yuki; Sem, Daniel; Meinenger, David; Stiles, Linda; Shaffer, Jennifer; Jennings, Patricia A; Adams, Joseph A
2002-11-26
EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.
Rose, Rachel H; Briddon, Stephen J; Holliday, Nicholas D
2010-01-01
There is increasing complexity in the organization of seven transmembrane domain (7TM) receptor signalling pathways, and in the ability of their ligands to modulate and direct this signalling. Underlying these events is a network of protein interactions between the 7TM receptors themselves and associated effectors, such as G proteins and β-arrestins. Bimolecular fluorescence complementation, or BiFC, is a technique capable of detecting these protein–protein events essential for 7TM receptor function. Fluorescent proteins, such as those from Aequorea victoria, are split into two non-fluorescent halves, which then tag the proteins under study. On association, these fragments refold and regenerate a mature fluorescent protein, producing a BiFC signal indicative of complex formation. Here, we review the experimental criteria for successful application of BiFC, considered in the context of 7TM receptor signalling events such as receptor dimerization, G protein and β-arrestin signalling. The advantages and limitations of BiFC imaging are compared with alternative resonance energy transfer techniques. We show that the essential simplicity of the fluorescent BiFC measurement allows high-content and advanced imaging applications, and that it can probe more complex multi-protein interactions alone or in combination with resonance energy transfer. These capabilities suggest that BiFC techniques will become ever more useful in the analysis of ligand and 7TM receptor pharmacology at the molecular level of protein–protein interactions. This article is part of a themed section on Imaging in Pharmacology. To view the editorial for this themed section visit http://dx.doi.org/10.1111/j.1476-5381.2010.00685.x PMID:20015298
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng
2017-05-01
Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.
Absorption and emission spectroscopic characterisation of 8-amino-riboflavin
NASA Astrophysics Data System (ADS)
Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.
2009-10-01
The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.
Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng
2017-01-01
Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean. PMID:28513605
NASA Technical Reports Server (NTRS)
Rock, B. N.; Hoshizaki, T.; Lichtenthaler, H.; Schmuck, G.
1986-01-01
Field analyses were conducted at spruce/fir sites in the U.S. and Germany undergoing forest decline. Data gathered from common branch samples included reflectance curves, fluorescence measurements, and pigment concentrations. Similar reflectance signatures are seen for specimens from all sites. Reflectance spectra from specimens collected from high damage sites in both countries show a characteristic reflectance drop in the near infrared and a shift (5 nm) of the red edge to shorter wavelengths. Fluorescence data suggest altered state of health of photosynthetic pigments only in specimens from German high damage sites, and pigment extraction and analysis indicate a reduction in total chlorophyll, a decrease in chlorophyll b when compared with chlorophyll a, and a relative increase in carotenoids.
Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia
2017-07-01
Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod
A rapid method for measuring intracellular pH using BCECF-AM.
Ozkan, Pinar; Mutharasan, Raj
2002-08-15
A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.
Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen
1999-05-14
The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.
Polymers imprinted with PAH mixtures--comparing fluorescence and QCM sensors.
Lieberzeit, Peter A; Halikias, Konstantin; Afzal, Adeel; Dickert, Franz L
2008-12-01
Molecular imprinting with binary mixtures of different polycyclic aromatic hydrocarbons (PAH) is a tool for design of chemically highly sensitive layers for detection of these analytes. Sensor responses increase by one order of magnitude compared with layers imprinted with one type of template. Detection limits, e.g. for pyrene, reach down to 30 ng L(-1) in water, as could be observed with a naphthalene and pyrene-imprinted polyurethane. Comparing sensor characteristics obtained by QCM and fluorescence reveals different saturation behaviours indicating that, first, single PAH molecules occupy the interaction centres followed by gradual excimer incorporation at higher concentrations finally leading to substantial quenching, when all accessible cavities are occupied. The plateau in the mass-sensitive measurements suggests that up to 80% of the cavities generated in the MIP are re-occupied. Displacement measurements between chrysene and pyrene revealed that for imprinted layers with very high pyrene sensitivities the signals of both PAH are additive, whereas in materials with lower pyrene uptake the two analytes replace each other in the interaction sites of the polymer.
Nakahara, Takako; Suemori, Shinichiro; Tsujioka, Takayuki; Kataoka, Mikio; Kataoka, Hiromi; Shibakura, Misako; Tohyama, Kaoru
2018-06-01
To investigate megakaryocyte (MK) DNA ploidy in various hematological diseases, fluorescence microscopy imaging system (FMI) can be used to analyze DNA ploidy with cell morphology at the single-cell level by using specialized image-processing software. Here we compared DNA ploidy obtained by FMI measured with that obtained flow cytometry (FCM). With FMI, we could evaluate the DNA ploidy in long-term preserved bone marrow smear samples after staining. We next analyzed the MK DNA ploidy in 42 bone marrow smear samples including 26 myeloid neoplasm cases, and we compared the DNA ploidy and platelet counts in the patients' peripheral blood; the production of platelets was significantly high compared to DNA ploidy in the myeloproliferative neoplasms group. The FMI method revealed that the patients with 5q- syndrome exhibited relatively low DNA ploidy despite high platelet counts, and this result suggested that increased DNA ploidy is not indispensable to abundant platelet production. The FMI method for DNA ploidy will be a useful tool to clarify the relationship between DNA ploidy and platelet production by MKs.
The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence
NASA Astrophysics Data System (ADS)
Zherebtsov, E. A.; Kandurova, K. Y.; Seryogina, E. S.; Kozlov, I. O.; Dremin, V. V.; Zherebtsova, A. I.; Dunaev, A. V.; Meglinski, I.
2017-03-01
This article presents the results of the study of the pressure applied on optical diagnostic probes as a significant factor affecting the results of measurements. During stepwise increasing and decreasing of local pressure on skin we conducted measurements using the methods of laser Doppler flowmetry and fluorescence spectroscopy. It was found out that pressure on optical probe has sufficient impact on skin microcirculation to affect registered fluorescence intensity. Data obtained in this study are of interest for design and development of diagnostic technologies for wearable devices. This data will also inform further investigation into issues of compensation of blood absorption influence on fluorescence spectrum, allowing increased accuracy and reproducibility of measurements by fluorescence spectroscopy methods in optical diagnosis.
Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J
2018-06-28
Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.
Qiu, Xudong; Johnson, James R.; Wilson, Bradley S.; Gammon, Seth T.; Piwnica-Worms, David; Barnett, Edward M.
2014-01-01
Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models. PMID:24586415
Changes in River Organic Matter Through Time.
NASA Astrophysics Data System (ADS)
Hudson, N.; Baker, A.; Ward, D.
2006-12-01
Samples of river water from central England were collected during the summer base-flow period. They were analysed for BOD and filtered at 1.2μm and 0.1μm increments to obtain i) the colloidal and dissolved, and ii) dissolved filter sterilized fractions. Each filtered fraction was plated up for microbiological cell counts and the agar plates and water samples were stored under a range of environmental conditions (4° C dark, 11° C light/ dark, 11° C dark, and 20° C dark) for 26 days. Absorbance, fluorescence, pH, conductivity and total organic carbon (TOC) were measured and colony forming units (CFU) counted on days 1, 2, 3, 4, 5, 12, 19 and 26. The fluorescence intensity was recorded for 5 commonly studied regions: protein like fluorescence, indicative of microbial activity, represented by the fluorescent amino acids tyrosine and tryptophan (which has two clear fluorescence regions) and humic and fulvic acids derived from the break down of terrestrial and aquatic plant material. Humic and fulvic-like fluorescence increased in all samples under all storage conditions suggesting that peaks A and C probably include a microbial element, either a product of the living community or as dead cell material in all fraction sizes including <0.1μm. Tryptophan and tyrosine-like fluorescence intensities demonstrated less clear trends which may be reflective of the intrinsic variation in natural samples. Tryptophan-like fluorescence generally decreased or showed minimal change, except in samples exposed to light in which an increase was observed in line with algal growth. A decrease in intensity may relate to the use of the tryptophan-like material as a microbial substrate. The increase in tryptophan-like fluorescence intensity suggests that this fluorescent material is being produced, either by algae, or bacterial activity associated with algal growth. It may also occur as a result of changing water chemistry causing a change in molecular conformation, and resulting fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.
Nokhbatolfoghahaie, Hanieh; Alikhasi, Marzieh; Chiniforush, Nasim; Khoei, Farzaneh; Safavi, Nassimeh; Yaghoub Zadeh, Behnoush
2013-01-01
Introduction: Today the prevalence of teeth decays has considerably decreased. Related organizations and institutions mention several reasons for it such as improvement of decay diagnostic equipment and tools which are even capable of detecting caries in their initial stages. This resulted in reduction of costs for patients and remarkable increase in teeth life span. There are many methods for decay diagnostic, like: visual and radiographic methods, devices with fluorescence such as Quantitative light-induced fluorescence (QLF), Vista proof, Laser fluorescence (LF or DIAGNOdent), Fluorescence Camera (FC) and Digital radiography. Although DIAGNOdent is considered a valuable device for decay diagnostic ,there are concerns regarding its efficacy and accuracy. Considering the sensitivity of decaydiagnosis and the exorbitant annual expenses supported by government and people for caries treatment, finding the best method for early caries detection is of the most importance. Numerous studies were performed to compare different diagnostic methods with conflicting results. The objective of this study is a comparative review of the efficiency of DIAGNOdent in comparison to visual methods and radiographic methods in the diagnostic of teeth occlusal surfaces. Methods: Search of PubMed, Google Scholar electronic resources was performed in order to find clinical trials in English in the period between 1998 and 2013. Full texts of only 35 articles were available. Conclusion: Considering the sensitivity and specificity reported in the different studies, it seems that DIAGNOdent is an appropriate modality for caries detection as a complementary method beside other methods and its use alone to obtain treatment plan is not enough. PMID:25606325
Diffuse fluorescence tomography of exo- and endogenously labeled tumors
NASA Astrophysics Data System (ADS)
Balalaeva, Irina V.; Turchin, Ilya V.; Orlova, Anna G.; Plekhanov, Vladimir I.; Shirmanova, Marina V.; Kleshnin, Michail S.; Fiks, Ilya I.; Zagainova, Elena V.; Kamensky, Vladislav A.
2007-06-01
Strong light scattering and absorption limit observation of the internal structure of biological tissue. Only special tools for turbid media imaging, such as optical diffuse tomography, enable noninvasive investigation of the internal biological tissues, including visualization and intravital monitoring of deep tumors. In this work the preliminary results of diffuse fluorescence tomography (DFT) of small animals are presented. Usage of exogenous fluorophores, targeted specifically at tumor cells, and fluorescent proteins expressed endogenously can significantly increase the contrast of obtained images. Fluorescent compounds of different nature, such as sulphonated aluminium phthalocyanine (Photosens), red fluorescing proteins and CdTe/CdSe-core/shell nanocrystals (quantum dots) were applied. We tested diffuse fluorescence tomography method at model media, in post mortem and in vivo experiments. The animal was scanned in transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at wavelength of 532 nm or semiconductor laser at wavelength of 655 nm. Quantum dots or protein DsRed2 in glass capsules (inner diameter 2-3 mm) were placed post mortem inside the esophagus of 7-day-old hairless rats to simulate marked tumors. Photosens was injected intravenously to linear mice with metastazing Lewis lung carcinoma. The reconstruction algorithm, based on Algebraic Reconstruction Technique, was created and tested numerically in model experiments. High contrast images of tumor simulating capsules with DsRed2 concentrations about 10 -6 M and quantum dots about 5x10 -11 M have been obtained. Organ distribution of Photosens and its accumulation in tumors and surrounding tissues of animals has been examined. We have conducted the monitoring of tumors, exogenously labeled by photosensitizer. This work demonstrates potential capabilities of DFT method for intravital detection and monitoring of deep fluorescent-labeled tumors in animal models. The comparative analysis of conventional photosensitizer, fluorescent proteins and quantum dots has been carried out.
Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; You, Shi-jie
2011-02-01
This study focuses on organic membrane foulants in a submerged membrane bioreactor (MBR) process with pre-ozonation compared to an individual MBR using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. While the influent was continuously ozonated at a normal dosage, preferable organic matter removal was achieved in subsequent MBR, and trans-membrane pressure increased at a much lower rate than that of the individual MBR. EEM fluorescence spectroscopy was employed to characterize the dissolved organic matter (DOM) samples, extracellular polymeric substance (EPS) samples and membrane foulants. Four main peaks could be identified from the EEM fluorescence spectra of the DOM samples in both MBRs. Two peaks were associated with the protein-like fluorophores, and the other ones were related to the humic-like fluorophores. The results indicated that pre-ozonation decreased fluorescence intensities of all peaks in the EEM spectra of influent DOM especially for protein-like substances and caused red shifts of all fluorescence peaks to different extents. The peak intensities of the protein-like substances represented by Peak T(1) and T(2) in EPS spectra were obviously decreased as a result of pre-ozonation. Both external and internal fouling could be effectively mitigated by the pre-ozonation. The most primary component of external foulants was humic acid-like substance (Peak C) in the MBR with pre-ozonation and protein-like substance (Peak T(1)) in the individual MBR, respectively. The content decrease of protein-like substances and structural change of humic-like substances were observed in external foulants from EEM fluorescence spectra due to pre-ozonation. However, it could be seen that ozonation resulted in significant reduction of intensities but little location shift of all peaks in EEM fluorescence spectra of internal foulants. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fluorescent Protein Approaches in Alpha Herpesvirus Research
Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.
2015-01-01
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion
NASA Astrophysics Data System (ADS)
Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili
2018-05-01
A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.
Schlodder, Eberhard; Cetin, Marianne; Byrdin, Martin; Terekhova, Irina V; Karapetyan, Navassard V
2005-01-07
The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.
The Role of Protein Kinase-C in Breast Cancer Invasion and Metastasis
1997-09-01
relatively new reporter molecule that is being increasingly used in a variety of studies is the green fluorescent protein (GFP) from the jellyfish Aequorea ...Calf Serum GFP Green Fluorescent Protein IHC Immunohistochemistry IRB Institutional Review Board MAPK Mitogen Activated Protein Kinase MMP...and in vivo. A relatively new reporter molecule that is being increasingly used in a variety of studies is the green fluorescent protein (GFP) from
NASA Astrophysics Data System (ADS)
Valentine, Ronan M.; Brown, C. Tom A.; Moseley, Harry; Ibbotson, Sally; Wood, Kenny
2011-04-01
We present protoporphyrin IX (PpIX) fluorescence measurements acquired from patients presenting with superficial basal cell carcinoma during photodynamic therapy (PDT) treatment, facilitating in vivo photobleaching to be monitored. Monte Carlo (MC) simulations, taking into account photobleaching, are performed on a three-dimensional cube grid, which represents the treatment geometry. Consequently, it is possible to determine the spatial and temporal changes to the origin of collected fluorescence and generated singlet oxygen. From our clinical results, an in vivo photobleaching dose constant, β of 5-aminolaevulinic acid-induced PpIX fluorescence is found to be 14 +/- 1 J/cm2. Results from our MC simulations suggest that an increase from our typical administered treatment light dose of 75-150 J/cm2 could increase the effective PDT treatment initially achieved at a depth of 2.7-3.3 mm in the tumor, respectively. Moreover, this increase reduces the surface PpIX fluorescence from 0.00012 to 0.000003 of the maximum value recorded before treatment. The recommendation of administrating a larger light dose, which advocates an increase in the treatment time after surface PpIX fluorescence has diminished, remains valid for different sets of optical properties and therefore should have a beneficial outcome on the total treatment effect.
Effect of solvents on the fluorescence spectra of bacterial luciferase
NASA Astrophysics Data System (ADS)
Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.
2006-08-01
Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.
Strong, A J; Harland, S P; Meldrum, B S; Whittington, D J
1996-05-01
A method for the detection and tracking of propagated fluorescence transients as indicators of depolarizations in focal cerebral ischemia is described, together with initial results indicating the potential of the method. The cortex of the right cerebral hemisphere was exposed for nonrecovery experiments in five cats anesthetized with chloralose and subjected to permanent middle cerebral artery (MCA) occlusion. Fluorescence with 370-nm excitation (attributed to the degree of reduction of the NAD/H couple) was imaged with an intensified charge-coupled device camera and digitized. Sequences of images representing changes in gray level from a baseline image were examined, together with the time courses of mean gray levels in specified regions of interest. Spontaneous increases in fluorescence occurred, starting most commonly at the edge of areas of core ischemia; they propagated usually throughout the periinfarct zone and resolved to varying degrees and at varying rates, depending on proximity of the locus to the MCA input. When a fluorescence transient reached the anterior cerebral artery territory, its initial polarity reversed from an increase to a decrease in fluorescence. An initial increase in fluorescence in response to the arrival of a transient may characterize cortex that will become infarcted, if pathophysiological changes in the periinfarct zone are allowed to evolve naturally.
Study on the fluorescence characteristics of carbon dots
NASA Astrophysics Data System (ADS)
Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo
2010-02-01
Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.
Determination of atomic sodium in coal combustion using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeny, P.G.; Abrahamson, H.B.; Radonovich, L.J.
1987-01-01
A laser-induced fluorescence spectrometer (LIFS) was assembled and sodium atom densities produced from the aspiration of solutions and direct introduction of a lignite into a flame were determined from fluorescence measurements. The average flame volume observed was 0.4mm/sup 3/. This small volume allowed the measurement of sodium concentrations as a function of vertical and horizontal flame position. Temperature profiles of the flames employed were also obtained and compared with the sodium atom densities. The sodium atom densities calculated from the fluorescence measurements (N/sub tt/) are compared with the sodium atom densities calculated from thermodynamic considerations (N/sub tt/) and sodium concentrationsmore » derived from aspiration/introduction rates (N/sub ta/).« less
Sakellariou, Giorgos K; Pye, Deborah; Vasilaki, Aphrodite; Zibrik, Lea; Palomero, Jesus; Kabayo, Tabitha; McArdle, Francis; Van Remmen, Holly; Richardson, Arlan; Tidball, James G; McArdle, Anne; Jackson, Malcolm J
2011-01-01
Summary Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1−/− mice were loaded with NO-sensitive (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1−/− mice compared with those from WT mice. Fibers from Sod1−/− mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1−/− mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1−/− mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1−/− mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle. PMID:21443684
Hiriart-Baer, Véronique P; Arciszewski, Tim J; Malkin, Sairah Y; Guildford, Stephanie J; Hecky, Robert E
2008-12-01
This study investigated the application of pulse-amplitude-modulated (PAM) fluorometry as a rapid assessment of benthic macroalgal physiological status. Maximum quantum efficiency (Fv /Fm ), dark-light induction curves, and rapid fluorescence light-response curves (RLC) were measured on the filamentous macroalgal Cladophora sp. from Lake Ontario on 5 d at 16 sites spanning a gradient of light and nutrient supply. For Cladophora sp. growing in situ, light limitation was assessed by comparing average daily irradiance with the light utilization efficiency parameter (α) derived from RLCs. In this study, there was a nonlinear relationship between Fv /Fm and the degree of P limitation in macroalgae. However, only light-saturated Cladophora sp. showed a significant positive linear relationship between Fv /Fm and P nutrient status. The absence of this relationship among light-limited algae indicates that their photosynthetic rate would be stimulated by increased water clarity, and not by increased P supply. PAM fluorescence measures were successfully able to identify light-saturated macroalgae and, among these, assess the degree to which they were nutrient limited. These results enable us to test hypotheses arising from numeric models predicting the impact of changes in light penetration and nutrient supply on benthic primary production. © 2008 Phycological Society of America.
Fluorescence imaging of the nanoparticles modified with indocyanine green
NASA Astrophysics Data System (ADS)
Gareev, K. G.; Babikova, K. Y.; Postnov, V. N.; Naumisheva, E. B.; Korolev, D. V.
2017-11-01
The comparative research of silica, the magnetite and magnetite-silica nanoparticles modified with fluorescent dyes using gas-phase and liquid-phase methods was conducted. At the content of fluorescent dye comparable in size a particular spectrophotometric method, nanoparticles with fluorescein have up to 1000 times larger overall luminous efficiency. It is revealed that magnetic nanoparticles are characterized by a smaller light efficiency in comparison with silica particles, at the same time particles of a magnetite are most effective at modification with fluorescein, and magnetite-silica particles - at modification with indocyanine green.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Finlay, J; Zhu, T
Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected.more » Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer distribution.« less
Pearn, Sophie M; Bennett, Andrew T D; Cuthill, Innes C
2003-01-01
Fluorescence has so far been found in 52 parrot species when illuminated with ultraviolet-A (UVA) 'black' lamps, and two attempts have been made to determine whether such fluorescence plays any role in sexual signalling. However, the contribution of the reflectance versus fluorescence to the total radiance from feathers, even in the most studied species to date (budgerigars), is unclear. Nor has the plumage of this study species been systematically assessed to determine the distribution of fluorescent patches. We therefore used spectrofluorometry to determine which areas of budgerigars fluoresce and the excitation and emission spectra involved; this is the first time that such a technique has been applied to avian plumage. We found that both the yellow crown and (normally hidden) white downy chest feathers exhibit strong UVA-induced fluorescence, with peak emissions at 527 nm and 436 nm, respectively. Conversely, the bright-green chest and dark-blue tail feathers do not fluoresce. When comparing reflectance spectra (400-700 nm) from the yellow crown using illuminants with a proportion of UVA comparable to daylight, and illuminants with all UVA removed, no measurable difference resulting from fluorescence was found. This suggests that under normal daylight the contribution of fluorescence to radiance is probably trivial. Furthermore, these spectra revealed that males had fluorescent crowns with substantially higher reflectance than those of females, in both the UV waveband and at longer wavelengths. Reflectance spectrophotometry was also performed on a number of live wild-type male budgerigars to investigate the chromatic contrast between the different plumage areas. This showed that many plumage regions are highly UV-reflective. Overall our results suggest that rapid surveys using UVA black lamps may overestimate the contribution of fluorescence to plumage coloration, and that any signalling role of fluorescence emissions, at least from the yellow crown of budgerigars, may not be as important as previously thought. PMID:12737665
Bi, Huangai; Liu, Peipei; Jiang, Zhensheng; Ai, Xizhen
2017-10-01
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild-type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO 2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses. © 2017 Scandinavian Plant Physiology Society.
Is the flower fluorescence relevant in biocommunication?
Iriel, Analía; Lagorio, María Gabriela
2010-10-01
Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φ(f)) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides (Φ(f) = 0.030) and for Citrus aurantium petals (Φ(f) = 0.014) and stigma (Φ(f) = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.
Steinmeyer, Jeannine; Walter, Heidi-Kristin; Bichelberger, Mathilde A; Schneider, Violetta; Kubař, Tomáš; Rönicke, Franziska; Olshausen, Bettina; Nienhaus, Karin; Nienhaus, Gerd Ulrich; Schepers, Ute; Elstner, Marcus; Wagenknecht, Hans-Achim
2018-05-23
Two fluorescent dyes covalently attached in diagonal interstrand orientation to siRNA undergo energy transfer and thereby enable a dual color fluorescence readout (red/green) for hybridization. Three different structural variations were carried out and compared by their optical properties, including (i) the base surrogate approach with an acyclic linker as a substitute of the 2-deoxyriboside between the phosphodiester bridges, (ii) the 2'-modification of conventional ribofuranosides and (iii) the arabino-configured 2'-modification. The double stranded siRNA with the latter type of modification delivered the best energy transfer efficiency, which was explained by molecular dynamics simulations that showed that the two dyes are more flexible at the arabino-configured sugars compared to the completely stacked situation at the ribo-configured ones. Single molecule fluorescence lifetime measurements indicate their application in fluorescence cell imaging, which reveals a red/green fluorescence contrast in particular for the arabino-configured 2'-modification by the two dyes, which is key for tracking of siRNA transport into HeLa cells.
NASA Astrophysics Data System (ADS)
Cai, Zhijian; Zou, Wenlong; Wu, Jianhong
2017-10-01
Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.
Kim, Chulhong; Song, Kwang Hyun; Gao, Feng; Wang, Lihong V
2010-05-01
To noninvasively map sentinel lymph nodes (SLNs) and lymphatic vessels in rats in vivo by using dual-modality nonionizing imaging-volumetric spectroscopic photoacoustic imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission-of indocyanine green (ICG). Institutional animal care and use committee approval was obtained. Healthy Sprague-Dawley rats weighing 250-420 g (age range, 60-120 days) were imaged by using volumetric photoacoustic imaging (n = 5) and planar fluorescence imaging (n = 3) before and after injection of 1 mmol/L ICG. Student paired t tests based on a logarithmic scale were performed to evaluate the change in photoacoustic signal enhancement of SLNs and lymphatic vessels before and after ICG injection. The spatial resolutions of both imaging systems were compared at various imaging depths (2-8 mm) by layering additional biologic tissues on top of the rats in vivo. Spectroscopic photoacoustic imaging was applied to identify ICG-dyed SLNs. In all five rats examined with photoacoustic imaging, SLNs were clearly visible, with a mean signal enhancement of 5.9 arbitrary units (AU) + or - 1.8 (standard error of the mean) (P < .002) at 0.2 hour after injection, while lymphatic vessels were seen in four of the five rats, with a signal enhancement of 4.3 AU + or - 0.6 (P = .001). In all three rats examined with fluorescence imaging, SLNs and lymphatic vessels were seen. The average full width at half maximum (FWHM) of the SLNs in the photoacoustic images at three imaging depths (2, 6, and 8 mm) was 2.0 mm + or - 0.2 (standard deviation), comparable to the size of a dissected lymph node as measured with a caliper. However, the FWHM of the SLNs in fluorescence images widened from 8 to 22 mm as the imaging depth increased, owing to strong light scattering. SLNs were identified spectroscopically in photoacoustic images. These two modalities, when used together with ICG, have the potential to help map SLNs in axillary staging and to help evaluate tumor metastasis in patients with breast cancer.
Performance evaluation of integrating detectors for near-infrared fluorescence molecular imaging
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.
2014-05-01
Although there has been a plethora of devices advanced for clinical translation, there has been no standards to compare and determine the optical device for fluorescence molecular imaging. In this work, we compare different CCD configurations using a solid phantom developed to mimic pM - fM concentrations of near-infrared fluorescent dyes in tissues. Our results show that intensified CCD systems (ICCDs) offer greater contrast at larger signal-tonoise ratios (SNRs) in comparison to their un-intensified CCD systems operated at clinically reasonable, sub-second acquisition times. Furthermore, we compared our investigational ICCD device to the commercial NOVADAQ SPY system, demonstrating different performance in both SNR and contrast.
Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.
Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J
2016-07-12
Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.
Tolerance of a knotted near infrared fluorescent protein to random circular permutation
Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.
2016-01-01
Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983
NASA Astrophysics Data System (ADS)
Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi
2016-03-01
Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpino, James A. J.; Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk; Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk
2014-08-01
The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing amore » deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.« less
Robert, Patricia; Bolduc, Andréanne; Skene, W G
2012-09-20
A series of oligofluorenes ranging between one and three repeating units were prepared as structurally well-defined representative models of polyfluorenes. The photophysics of the oligofluorene models were investigated both by laser flash photolysis and steady-state fluorescence. The effects of the ketone and ketylimine functional groups in the 9-position on the photophysical properties, notably the triplet quantum yield (Φ(TT)) by intersystem crossing and the absolute fluorescence quantum yields (Φ(fl)), were investigated. The singlet depletion method was used to determine both the Φ(TT) and molar absorption coefficients of the observed triplets (ε(TT)). Meanwhile, the absolute Φ(fl) were determined using an integrating sphere. It was found that both the ketone and ketylimine substituents and the degree of oligomerization contributed to quenching the oligofluorene fluorescence. For example, the Φ(fl) was quenched 5-fold with the ketylimine and ketone substituents for the bifluorenyl derivatives compared to their corresponding 9,9-dihexyl bifluorenyl counterparts. Meanwhile, the Φ(fl) quenching increased 14 times with the trifluorenyl ketone and ketylimine derivatives. Measured Φ(TT) values ranged between 22 and 43% for the difluorenyl derivatives with ε(TT) on the order of 13 000 cm(-1) M(-1). The Φ(TT) decreased to <10% concomitant with doubling of the ε(TT) when the degree of oligomerization was increased to 3. A new fluorescence emission at 545 nm formed at low temperatures for the ketone and ketylimine oligofluorene derivatives. The emission intensity was dependent on the temperature, and it disappeared at room temperature.
Yamamoto, Junkoh; Kakeda, Shingo; Yoneda, Tetsuya; Ogura, Shun-Ichiro; Shimajiri, Shohei; Tanaka, Tohru; Korogi, Yukunori; Nishizawa, Shigeru
2017-03-01
Magnetic resonance imaging (MRI) with a gadolinium-based contrast agent is the gold standard for high-grade gliomas (HGGs). The compound 5-aminolevulinic acid (5-ALA) undergoes a high rate of cellular uptake, particularly in cancer cells. In addition, fluorescence-guided resection with 5-ALA is widely used for imaging HGGs. 5-ALA is water soluble, while protoporphyrin IX (PpIX) is water insoluble. It was speculated whether converting from 5-ALA to PpIX may relatively increase intracellular water content, and consequently, might enhance the T2 signal intensity in HGG. The aim of the present study was to assess whether 5-ALA-induced PpIX enhances the T2 signal intensity in patients with HGGs. A total of 4 patients who were candidates for HGG surgical treatment were prospectively analyzed with preoperative MRI. Patients received oral doses of 5-ALA (20 mg/kg) 3 h prior to anesthesia. At 2.5 h post-5-ALA administration, T2-weighted images (T2WIs) were obtained from all patients. Subsequently, tumors were evaluated via fluorescence using a modified operating microscope. Fluorescent tumor tissues were obtained to analyze the accumulation of 5-ALA-induced PpIX within the tumors, which was confirmed quantitatively by high-performance liquid chromatography (HPLC) analysis. The MRI T2 signal intensity within the tumors was evaluated prior to and following 5-ALA administration. Three glioblastoma multiformes (GBMs) and 1 anaplastic oligodendroglioma (AO) were included in the analysis. Intraoperatively, all GBMs exhibited strong fluorescence of 5-ALA-induced PpIX, whilst no fluorescence was observed in the AO sample. HPLC analysis indicated a higher accumulation of 5-ALA-induced PpIX in the GBM samples compared with the AO sample. In total, 48 regions of interest were identified within the tumors from T2-WIs. In the GBM group, the relative T2 signal intensity value within the tumors following 5-ALA administration was significantly increased compared with the T2 signal intensity value prior to 5-ALA administration (1.537±0.021 and 1.577±0.023, respectively; P=0.0055). No significant differences were observed in the AO group. These results suggest that the 5-ALA-induced PpIX enhanced the T2 signal intensity in HGG. Therefore, 5-ALA may be a potentially useful MRI contrast reagent for HGG.
Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.
Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko
2010-12-15
TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
Han, Shuai; Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun
2017-07-07
In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)₂. In the reaction process, Ca 2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)₂ content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)₂ content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure.
The influence of the Tbeta level upon fluorescence and laser properties of aromatic compounds.
Nijegorodov, N; Winkoun, D P; Nkoma, J S
2004-07-01
The fluorescence and laser properties of seven specially chosen aromatic compounds are studied at 293 degrees C. The quantum yield of fluorescence, gamma, decay times, tauf, of the deaerated and non-deaerated solutions are measured. The oscillator strength, fe, fluorescence rate constants, kf, natural lifetimes, tauT0, and intersystem crossing rate constants, kST, are calculated. Some laser parameters are calculated or measured experimentally. It is found that the position of the Tbeta level plays an important role in the fluorescence and laser properties of aromatic compounds. If the Tbeta level is situated below the Sp level, it decreases the quantum yield of fluorescence and the decay time and increases the threshold of laser action. If, due to some structural changes of a molecule, the Tbeta level is situated higher than the Sp level, then the quantum yield of fluorescence and the decay times are increasing and the threshold of laser action is decreasing. Such influence of the position of the Tbeta level upon fluorescence and laser properties of aromatic compound is explained by the fact that the Sp level mixes with the Tbeta level more readily than with other taupipi* levels.
Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles
NASA Astrophysics Data System (ADS)
Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; Meglinski, I.
2017-06-01
The use of liposomal nanoparticles with an incorporated active substance is an innovative and promising approach to diagnostics and therapy. The application of liposomal nanoparticle-based drugs allows for targeted localized delivery, overcomes the natural barriers within the body effectively, and minimizes possible side effects. Liposomes are able to contain a variety of ingredients with practically no limitations to their chemical composition, chemical properties, or size of constituent molecules. This study evaluated the ability to control the passage of fluorescent dye-filled liposomes through the intestinal mucosal barrier after oral administration. For this purpose, the increase in transcutaneous registered fluorescence from tetrabromofluorescein dye was recorded and analysed. Fluorescence intensity was measured at the proximal end of the tail of an animal model after oral administration of the liposomes. Measurements were taken at the excitation wavelengths of 365 and 450 nm. The fluorescence intensity in the group treated with the fluorescent contrast agent encapsulated in liposomal particles increased 140% of the initial level, but in the group treated with pure contrast agent, the increase in detected fluorescence intensity did not exceed 110%. Mice that received empty liposomes as well as the control group did not demonstrate statistically significant changes in fluorescence intensity. A potential application of our results is an express laser optical method of monitoring the transport of orally administered liposomal particles. The results can be used to help create new optical tools for use in the development of new drugs and in high-throughput screening used during their testing.
Banjare, Manoj Kumar; Behera, Kamalakanta; Kurrey, Ramsingh; Banjare, Ramesh Kumar; Satnami, Manmohan L; Pandey, Siddharth; Ghosh, Kallol K
2018-06-15
Aggregation behavior of bio-surfactants (BS) sodium cholate (NaC) and sodium deoxycholate (NaDC) within aqueous solution of ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide [Emim][Br] has been investigated using surface tension, conductivity, steady state fluorescence, FT-IR and dynamic light scattering (DLS) techniques. Various interfacial and thermodynamic parameters are determined in the presence of different wt% of IL [Emim][Br]. Information regarding the local microenvironment and size of the aggregates is obtained from fluorescence and DLS, respectively. FT-IR spectral response is used to reveal the interactions taking place within aqueous NaC/NaDC micellar solutions. It is noteworthy to mention that increasing wt% of [Emim][Br] results in an increase in the spontaneity of micelle formation and the hydrophilic IL shows more affinity for NaC as compared to NaDC. Further, the micellar solutions of BS-[Emim][Br] are utilized for studying the aggregation of antidepressants drug promazine hydrochloride (pH). UV-vis spectroscopic investigation reveals interesting outcomes and the results show changes in spectral absorbance of PH drug on the addition of micellar solution (BS-[Emim][Br]). Highest binding affinity and most promising activity are shown for NaC as compared to NaDC. Copyright © 2018 Elsevier B.V. All rights reserved.
Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred
2014-07-16
We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer-protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection.
Schwenck, Johannes; Maier, Florian C; Kneilling, Manfred; Wiehr, Stefan; Fuchs, Kerstin
2017-05-08
This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.
Rapid purification of fluorescent enzymes by ultrafiltration
NASA Technical Reports Server (NTRS)
Benjaminson, M. A.; Satyanarayana, T.
1983-01-01
In order to expedite the preparation of fluorescently tagged enzymes for histo-cyctochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.
Rapid purification of fluorescent enzymes by ultrafiltration
NASA Technical Reports Server (NTRS)
Benjaminson, M. A.; Satyanarayana, T.
1983-01-01
In order to expedite the preparation of fluorescently tagged enzymes for histo/cytochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.
Near-infrared squaraine dyes for fluorescence enhanced surface assay
Matveeva, Evgenia G.; Terpetschnig, Ewald A.; Stevens, Megan; Patsenker, Leonid; Kolosova, Olga S.; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces. The fluorescence signal enhancement obtained for the two dyes was greater than that previously recorded for Rhodamine Red-X and AlexaFluor-647 labels. PMID:20046935