High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan; ...
2018-01-15
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less
High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
[Research on electron density in DC needle-plate corona discharge at atmospheric pressure].
Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min
2013-11-01
Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge.
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
Serum high density lipoprotein cholesterol, alcohol, and coronary mortality in male smokers.
Paunio, M.; Virtamo, J.; Gref, C. G.; Heinonen, O. P.
1996-01-01
OBJECTIVE--To determine whether the increase in mortality from coronary heart disease with high concentration (> 1.75 mmol/l) of high density lipoprotein cholesterol could be due to alcohol intake. DESIGN--Cohort study. SETTING--Placebo group of the alpha tocopherol, beta carotene cancer prevention (ATBC) study of south western population in Finland. PARTICIPANTS--7052 male smokers aged 50-69 years enrolled to the ATBC study in the 1980s. MAIN OUTCOME MEASURES--The relative and absolute rates adjusted for risk factors for clinically or pathologically verified deaths from coronary heart disease for different concentrations of high density lipoprotein cholesterol with and without stratification for alcohol intake. Similar rates were also calculated for different alcohol consumption groups. RESULTS--During the average follow up period of 6.7 years 258 men died from verified coronary heart disease. Coronary death rate steadily decreased with increasing concentration of high density lipoprotein cholesterol until a high concentration. An increase in the rate was observed above 1.75 mmol/l. This increase occurred among those who reported alcohol intake. Mortality was associated with alcohol intake in a J shaped dose response, and those who reported consuming more than five drinks a day (heavy drinkers) had the highest death rate. Mortality was higher in heavy drinkers than in non-drinkers or light or moderate drinkers in all high density lipoprotein categories from 0.91 mmol/l upward. CONCLUSIONS--Mortality from coronary heart disease increases at concentrations of high density lipoprotein cholesterol over 1.75 mmol/l. The mortality was highest among heavy drinkers, but an increase was found among light drinkers also. PMID:8634563
A high plant density reduces the ability of maize to use soil nitrogen
Yan, Peng; Pan, Junxiao; Zhang, Wenjie; Shi, Junfang; Chen, Xinping; Cui, Zhenling
2017-01-01
Understanding the physiological changes associated with high grain yield and high N use efficiency (NUE) is important when increasing the plant density and N rate to develop optimal agronomic management. We tested the hypothesis that high plant densities resulting in crowding stress reduce the ability of plants to use the N supply post-silking, thus decreasing the grain yield and NUE. In 2013 and 2014, a field experiment, with five N-application rates and three plant densities (6.0, 7.5, and 9.0 plants m–2), was conducted in the North China Plain (NCP). The calculated maximum grain yield and agronomic use efficiency (AEN) at a density of 7.5 plants m–2 were 12.4 Mg ha–1 and 39.3 kg kg–1, respectively, which were significantly higher than the values obtained at densities of 6.0 (11.3 Mg ha–1 and 30.2 kg kg–1) and 9.0 plant m–2 (11.7 Mg ha–1 and 27.8 kg kg–1). A high plant density of 9.0 plants m–2 decreased the post-silking N accumulation, leaf N concentration and net photosynthesis, which reduced the post-silking dry matter production, resulting in a low yield and NUE. Although a relatively low grain yield was observed at a density of 9.0 plants m–2, the optimal N rate increased from 150 to 186 kg N ha-1 at a density of 7.5 plants m–2. These results indicate that high plant densities with crowding stress reduce the ability of plants to use soil N during the post-silking period, and high rate of N fertilizer was needed to increase grain yield. We conclude that selecting the appropriate plant density combined with optimal N management could increase grain yields and the NUE in the NCP. PMID:28234970
Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice.
Feldman, Aryo B; Murchie, Erik H; Leung, Hei; Baraoidan, Marietta; Coe, Robert; Yu, Su-May; Lo, Shuen-Fang; Quick, William P
2014-01-01
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
Groot, P H; Scheek, L M; Jansen, H
1983-05-16
Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.
Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C
1977-01-01
BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774
Effects of discharge parameters on the micro-hollow cathode sustained glow discharge
NASA Astrophysics Data System (ADS)
Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI
2018-05-01
The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.
NASA Astrophysics Data System (ADS)
Liu, Baoliang; Liu, Ying; Liu, Ziyi; Qiu, Denggao; Sun, Guoxiang; Li, Xian
2014-09-01
Atlantic salmon Salmo salar were reared at four stocking densities—high density D 1 (final density ˜39 kg/m3), medium densities D 2 (˜29 kg/m3) and D 3 (˜19 kg/m3), and low density D 4 (˜12 kg/m3)—for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D 1 and lowest density D 4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.
Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method
NASA Astrophysics Data System (ADS)
Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.
2017-07-01
The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...
2017-06-12
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.
2017-09-01
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.
Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying
A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less
Linear increases in carbon nanotube density through multiple transfer technique.
Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish
2011-05-11
We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.
Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Car accidents induced by a bottleneck
NASA Astrophysics Data System (ADS)
Marzoug, Rachid; Echab, Hicham; Ez-Zahraouy, Hamid
2017-12-01
Based on the Nagel-Schreckenberg model (NS) we study the probability of car accidents to occur (Pac) at the entrance of the merging part of two roads (i.e. junction). The simulation results show that the existence of non-cooperative drivers plays a chief role, where it increases the risk of collisions in the intermediate and high densities. Moreover, the impact of speed limit in the bottleneck (Vb) on the probability Pac is also studied. This impact depends strongly on the density, where, the increasing of Vb enhances Pac in the low densities. Meanwhile, it increases the road safety in the high densities. The phase diagram of the system is also constructed.
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2017-06-01
We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ˜20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong
2014-11-26
We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.
Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.
Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J
2016-11-01
Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Romanova, Elena
2018-03-01
High-rise apartment houses have technical and economic advantages in areas with dense population. Their placement in the central part of the city allows increasing the number of living space in the limited territory, to bring population to the place of employment and reduce pendular migration. But increase in population density leads to psychological problems: level of a stress, fatigue increases, the number of phobias grows, infectious diseases extend quicker. These problems can be solved at resettlement of inhabitants to the suburb. However such decision leads to aggravation of a transport problem and the pulsing increase in population density in the downtown and on its suburb. To solve a transport problem, it is necessary not to increase the square of the cities. Therefore in the suburbs is also used high-rise construction. But high-rise residential districts on the suburb of the city get own social problems which are capable to destroy all advantages of high-rise construction.
Young, R L; DelConte, A
1999-11-01
The aim of this 24-cycle study was to evaluate the effects on serum lipid concentrations of an oral contraceptive preparation containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Forty-two healthy women were enrolled in a study designed to evaluate the effects on serum lipid concentrations of an oral contraceptive containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Lipid data were evaluated for 28 women who completed 24 cycles of treatment with a preparation of 100 microg levonorgestrel with 20 microg ethinyl estradiol for 21 days followed by placebo for 7 days. Concentrations of triglycerides, total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein cholesterol subfractions 2 and 3, low-density lipoprotein cholesterol, and apolipoproteins A-I and B were analyzed. Mean percentage changes from baseline were tested for significance by means of paired Student t tests. Total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein subfraction 2, and apolipoprotein A-I concentrations were not significantly changed from baseline. Neither was the ratio of high-density lipoprotein subfraction 2 to high-density lipoprotein subfraction 3. Mean percentage increases in concentrations of triglyceride, high-density lipoprotein subfraction 3, apolipoprotein B, and low-density lipoprotein cholesterol and increases in the ratios of total cholesterol to high-density lipoprotein cholesterol, low-density lipoprotein cholesterol to high-density lipoprotein cholesterol, and apolipoprotein B to apolipoprotein A-I were significant (P <.05) at >/=1 cycle. By cycle 24, however, only the concentration of high-density lipoprotein subfraction 3 remained significantly elevated. Changes in the plasma lipid profiles among women receiving monophasic 100 microg levonorgestrel with 20 microg ethinyl estradiol were similar to those seen with other low-dose oral contraceptives, but by cycle 24 only 1 of 7 mean values remained significantly different from baseline.
Mitchell, Toby; Alton, Lesley A; White, Craig R; Franklin, Craig E
2012-12-01
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst-swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst-swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst-swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR-induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low-density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single-factor studies. ©2012 Society for Conservation Biology.
Turbulence and transport in high density, increased β LAPD plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Guice, Danny
2014-10-01
A new LaB6 cathode plasma source has recently been deployed on the Large Plasma Device (LAPD), allowing for the production of significantly higher plasma density (ne ~ 3 ×1013 cm-3) and temperature (Te ~ 12 eV and Ti ~ 6 eV). This source produces a smaller core plasma (~20cm diameter) that can be embedded in the lower temperature, lower density standard LAPD plasma (60 cm diameter, 1012 cm-3, Te ~ 5 eV, Ti ~ 1 eV). We will present first results from experiments exploring the nature of turbulence and transport produced by this high density core plasma. In contrast to the edge of the standard LAPD plasma, coherent fluctuations are observed in the edge of the high density core plasma. These coherent modes are dominant at low field (~400 G) with a transition to a more broadband spectrum at higher fields (~1 kG). The combination of increased density and temperature with lowered field in LAPD leads to significant increases in plasma β (in fact β ~ 1 can be achieved for B ~ 100 G). As the field is lowered, the strength of correlated magnetic fluctuations increases substantially.
Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E
2016-01-01
Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.
Lytic to temperate switching of viral communities
NASA Astrophysics Data System (ADS)
Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G.; Coutinho, F. H.; Dinsdale, E. A.; Felts, B.; Furby, K. A.; George, E. E.; Green, K. T.; Gregoracci, G. B.; Haas, A. F.; Haggerty, J. M.; Hester, E. R.; Hisakawa, N.; Kelly, L. W.; Lim, Y. W.; Little, M.; Luque, A.; McDole-Somera, T.; McNair, K.; de Oliveira, L. S.; Quistad, S. D.; Robinett, N. L.; Sala, E.; Salamon, P.; Sanchez, S. E.; Sandin, S.; Silva, G. G. Z.; Smith, J.; Sullivan, C.; Thompson, C.; Vermeij, M. J. A.; Youle, M.; Young, C.; Zgliczynski, B.; Brainard, R.; Edwards, R. A.; Nulton, J.; Thompson, F.; Rohwer, F.
2016-03-01
Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.
Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird
Dunn, Jenny C.; Hamer, Keith C.; Benton, Tim G.
2015-01-01
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success. PMID:26431173
Feng, Tom; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J
2017-02-01
To determine if cholesterol is a risk factor for the development of lower urinary tract symptoms in asymptomatic men. A post-hoc analysis of the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) study was carried out in 2323 men with baseline International Prostate Symptom Score <8 and not taking benign prostatic hyperplasia or cholesterol medications. Cox proportion models were used to test the association between cholesterol, high-density lipoprotein, low-density lipoprotein and the cholesterol : high-density lipoprotein ratio with incident lower urinary tract symptoms, defined as first report of medical treatment, surgery or two reports of an International Prostate Symptom Score >14. A total of 253 men (10.9%) developed incident lower urinary tract symptoms. On crude analysis, higher high-density lipoprotein was associated with a decreased lower urinary tract symptoms risk (hazard ratio 0.89, P = 0.024), whereas total cholesterol and low-density lipoprotein showed no association. After multivariable adjustment, the association between high-density lipoprotein and incident lower urinary tract symptoms remained significant (hazard ratio 0.89, P = 0.044), whereas no association was observed for low-density lipoprotein (P = 0.611). There was a trend for higher cholesterol to be linked with higher lower urinary tract symptoms risk, though this was not statistically significant (hazard ratio 1.04, P = 0.054). A higher cholesterol : high-density lipoprotein ratio was associated with increased lower urinary tract symptoms risk on crude (hazard ratio 1.11, P = 0.016) and adjusted models (hazard ratio 1.12, P = 0.012). Among asymptomatic men participating in the REDUCE study, higher cholesterol was associated with increased incident lower urinary tract symptoms risk, though the association was not significant. A higher cholesterol : high-density lipoprotein ratio was associated with increased incident lower urinary tract symptoms, whereas higher high-density lipoprotein was protective. These findings suggest dyslipidemia might play a role in lower urinary tract symptoms progression. © 2016 The Japanese Urological Association.
Ullrich, I H; Albrink, M J
1982-07-01
Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.
The effect of water stress on super-high- density 'Koroneiki' olive oil quality.
Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar
2015-08-15
Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Thermal Hotspots in CPU Die and It's Future Architecture
NASA Astrophysics Data System (ADS)
Wang, Jian; Hu, Fu-Yuan
Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.
Sun, Z W; Yan, L; G, Y Y; Zhao, J P; Lin, H; Guo, Y M
2013-12-01
A study was conducted to evaluate the effects of varying dietary vitamin D3 and stocking density on growing performance, carcass characteristics, bone biomechanical properties, and welfare responses in Ross (308) broilers. Experimental diets, containing 1, 10, or 20 times the NRC recommended level of vitamin D3 (200 IU/kg), were formulated with low, medium, or high vitamin D3 levels for 3 growing phases. Two stocking densities were 10 and 16 birds/m(2). One-day-old hatchlings (1,872 males) were randomly assigned to 6 pens in each treatment. Results showed that high stocking density decreased the feed intake, BW gain (P < 0.01), breast muscle yield (P = 0.010), and tibial development (P < 0.01), whereas increasing feed conversion ratio (P < 0.001), and the scores of gait, footpad and hock burn, and abdominal plumage damage (P < 0.01), particularly toward the age when birds attained their market size. Increasing dietary vitamin D3 improved the birds' walking ability and tibial quality (P < 0.05), and reduced the development of footpad or hock dermatitis and abdominal plumage damage (P < 0.01), some aspects of which were age-dependent and appeared to vary with stocking density. These data indicate that increasing supplemental vitamin D3 has a favorable effect on walking ability and welfare status of high stocking density birds, but not on performance.
Access to Barrier Perches Improves Behavior Repertoire in Broilers
Ventura, Beth A.; Siewerdt, Frank; Estevez, Inma
2012-01-01
Restriction of behavioral opportunities and uneven use of space are considerable welfare concerns in modern broiler production, particularly when birds are kept at high densities. We hypothesized that increased environmental complexity by provision of barrier perches would help address these issues by encouraging perching and enhancing use of the pen space across a range of stocking densities. 2,088 day-old broiler chicks were randomly assigned to one of the following barrier and density treatment combinations over four replications: simple barrier, complex barrier, or control (no barrier) and low (8 birds/m2), moderate (13 birds/m2), or high (18 birds/m2) density. Data were collected on focal birds via instantaneous scan sampling from 2 to 6 weeks of age. Mean estimates per pen for percent of observations seen performing each behavior, as well as percent of observations in the pen periphery vs. center, were quantified and submitted to an analysis of variance with week as the repeated measure. Barrier perches, density and age affected the behavioral time budget of broilers. Both simple and complex barrier perches effectively stimulated high perching rates. Aggression and disturbances were lower in both barrier treatments compared to controls (P<0.05). Increasing density to 18 birds/m2 compared to the lower densities suppressed activity levels, with lower foraging (P<0.005), decreased perching (P<0.0001) and increased sitting (P = 0.001) earlier in the rearing period. Disturbances also increased at higher densities (P<0.05). Use of the central pen area was higher in simple barrier pens compared to controls (P<0.001), while increasing density above 8 birds/m2 suppressed use of the central space (P<0.05). This work confirms some negative effects of increasing density and suggests that barrier perches have the potential to improve broiler welfare by encouraging activity (notably by providing accessible opportunities to perch), decreasing aggression and disturbances, and promoting more even distribution of birds throughout the pen space. PMID:22299026
Determination of the N2 recombination rate coefficient in the ionosphere
NASA Technical Reports Server (NTRS)
Orsini, N.; Torr, D. G.; Brinton, H. C.; Brace, L. H.; Hanson, W. B.; Hoffman, J. H.; Nier, A. O.
1977-01-01
Measurements of aeronomic parameters made by the Atmosphere Explorer-C satellite are used to determine the recombination rate coefficient of N2(+) in the ionosphere. The rate is found to increase significantly with decreasing electron density. Values obtained range from approximately 1.4 x 10 to the -7th to 3.8 x 10 to the -7th cu cm/sec. This variation is explained in a preliminary way in terms of an increase in the rate coefficient with vibrational excitation. Thus, high electron densities depopulate high vibrational levels reducing the effective recombination rate, whereas, low electron densities result in an enhancement in the population of high vibrational levels, thus, increasing the effective recombination rate.
Investigation of physical processes limiting plasma density in H-mode on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.
1996-12-01
A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmasmore » was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.« less
Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler
2017-01-01
We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.
High power density yeast catalyzed microbial fuel cells
NASA Astrophysics Data System (ADS)
Ganguli, Rahul
Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.
USDA-ARS?s Scientific Manuscript database
Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...
On the scaling of avaloids and turbulence with the average density approaching the density limit
NASA Astrophysics Data System (ADS)
Antar, G. Y.; Counsell, G.; Ahn, J.-W.
2005-08-01
This article is dedicated to the characterization of turbulent transport in the scrape-off layer of the Mega Ampère Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8, 2101 (2001)] as a function of the average density (nL). The aim is to answer a renewed interest in this subject since the bursty character of turbulence in the scrape-off layer was shown to be caused by large-scale events with high radial velocity reaching about 1/10th of the sound speed called avaloids [G. Antar et al., Phys. Rev. Lett 87, 065001 (2001)]. With increasing density, turbulence and transport increase nonlinearly at the midplane while remaining almost unchanged in the target region. Using various and complementary statistical analyses, the existence of a "critical" density, at nL/nG≃0.35 is emphasized; nG is the Greenwald density. Both above and below this density, intermittency decreases and avaloids play a decreasing role in the particle radial transport. This is interpreted as caused by the interplay between avaloids and the surrounding turbulent structures which mix them more efficiently with increasing density as the level of the background turbulence increases. The scaling of the different quantities with respect to the normalized density is obtained. It reveals that not only the level of turbulence and transport increase, but also the radial velocity and length scales. This increases the coupling between the hot plasma edge and the cold scrape-off layer that may explain the disruptive instability occurring at high densities.
Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang
2016-09-01
In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A
2011-01-07
High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N
2011-01-01
The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.
Timmermans, Lore; Bleyen, Luc; Bacher, Klaus; Van Herck, Koen; Lemmens, Kim; Van Ongeval, Chantal; Van Steen, Andre; Martens, Patrick; De Brabander, Isabel; Goossens, Mathieu; Thierens, Hubert
2017-09-01
To investigate if direct radiography (DR) performs better than screen-film mammography (SF) and computed radiography (CR) in dense breasts in a decentralized organised Breast Cancer Screening Programme. To this end, screen-detected versus interval cancers were studied in different BI-RADS density classes for these imaging modalities. The study cohort consisted of 351,532 women who participated in the Flemish Breast Cancer Screening Programme in 2009 and 2010. Information on screen-detected and interval cancers, breast density scores of radiologist second readers, and imaging modality was obtained by linkage of the databases of the Centre of Cancer Detection and the Belgian Cancer Registry. Overall, 67% of occurring breast cancers are screen detected and 33% are interval cancers, with DR performing better than SF and CR. The interval cancer rate increases gradually with breast density, regardless of modality. In the high-density class, the interval cancer rate exceeds the cancer detection rate for SF and CR, but not for DR. DR is superior to SF and CR with respect to cancer detection rates for high-density breasts. To reduce the high interval cancer rate in dense breasts, use of an additional imaging technique in screening can be taken into consideration. • Interval cancer rate increases gradually with breast density, regardless of modality. • Cancer detection rate in high-density breasts is superior in DR. • IC rate exceeds CDR for SF and CR in high-density breasts. • DR performs better in high-density breasts for third readings and false-positives.
Increased phytochrome B alleviates density effects on tuber yield of field potato crops.
Boccalandro, Hernán E; Ploschuk, Edmundo L; Yanovsky, Marcelo J; Sánchez, Rodolfo A; Gatz, Christiane; Casal, Jorge J
2003-12-01
The possibility that reduced photomorphogenic responses could increase field crop yield has been suggested often, but experimental support is still lacking. Here, we report that ectopic expression of the Arabidopsis PHYB (phytochrome B) gene, a photoreceptor involved in detecting red to far-red light ratio associated with plant density, can increase tuber yield in field-grown transgenic potato (Solanum tuberosum) crops. Surprisingly, this effect was larger at very high densities, despite the intense reduction in the red to far-red light ratios and the concomitant narrowed differences in active phytochrome B levels between wild type and transgenics at these densities. Increased PHYB expression not only altered the ability of plants to respond to light signals, but they also modified the light environment itself. This combination resulted in larger effects of enhanced PHYB expression on tuber number and crop photosynthesis at high planting densities. The PHYB transgenics showed higher maximum photosynthesis in leaves of all strata of the canopy, and this effect was largely due to increased leaf stomatal conductance. We propose that enhanced PHYB expression could be used in breeding programs to shift optimum planting densities to higher levels.
Ghaedi, Gholamreza; Falahatkar, Bahram; Yavari, Vahid; Sheibani, Mohammad T; Broujeni, Gholamreza Nikbakht
2015-04-01
The present study made an attempt to measure the cortisol content, as an indicator of stress response, in rainbow trout embryos which were exposed to different densities and handling stress (air exposure) during incubation. The three densities of experimental embryos at early development stages were considered as 2.55 embryos/cm(2) (low density), 5.10 embryos/cm(2) (normal density) and 7.65 embryos/cm(2) (high density). The cortisol content of eggs (5.09 ± 0.12 ng/g) decreased to 3.68 ± 0.14 ng/g in newly fertilized eggs. Resting level of cortisol dropped at three densities by day 18 of post fertilization. Then, cortisol increased at hatching stage to 1.16 ± 0.11, 1.20 ± 0.12 and 1.21 ± 0.14 ng/g at low, normal and high densities, respectively. There were no statistically significant differences between cortisol concentrations in three densities. The acute handling stress test (5-min out-of-water), conducted on embryos (48 h post fertilization, organogenesis and eyed stage) in three densities, revealed no differences in whole-body cortisol levels between stressed and unstressed experimental groups. At hatching stage in low-density group, level of cortisol increased but the difference with the pre-stress levels was not statistically significant. Furthermore, significant differences in cortisol levels of stressed and unstressed embryos were detected on hatching in normal and high density groups [1.20 ± 0.12 at time 0-1.49 ± 0.11 ng/g at 1 hps (hours post stress) and from 1.21 ± 0.14 at time 0 to 1.53 ± 0.10 ng/g at 3 hps, respectively]. The results showed no difference in profile of cortisol in different densities, but acute stress conducted on embryos, incubated in different densities, revealed differences in cortisol stress response at hatching between normal and high density, which lead to cortisol increase at hatching time. It indicates that the lag time in the cortisol response to stressors immediately after hatching does not occur when the siblings were stressed during the embryo stage. Results, finally, indicated that hypothalamus-pituitary-interrenal axis was active and responded to an acute stressor under normal and high density, but it is unresponsive to a stressor around hatching under low density.
Charro, José Luis; López-Sánchez, Aida; Perea, Ramón
2018-01-15
Wild ungulate populations have increased and expanded considerably in many regions, including austral woodlands and forests where deer (Cervus elaphus) have been introduced as an alternative management to traditional cattle grazing. In this study, we compared traditional cattle with introduced deer management at increasing deer densities in the "Chaco Serrano" woodlands of Argentina to assess their ecological sustainability. We used three ecological indicators (abundance of tree regeneration, woody plant diversity and browsing damage) as proxies for environmental sustainability in woody systems. Our results indicate that traditional cattle management, at stocking rates of ∼10 ind km -2 , was the most ecologically sustainable management since it allowed greater tree regeneration abundance, higher richness of woody species and lower browsing damage. Importantly, cattle management and deer management at low densities (10 ind km -2 ) showed no significant differences in species richness and abundance of seedlings, although deer caused greater browsing damage on saplings and juveniles. However, management regimes involving high deer densities (∼35 deer km 2 ) was highly unsustainable in comparison to low (∼10 deer km -2 ) and medium (∼20 deer km -2 ) densities, with 40% probability of unsustainable browsing as opposed to less than 5% probability at low and medium densities. In addition, high deer densities caused a strong reduction in tree regeneration, with a 19-30% reduction in the abundance of seedlings and young trees when compared to low deer densities. These results showed that the effect of increasing deer densities on woody plant conservation was not linear, with high deer densities causing a disproportional deleterious effect on tree regeneration and sustainable browsing. Our results suggest that traditional management at low densities or the use of introduced ungulates (deer breeding areas) at low-medium densities (<20 deer km -2 ) are compatible with woody vegetation conservation. However, further research is needed on plant palatability, animal habitat use (spatial heterogeneity) and species turnover and extinction (comparison to areas of low-null historical browsing) to better estimate environmental sustainability of Neotropical ungulate-dominated woodlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-01-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites. PMID:28332636
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
NASA Astrophysics Data System (ADS)
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-03-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers.
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R
2017-03-23
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO 3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO 3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO 3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO 3 NFs achieved the maximal energy storage density of 15.48 J/cm 3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
Araki, Atsushi; Iimuro, Satoshi; Sakurai, Takashi; Umegaki, Hiroyuki; Iijima, Katsuya; Nakano, Hiroshi; Oba, Kenzo; Yokono, Koichi; Sone, Hirohito; Yamada, Nobuhiro; Ako, Junya; Kozaki, Koichi; Miura, Hisayuki; Kashiwagi, Atsunori; Kikkawa, Ryuichi; Yoshimura, Yukio; Nakano, Tadasumi; Ohashi, Yasuo; Ito, Hideki
2012-04-01
To evaluate the association of low-density lipoprotein, high-density lipoprotein and non-high-density lipoprotein cholesterol with the risk of stroke, diabetes-related vascular events and mortality in elderly diabetes patients. This study was carried out as a post-hoc landmark analysis of a randomized, controlled, multicenter, prospective intervention trial. We included 1173 elderly type 2 diabetes patients (aged ≥ 65 years) from 39 Japanese institutions who were enrolled in the Japanese elderly diabetes intervention trial study and who could be followed up for 1 year. A landmark survival analysis was carried out in which follow up was set to start 1 year after the initial time of entry. During 6 years of follow up, there were 38 cardiovascular events, 50 strokes, 21 diabetes-related deaths and 113 diabetes-related events. High low-density lipoprotein cholesterol was associated with incident cardiovascular events, and high glycated hemoglobin was associated with strokes. After adjustment for possible covariables, non-high-density lipoprotein cholesterol showed a significant association with increased risk of stroke, diabetes-related mortality and total events. The adjusted hazard ratios (95% confidence intervals) of non-high-density lipoprotein cholesterol were 1.010 (1.001-1.018, P = 0.029) for stroke, 1.019 (1.007-1.031, P < 0.001) for diabetes-related death and 1.008 (1.002-1.014; P < 0.001) for total diabetes-related events. Higher non-high-density lipoprotein cholesterol was associated with an increased risk of stroke, diabetes-related mortality and total events in elderly diabetes patients. © 2012 Japan Geriatrics Society.
Corral, Pablo; Schreier, Laura
2014-01-01
There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.
Maternal Malaria and Perinatal HIV Transmission, Western Kenya1,2
Ayisi, John G.; van Eijk, Anna M.; ter Kuile, Feiko O.; Shi, Ya Ping; Yang, Chunfu; Kolczak, Margarette S.; Otieno, Juliana A.; Misore, Ambrose O.; Kager, Piet A.; Lal, Renu B.; Steketee, Richard W.; Nahlen, Bernard L.
2004-01-01
To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had malaria, and 102 (19.9%) infants acquired HIV perinatally. Log10 HIV viral load and episiotomy or perineal tear were associated with increased perinatal HIV transmission, whereas low-density malaria (<10,000 parasites/μL) was associated with reduced risk (adjusted relative risk [ARR] 0.4). Among women dually infected with malaria and HIV, high-density malaria (>10,000 parasites/μL) was associated with increased risk for perinatal MTCT (ARR 2.0), compared to low-density malaria. The interaction between placental malaria and MTCT appears to be variable and complex: placental malaria that is controlled at low density may cause an increase in broad-based immune responses that protect against MTCT; uncontrolled, high-density malaria may simultaneously disrupt placental architecture and generate substantial antigen stimulus to HIV replication and increase risk for MTCT. PMID:15200854
Sacks, Frank M; Hermans, Michel P; Fioretto, Paola; Valensi, Paul; Davis, Timothy; Horton, Edward; Wanner, Christoph; Al-Rubeaan, Khalid; Aronson, Ronnie; Barzon, Isabella; Bishop, Louise; Bonora, Enzo; Bunnag, Pongamorn; Chuang, Lee-Ming; Deerochanawong, Chaicharn; Goldenberg, Ronald; Harshfield, Benjamin; Hernández, Cristina; Herzlinger-Botein, Susan; Itoh, Hiroshi; Jia, Weiping; Jiang, Yi-Der; Kadowaki, Takashi; Laranjo, Nancy; Leiter, Lawrence; Miwa, Takashi; Odawara, Masato; Ohashi, Ken; Ohno, Atsushi; Pan, Changyu; Pan, Jiemin; Pedro-Botet, Juan; Reiner, Zeljko; Rotella, Carlo Maria; Simo, Rafael; Tanaka, Masami; Tedeschi-Reiner, Eugenia; Twum-Barima, David; Zoppini, Giacomo; Carey, Vincent J
2014-03-04
Microvascular renal and retinal diseases are common major complications of type 2 diabetes mellitus. The relation between plasma lipids and microvascular disease is not well established. The case subjects were 2535 patients with type 2 diabetes mellitus with an average duration of 14 years, 1891 of whom had kidney disease and 1218 with retinopathy. The case subjects were matched for diabetes mellitus duration, age, sex, and low-density lipoprotein cholesterol to 3683 control subjects with type 2 diabetes mellitus who did not have kidney disease or retinopathy. The study was conducted in 24 sites in 13 countries. The primary analysis included kidney disease and retinopathy cases. Matched analysis was performed by use of site-specific conditional logistic regression in multivariable models that adjusted for hemoglobin A1c, hypertension, and statin treatment. Mean low-density lipoprotein cholesterol concentration was 2.3 mmol/L. The microvascular disease odds ratio increased by a factor of 1.16 (95% confidence interval, 1.11-1.22) for every 0.5 mmol/L (≈1 quintile) increase in triglycerides or decreased by a factor of 0.92 (0.88-0.96) for every 0.2 mmol/L (≈1 quintile) increase in high-density lipoprotein cholesterol. For kidney disease, the odds ratio increased by 1.23 (1.16-1.31) with triglycerides and decreased by 0.86 (0.82-0.91) with high-density lipoprotein cholesterol. Retinopathy was associated with triglycerides and high-density lipoprotein cholesterol in matched analysis but not significantly after additional adjustment. Diabetic kidney disease is associated worldwide with higher levels of plasma triglycerides and lower levels of high-density lipoprotein cholesterol among patients with good control of low-density lipoprotein cholesterol. Retinopathy was less robustly associated with these lipids. These results strengthen the rationale for studying dyslipidemia treatment to prevent diabetic microvascular disease.
Gupta, Rahul
2018-02-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn.
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
Reidy, Jennifer; Thompson III, Frank R.; Amundson, Courtney L.; O'Donnell, Lisa
2015-01-01
Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
Elastic Behavior and Platelet Retraction in Low- and High-Density Fibrin Gels
Wufsus, Adam R.; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R.; Liberatore, Matthew W.; Neeves, Keith B.
2015-01-01
Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi. PMID:25564864
Case study: dairies utilizing ultra-high stocking density grazing in Pennsylvania and New York
USDA-ARS?s Scientific Manuscript database
Ultra-high stocking density (UHSD) grazing has gained interest in the forage industry. Proponents of UHSD emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg ha**-1 of beef cattle on small paddocks with rest periods of up t...
Case study: dairies using ultra-high stocking density grazing in the Northeastern U.S.
USDA-ARS?s Scientific Manuscript database
Proponents of ultra-high stocking density (UHSD) grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 500,000 lb per acre of beef cattle on small paddocks with rest periods up to 180 days. However, it is unclear if this managem...
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
All 2D materials as electrodes for high power hybrid energy storage applications
NASA Astrophysics Data System (ADS)
Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.
2018-04-01
Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.
Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas
NASA Technical Reports Server (NTRS)
Lawson, Anthony Layiwola
2001-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson
2015-01-01
We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444
Genotype by environment interaction for plant density response in maize
USDA-ARS?s Scientific Manuscript database
Increased adaptation to high plant density has been an important factor in improvements in grain yield in maize. Despite extensive public literature on variation in plant density response among maize varieties, almost no public information is available on environmental effects on plant density respo...
Allsopp, N; Stock, W D
1992-08-01
The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.
Growth and wood/bark properties of Abies faxoniana seedlings as affected by elevated CO2.
Qiao, Yun-Zhou; Zhang, Yuan-Bin; Wang, Kai-Yun; Wang, Qian; Tian, Qi-Zhuo
2008-03-01
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (+/- 25) micromol/mol) under two planting densities (28 or 84 plants/m(2)) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.
Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay
2017-04-04
Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.
Interpreting Multiple Logistic Regression Coefficients in Prospective Observational Studies
1982-11-01
TG HDL -C Males T-C 50-80 MRW pɘ.05 pɘ.10 1HDL-C = high density lipoprotein cholesterol MRW...consider a more complete analy- sis, attempting to uncover the relationship between CHD and TG controlling for covariables such a high density ...for T-C can be re- duced, when among older individuals, elevated T-C may increase the capacity to carry cholesterol in the high density lipoprotein
Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei
2000-03-01
The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
Influence of predator density on nonindependent effects of multiple predator species.
Griffen, Blaine D; Williamson, Tucker
2008-02-01
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.
Dung Yun Trieu, Phuong; Mello-Thoms, Claudia; Peat, Jennifer K; Doan Do, Thuan; Brennan, Patrick C
2017-07-01
The aim of this study was to investigate how breast density interacted with demographic, reproductive, and lifestyle features among Vietnamese women. Mammographic density and established risk factors for breast cancer were collected from 1651 women (345 cancer cases and 1306 normal cases) in Vietnam. The association of breast density categories with potential risk factors was investigated using Spearman's test for continuous variables and χ 2 tests for categorical variables. Independent factors associated with high breast density and breast cancer in specific density groupings were assessed using logistic regression. Results showed that high breast density was significantly associated with young age, low body mass index, low number of children, early age at having the last child, premenopausal status, and increased vegetable consumption. Reproductive factors were key agents associated with breast cancer for women with high breast density, which was not so evident for women with low breast density.
Host density increases parasite recruitment but decreases host risk in a snail-trematode system.
Buck, J C; Hechinger, R F; Wood, A C; Stewart, T E; Kuris, A M; Lafferty, K D
2017-08-01
Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk at local scales. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail-density-trematode-prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (California, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was significant only for miracidium-transmitted species. A model parameterized with our experimental results and snail densities from 524 field transects estimated that safety in numbers, when combined with patchy host density, halved per capita infection risk in this snail population. We conclude that, depending on transmission mode, host density can enhance parasite recruitment and reduce per capita infection risk. © 2017 by the Ecological Society of America.
Hu, Hua; Jonas, Peter
2014-01-01
Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965
Madsen, Henry; Stauffer, Jay R
2011-06-01
From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.
Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li
2011-09-01
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.
The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico
Matthew C. Larsen; Angel J. Torres-Sanchez
1998-01-01
Landslides are common in steep mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Average population density is high, 422 peoplerkm2, and is increasing. This increase in population density is accompanied by growing...
2016-01-01
High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460
Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss).
Naderi, Mahdi; Keyvanshokooh, Saeed; Salati, Amir Parviz; Ghaedi, Alireza
2017-10-01
The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m -3 and high stocking density (HD) = 80 kg m -3 ). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.
Du, Zhijia; Wood, David L.; Daniel, Claus; ...
2017-02-09
We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less
Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance.
Zhao, Lei; Liu, Qing; Gao, Jing; Zhang, Shujun; Li, Jing-Feng
2017-08-01
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O 3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm -3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm -1 versus 175 kV cm -1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Jianmin; Li, Haizeng; Li, Jiahui; Wu, Guiqing; Shao, Yuanlong; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2018-05-01
Volumetric energy density is generally considered to be detrimental to the actual application of supercapacitors, which has provoked a range of research work on increasing the packing density of electrodes. Herein, we fabricate a free-standing single-walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/copper hexacyanoferrate (CuHCF) nanoparticles (NPs) composite supercapacitor electrode, with a high packing density of 2.67 g cm-3. The pseudocapacitive CuHCF NPs are decorated onto the SWCNTs/PEDOT:PSS networks and filled in interspace to increase both of packing density and specific capacitance. This hybrid electrode exhibits a series of outstanding performances, such as high electric conductivity, ultrahigh areal and volumetric capacitances (969.8 mF cm-2 and 775.2 F cm-3 at scan rate of 5 mV s-1), long cycle life and superior rate capability. The asymmetric supercapacitor built by using the SWCNTs/PEDOT:PSS/CuHCF film as positive electrode and Mo-doped WO3/SWCNTs film as negative electrode, can deliver a high energy density of 30.08 Wh L-1 with a power density of 4.25 kW L-1 based on the total volume of the device. The approach unveiled in this study could provide important insights to improving the volumetric performance of energy storage devices and help to reach the critical targets for high rate and high power density demand applications.
Gupta, Rahul
2018-01-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. PMID:29444074
Ferrer, Miriam M.; Good-Avila, Sara V.; Montaña, Carlos; Domínguez, César A.; Eguiarte, Luis E.
2009-01-01
Background and Aims Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes. Methods The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets. Key Results Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower. Conclusions These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate-compatibility and (c) plants in low-density scrubs received higher quality pollen via open-pollination than plants in high-density scrubs. PMID:19218580
NASA Astrophysics Data System (ADS)
Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.
2016-05-01
Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.
Bremer, Andrew A; Auinger, Peggy; Byrd, Robert S
2009-04-01
To evaluate the relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels. A cross-sectional analysis of the National Health and Nutrition Examination Survey data collected by the National Center for Health Statistics. Nationally representative samples of US adolescents participating in the National Health and Nutrition Examination Survey during the years 1999-2004. A total of 6967 adolescents aged 12 to 19 years. Sugar-sweetened beverage consumption and physical activity levels. Glucose and insulin concentrations, a homeostasis model assessment of insulin resistance (HOMA-IR), total, high-density lipoprotein, and low-density lipoprotein cholesterol concentrations, triglyceride concentrations, systolic and diastolic blood pressure, waist circumference, and body mass index (calculated as weight in kilograms divided by height in meters squared) percentile for age and sex. Multivariate linear regression analyses showed that increased sugar-sweetened beverage intake was independently associated with increased HOMA-IR, systolic blood pressure, waist circumference, and body mass index percentile for age and sex and decreased HDL cholesterol concentrations; alternatively, increased physical activity levels were independently associated with decreased HOMA-IR, low-density lipoprotein cholesterol concentrations, and triglyceride concentrations and increased high-density lipoprotein cholesterol concentrations. Furthermore, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects of decreasing HOMA-IR and triglyceride concentrations and increasing high-density lipoprotein cholesterol concentrations. Sugar-sweetened beverage intake and physical activity levels are each independently associated with insulin resistance-associated metabolic parameters and anthropometric measurements in adolescents. Moreover, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects on several health-related outcome variables.
NASA Astrophysics Data System (ADS)
Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.
2017-10-01
In a two-week period between February and March of 2015, a series of interplanetary coronal mass ejections (ICMEs) and solar energetic particle (SEP) events encountered Mars. The interactions were observed by several spacecraft, including Mars Express (MEX), Mars Atmosphere and Volatile Evolution Mission (MAVEN), and Mars Odyssey (MO). The ICME disturbances were characterized by an increase in ion speed, plasma temperature, magnetic field magnitude, and energetic electron flux. Furthermore, increased solar wind density and speeds, as well as unusually high local electron densities and high flow velocities were detected on the nightside at high altitudes during the March 8 event. These effects are thought to be due to the transport of ionospheric plasma away from Mars. In the deep nightside, the peak ionospheric electron density at the periapsis of MEX shows a substantial increase, reaching number densities about 2.7 × 104 cm-3 during the second ICME in the deep nightside. This corresponds to an increase in the MO High-Energy Neutron Detector flux suggesting an increase in the ionization of the neutral atmosphere due to the high intensity of charged particles. Measurements of the SEP fluxs show a substantial enhancement before the shock of a fourth ICME causing impact ionization and absorption of the surface echo intensity which drops to the noise levels, below 10-15 V2m-2 Hz-1 from values of about 2 × 10-14 V2m-2 Hz-1. Moreover, the peak ionospheric density exhibits a discrete enhancement over a period of about 30 h around the same location, which may be due to impact ionization. Ion escape rates at this time are estimated to be in the order of 1025 to 1026 s-1.
High-density carbon nanotube buckypapers with superior transport and mechanical properties.
Zhang, Ling; Zhang, Guang; Liu, Changhong; Fan, Shoushan
2012-09-12
High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.
Host density increases parasite recruitment but decreases host risk in a snail-trematode system
Buck, Julia C; Hechinger, R.F.; Wood, A.C.; Stewart, T.E.; Kuris, A.M.; Lafferty, Kevin D.
2017-01-01
Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally-transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail density-trematode prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (CA, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail-biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail-biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was significant only for miracidium-transmitted species. A model parameterized with our experimental results and snail densities from 524 field transects estimated that safety in numbers, when combined with host aggregation, halved per-capita infection risk in this snail population. We conclude that, depending on transmission mode, host density can enhance parasite recruitment and reduce per-capita infection risk.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
Chew, G L; Huang, D; Huo, C W; Blick, T; Hill, P; Cawson, J; Frazer, H; Southey, M D; Hopper, J L; Henderson, M A; Haviv, I; Thompson, E W
2013-07-01
Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk.
Shostak, Allen W.
2014-01-01
Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0–4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies. PMID:24516665
Shostak, Allen W
2014-01-01
Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0-4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies.
The Pain in Storage: Work Safety in a High-Density Shelving Facility
ERIC Educational Resources Information Center
Atkins, Stephanie A.
2005-01-01
An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…
Dynamic Responses in a Plant-Insect System to Fertilization by Cormorant Feces
Kolb, Gundula; Hambäck, Peter A.
2015-01-01
Theoretical arguments suggest that increased plant productivity may not only increase consumer densities but also their fluctuations. While increased consumer densities are commonly observed in fertilization experiments, experiments are seldom performed at a spatial and temporal scale where effects on population fluctuations may be observed. In this study we used a natural gradient in soil fertility caused by cormorant nesting. Cormorants feed on fish but defecate on their nesting islands. On these islands we studied soil nutrient availability, plant nutrient content and the density of Galerucella beetles, main herbivores feeding on Lythrum salicaria. In a common garden experiment, we followed larval development on fertilized plants and estimated larval stoichiometry. Soil nutrient availability varied among islands, and several cormorant islands had very high N and P soil content. Plant nutrient content, however, did not vary among islands, and there was no correlation between soil and plant nutrient contents. Beetle densities increased with plant nutrient content in the field study. However, there was either no effect on temporal fluctuations in beetle density or that temporal fluctuations decreased (at high P). In the common garden experiment, we found limited responses in either larval survival or pupal weights to fertilization. A possible mechanism for the limited effect of fertilization on density fluctuations may be that the distribution of L. salicaria on nesting islands was restricted to sites with a lower N and P content, presumably because high N loads are toxic. PMID:26463193
Verheus, Martijn; Peeters, Petra HM; van Noord, Paulus AH; van der Schouw, Yvonne T; Grobbee, Diederick E; van Gils, Carla H
2007-01-01
Background High breast density is associated with increased breast cancer risk. Epidemiologic studies have shown an increase in breast cancer risk in postmenopausal women with high levels of sex steroids. Hence, sex steroids may increase postmenopausal breast cancer risk via an increase of breast density. The objective of the present study was to study the relation between circulating oestrogens and androgens as well as sex hormone binding globulin (SHBG) in relation to breast density. Methods We conducted a cross-sectional study among 775 postmenopausal women, using baseline data of a random sample of the Prospect-EPIC study. Prospect-EPIC is one of two Dutch cohorts participating in the European Prospective Investigation into Cancer and Nutrition, and women were recruited via a breast cancer screening programme. At enrolment a nonfasting blood sample was taken and a mammogram was made. Oestrone, oestradiol, dehydroepiandrosterone sulfate, androstenedione, testosterone and SHBG levels were measured, using double-antibody radioimmunoassays. Concentrations of free oestradiol and free testosterone were calculated from the measured oestradiol, testosterone and SHBG levels Mammographic dense and nondense areas were measured using a semiquantitative computerized method and the percentage breast density was calculated. Mean breast measures for quintiles of hormone or SHBG levels were estimated using linear regression analyses. Results Both oestrogens and testosterone were inversely related with percent breast density, but these relationships disappeared after adjustment for BMI. None of the sex steroids or SHBG was associated with the absolute measure of breast density, the dense area. Conclusion The results of our study do not support the hypothesis that sex steroids increase postmenopausal breast cancer risk via an increase in breast density. PMID:17692133
Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.
Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy
2017-03-01
Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Li, Xian; Liu, Ying; Blancheton, Jean-Paul
2013-05-01
Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weight±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m2) for 10 weeks in RAS at 23±1°C. Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m2 (final: 7.25 and 14.16 kg/m2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.
Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra
2012-01-01
Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.
Costas, Benjamín; Aragão, Cláudia; Dias, Jorge; Afonso, António; Conceição, Luís E C
2013-10-01
Amino acids (AA) regulate key metabolic pathways, including some immune responses. Therefore, this study aimed to assess whether an increased availability of dietary AA can mitigate the expected increase in plasma cortisol and metabolites levels due to high stocking density and its subsequent immunosuppression. Senegalese sole (Solea senegalensis) were maintained at low stocking density (LSD; 3.5 kg m(-2)) or high stocking density (HSD; 12 kg m(-2)) for 18 days. Additionally, both treatments were fed a control or a high protein (HP) diet (LSD, LSD HP, HSD and HSD HP). The HP diet slightly increased the levels of digestible indispensable AA, together with tyrosine and cysteine. HSD was effective in inducing a chronic stress response after 18 days of treatment since fish held at HSD presented higher plasma cortisol, glucose and lactate levels. Moreover, this increase in stress indicators translated in a decrease in plasma lysozyme, alternative complement pathway (ACP) and peroxidase activities, suggesting some degree of immunosuppression. Interestingly, while plasma glucose and lactate levels in HSD HP specimens decreased to similar values than LSD fish, plasma lysozyme, ACP and peroxidase activities increased, with even higher values than LSD groups for ACP activity. It is suggested that the HP diet may be used as functional feed since it may represent a metabolic advantage during stressful events and may counteract immunosuppression in sole.
Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik
2011-12-27
Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Hasegawa, K; Mori, T; Yamazaki, C
2017-01-01
The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e
Extended length microchannels for high density high throughput electrophoresis systems
Davidson, James C.; Balch, Joseph W.
2000-01-01
High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
High density operation for reactor-relevant power exhaust
NASA Astrophysics Data System (ADS)
Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors
2015-08-01
With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.
Wang, X; Peebles, E D; Zhai, W
2014-06-01
The effects of protein source and amino acid (AA) and AME levels in the diets of male broilers from 8 to 21 d of age on subsequent growth and blood and carcass traits were investigated in the current study. Fourteen Ross × Ross 708 male broiler chicks were randomly allocated to each of 80 floor pens arranged in a randomized complete block design. Each diet contained 1 of 2 dietary protein sources (high inclusion of distillers dried grains with solubles or high inclusion of meat and bone meal), 1 of 2 AA densities (moderate or 10% higher), and 1 of 2 AME densities (2,998 or 3,100 kcal/kg). Experimental diets were fed from 8 to 21 d of age, and common diets from 1 to 7 and 21 to 55 d of age. The higher AME density in high inclusion of meat and bone meal diets increased serum triglyceride and cholesterol levels on d 20. The dietary inclusion of high inclusion of distillers dried grains with solubles or lower levels of AA increased high-density lipoprotein cholesterol on d 20. Feeding the high-AA-density diet decreased feed intake without affecting BW gain, which resulted in a lower feed conversion ratio (FCR). A high-AME-density diet lowered feed intake but increased BW gain, which resulted in a lower FCR from 8 to 21 d of age. Feed intake, BW gain, FCR from 21 to 54 d of age, and carcass weight on 42 and 55 d of age were not affected by treatments from 8 to 21 d of age. However, early dietary manipulation from 8 to 21 d of age affected fat and meat yield at 42 and 55 d of age. Moreover, a high-AME diet decreased feed cost per carcass weight gain from 8 to 55 d of age. In conclusion, high AA or AME densities during the grower phase, from d 8 to 21 of age, may improve growth during the grower feeding phase, but may also affect meat yield during the latter grow-out phases. Furthermore, high-AME diets from 8 to 21 d of age may save on feed costs for meat production. Poultry Science Association Inc.
Zhang, Ya Ru; Zhang, Lu Shuang; Wang, Zhong; Liu, Yang; Li, Fu Huang; Yuan, Jian Min; Xia, Zhao Fei
2018-06-01
This study was performed to investigate the effects of stocking density on performance, meat quality and tibia development in Pekin ducks reared on a plastic wire floor. A total of 372 healthy, 21-day-old, male ducks with similar body weight (BW) were randomly allotted to stocking densities of five (low), eight (medium) and 11 (high) birds/m 2 . Each group had six replicates. Results showed that compared with the low density group, medium and high stocking density caused a decrease in final BW at 42 days old, and in average daily gain, European performance index (p < .01) and meat pH at 45 min postmortem (p < .001), and an increase of meat drip loss (p < .01). High stocking density resulted in an increase of feed/gain ratio (p < .001), but a decrease of tibia calcium (p < .01) and phosphorus content (p < .05). Meat color, shear force values, tibia size (weight, length, and width) and breaking strength were not significantly influenced by stocking density. In conclusion, stocking density over eight birds/m 2 negatively affects growth performance, but meat quality and tibia development are not dramatically influenced. Based on this study, the stocking density of male Pekin ducks should be adjusted between five and eight birds/m 2 . © 2018 Japanese Society of Animal Science.
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
Equation of state and electron localisation in fcc lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Equation of state and electron localisation in fcc lithium
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...
2018-02-14
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Computed tomography in pulmonary sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, D.A.; Webb, W.R.; Gamsu, G.
1989-05-01
We studied the high resolution CT (HRCT) scans of 15 patients with biopsy-proven sarcoidosis and correlated the findings with pulmonary function tests (12 patients), 67Ga scans (10 patients), bronchoalveolar lavage (five patients), recent transbronchial biopsy (six patients), and recent open lung biopsy (three patients). The HRCT features included small nodules, thickened interlobular septa, patchy focal increase in lung density, honeycombing, and central conglomeration of vessels and bronchi. Active alveolitis was present by gallium scanning criteria in 5 of 10 cases. By bronchoalveolar lavage criteria, activity was present in three of five cases. Patchy increase in density may correlate with activemore » alveolitis as seen on /sup 67/Ga scanning. High resolution CT was better than chest X-radiography for demonstration of patchy increase in density and for distinguishing nodules from septal thickening. Both nodules and patchy density were partly reversible following therapy. Nodular densities seen on CT correlated with the presence of granulomata on histology. Resting pulmonary function tests correlated poorly with presence and extent of lung disease on HRCT. The presence on HRCT of focal fine nodules, patchy focal increase in lung density, and central crowding of bronchi and vessels should suggest the diagnosis of sarcoidosis. In some patients, HRCT can identify unsuspected parenchymal lung disease and document the reversible components of sarcoid lung disease.« less
Sexual segregation in North American elk: the role of density dependence
Stewart, Kelley M; Walsh, Danielle R; Kie, John G; Dick, Brian L; Bowyer, R Terry
2015-01-01
We investigated how density-dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high-density population at 20 elk/km2, and a low-density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi-response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high- and low-density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high-density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high-density population overlapped in selection of resources to a greater extent than in the low-density population, probably resulting from density-dependent effects of increased intraspecific competition and lower availability of resources. PMID:25691992
Vengerovsky, A I; Yakimova, T V; Nasanova, O N
2015-01-01
The influence of low-fat diet, nettle (Urtica dioica) leafs and burdock (Arctium lappa) roots extracts on lipid metabolism and glycosylation reactions has been investigated in experimental diabetes mellitus. These extracts were applied in diets with both high and low fat content. The experiments were performed on 90 noninbred male albino rats (200–220 g) that were divided into 9 experimental groups. Diabetes mellitus was modeled with twice-repeated intraperitoneal streptozotocin (30 mg/kg) injections. The animals received food with increased fat content (proteins – 8%, fats – 30%, carbohydrates – 62% of total daily caloric content) during 4 weeks before streptozotocine injections and 8 weeks after its discontinuation. Simultaneously the rats were daily administered nettle leafs (100 mg/kg), burdock roots (25 mg/kg) extracts or metformin (100 mg/kg) into the stomach during 10 days. During the period of agents introduction half the animals continued to receive food with high fat content, the other half received low fat diet (proteins – 20%, fats – 8%, carbohydrates – 72% of the total daily caloric content). The forth (control) group received low fat food only without extracts or metformin administration. The levels of blood glucose, glycosylated hemoglobin, malonic dialdehyde, lipid and lipoprotein fractions content were measured. It has been shown that after streptozotocine injections and 30% fat diet consumption the blood glucose level increased by 5.3 fold compared to that of the intact animals, the content of atherogenic lipid fractions increased by 2–8.3 fold and the protein glycosylation reactions were intensified by 1.9–2.5 fold. In animals fed with 8% fat diet the blood glucose and malonic dialdehyde content decreased by 1.8–2.3 fold. In this experiment the levels of triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins, as well as the cholesterol and protein content of high-density lipoproteins normalized. The low fat food did not cause glycosylation reactions regression. With the administration of nettle, burdock extracts or metformin to animals that continued to receive high fat food the blood glucose, triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins levels decreased by l.6–7.l fold as compared to the parameters in streptozotocine diabetes mellitus. Cholesterol and protein content of high-density lipoproteins increased by l.4–3.7 fold. The herbal extracts also prevented malonic dialdehyde formation, high-density lipoproteins and hemoglobin glycosylation. The nettle and burdock extracts more effectively decreased hyperglycemia, hypertriglyceridemia and lipoperoxidation in animals fed with low fat food. Metformin in the experiment with low fat intake decreased the glucose, low-density and very low-density lipoproteins content to a maximal degree and prevented high-density lipoproteins glycosylation.
Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.
2018-01-01
Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134
McNamara, K B; Simmons, L W
2017-09-01
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol'). Pitavastatin is in a class of ...
Predation and nutrients drive population declines in breeding waders.
Møller, Anders Pape; Thorup, Ole; Laursen, Karsten
2018-04-20
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
2015-06-15
Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.
Kotler, Donald P
2008-09-01
It has been demonstrated that patients on highly active antiretroviral therapy are at increased risk for developing metabolic abnormalities that include elevated levels of serum triglycerides and low-density lipoprotein cholesterol and reduced levels of high-density lipoprotein cholesterol. This dyslipidemia is similar to that seen in the metabolic syndrome, raising the concern that highly active antiretroviral therapy also potentially increases the risk for cardiovascular complications. This paper reviews the contribution of both HIV infection and the different components of highly active antiretroviral therapy to dyslipidemia and the role of these abnormalities toward increasing the risk of cardiovascular disease in HIV-infected patients; therapeutic strategies to manage these risks are also considered.
Cevallos-Cevallos, Juan M; Gu, Ganyu; Danyluk, Michelle D; van Bruggen, Ariena H C
2012-11-01
Salmonella enterica strains with rdar (red dry and rough) and saw (smooth and white) morphotypes have previously been associated with tomato outbreaks but the dispersal mechanisms of these morphotypes are still poorly understood. In this study, Salmonella adhesion was distinguished from attachment by comparing different contact periods. Initial adhesion of rdar and saw morphotypes of Salmonella was compared in relation to tomato plants with different leaf trichome densities. Trichome densities were increased or reduced by treatment with jasmonic or salicylic acid, respectively. The overall effect of Salmonella morphotype and trichome density on splash dispersal was assessed in a rain simulator and correlated to cell hydrophobicity and initial adhesion. The presence of the rdar morphotype increased initial adhesion at high trichome densities but not at low trichome densities. Attachment of the rdar strain occurred after 30s contact time regardless of trichome density. Splash dispersal was slightly further for the saw morphotype than the rdar morphotype of S. enterica at all trichome densities. Salmonella cells of both morphotypes survived significantly better on the surface of high trichome density leaflets. Copyright © 2012 Elsevier B.V. All rights reserved.
High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction.
Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H
2016-11-09
Conversion of CO 2 to CO powered by renewable electricity not only reduces CO 2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO 2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO 2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO 2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO 2 to CO reduction, with a geometric current density of 38 mA/cm 2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.
Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea
2016-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ultrahigh Energy Density in SrTiO3 Film Capacitors.
Hou, Chuangming; Huang, Weichuan; Zhao, Wenbo; Zhang, Dalong; Yin, Yuewei; Li, Xiaoguang
2017-06-21
Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO 3 (STO) films grown on La 0.67 Sr 0.33 MnO 3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (E b ) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the E b under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm 3 with a high efficiency of 89% is realized. The enhanced E b may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.
Are amino groups advantageous to insensitive high explosives (IHEs)?
Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang
2012-10-01
There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs.
Lower Hybrid Wave Induced SOL Emissivity Variation at High Density on the Alcator C-Mod Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faust, I.; Terry, J. L.; Reinke, M. L.
Lower Hybrid Current Drive (LHCD) in the Alcator C-Mod tokamak provides current profile control for the generation of Advanced Tokamak (AT) plasmas. Non-thermal electron bremsstrahlung emission decreases dramatically at n-bar{sub e}>1{center_dot}10{sup 20}[m{sup -3}] for diverted discharges, indicating low current drive efficiency. It is suggested that Scrape-Off-Layer (SOL) collisional absorption of LH waves is the cause for the absence of non-thermal electrons at high density. VUV and visible spectroscopy in the SOL provide direct information on collision excitation processes. Deuterium Balmer-, Lyman- and He-I transition emission measurements were used for initial characterization of SOL electron-neutral collisional absorption. Data from Helium andmore » Deuterium LHCD discharges were characterized by an overall increase in the emissivity as well as an outward radial shift in the emissivity profile with increasing plasma density and applied LHCD power. High-temperature, high-field (T{sub e} = 5keV,B{sub t} = 8T) helium discharges at high density display increased non-thermal signatures as well as reduced SOL emissivity. Variations in emissivity due to LHCD were seen in SOL regions not magnetically connected to the LH Launcher, indicating global SOL effects due to LHCD.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...
2017-10-30
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
NASA Astrophysics Data System (ADS)
Li, Mei; Jia, Huiling; Li, Xueyan; Liu, Xuejie
2016-01-01
The elastic constants (Cij), bulk modulus (B), shear modulus (G) and elastic modulus (E) of cubic fluorite CeO2 under high pressure have been studied using the plane-wave pseudopotential method based on density functional theory. The calculated results show that the mechanical properties (Cij, B, G and E) of CeO2 increase with increasing pressure, and the phase transition of CeO2 occurs beyond the pressure of 130 GPa. From the calculated phonon spectrum using Parlinsk-Li-Kawasoe method, we found that CeO2 appears imaginary frequency at 140 GPa, which indicates phase transition. The energy band, density of states and charge density of CeO2 under high pressure are calculated using GGA+U method. It is found that the high pressure makes the electron delocalization and Ce-O covalent bonding enhanced. As pressure increases, the band gap between O2p and Ce4f states near the Fermi level increases, and CeO2 nonmetallic nature promotes. The present research results in a better understanding of how CeO2 responds to compression.
Axial Structure of High-Vacuum Planar Magnetron Discharge Space
NASA Astrophysics Data System (ADS)
Miura, Tsutomu
1999-09-01
The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.
Neighbourhood walkability, road density and socio-economic status in Sydney, Australia.
Cowie, Christine T; Ding, Ding; Rolfe, Margaret I; Mayne, Darren J; Jalaludin, Bin; Bauman, Adrian; Morgan, Geoffrey G
2016-04-27
Planning and transport agencies play a vital role in influencing the design of townscapes, travel modes and travel behaviors, which in turn impact on the walkability of neighbourhoods and residents' physical activity opportunities. Optimising neighbourhood walkability is desirable in built environments, however, the population health benefits of walkability may be offset by increased exposure to traffic related air pollution. This paper describes the spatial distribution of neighbourhood walkability and weighted road density, a marker for traffic related air pollution, in Sydney, Australia. As exposure to air pollution is related to socio-economic status in some cities, this paper also examines the spatial distribution of weighted road density and walkability by socio-economic status (SES). We calculated walkability, weighted road density (as a measure of traffic related air pollution) and SES, using predefined and validated measures, for 5858 Sydney neighbourhoods, representing 3.6 million population. We overlaid tertiles of walkability and weighted road density to define "sweet-spots" (high walkability-low weighted road density), and "sour- spots" (low walkability-high weighted road density) neighbourhoods. We also examined the distribution of walkability and weighted road density by SES quintiles. Walkability and weighted road density showed a clear east-west gradient across the region. Our study found that only 4 % of Sydney's population lived in sweet-spot" neighbourhoods with high walkability and low weighted road density (desirable), and these tended to be located closer to the city centre. A greater proportion of neighbourhoods had health limiting attributes of high weighted road density or low walkability (about 20 % each), and over 5 % of the population lived in "sour-spot" neighbourhoods with low walkability and high weighted road density (least desirable). These neighbourhoods were more distant from the city centre and scattered more widely. There were no linear trends between walkability/weighted road density and neighbourhood SES. Our walkability and weighted road density maps and associated analyses by SES can help identify neighbourhoods with inequalities in health-promoting or health-limiting environments. Planning agencies should seek out opportunities for increased neighbourhood walkability through improved urban development and transport planning, which simultaneously minimizes exposure to traffic related air pollution.
NASA Astrophysics Data System (ADS)
Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae
2017-12-01
A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.
2005-01-01
Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.
Extending the physics basis of quiescent H-mode toward ITER relevant parameters
Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...
2015-06-26
Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less
NASA Technical Reports Server (NTRS)
Hensler, J. R.
1973-01-01
Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.
Anastasiadis, Anastasios; Onal, Bulent; Modi, Pranjal; Turna, Burak; Duvdevani, Mordechai; Timoney, Anthony; Wolf, J Stuart; De La Rosette, Jean
2013-12-01
This study aimed to explore the relationship between stone density and outcomes of percutaneous nephrolithotomy (PCNL) using the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study database. Patients undergoing PCNL treatment were assigned to a low stone density [LSD, ≤ 1000 Hounsfield units (HU)] or high stone density (HSD, > 1000 HU) group based on the radiological density of the primary renal stone. Preoperative characteristics and outcomes were compared in the two groups. Retreatment for residual stones was more frequent in the LSD group. The overall stone-free rate achieved was higher in the HSD group (79.3% vs 74.8%, p = 0.113). By univariate regression analysis, the probability of achieving a stone-free outcome peaked at approximately 1250 HU. Below or above this density resulted in lower treatment success, particularly at very low HU values. With increasing radiological stone density, operating time decreased to a minimum at approximately 1000 HU, then increased with further increase in stone density. Multivariate non-linear regression analysis showed a similar relationship between the probability of a stone-free outcome and stone density. Higher treatment success rates were found with low stone burden, pelvic stone location and use of pneumatic lithotripsy. Very low and high stone densities are associated with lower rates of treatment success and longer operating time in PCNL. Preoperative assessment of stone density may help in the selection of treatment modality for patients with renal stones.
Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico
Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.
2012-01-01
Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.
Poor horse traders: large mammals trade survival for reproduction during the process of feralization
Grange, Sophie; Duncan, Patrick; Gaillard, Jean-Michel
2009-01-01
We investigated density dependence on the demographic parameters of a population of Camargue horses (Equus caballus), individually monitored and unmanaged for eight years. We also analysed the contributions of individual demographic parameters to changes in the population growth rates. The decrease in resources caused a loss of body condition. Adult male survival was not affected, but the survival of foals and adult females decreased with increasing density. Prime-aged females maintained high reproductive performance at high density, and their survival decreased. The higher survival of adult males compared with females at high density presumably results from higher investment in reproduction by mares. The high fecundity in prime-aged females, even when at high density, may result from artificial selection for high reproductive performance, which is known to have occurred in all the major domestic ungulates. Other studies suggest that feral ungulates including cattle and sheep, as these horses, respond differently from wild ungulates to increases in density, by trading adult survival for reproduction. As a consequence, populations of feral animals should oscillate more strongly than their wild counterparts, since they should be both more invasive (as they breed faster), and more sensitive to harsh environmental conditions (as the population growth rate of long-lived species is consistently more sensitive to a given proportional change in adult survival than to the same change in any other vital rate). If this principle proves to be general, it has important implications for management of populations of feral ungulates. PMID:19324787
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol') in the blood. Fluvastatin may also ...
... fatty substances such as low-density lipoprotein (LDL) cholesterol (''bad cholesterol'') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol (''good cholesterol'') in the blood. Simvastatin may also ...
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol') in the blood. Pravastatin is in ...
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen
2010-02-01
A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.
films on silicon at different annealing temperatures
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
A novel ultrasonic method for measuring breast density and breast cancer risk
NASA Astrophysics Data System (ADS)
Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter J.
2008-03-01
Women with high mammographic breast density are at 4- to 6-fold increased risk of developing breast cancer compared to women with fatty breasts. However, current breast density estimations rely on mammography, which cannot provide accurate volumetric breast representation. Therefore, we explored two techniques of breast density evaluation via ultrasound tomography. A sample of 93 patients was imaged with our clinical prototype; each dataset contained 45-75 tomograms ranging from near the chest wall through the nipple. Whole breast acoustic velocity was determined by creating image stacks and evaluating the sound speed frequency distribution. Ultrasound percent density (USPD) was determined by segmenting high sound speed areas from each tomogram using k-means clustering, integrating over the entire breast, and dividing by total breast area. Both techniques were independently evaluated using two mammographic density measures: (1) qualitative, determined by a radiologist's visual assessment using BI-RADS Categories, and (2) quantitative, via semi-automatic segmentation to calculate mammographic percent density (MPD) for craniocaudal and medio-lateral oblique mammograms. ~140 m/s difference in acoustic velocity was observed between fatty and dense BI-RADS Categories. Increased sound speed was found with increased BI-RADS Category and quantitative MPD. Furthermore, strong positive associations between USPD, BI-RADS Category, and calculated MPD were observed. These results confirm that utilizing sound speed, both for whole-breast evaluation and segmenting locally, can be implemented to evaluate breast density.
Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong
2014-01-01
Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003
NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
Advanced Power Electronics Components
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.
Koppel, Kristina; Bratt, Göran; Schulman, Sam; Bylund, Håkan; Sandström, Eric
2002-04-15
Decreased insulin sensitivity, hyperlipidemia, and body fat changes are considered as risk factors for coronary heart disease (CHD). A clustering of such factors (metabolic syndrome [MSDR]) exponentially increases the risk. Impaired fibrinolysis and increased coagulation are additional independent risk factors for CHD. We studied the effects of protease inhibitor (PI)-containing highly active antiretroviral therapy (HAART) on metabolic and hemostatic parameters in 363 HIV-infected individuals, of whom 266 were receiving PI-containing HAART and 97 were treatment naive. The fasting plasma levels of insulin, glucose, triglycerides, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, plasminogen activator inhibitor type 1 (PAI-1), and fibrinogen were evaluated together with the areas of visceral adipose tissue and the visceral adipose tissue/subcutaneous adipose tissue area ratio. The levels of insulin, triglycerides, cholesterol, and low-density lipoprotein cholesterol; visceral adipose tissue area; low-density lipoprotein/high-density lipoprotein ratio; and visceral adipose tissue/subcutaneous adipose tissue area ratio were significantly increased in patients receiving PI-containing HAART compared with treatment-naive patients. The levels of PAI-1 and fibrinogen were significantly higher in patients receiving PI-containing HAART. PAI-1 levels were higher in individuals with MSDR but also in patients without MSDR who were receiving PI-containing HAART. PAI-1 was independently correlated to use of PI-containing HAART, triglyceride level, insulin level, and body mass index (p <.001). These findings suggest that patients receiving PI-containing HAART have decreased fibrinolysis and increased coagulability, which may thus represent additional risk factors for cardiovascular disease in this patient group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, AP; Yip, NY; Elimelech, M
2014-01-01
Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation atmore » this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.« less
Ecology and management of white-tailed deer in a changing world.
McShea, William J
2012-02-01
Due to chronic high densities and preferential browsing, white-tailed deer have significant impacts on woody and herbaceous plants. These impacts have ramifications for animals that share resources and across trophic levels. High deer densities result from an absence of predators or high plant productivity, often due to human habitat modifications, and from the desires of stakeholders that set deer management goals based on cultural, rather than biological, carrying capacity. Success at maintaining forest ecosystems require regulating deer below biological carrying capacity, as measured by ecological impacts. Control methods limit reproduction through modifications in habitat productivity or increase mortality through increasing predators or hunting. Hunting is the primary deer management tool and relies on active participation of citizens. Hunters are capable of reducing deer densities but struggle with creating densities sufficiently low to ensure the persistence of rare species. Alternative management models may be necessary to achieve densities sufficiently below biological carrying capacity. Regardless of the population control adopted, success should be measured by ecological benchmarks and not solely by cultural acceptance. © 2012 New York Academy of Sciences.
Characteristics and Health Benefit of Highly Marbled Wagyu and Hanwoo Beef
Gotoh, Takafumi
2016-01-01
This review addresses the characteristics and health benefit of highly marbled Wagyu and Hanwoo beef. Marbling of Wagyu and Hanwoo beef has been increased in Japan and Korea to meet domestic consumer preferences. Wagyu and Hanwoo cattle have high potential of accumulating intramuscular fat (IMF) and producing highly marbled beef. The IMF content varies depending on the feeding of time, finishing diet, and breed type. IMF increases when feeding time is increased. The rate of IMF increase in grain-fed cattle is faster than that in pasture-fed cattle. Fatty acid composition are also different depending on breeds. Highly marbled Wagyu and Hanwoo beef have higher proportions of monounsaturated fatty acid (MUFA) due to higher concentrations of oleic acid. MUFAs have little effect on total cholesterol. They are heart-healthy dietary fat because they can lower low-density lipoprotein (LDL)-cholesterol while increasing high-density lipoprotein (HDL)-cholesterol. Clinical trials have indicated that highly marbled beef does not increase LDL-cholesterol. This review also emphasizes that high oleic acid beef such as Wagyu and Hanwoo beef might be able to reduce risk factors for cardiovascular disease. PMID:28115881
Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities
NASA Astrophysics Data System (ADS)
Yang, Rongyao; Wei, Sina; Jiang, Weizhou
2018-01-01
A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)
Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi
2017-01-01
Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm 2 . The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.
Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi
2017-01-01
Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control. PMID:28442997
High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets
NASA Astrophysics Data System (ADS)
Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming
2017-10-01
A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.
The determinants of county growth.
Carlino, G A; Mills, E S
1987-02-01
The determinants of population and employment growth were explored from a broader interregional (as opposed to intraregional) perspective. Data for the 1970s, at the county level of disaggregation, were used to analyze the effects of economic, demographic, and climatic variables on population and employment growth in a simultaneous equation framework. The use of data from the more than 3000 US counties provides a considerably larger testing ground than those used in previous research. The point of departure was a conventional, general equilibrium model in which both households and producers are geographically mobile. The study's dependent variables refer to population, total, and manufacturing employment densities. Family income had a powerful effect in stimulating both population and employment density. A 10% increase in family income led to a 7.9% increase in total and a 9.2% increase in manufacturing employment densities. High family income must stand for high demand, and thus, firms are drawn to an area. High family income also drew households to an area. A 10% increase in family income led to a 5.5% increase in population density. High family income must represent "good" neighborhoods for households. High family income was positively correlated with population and employment density, but in other recent studies either a negative and significant relationship or an insignificant relationship were reported. Local taxes consist of the receipts of county government and those of municipalities, townships, school districts, and special districts within the county. The elasticities reported in Table 4 suggest that a 10% increase in such taxes resulted in about a 0.072% reduction in county population density during the decade. The Industrial Revenue Bonds (IRBs) and the percent of the labor force that is unionized are 2 potential policy instruments at the state level. The study results suggest that IRBs have not stimulated either manufacturing or total employment, and the coefficients were statistically insignificant in the structural equations. The elasticities imply that a 10% increase in percent union reduces total employment by 0.42% and manufacturing employment by 0.18%. The effect on population was tiny. Further, while not intended, the interstate highway program may have been a significant redistributor of population and employment but has not caused immigration of people and jobs from central cities.
Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities.
Byrne, Maria; Soars, Natalie; Selvakumaraswamy, Paulina; Dworjanyn, Symon A; Davis, Andrew R
2010-05-01
Marine invertebrate gametes are being spawned into an ocean simultaneously warming, acidifying and increasing in pCO(2). Decreased pH/increased pCO(2) narcotizes sperm indicating that acidification may impair fertilization, exacerbating problems of sperm limitation, with dire implications for marine life. In contrast, increased temperature may have a stimulatory effect, enhancing fertilization. We investigated effects of ocean change on sea urchin fertilization across a range of sperm densities. We address two predictions: (1) low pH/increased pCO(2) reduces fertilization at low sperm density and (2) increased temperature enhances fertilization, buffering negative effects of acidification and increased pCO(2). Neither prediction was supported. Fertilization was only affected by sperm density. Increased acidification and pCO(2) did not reduce fertilization even at low sperm density and increased temperature did not enhance fertilization. It is important to identify where vulnerabilities lie across life histories and our results indicate that sea urchin fertilization is robust to climate change stressors. However, developmental stages may be vulnerable to ocean change. Copyright 2009 Elsevier Ltd. All rights reserved.
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-19
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
NASA Astrophysics Data System (ADS)
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-01
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-07-15
A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ∼10{sup 24 }m{sup −3}, i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity andmore » an increase in the plasma density obtained after the merging of two streamers.« less
Functional response of sport divers to lobsters with application to fisheries management.
Eggleston, David B; Parsons, Darren M; Kellison, G Todd; Plaia, Gayle R; Johnson, Eric G
2008-01-01
Fishery managers must understand the dynamics of fishers and their prey to successfully predict the outcome of management actions. We measured the impact of a two-day exclusively recreational fishery on Caribbean spiny lobster in the Florida Keys, USA, over large spatial scales (>100 km) and multiple years and used a theoretical, predator-prey functional response approach to identify whether or not sport diver catch rates were density-independent (type I) or density-dependent (type II or III functional response), and if catch rates were saturated (i.e., reached an asymptote) at relatively high lobster densities. We then describe how this predator-prey framework can be applied to fisheries management for spiny lobster and other species. In the lower Keys, divers exhibited a type-I functional response, whereby they removed a constant and relatively high proportion of lobsters (0.74-0.84) across all pre-fishing-season lobster densities. Diver fishing effort increased in a linear manner with lobster prey densities, as would be expected with a type-I functional response, and was an order of magnitude lower in the upper Keys than lower Keys. There were numerous instances in the upper Keys where the density of lobsters actually increased from before to after the fishing season, suggesting some type of "spill-in effect" from surrounding diver-disturbed areas. With the exception of isolated reefs in the upper Keys, the proportion of lobsters removed by divers was density independent (type-I functional response) and never reached saturation at natural lobster densities. Thus, recreational divers have a relatively simple predatory response to spiny lobster, whereby catch rates increase linearly with lobster density such that catch is a reliable indicator of abundance. Although diver predation is extremely high (approximately 80%), diver predation pressure is not expected to increase proportionally with a decline in lobster density (i.e., a depensatory response), which could exacerbate local extinction. Furthermore, management actions that reduce diver effort should have a concomitant and desired reduction in catch. The recreational diver-lobster predator-prey construct in this study provides a useful predictive framework to apply to both recreational and commercial fisheries, and on which to build as management actions are implemented.
Ahmed, Khalil
2015-11-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.
Ahmed, Khalil
2014-01-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917
Bruckman, Daniela; Campbell, Diane R
2016-08-01
Effects of an exotic plant on pollination may change as the invasive increases in density. Quantity of pollinator visits to a native may increase, decrease, or change nonlinearly, while visit quality is likely to decrease with greater interspecific pollen movement. How visit quantity and quality contribute to the effect on reproductive success at each invasion stage has not been measured. We simulated four stages of invasion by Brassica nigra by manipulating the neighborhood of potted plants of the native Phacelia parryi in a field experiment. Stages were far from the invasion, near the invasion, intermixed with the invasive at low density, and intermixed at high density. We measured pollinator visitation, conspecific and invasive pollen deposition, and seed set for P. parryi at each stage. Native individuals near invasive plants and within areas of low invasive density showed greatest seed production, as expected from concurrent changes in conspecific and invasive pollen deposition. Those plants experienced facilitation of visits and received more conspecific pollen relative to plants farther from invasives. Native individuals within high invasive density also received frequent visits by many pollinators (although not honeybees), but the larger receipt of invasive pollen predicted interference with pollen tubes that matched patterns in seed set. Pollinator visitation was highest when exotic plants were nearby. Detrimental effects of heterospecific pollen deposition were highest at high exotic density. Our study quantified how reproduction benefits from near proximity to a showy invasive, but is still vulnerable when the invasive reaches high density. © 2016 Botanical Society of America.
Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S.; Yasuoka, Kenji; Zeng, Xiao Cheng
2017-01-01
Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called “no-man’s land” under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature–pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions. PMID:28373562
Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat
2015-05-13
Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.
Cuticular antifungals in spiders: density- and condition dependence.
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.
Cuticular Antifungals in Spiders: Density- and Condition Dependence
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders. PMID:24637563
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Straka, Levi; Rittmann, Bruce E
2018-02-01
The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1 d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.
APPARATUS FOR THE DENSIFICATION AND ENERGIZATION OF CHARGED PARTICLES
Post, R.F.; Coensgen, F.H.
1962-12-18
This patent relates to a device for materially increasing the energy and density of a plasma to produce conditions commensurate with the establishment and promotion of controlled thermonuclear reactions. To this end the device employs three successive stages of magnetic compression, each stage having magnetic mirrors to compress a plasma, the mirrors being moveable to transfer the plasma to successive stages for further compression. Accordingly, a plasma introduced to the first stage is increased in density and energy in stepwide fashion by virtue of the magnetic compression in the successive stages such that the plasma upon reaching the last stage is of extremely high energy and density commensurate the plasma particles undergoing thermonuclear reactions. The principal novelty of the device resides in the provision of a unidirectional magnetic field which increases in stepwise fashion in coaxially communicating compression chambers of progressively decreasing lengths and diameters. Pulsed magnetic fields are superimposed upon the undirectional field and are manipulated to establish resultant magnetic compression fields which increase in intensity and progressively move, with respect to time, through the compression chambers in the direction of the smallest one thereof. The resultant field in the last compression chamber is hence of relatively high intensity, and the density and energy of the plasma confined therein are correspondingly high. (AEC)
75 FR 39477 - New Standards for Domestic Mailing Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
... 2009 and FY 2010 in order to be eligible for participation. 2011 Saturation and High Density Incentive... letters and flats mailed at saturation and high density prices. This program would encourage mailers to increase the volume within two of our highest margin products and would be open to all mailers meeting the...
Riales, R; Albrink, M J
1981-12-01
Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.
Note: A high-energy-density Tesla-type pulse generator with novel insulating oil
NASA Astrophysics Data System (ADS)
Liu, Sheng; Su, Jiancang; Fan, Xuliang
2017-09-01
A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.
Note: A high-energy-density Tesla-type pulse generator with novel insulating oil.
Liu, Sheng; Su, Jiancang; Fan, Xuliang
2017-09-01
A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser-TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.
Hwang, Bohee; Lee, Jang-Sik
2017-08-01
The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Negative hydrogen ion production in a helicon plasma source
NASA Astrophysics Data System (ADS)
Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.
2015-09-01
In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.
McGlone, J J; Stansbury, W F; Tribble, L F
1988-04-01
Two experiments using 120 sows were conducted to determine the effects during heat stress of two floor types, snout coolers or a water drip system, and a high energy-density diet. During both studies, air temperature was maintained at or above 29 degrees C. Floor types included partially slotted concrete and plastic-coated, expanded metal. In Exp. 1, in addition to floor-type treatments, snout coolers were on or off and the water drip was on for 3 min each 10 min or off. Snout coolers increased (P less than .05) sow feed intake and decreased (P less than .05) sow lactation weight loss. Water drip increased (P less than .002) sow feed intake and reduced lactation weight loss. The drip X floor-type interaction was significant for most measures of piglet performance. Drip was beneficial for piglet weights when piglets were on plastic, whereas drip was detrimental to piglet performance while they were housed on concrete. In Exp. 2, two floor types, drip or no-drip and a high energy-density diet or control diet were examined during heat stress. The high energy-density diet reduced (P less than .01) sow feed intake but provided no measurable increase in piglet performance during heat stress. We conclude that water drip is an effective cooling technique for heat-stressed sows, especially when floors are plastic. Snout coolers, partial concrete slots and high energy-density diets provided only minor benefits to heat-stressed sows and were not of benefit to piglets nursing heat-stressed sows.
Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.S.; Klibanski, A.; Neer, R.M.
To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), whilemore » trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.« less
Generation of high-density biskyrmions by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Licong; Zhang, Ying; He, Min
Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less
Generation of high-density biskyrmions by electric current
Peng, Licong; Zhang, Ying; He, Min; ...
2017-06-16
Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density
NASA Astrophysics Data System (ADS)
Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.
2018-07-01
The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.
Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M
2018-02-15
As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bust economics: foragers choose high quality habitats in lean times
Dickman, Christopher R.
2016-01-01
In environments where food resources are spatially variable and temporarily impoverished, consumers that encounter habitat patches with different food density should focus their foraging initially where food density is highest before they move to patches where food density is lower. Increasing missed opportunity costs should drive individuals progressively to patches with lower food density as resources in the initially high food density patches deplete. To test these expectations, we assessed the foraging decisions of two species of dasyurid marsupials (dunnarts: Sminthopsis hirtipes and S. youngsoni) during a deep drought, or bust period, in the Simpson Desert of central Australia. Dunnarts were allowed access to three patches containing different food densities using an interview chamber experiment. Both species exhibited clear preference for the high density over the lower food density patches as measured in total harvested resources. Similarly, when measuring the proportion of resources harvested within the patches, we observed a marginal preference for patches with initially high densities. Models analyzing behavioral choices at the population level found no differences in behavior between the two species, but models analyzing choices at the individual level uncovered some variation. We conclude that dunnarts can distinguish between habitat patches with different densities of food and preferentially exploit the most valuable. As our observations were made during bust conditions, experiments should be repeated during boom times to assess the foraging economics of dunnarts when environmental resources are high. PMID:26839751
High-current electron gun with a planar magnetron integrated with an explosive-emission cathode
NASA Astrophysics Data System (ADS)
Kiziridi, P. P.; Ozur, G. E.
2017-05-01
A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit
2018-05-01
A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.
Karkarey, Rucha; Zambre, Amod; Isvaran, Kavita; Arthur, Rohan
2017-02-28
At high densities, terrestrial and marine species often employ alternate reproductive tactics (ARTs) to maximize reproductive benefits. We describe ARTs in a high-density and unfished spawning aggregation of the squaretail grouper (Plectropomus areolatus) in Lakshadweep, India. As previously reported for this species, territorial males engage in pair-courtship, which is associated with a pair-spawning tactic. Here, we document a previously unreported school-courtship tactic; where territorial males court multiple females in mid-water schools, which appears to culminate in a unique 'school-spawning' tactic. Courtship tactics were conditional on body size, local mate density and habitat, likely associated with changing trade-offs between potential mating opportunities and intra-sexual competition. Counter-intuitively, the aggregation showed a habitat-specific inverse size-assortment: large males courted small females on the reef slope while small males courted equal-sized or larger females on the shelf. These patterns remained stable across two years of observation at high, unfished densities. These unique density-dependent behaviours may disappear from this aggregation as overall densities decline due to increasing commercial fishing pressure, with potentially large consequences for demographics and fitness.
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.
2011-01-01
Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne
2011-01-01
Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
Texture related unusual phenomena in electrodeposition and vapor deposition
NASA Astrophysics Data System (ADS)
Lee, D. N.; Han, H. N.
2015-04-01
The tensile strength of electrodeposits generally decreases with increasing bath temperature because the grain size increases and the dislocation density decreases with increasing bath temperature. Therefore, discontinuities observed in the tensile strength vs. bath temperature curves in electrodeposition of copper are unusual. The tensile strength of electrodeposits generally increases with increasing cathode current density because the rate of nucleation in electrodeposits increases with increasing current density, which in turn gives rise to a decrease in the grain size and in turn an increase in the strength. Therefore, a decrease in the tensile strength of copper electrodeposits at a high current density is unusual. The grain size of vapor deposits is expected to decrease with decreasing substrate temperature. However, rf sputtered Co-Cr deposits showed that deposits formed on water-cooled polyimide substrates had a larger grain size than deposits formed on polyimide substrates at 200 °C. These unusual phenomena can be explained by the preferred growth model for deposition texture evolution.
CFS-SMO based classification of breast density using multiple texture models.
Sharma, Vipul; Singh, Sukhwinder
2014-06-01
It is highly acknowledged in the medical profession that density of breast tissue is a major cause for the growth of breast cancer. Increased breast density was found to be linked with an increased risk of breast cancer growth, as high density makes it difficult for radiologists to see an abnormality which leads to false negative results. Therefore, there is need for the development of highly efficient techniques for breast tissue classification based on density. This paper presents a hybrid scheme for classification of fatty and dense mammograms using correlation-based feature selection (CFS) and sequential minimal optimization (SMO). In this work, texture analysis is done on a region of interest selected from the mammogram. Various texture models have been used to quantify the texture of parenchymal patterns of breast. To reduce the dimensionality and to identify the features which differentiate between breast tissue densities, CFS is used. Finally, classification is performed using SMO. The performance is evaluated using 322 images of mini-MIAS database. Highest accuracy of 96.46% is obtained for two-class problem (fatty and dense) using proposed approach. Performance of selected features by CFS is also evaluated by Naïve Bayes, Multilayer Perceptron, RBF Network, J48 and kNN classifier. The proposed CFS-SMO method outperforms all other classifiers giving a sensitivity of 100%. This makes it suitable to be taken as a second opinion in classifying breast tissue density.
Wildy, Erica L; Chivers, Douglas P; Kiesecker, Joseph M; Blaustein, Andrew R
2001-07-01
Previous studies have examined abiotic and biotic factors that facilitate agonistic behavior. For larval amphibians, food availability and conspecific density have been suggested as important factors influencing intraspecific aggression and cannibalism. In this study, we examined the separate and combined effects of food availability and density on the agonistic behavior and life history of larval long-toed salamanders, Ambystoma macrodactylum. We designed a 2×2 factorial experiment in which larvae were raised with either a high or low density of conspecifics and fed either a high or low level of food. For each treatment, we quantified the amount of group size variation, biting, and cannibalism occurring. Additionally, we examined survival to, time to and size at metamorphosis for all larvae. Results indicated that differences in both density and food level influenced all three life history traits measured. Moreover, differences in food level at which larvae were reared resulted in higher within-group size variation and heightened intraspecific biting while both density and food level contributed to increased cannibalism. We suggest that increased hunger levels and an uneven size structure promoted biting among larvae in the low food treatments. Moreover, these factors combined with a higher encounter rate with conspecifics in the high density treatments may have prompted larger individuals to seek an alternative food source in the form of smaller conspecifics.
Crack-resistant Al2O3-SiO2 glasses.
Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-07
Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
NASA Astrophysics Data System (ADS)
Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang
2010-02-01
To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.
Fuketa, Hiroshi; Yoshioka, Kazuaki; Shinozuka, Yasuhiro; Ishida, Koichi; Yokota, Tomoyuki; Matsuhisa, Naoji; Inoue, Yusuke; Sekino, Masaki; Sekitani, Tsuyoshi; Takamiya, Makoto; Someya, Takao; Sakurai, Takayasu
2014-12-01
A 64-channel surface electromyogram (EMG) measurement sheet (SEMS) with 2 V organic transistors on a 1 μm-thick ultra-flexible polyethylene naphthalate (PEN) film is developed for prosthetic hand control. The surface EMG electrodes must satisfy the following three requirements; high mechanical flexibility, high electrode density and high signal integrity. To achieve high electrode density and high signal integrity, a distributed and shared amplifier (DSA) architecture is proposed, which enables an in-situ amplification of the myoelectric signal with a fourfold increase in EMG electrode density. In addition, a post-fabrication select-and-connect (SAC) method is proposed to cope with the large mismatch of organic transistors. The proposed SAC method reduces the area and the power overhead by 96% and 98.2%, respectively, compared with the use of conventional parallel transistors to reduce the transistor mismatch by a factor of 10.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
Increased physical activity ameliorates high fat diet-induced bone resorption in mice
USDA-ARS?s Scientific Manuscript database
It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...
NASA Astrophysics Data System (ADS)
Nakamura, Yusuke; Hoshizawa, Taku
2016-09-01
Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
Kaon Condensation and the Non-Uniform Nuclear Matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi
2004-04-01
Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.
Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping
2017-06-07
A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-02
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
2013-01-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508
Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner
2015-01-01
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.
Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...
2016-02-08
Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less
Leicht-Young, S. A.; Latimer, A.M.; Silander, J.A.
2011-01-01
The neighborhood density of plants strongly affects their growth, reproduction, and survival. In most cases, high density increases competition and negatively affects a focal plant in predictable ways, leading to the self-thinning law. There are, however, situations in which high densities of plants facilitate focal plant performance, resulting in positive density dependence. Despite their importance in forest gap dynamics and distinctive growth form, there have been very few studies of the effect of density on lianas or vines. We grew an invasive (Celastrus orbiculatus) and a native (Celastrus scandens) liana species together in three different density treatments, while also manipulating the light and support availability. We found that across treatment conditions, C. orbiculatus always out-performed C. scandens, showing greater relative growth rate in height and diameter, greater biomass and higher survival. Both species responded similarly to the density treatments: with plants in high density not showing a decrease in relative height growth rate compared to medium density. Aboveground biomass for C. scandens was not affected by density, while for C. orbiculatus, the most massive plants were growing in medium density without support. More surprisingly, survival analysis indicated that the two species both had significantly lower mortality rates in the highest density treatment; this trend held true across the other treatments of light and supports. More generally, this study demonstrates that these lianas can escape the consequences of high density and thus the self-thinning law that affects self-supporting plants. This suggests a broader hypothesis about lianas in general: their greater flexibility in allocating growth resources allows them to grow taller and thinner without collapsing and thereby potentially escape shading and mortality even at high densities.
Excess algal symbionts increase the susceptibility of reef corals to bleaching
NASA Astrophysics Data System (ADS)
Cunning, Ross; Baker, Andrew C.
2013-03-01
Rising ocean temperatures associated with global climate change are causing mass coral bleaching and mortality worldwide. Understanding the genetic and environmental factors that mitigate coral bleaching susceptibility may aid local management efforts to help coral reefs survive climate change. Although bleaching susceptibility depends partly on the genetic identity of a coral's algal symbionts, the effect of symbiont density, and the factors controlling it, remain poorly understood. By applying a new metric of symbiont density to study the coral Pocillopora damicornis during seasonal warming and acute bleaching, we show that symbiont cell ratio density is a function of both symbiont type and environmental conditions, and that corals with high densities are more susceptible to bleaching. Higher vulnerability of corals with more symbionts establishes a quantitative mechanistic link between symbiont density and the molecular basis for coral bleaching, and indicates that high densities do not buffer corals from thermal stress, as has been previously suggested. These results indicate that environmental conditions that increase symbiont densities, such as nutrient pollution, will exacerbate climate-change-induced coral bleaching, providing a mechanistic explanation for why local management to reduce these stressors will help coral reefs survive future warming.
Human respiration at rest in rapid compression and at high pressures and gas densities
NASA Technical Reports Server (NTRS)
Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.
1983-01-01
The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.
Xu, Shihua; Yi, Shunmin; He, Jun; Wang, Haigang; Fang, Yiqun; Wang, Qingwen
2017-01-01
In the present study, lithium chloride (LiCl) was utilized as a modifier to reduce the melting point of polyamide 6 (PA6), and then 15 wt % microcrystalline cellulose (MCC) was compounded with low melting point PA6/high-density polyethylene (HDPE) by hot pressing. Crystallization analysis revealed that as little as 3 wt % LiCl transformed the crystallographic forms of PA6 from semi-crystalline to an amorphous state (melting point: 220 °C to none), which sharply reduced the processing temperature of the composites. LiCl improved the mechanical properties of the composites, as evidenced by the fact that the impact strength of the composites was increased by 90%. HDPE increased the impact strength of PA6/MCC composites. In addition, morphological analysis revealed that incorporation of LiCl and maleic anhydride grafted high-density polyethylene (MAPE) improved the interfacial adhesion. LiCl increased the glass transition temperature of the composites (the maximum is 72.6 °C). PMID:28773169
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie
2013-02-07
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.
Rysz-Górzyńska, Magdalena; Banach, Maciej
2016-08-01
A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.
Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.
2014-07-01
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
High-current discharge channel contraction in high density gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.
Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less
Are breast density and bone mineral density independent risk factors for breast cancer?
Kerlikowske, Karla; Shepherd, John; Creasman, Jennifer; Tice, Jeffrey A; Ziv, Elad; Cummings, Steve R
2005-03-02
Mammographic breast density and bone mineral density (BMD) are markers of cumulative exposure to estrogen. Previous studies have suggested that women with high mammographic breast density or high BMD are at increased risk of breast cancer. We determined whether mammographic breast density and BMD of the hip and spine are correlated and independently associated with breast cancer risk. We conducted a cross-sectional study (N = 15,254) and a nested case-control study (of 208 women with breast cancer and 436 control subjects) among women aged 28 years or older who had a screening mammography examination and hip BMD measurement within 2 years. Breast density for 3105 of the women was classified using the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) categories, and percentage mammographic breast density among the case patients and control subjects was quantified with a computer-based threshold method. Spearman rank partial correlation coefficient and Pearson's correlation coefficient were used to examine correlations between BI-RADS breast density and BMD and between percentage mammographic breast density and BMD, respectively, in women without breast cancer. Logistic regression was used to examine the association of breast cancer with percentage mammographic breast density and BMD. All statistical tests were two-sided. Neither BI-RADS breast density nor percentage breast density was correlated with hip or spine BMD (correlation coefficient = -.02 and -.01 for BI-RADS, respectively, and -.06 and .01 for percentage breast density, respectively). Neither hip BMD nor spine BMD had a statistically significant relationship with breast cancer risk. Women with breast density in the highest sextile had an approximately threefold increased risk of breast cancer compared with women in the lowest sextile (odds ratio = 2.7, 95% confidence interval = 1.4 to 5.4); adjusting for hip or spine BMD did not change the association between breast density and breast cancer risk. Breast density is strongly associated with increased risk of breast cancer, even after taking into account reproductive and hormonal risk factors, whereas BMD, although a possible marker of lifetime exposure to estrogen, is not. Thus, a component of breast density that is independent of estrogen-mediated effects may contribute to breast cancer risk.
Branica, Gina; Mladinić, Marin; Omanović, Dario; Želježić, Davor
2016-12-01
Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.
On the road to obesity: Television viewing increases intake of high-density foods.
Blass, Elliott M; Anderson, Daniel R; Kirkorian, Heather L; Pempek, Tiffany A; Price, Iris; Koleini, Melanie F
2006-07-30
Television viewing (TVV) has been linked with obesity, possibly through increased sedentary behavior and/or through increased ingestion during TVV. The proposition that TVV causes increased feeding, however, has not been subjected to experimental verification until recently. Our objective was to determine if the amount eaten of two familiar, palatable, high-density foods (pizza and macaroni and cheese) was increased during a 30-min meal when watching TV. In a within-subjects design, one group of undergraduates (n = 10) ate pizza while watching a TV show of their choice for one session and when listening to a symphony during the other session. A second group of undergraduates (n = 10) ate macaroni and cheese (M&C). TVV increased caloric intake by 36% (one slice on average) for pizza and by 71% for M&C. Eating patterns also differed between conditions. Although the length of time to eat a slice of pizza remained stable between viewing conditions, the amount of time before starting another slice was shorter during TVV. In contrast, M&C was eaten at a faster rate and for a longer period of time during TVV. Thus, watching television increases the amount eaten of high-density, palatable, familiar foods and may constitute one vector contributing to the current obesity crisis.
Lan, Ruixia; Tran, Hoainam; Kim, Inho
2017-03-01
Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P < 0.05) the average daily gain. On day 42, the apparent total tract digestibility (ATTD) of dry matter, nitrogen and gross energy (GE), blood urea nitrogen concentration and NH 3 and H 2 S emissions were increased (P < 0.05) in pigs fed high-nutrient-density diets. Pigs fed probiotic complex supplementation diets had higher (P < 0.05) ATTD of GE than pigs fed non-supplemented diets. Fecal Lactobacillus counts were increased whereas Escherichia coli counts and NH 3 and H 2 S emissions were decreased (P < 0.05) in pigs fed probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Empirical relationships among resilience indicators on Micronesian reefs
Mumby, P.J.; Bejarano, S.; Golbuu, Y.; Steneck, R.S.; Arnold, S.N.; van Woesik, R.; Friedlander, A.M.
2013-01-01
A process-orientated understanding of ecosystems usually starts with an exploratory analysis of empirical relationships among potential drivers and state variables. While relationships among herbivory, algal cover, and coral recruitment, have been explored in the Caribbean, the nature of such relationships in the Pacific appears to be variable or unclear. Here, we examine potential drivers structuring the benthos and herbivorous fish assemblages of outer-shelf reefs in Micronesia (Palau, Guam and Pohnpei). Surveys were stratified by wave exposure and protection from fishing. High biomass of most herbivores was favoured by high wave exposure. High abundance of large-bodied scarids was associated with low turf abundance, high coral cover, and marine reserves. The remaining herbivores were more abundant in reefs with low coral cover, possibly because space and hence food limitation occur in high-coral-cover reefs. Rugosity had no detectable effect on herbivorous fish abundance once differences in exposure and coral cover were accounted for. At identical depths, high wave exposure was associated with greater volumes (cover × canopy height) of macroalgae and algal turfs, which most likely resulted from high primary productivity driven by flow. In exposed areas, macroalgal cover declined as the acanthurid biomass increased. The volume of algal turfs was negatively associated with coral cover and herbivore biomass. In turn, high coral cover and herbivore biomass are likely to intensify grazing. The density of juvenile corals was variable where macroalgal cover was low but was confined to lower densities where macroalgal cover was high. High coral cover and density of juvenile corals were favoured in sheltered habitats. While a weak positive relationship was found between scarid biomass and juvenile coral density, we hypothesise that high scarid densities may hinder juvenile density through increased corallivory. New hypotheses emerged that will help clarify the role of acanthurids, wave exposure, and corallivory in driving the recovery of Pacific coral communities.
The Plasmaspheric Plume and Magnetopause Reconnection
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.
2014-01-01
We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.
Are there optimal densities for prairie birds?
Skagen, S.K.; Adams, A.A.Y.
2010-01-01
The major forces of food and predation shape fitness-enhancing decisions of birds at all stages of their life cycles. During the breeding season, birds can minimize nest loss due to predation by selecting sites with a lower probability of predation. To understand the environmental and social aspects and consequences of breedingsite selection in prairie birds, we explored variation in nest-survival patterns of the Lark Bunting (Calamospiza melanocorys) in the shortgrass prairie region of North America. Over four breeding seasons, we documented the survival of 405 nests, conducted 60 surveys to estimate bird densities, and measured several vegetative features to describe habitat structure in 24 randomly selected study plots. Nest survival varied with the buntings' density as described by a quadratic polynomial, increasing with density below 1.5 birds ha-1 and decreasing with density between 1.5 and 3 birds ha-1, suggesting that an optimal range of densities favors reproductive success of the Lark Bunting, which nests semi-colonially. Nest survival also increased with increasing vegetation structure of study plots and varied with age of the nest, increasing during early incubation and late in the nestling stage and declining slightly from mid-incubation to the middle of the nestling period. The existence of an optimal range of densities in this semi-colonial species can be elucidated by the "commodity-selection hypothesis" at low densities and density dependence at high densities. ?? The Cooper Ornithological Society 2010.
Uddin, Md Nazim; Robinson, Randall William
2017-12-01
Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in both the greenhouse and laboratory by growing associated plants, Melaleuca ericifolia, Rumex conglomeratus, and model plant, Lactuca sativa at varying densities with the allelopathic plant, P. australis, its litter and leachate of P. australis litter. This study investigated the potential interacting influences of allelopathy and resource competition on plant growth-density relationships. In greenhouse, the root exudates mediated effects showed the strongest growth inhibition of M. ericifolia at high density whereas litter mediated results revealed increased growth at medium density treatments compared to low and high density. Again, laboratory experiments related to seed germination and seedling growth of L. sativa and R. conglomeratus exhibited phytotoxicity decreased showing positive growth as plant density increased and vice versa. Overall, the differential effects were observed among experiments but maximum individual plant biomass and some other positive effects on plant traits such as root and shoot length, chlorophyll content occurred at an intermediate density. This was attributed to the sharing of the available phytotoxin among plants at high densities which is compatible to density-dependent phytotoxicity model. The results demonstrated that plant-plant interference is the combined effect of allelopathy and resource competition with many other factors but this experimental design, target-neighbor mixed-culture in combination of plant grown at varying densities with varying level of phytotoxins, mono-culture, can successfully separate allelopathic effects from competition.
Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.
2013-01-01
In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.
Quispe, Renato; Manalac, Raoul J; Faridi, Kamil F; Blaha, Michael J; Toth, Peter P; Kulkarni, Krishnaji R; Nasir, Khurram; Virani, Salim S; Banach, Maciej; Blumenthal, Roger S; Martin, Seth S; Jones, Steven R
2015-09-01
High levels of the triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio are associated with obesity, metabolic syndrome, and insulin resistance. We evaluated variability in the remaining lipid profile, especially remnant lipoprotein particle cholesterol (RLP-C) and its components (very low-density lipoprotein cholesterol subfraction 3 and intermediate-density lipoprotein cholesterol), with variability in the TG/HDL-C ratio in a very large study cohort representative of the general U.S. We examined data from 1,350,908 US individuals who were clinically referred for lipoprotein cholesterol ultracentrifugation (Atherotech, Birmingham, AL) from 2009 to 2011. Demographic information other than age and sex was not available. Changes to the remaining lipid profile across percentiles of the TG/HDL-C ratio were quantified, as well as by three TG/HDL-C cut-off points previously proposed in the literature: 2.5 (male) and 2 (female), 3.75 (male) and 3 (female), and 3.5 (male and female). The mean age of our study population was 58.7 years, and 48% were men. The median TG/HDL-C ratio was 2.2. Across increasing TG/HDL-C ratios, we found steadily increasing levels of RLP-C, non-HDL-C and LDL density. Among the lipid parameters studied, RLP-C and LDL density had the highest relative increase when comparing individuals with elevated TG/HDL-C levels to those with lower TG/HDL-C levels using established cut-off points. Approximately 47% of TG/HDL-C ratio variance was attributable to RLP-C. In the present analysis, a higher TG/HDL-C ratio was associated with an increasingly atherogenic lipid phenotype, characterized by higher RLP-C along with higher non-HDL-C and LDL density. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.; Sih, Andrew; Loughman, Daniel L.; Yarris, Gregory S.; Oldenburger, Shaun L.; McLandress, M. Robert
2017-01-01
Many avian species are behaviorally-plastic in selecting nest sites, and may shift to new locations or habitats following an unsuccessful breeding attempt. If there is predictable spatial variation in predation risk, the process of many individuals using prior experience to adaptively change nest sites may scale up to create shifting patterns of nest density at a population level. We used 18 years of waterfowl nesting data to assess whether there were areas of consistently high or low predation risk, and whether low-risk areas increased, and high-risk areas decreased in nest density the following year. We created kernel density maps of successful and unsuccessful nests in consecutive years and found no correlation in predation risk and no evidence for adaptive shifts, although nest density was correlated between years. We also examined between-year correlations in nest density and nest success at three smaller spatial scales: individual nesting fields (10–28 ha), 16-ha grid cells and 4-ha grid cells. Here, results were similar across all scales: we found no evidence for year-to-year correlation in nest success but found strong evidence that nest density was correlated between years, and areas of high nest success increased in nest density the following year. Prior research in this system has demonstrated that areas of high nest density have higher nest success, and taken together, our results suggest that ducks may adaptively select nest sites based on the local density of conspecifics, rather than the physical location of last year's nest. In unpredictable environments, current cues, such as the presence of active conspecific nests, may be especially useful in selecting nest sites. The cues birds use to select breeding locations and successfully avoid predators deserve continued attention, especially in systems of conservation concern.
Linear calculations of edge current driven kink modes with BOUT++ code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less
Preliminary Study of a Hybrid Helicon-ECR Plasma Source
NASA Astrophysics Data System (ADS)
M. Hala, A.; Oksuz, L.; Ximing, Zhu
2016-08-01
A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.
Density-dependent effects of omnivorous stream crayfish on benthic trophic dynamics
Ludlam, J.P.; Banks, B. T.; Magoulick, Daniel D.
2015-01-01
Crayfish are abundant and important consumers in aquatic food webs and crayfish invasions have demonstrated strong effects of crayfish on multiple trophic levels. Density may be an important factor determining the role of omnivorous crayfish in benthic communities, especially if density alters the strength of trophic interactions. The effect of crayfish density on a simple benthic food web using ceramic tiles was examined in three treatments (crayfish exclusion cage, cage control (open to crayfish), and exposed ceramic tiles) in mesocosms stocked with 6, 12, or 18 crayfish·m-2. We hypothesized that at low densities crayfish consumption of herbivorous chironomids would increase algal abundance, but at high densities crayfish would reduce both periphyton and invertebrates. In the experiment, periphyton and chironomid abundance increased with declining crayfish biomass on day 30 but not day 15. The magnitude of crayfish effects on day 15 periphyton chlorophyll a abundance increased with crayfish biomass, but crayfish effects on day 30 periphyton chlorophyll a or chironomid biomass did not increase with crayfish biomass. In this experiment there was little evidence for a trophic cascade at low crayfish densities and strong omnivory by crayfish dominated trophic dynamics.
Influence of carrier density on the electronic cooling channels of bilayer graphene
NASA Astrophysics Data System (ADS)
Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.
2011-09-01
We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.
Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination
Sinkkonen, Aki
2005-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163
Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination
Sinkkonen, Aki
2006-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596
Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.
Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang
2010-05-01
We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.
NASA Astrophysics Data System (ADS)
Selvaraju, V.; Thangaraj, V.
2018-05-01
The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.
Negative hydrogen ion production in a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoso, J., E-mail: Jesse.Santoso@anu.edu.au; Corr, C. S.; Manoharan, R.
2015-09-15
In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here,more » we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.« less
[Effect of the population density on growth and regeneration in the snail Achatina fulica].
Sidel'nikov, A P; Stepanov, I I
2000-01-01
In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.
Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.
Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F
2010-01-01
An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. (c) 2010 American Institute of Chemical Engineers
Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture
Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.
2010-01-01
An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172
Carlson, Jordan A; Saelens, Brian E; Kerr, Jacqueline; Schipperijn, Jasper; Conway, Terry L; Frank, Lawrence D; Chapman, Jim E; Glanz, Karen; Cain, Kelli L; Sallis, James F
2015-03-01
To investigate relations of walking, bicycling and vehicle time to neighborhood walkability and total physical activity in youth. Participants (N=690) were from 380 census block groups of high/low walkability and income in two US regions. Home neighborhood residential density, intersection density, retail density, entertainment density and walkability were derived using GIS. Minutes/day of walking, bicycling and vehicle time were derived from processing algorithms applied to GPS. Accelerometers estimated total daily moderate-to-vigorous physical activity (MVPA). Models were adjusted for nesting of days (N=2987) within participants within block groups. Walking occurred on 33%, active travel on 43%, and vehicle time on 91% of the days observed. Intersection density and neighborhood walkability were positively related to walking and bicycling and negatively related to vehicle time. Residential density was positively related to walking. Increasing walking in youth could be effective in increasing total physical activity. Built environment findings suggest potential for increasing walking in youth through improving neighborhood walkability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baker, Jason V; Sharma, Shweta; Achhra, Amit C; Bernardino, Jose Ignacio; Bogner, Johannes R; Duprez, Daniel; Emery, Sean; Gazzard, Brian; Gordin, Jonathan; Grandits, Greg; Phillips, Andrew N; Schwarze, Siegfried; Soliman, Elsayed Z; Spector, Stephen A; Tambussi, Giuseppe; Lundgren, Jens
2017-05-22
HIV infection and certain antiretroviral therapy (ART) medications increase atherosclerotic cardiovascular disease risk, mediated, in part, through traditional cardiovascular disease risk factors. We studied cardiovascular disease risk factor changes in the START (Strategic Timing of Antiretroviral Treatment) trial, a randomized study of immediate versus deferred ART initiation among HIV-positive persons with CD4 + cell counts >500 cells/mm 3 . Mean change from baseline in risk factors and the incidence of comorbid conditions were compared between groups. The characteristics among 4685 HIV-positive START trial participants include a median age of 36 years, a CD4 cell count of 651 cells/mm 3 , an HIV viral load of 12 759 copies/mL, a current smoking status of 32%, a median systolic/diastolic blood pressure of 120/76 mm Hg, and median levels of total cholesterol of 168 mg/dL, low-density lipoprotein cholesterol of 102 mg/dL, and high-density lipoprotein cholesterol of 41 mg/dL. Mean follow-up was 3.0 years. The immediate and deferred ART groups spent 94% and 28% of follow-up time taking ART, respectively. Compared with patients in the deferral group, patients in the immediate ART group had increased total cholesterol and low-density lipoprotein cholesterol and higher use of lipid-lowering therapy (1.2%; 95% CI, 0.1-2.2). Concurrent increases in high-density lipoprotein cholesterol with immediate ART resulted in a 0.1 lower total cholesterol to high-density lipoprotein cholesterol ratio (95% CI, 0.1-0.2). Immediate ART resulted in 2.3% less BP-lowering therapy use (95% CI, 0.9-3.6), but there were no differences in new-onset hypertension or diabetes mellitus. Among HIV-positive persons with preserved immunity, immediate ART led to increases in total cholesterol and low-density lipoprotein cholesterol but also concurrent increases in high-density lipoprotein cholesterol and decreased use of blood pressure medications. These opposing effects suggest that, in the short term, the net effect of early ART on traditional cardiovascular disease risk factors may be clinically insignificant." URL: http://www.clinicaltrials.gov. Unique identifier: NCT00867048. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Michael J. Clifford; Monique E. Rocca; Robert Delph; Paulette L. Ford; Neil S. Cobb
2008-01-01
The current drought and ensuing bark beetle outbreaks during 2002 to 2004 in the Southwest have greatly increased tree mortality in pinyon-juniper woodlands. We studied causes and consequences of the drought-induced mortality. First, we tested the paradigm that high stand densities in pinyon-juniper woodlands would increase tree mortality. Stand densities did not...
Snow breakage in a pole-sized ponderosa pine plantation ... more damage at high stand-densities
Robert F. Powers; William W. Oliver
1970-01-01
Damage by snow breakage to pole-sized ponderosa pine (Pinus pondvosa Laws.) increased as stand density increased. In a plantation on the west slope of California's Sierra Nevada, the tallest trees were most often broken. Thinning in the sapling stage is recommended as a preventative measure in dense plantations subject to heavy snowfall.
Plant water relations and the effects of elevated CO2: a review and suggestions for future research
Melvin T. Tyree; John D. Alexander
1993-01-01
Increased ambient carbon dioxide (CO2) has been found to ameliorate water stress in the majority of species studied. The results of many studies indicate that lower evaporative flux density is associated with high CO2-induced stomatal closure. As a result of decreases in evaporative flux density and increases in net...
NASA Astrophysics Data System (ADS)
Yao, Atsushi; Inoue, Masaki; Tsukada, Kouhei; Fujisaki, Keisuke
2018-05-01
This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1) block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.
Improving the performance of lactate/oxygen biofuel cells using a microfluidic design
NASA Astrophysics Data System (ADS)
Escalona-Villalpando, Ricardo A.; Reid, Russell C.; Milton, Ross D.; Arriaga, L. G.; Minteer, Shelley D.; Ledesma-García, Janet
2017-02-01
Lactate/O2 biofuel cells (BFC) can have high theoretical energy densities due to high solubility and high fuel energy density; however, they are rarely studied in comparison to glucose BFCs. In this paper, lactate oxidase (LOx) was coupled with a ferrocene-based redox polymer (dimethylferrocene-modified linear polyethylenimine, FcMe2-LPEI) as the bioanode and laccase (Lc) connected to pyrene-anthracene modified carbon nanotubes (PyrAn-MWCNT) to facilitate the direct electron transfer (DET) at the biocathode. Both electrodes were evaluated in two BFC configurations using different concentrations of lactate, in the range found in sweat (0-40 mM). A single compartment BFC evaluated at pH 5.6 provided an open circuit potential (OCP) of 0.68 V with a power density of 61.2 μWcm-2. On the other hand, a microfluidic BFC operating under the same conditions resulted in an OCP of 0.67 V, although an increase in the power density, increasing to 305 μW cm-2, was observed. Upon changing the pH to 7.4 in only the anolyte, its performance was further increased to 0.73 V and 404 μW cm-2, respectively. This work reports the first microfluidic lactate/oxygen enzymatic BFC and shows the importance of microfluidic flow in high performing BFCs where lactate is utilized as the fuel and O2 is the final electron acceptor.
Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina
2015-04-01
Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.
NASA Astrophysics Data System (ADS)
Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro
2018-06-01
In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.
1996-01-01
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.
1996-06-11
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.
Demographic determinants of risk, colon distribution and density scores of diverticular disease.
Golder, Mark; Ster, Irina Chis; Babu, Pratusha; Sharma, Amita; Bayat, Muhammad; Farah, Abdulkadir
2011-02-28
To investigate associations between ethnicity, age and sex and the risk, colon distribution and density scores of diverticular disease (DD). Barium enemas were examined in 1000 patients: 410 male, 590 female; 760 whites, 62 Asians, 44 black africans (BAs), and 134 other blacks (OBs). Risks and diverticula density of left-sided DD (LSDD) and right-sided-component DD (RSCDD = right-sided DD + right and left DD + Pan-DD) were compared using logistic regression. Four hundred and forty-seven patients had DD (322 LSDD and 125 RSCDD). Adjusted risks: (1) LSDD: each year increase in age increased the odds by 6% (95% CI: 5-8, SE: 0.8%, P < 0.001); Asians: odds ratio (OR): 0.23 (95% CI: 0.10-0.53, SE: 0.1, P ≤ 0.001) and OBs: OR: 0.25 (95% CI: 0.14-0.43, SE: 0.07, P ≤ 0.001) appeared protected vs Whites; (2) RSCDD: each year increase in age increased the odds by 4% (95% CI: 2-6, SE: 1%, P < 0.001); females were 0.60 times (95% CI: 0.40-0.90, SE: 0.12, P = 0.01) less likely than males to have RSCDD; BAs were 3.51 times (95% CI: 1.70-7.24, SE: 1.30, P < 0.001) more likely than Whites to have RSCDD; and (3) DD density scores: each year increase in age increased the odds of high-density scores by 4% (95% CI: 1-6, SE: 1%, P < 0.001); RSCDD was 2.77 times (95% CI: 1.39-3.32, SE: 0.67, P < 0.001) more likely to be of high density than LSDD. No further significant differences were found in the adjusted models. Right colonic DD might be more common and has higher diverticula density in the west than previously reported. BAs appear predisposed to DD, whereas other ethnic differences appear conserved following migration.
Demographic determinants of risk, colon distribution and density scores of diverticular disease
Golder, Mark; Ster, Irina Chis; Babu, Pratusha; Sharma, Amita; Bayat, Muhammad; Farah, Abdulkadir
2011-01-01
AIM: To investigate associations between ethnicity, age and sex and the risk, colon distribution and density scores of diverticular disease (DD). METHODS: Barium enemas were examined in 1000 patients: 410 male, 590 female; 760 whites, 62 Asians, 44 black africans (BAs), and 134 other blacks (OBs). Risks and diverticula density of left-sided DD (LSDD) and right-sided-component DD (RSCDD = right-sided DD + right and left DD + Pan-DD) were compared using logistic regression. RESULTS: Four hundred and forty-seven patients had DD (322 LSDD and 125 RSCDD). Adjusted risks: (1) LSDD: each year increase in age increased the odds by 6% (95% CI: 5-8, SE: 0.8%, P < 0.001); Asians: odds ratio (OR): 0.23 (95% CI: 0.10-0.53, SE: 0.1, P ≤ 0.001) and OBs: OR: 0.25 (95% CI: 0.14-0.43, SE: 0.07, P ≤ 0.001) appeared protected vs Whites; (2) RSCDD: each year increase in age increased the odds by 4% (95% CI: 2-6, SE: 1%, P < 0.001); females were 0.60 times (95% CI: 0.40-0.90, SE: 0.12, P = 0.01) less likely than males to have RSCDD; BAs were 3.51 times (95% CI: 1.70-7.24, SE: 1.30, P < 0.001) more likely than Whites to have RSCDD; and (3) DD density scores: each year increase in age increased the odds of high-density scores by 4% (95% CI: 1-6, SE: 1%, P < 0.001); RSCDD was 2.77 times (95% CI: 1.39-3.32, SE: 0.67, P < 0.001) more likely to be of high density than LSDD. No further significant differences were found in the adjusted models. CONCLUSION: Right colonic DD might be more common and has higher diverticula density in the west than previously reported. BAs appear predisposed to DD, whereas other ethnic differences appear conserved following migration. PMID:21448352
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
NiF2 Cathodes For Rechargeable Na Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; Distefano, Salvador; Halpert, Gerald
1992-01-01
Use of NiF2 cathodes in medium-to-high-temperature rechargeable sodium batteries increases energy and power densities by 25 to 30 percent without detracting from potential advantage of safety this type of sodium battery offers over sodium batteries having sulfur cathodes. High-energy-density sodium batteries with metal fluoride cathodes used in electric vehicles and for leveling loads on powerlines.
Multi-species coexistence in Lotka-Volterra competitive systems with crowding effects.
Gavina, Maica Krizna A; Tahara, Takeru; Tainaka, Kei-Ichi; Ito, Hiromu; Morita, Satoru; Ichinose, Genki; Okabe, Takuya; Togashi, Tatsuya; Nagatani, Takashi; Yoshimura, Jin
2018-01-19
Classical Lotka-Volterra (LV) competition equation has shown that coexistence of competitive species is only possible when intraspecific competition is stronger than interspecific competition, i.e., the species inhibit their own growth more than the growth of the other species. Note that density effect is assumed to be linear in a classical LV equation. In contrast, in wild populations we can observed that mortality rate often increases when population density is very high, known as crowding effects. Under this perspective, the aggregation models of competitive species have been developed, adding the additional reduction in growth rates at high population densities. This study shows that the coexistence of a few species is promoted. However, an unsolved question is the coexistence of many competitive species often observed in natural communities. Here, we build an LV competition equation with a nonlinear crowding effect. Our results show that under a weak crowding effect, stable coexistence of many species becomes plausible, unlike the previous aggregation model. An analysis indicates that increased mortality rate under high density works as elevated intraspecific competition leading to the coexistence. This may be another mechanism for the coexistence of many competitive species leading high species diversity in nature.
Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J
2014-06-28
Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.
Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals.
Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M
2010-09-01
Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision.
Access to a new plasma edge state with high density and pressures using the quiescent H mode
Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...
2014-09-24
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H
2013-06-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.
Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.
2013-01-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662
Yang, Guo-Jing; Sun, Le-Ping; Hong, Qing-Biao; Zhu, Hong-Ru; Yang, Kun; Gao, Qi; Zhou, Xiao-Nong
2012-11-14
The application of chemical molluscicides is still one of the most effective measures for schistosomiasis control in P. R. China. By applying diverse molluscicide treatment scenarios on different snail densities in the field, we attempted to understand the cost-effectiveness of molluscicide application so as to prescribe an optimal management approach to control intermediate host snail Oncomelania hupensis under acceptable thresholds based on the goal of the National Schistosomiasis Control Programme. The molluscicidal field trial was carried out in the marshland of an island along the Yangtze River, Jiangsu province, P.R. China in October 2010. Three plots in the island representing low-density, medium-density and high-density groups were identified after the baseline survey on snail density. Each snail density plot was divided into four experimental units in which molluscicide (50% niclosamide ethanolamine salt wettable powder) was applied once, twice, trice and four times, respectively. The logistic regression model to correlate snail mortality rate with the covariates of number of molluscicidal treatment and snail density, and a linear regression model to investigate the relationship between cost-effectiveness and number of molluscicidal treatment as well as snail density were established. The study revealed that increase in the number of molluscicide treatments led to increased snail mortality across all three population density groups. The most cost-effective regimen was seen in the high snail density group with a single molluscicide treatment. For both high and low density groups, the more times molluscicide were applied, the less cost-effectiveness was. However, for the median density group, the level of cost-effectiveness for two applications was slightly higher than that in one time. We concluded that different stages of the national schistosomiasis control/elimination programme, namely morbidity control, transmission control and transmission interruption, should utilize different molluscicide treatment strategies to maximize cost-effectiveness.
Smith, D.R.
2007-01-01
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.
Characterization of forced response of density stratified reacting wake
NASA Astrophysics Data System (ADS)
Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim
2018-02-01
The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.
Turner, Monica G; Whitby, Timothy G; Tinker, Daniel B; Romme, William H
2016-05-01
Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created heterogeneity in stand structure and function in a wilderness setting. In 2012, we resampled 72 permanent plots to ask (1) How have postfire stand structure and function changed between 11 and 24 yr postfire, and what variables explain these patterns and changes? (2) How has landscape-level (among-stand) variability in postfire stand structure and function changed between 11 and 24 yr postfire? We expected to see evidence of convergence beginning to emerge, but also that initial postfire stem density would still determine trajectories of biomass accumulation. After 24 yr, postfire lodgepole pine density remained very high (mean = 21,738 stems/ha, range = 0-344,067 stems/ha). Stem density increased in most plots between 11 and 24 yr postfire, but declined sharply where 11-yr-postfire stem density was > 72,000 stems/ha. Stems were small in high-density stands, but stand-level lodgepole pine leaf area, foliage biomass, and live aboveground biomass increased over time and with increasing stem density. After 24 yr, mean annual lodgepole pine aboveground net primary production (ANPP) was high (mean = 5 Mg · ha⁻¹ · yr⁻¹, range = 0-16.5 Mg · ha⁻¹ · yr⁻¹). Among stands, lodgepole pine ANPP increased with stem density, which explained 69% of the variation; another 8% of the variation was explained by environmental covariates. Early patterns of postfire lodgepole pine regeneration, which were contingent on prefire serotiny and fire severity, remained the dominant driver of stand structure and function. We observed mechanisms that would lead to convergence in stem density (structure) over time, but it was landscape variation in functional variables that declined substantially. Stand structure and function have not converged across the burned landscape, but our evidence suggests function will converge sooner than structure.
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic's Food and Drug Administration-approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR's BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density-based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase.
PGC1α is required for the induction of contact inhibition by suppressing ROS.
Yang, Seungyeon; Hwang, Sunsook; Jang, Jiho; Kim, Minjoong; Gwak, Jihye; Jeong, Seung Min
2018-05-16
Contact inhibition (CI) is an important tumor-suppressive mechanism that arrests cell cycle when cells reach high density. Indeed, CI is aberrantly absent in cancer cells and the dysregulation of this can contribute to tumorigenesis. Previously, it has been shown that reactive oxygen species (ROS) levels are repressed at high cell density, which is required for CI, but no molecular mechanism of this ROS regulation has been reported. Here, we show that PGC1α regulates cell density-dependent CI. PGC1α is markedly induced in response to high cell density and suppresses ROS production. Although cellular ROS levels are progressively decreased with increasing cell density, knockdown of PGC1α results in a defect of density-dependent ROS suppression. Importantly, PGC1α knockdown cells become less sensitive to high cell density and exhibit loss of CI. Mechanistically, PGC1α represses ROS production by inducing mitochondrial SIRT3, and thus SIRT3 overexpression rescues the defects of CI by PGC1α knockdown. These results demonstrate that mitochondrial ROS production is a crucial regulator of cell proliferation and identify a new role of PGC1α in CI. Copyright © 2018 Elsevier Inc. All rights reserved.
On the effect of Lyman α trapping during the initial collapse of massive black hole seeds
NASA Astrophysics Data System (ADS)
Ge, Qi; Wise, John H.
2017-12-01
One viable seeding mechanism for supermassive black holes is the direct gaseous collapse route in pre-galactic dark matter haloes, producing objects on the order of 104-106 M⊙. These events occur when the gas is prevented from cooling below 104 K that requires a metal-free and relatively H2-free medium. The initial collapse cools through atomic hydrogen transitions, but the gas becomes optically thick to the cooling radiation at high densities. We explore the effects of Lyman α trapping in such a collapsing system with a suite of Monte Carlo radiation transport calculations in uniform density and isotropic cases that are based from a cosmological simulation. Our method includes both non-coherent scattering and two-photon line cooling. We find that Lyman α radiation is marginally trapped in the parsec-scale gravitationally unstable central cloud, allowing the temperature to increase to 50 000 K at a number density of 3 × 104 cm-3 and increasing the Jeans mass by a factor of 5. The effective equation of state changes from isothermal at low densities to have an adiabatic index of 4/3 around the temperature maximum and then slowly retreats back to isothermal at higher densities. Our results suggest that Lyman α trapping delays the initial collapse by raising the Jeans mass. Afterward the high-density core cools back to 104 K that is surrounded by a warm envelope whose inward pressure may alter the fragmentation scales at high densities.
Morley, B J; Garner, L L
1990-06-11
Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Transitions of Turbulence in Plasma Density Limits
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2002-11-01
Density limits have been observed in nearly all toroidal devices. In most cases exceeding this limit is manifested by a catastrophic growth of edge MHD instabilities [1]. In tokamaks, several other density limiting processes have been identified which limit performance but do not necessarily result in disruption. One such process is degradation of the edge transport barrier and H- to L-mode transition at high density. Further density increase, however can result in a disruption. The 3D nonlocal electromagnetic turbulence code BOUT [2], which models the boundary plasma turbulence in a realistic x-point geometry using two-fluids modified Braginski equations, is used in two numerical experiments. (1) Increasing the density while holding pressure constant (therefore keeping magnetic geometry the same). The pressure remains below the ELM threshold in these numerical experiments. (2) Increasing density while holding temperature constant. Small changes of equilibrium magnetic geometry resulting from the change in the edge pressure gradient are ignored in these simulations. These simulations extend previous work [3] by including the effect of Er well on turbulence, real magnetic geometry, the separatrix and SOL physics. Our simulations show the turbulent fluctuation levels and transport increase with increasing collisionality. Ultimately perpendicular turbulent transport dominates the parallel classical transport, leading to collapse of the sheath; the Er-well is lost and the region of high transport propagates inside the last closed flux surface. As the density increases these simulations show: Drift-wave turbulence--> Resistive MHD-->Detachment from divertor -->Disruption(?) and transport switches from diffusive to bursty processes. The onset of disruption will be calculated by MHD codes Corsica and Elite. The role of radiation on the transition will also be assessed. The scaling of the density limit with plasma current will be studied by conducting an additional series of numerical experiments to examine changes in the turbulent transport due to changes in the plasma current and associated changes in the equilibrium magnetic field and parallel connection length in the plasma scrape-off layer. Changes in the characteristics of the turbulence near density limit will be explored and compared with experiments. REFERENCES [1] M.Greenwald, to be published in plasma physics and controlled fusion. [2] X.Q. Xu, R.H. Cohen, T.D. Rognlien, and J.R. Myra, Phys. Plasmas 7, 1951(2000). [3] B.N. Rogers, J.F. Drake, and A. Zeiler, PRL 81, 4396 (1998).
Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay
2015-06-01
Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.
Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L
2018-05-30
The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.
Mating systems of Cuphea laminuligera and Cuphea lutea.
Krueger, S K; Knapp, S J
1991-08-01
In this paper, the mating systems of experimental populations of C. laminuligera and C. lutea are described. Outcrossing rates (t) were estimated for four populations of C. laminuligera and three populations of C. lutea using allozyme phenotypes of open-pollinated individual plant families. Populations were grown at densities of 1.0 × 1.0 m (low) and 0.04 × 0.3 m (high). Pollen and ovule frequencies and single locus and multilocus outcrossing rates were estimated for each population using the mixed-mating model. Multilocus estimates of t ranged from 0.83 to 0.98 and 1.00 to 1.01 for low and high density populations of C. laminuligera, respectively, and 0.17 to 0.26 and 0.36 to 0.54 for low and high density populations of C. lutea, respectively. C. laminuligera is predominantly allogamous; however, selfing rates as great as 17% were observed for this species. C. lutea is predominantly autogamous, but outcrossing rates as great as 54% were observed for this species. Outcrossing rates increased as density increased within C. lutea populations.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
NASA Astrophysics Data System (ADS)
Wang, Rui
Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.
Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
Huang, Chi-Fa; Yu, Chun-Ping; Wu, Yeh-Hua; Lu, Mei-Yeh Jade; Tu, Shih-Long; Wu, Shu-Hsing; Shiu, Shin-Han; Ku, Maurice S B; Li, Wen-Hsiung
2017-08-15
High vein density, a distinctive trait of C 4 leaves, is central to both C 3 -to-C 4 evolution and conversion of C 3 to C 4 -like crops. We tested the hypothesis that high vein density in C 4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C 4 leaves compared with developing C 3 leaves. The same observation held for maize foliar (C 4 ) and husk (C 3 ) leaf primordia. Moreover, auxin content and vein density were increased in loss-of-function mutants of Arabidopsis MYC2 , a suppressor of auxin biosynthesis. Treatment with an auxin biosynthesis inhibitor or an auxin transport inhibitor led to much fewer veins in new leaves. Finally, both Arabidopsis thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. Thus, development of high leaf vein density requires elevated auxin biosynthesis and transport.
Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I
2011-03-22
We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.
NASA Astrophysics Data System (ADS)
Wong Sik Hee, Joseph Ryan; Harkness, Elaine F.; Gadde, Soujanya; Lim, Yit Y.; Maxwell, Anthony J.; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.
2017-03-01
High mammographic density is associated with an increased risk of breast cancer, however whether the association is stronger when there is agreement across measures is unclear. This study investigates whether a combination of density measures is a better predictor of breast cancer risk than individual methods alone. Women recruited to the Predicting Risk of Cancer At Screening (PROCAS) study and with mammographic density assessed using three different methods were included (n=33,304). Density was assessed visually using Visual Analogue Scales (VAS) and by two fully automated methods, Quantra and Volpara. Percentage breast density was divided into (high, medium and low) and combinations of measures were used to further categorise individuals (e.g. `all high'). A total of 667 breast cancers were identified and logistic regression was used to determine the relationship between breast density and breast cancer risk. In total, 44% of individuals were in the same tertile for all three measures, 8.6% were in non-adjacent (high and low) or mixed categories (high, medium and low). For individual methods the strongest association with breast cancer risk was for medium and high tertiles of VAS with odds ratios (OR) adjusted for age and BMI of 1.63 (95% CI 1.31-2.03) and 2.33 (1.87-2.90) respectively. For the combination of density methods the strongest association was for `all high' (OR 2.42, 1.77-3.31) followed by "two high" (OR 1.90, 1.35-3.31) and "two medium" (OR 1.88, 1.40-2.52). Combining density measures did not affect the magnitude of risk compared to using individual methods.
Bauer, Dustin; Roberts, Alexander J; Matsumi, Noriyoshi; Darr, Jawwad A
2017-05-12
Nano-sized Mo-doped titania (Mo 0.1 Ti 0.9 O 2 ) and Nb-doped titania (Nb 0.25 Ti 0.75 O 2 ) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO 2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo 0.1 Ti 0.9 O 2 /AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg -1 at a power of 180 W kg -1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb 0.25 Ti 0.75 O 2 /AC hybrid supercapacitor maintained its energy density of 45 Wh kg -1 at 180 W kg -1 better, showing 36 Wh g -1 at 3200 W kg -1 , which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo 0.1 Ti 0.9 O 2 /AC hybrid supercapacitor giving energy densities of 12 Wh kg -1 and 2.5 Wh kg -1 at power densities of 6700 W kg -1 and 14 000 W kg -1 , respectively.
NASA Astrophysics Data System (ADS)
Bauer, Dustin; Roberts, Alexander J.; Matsumi, Noriyoshi; Darr, Jawwad A.
2017-05-01
Nano-sized Mo-doped titania (Mo0.1Ti0.9O2) and Nb-doped titania (Nb0.25Ti0.75O2) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo0.1Ti0.9O2/AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg-1 at a power of 180 W kg-1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb0.25Ti0.75O2/AC hybrid supercapacitor maintained its energy density of 45 Wh kg-1 at 180 W kg-1 better, showing 36 Wh g-1 at 3200 W kg-1, which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo0.1Ti0.9O2/AC hybrid supercapacitor giving energy densities of 12 Wh kg-1 and 2.5 Wh kg-1 at power densities of 6700 W kg-1 and 14 000 W kg-1, respectively.
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the “thermal transfer speed” to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm2/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ. PMID:23989589
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.
Marquart, Tyler J; Wu, Judy; Lusis, Aldons J; Baldán, Ángel
2013-03-01
To determine the efficacy of long-term anti-miR-33 therapy on the progression of atherosclerosis in high-fat, high-cholesterol-fed Ldlr(-/-) mice. Ldlr(-/-) mice received saline, or control or anti-miR-33 oligonucleotides once a week for 14 weeks. The treatment was effective, as measured by reduced levels of hepatic miR-33 and increased hepatic expression of miR-33 targets. Analysis of plasma samples revealed an initial elevation in high-density lipoprotein cholesterol after 2 weeks of treatment that was not sustained by the end of the experiment. Additionally, we found a significant increase in circulating triglycerides in anti-miR-33-treated mice, compared with controls. Finally, examination of atheromata revealed no significant changes in the size or composition of lesions between the 3 groups. Prolonged silencing of miR-33 fails to maintain elevated plasma high-density lipoprotein cholesterol and does not prevent the progression of atherosclerosis in Ldlr(-/-) mice.
Plasma devices to guide and collimate a high density of MeV electrons.
Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T
2004-12-23
The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Casanova, A.; Larrieu, G.; Nassiopoulou, A. G.
2018-05-01
Three-dimensional (3D) Si surface nanostructuring is interesting towards increasing the capacitance density of a metal-oxidesemiconductor (MOS) capacitor, while keeping reduced footprint for miniaturization. Si nanowires (SiNWs) can be used in this respect. With the aim of understanding the electrical versus geometrical characteristics of such capacitors, we fabricated and studied a MOS capacitor with highly ordered arrays of vertical Si nanowires of different lengths and thermal silicon oxide dielectric, in comparison to similar flat MOS capacitors. The high homogeneity and ordering of the SiNWs allowed the determination of the single SiNW capacitance and intrinsic series resistance, as well as other electrical characteristics (density of interface states, flat-band voltage and leakage current) in relation to the geometrical characteristics of the SiNWs. The SiNW capacitors demonstrated increased capacitance density compared to the flat case, while maintaining a cutoff frequency above 1 MHz, much higher than in other reports in the literature. Finally, our model system has been shown to constitute an excellent platform for the study of SiNW capacitors with either grown or deposited dielectrics, as for example high-k dielectrics for further increasing the capacitance density. This will be the subject of future work.
The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.
Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y
2015-07-28
Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Objective: Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic’s Food and Drug Administration–approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Methods: Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR’s BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density–based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. Results: The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Conclusions: Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase. PMID:29511356
Rodrigo Hakamada; Robert M. Hubbard; Silvio Ferraz; Jose Luiz Stape; Cristiane Lemos
2017-01-01
The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However, few studies have investigated this relationship,...
The Role Of Environment In Stellar Mass Growth
NASA Astrophysics Data System (ADS)
Thomas, Daniel
2017-06-01
In this talk I give a brief summary of methods to measure galaxy environment. I then discuss the dependence of stellar population properties on environmental density: it turns out that the latter are driven by galaxy mass, and galaxy environment only plays a secondary role, mostly at late times in low-mass galaxies. I show that this evidence has now been extended to stellar population gradients using the IFU survey SDSS/MaNGA that again turn out to be independent of environment, including central-satellite classification. Finally I present results from the DES, where the dependence of the stellar mass function with redshift and environmental density is explored. It is found that the fraction of massive galaxies is larger in high density environments than in low density environments. The low density and high density components converge with increasing redshift up to z 1.0 where the shapes of the mass function components are indistinguishable. This study shows how high density structures build up around massive galaxies through cosmic time, which sets new valuable constraints on galaxy formation models.
Conservation of wildlife populations: factoring in incremental disturbance.
Stewart, Abbie; Komers, Petr E
2017-06-01
Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator-prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe-haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose ( Alces alces ) density and wolf ( Canis lupus ) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km 2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator-prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
Crack-resistant Al2O3–SiO2 glasses
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-01-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006
Crack-resistant Al2O3-SiO2 glasses
NASA Astrophysics Data System (ADS)
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
Usta, Akin; Avci, Eyup; Bulbul, Cagla Bahar; Kadi, Hasan; Adali, Ertan
2018-04-10
Women with polycystic ovary syndrome are more likely to suffer from obesity, insulin resistance, and chronic low-grade inflammation. In fact, the excessive activation of monocytes exacerbates oxidative stress and inflammation. However, high-density lipoprotein cholesterol neutralizes the pro-inflammatory and pro-oxidant effects of monocytes. The aim of this study is to investigate whether monocyte counts to high-density lipoprotein cholesterol ratio can predict the inflammatory condition in patients with polycystic ovary syndrome. In this cross-sectional study, a total of 124 women (61 of them with polycystic ovary syndrome and 63 age-matched healthy volunteers) were included in the study population. Obese polycystic ovary syndrome patients (n = 30) with a body mass index of ≥25 kg/m 2 and lean polycystic ovary syndrome patients (n = 31) with a body mass index of < 25 kg/m 2 were compared to age-and body mass index-matched healthy subjects (30 obese and 33 non-obese). The monocyte counts to high density lipoprotein cholesterol values in women with polycystic ovary syndrome were significantly higher than in control subjects (p = 0.0018). Moreover, a regression analysis revealed that body mass index, the homeostasis model assessment of insulin resistance and the high sensitivity C-reactive protein levels were confounding factors that affected the monocyte counts to high density lipoprotein cholesterol values. Additionally, a univariate and multivariate logistic regression analysis demonstrated that the increased monocyte counts to high density lipoprotein cholesterol values were more sensitive than the other known risk factors (such as increased body mass index, homeostasis model assessment of insulin resistance and high sensitive C-reactive protein levels) in the prediction of the inflammation in patients with polycystic ovary syndrome. The present study demonstrated that the monocyte count to high density lipoprotein cholesterol may be a novel and useful predictor of the presence of polycystic ovary syndrome.
Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao
2018-06-01
The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MADIMENOS, FELICIA C.; LIEBERT, MELISSA A.; CEPON-ROBINS, TARA J.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2014-01-01
Objective Low bone density and osteoporosis prevalence, while well-documented in wealthy nations, are poorly studied in rural, non-clinical contexts in economically-developing regions such as Latin America. This study contributes preliminary osteoporosis risk data for a rural Colono (mestizo) population from Amazonian Ecuador. Methods Anthropometrics were collected for 119 adult participants (74 females, 45 males [50–90 years old]). Heel bone density and T-scores were recorded using calcaneal ultrasonometry Results Approximately 33.6% of the participants had low bone density and were at high-risk for osteoporosis. Four times as many females as males were considered high-risk. Consistent with epidemiological literature, advancing age was significantly associated with lower bone density values (p=0.001). Conclusions Low bone density and osteoporosis prevalence are expected to increase in this and other economically-transitioning populations, yet infrastructure to monitor this changing epidemiological landscape is almost non-existent. Human biologists are uniquely positioned to contribute data from remote populations, a critical step towards initiating increased resource allocation for diagnosis and prevention. PMID:25242164
Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.
Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min
2018-01-17
Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.
Rajasimman, M; Karthikeyan, C
2007-05-08
A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.
A comparison of the temperature and density structure in high and low speed thermal proton flows
NASA Technical Reports Server (NTRS)
Raitt, W. J.; Schunk, R. W.; Banks, P. M.
1975-01-01
Steady-state altitude profiles of H(+) density, drift velocity, and temperature and O(+) density and temperature were deduced for a wide range of H(+) outflow velocities from subsonic to supersonic flow for plasma densities typical of both undisturbed and trough regions of the ionsophere. Allowance was made for the effects of inertia, parallel stress, and the velocity dependence of the H(+) collision frequencies. It was found that at supersonic outflow velocities there is a decrease in H(+) temperature with increasing outflow velocity. The H(+) temperatures are substantially increased above the O(+) temperatures when H(+) is flowing, with T(H+)/T(O+) reaching a maximum ratio of about 3:1.
Using live algae at the anode of a microbial fuel cell to generate electricity.
Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua
2015-10-01
Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.
Influence of cold work on electrochemical behavior of 316L ASS in PEMFC environment
NASA Astrophysics Data System (ADS)
Tandon, Vipin; Patil, Awanikumar P.; Rathod, Ramesh C.; Shukla, Sourabh
2018-02-01
The influence of cold work (CW) on electrochemical behavior of 316L ASS in PEMFC (0.5M H2SO4 + 2 ppm HF at 70 °C) environment was investigated by microstructural observations, x-ray diffraction (XRD), polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) techniques. The XRD is used to analyze the increase in dislocation density and formation of α‧-martensite with increasing CW degree. The EIS is used to find out the effect of substrate dislocation density on the film resistance. The EIS result show that with increasing CW, the diameter of depressed semi-circular arc and consequently film resistance decreased. This indicates the formation of highly disordered and porous film on CW. From PDP results, it is found that icrit, ip and icorr increased on increasing CW degree. Moreover, the direct relationship was drawn from the dislocation density of the substrate to the defect density of the passive film from M-S technique.
Resistance training is medicine: effects of strength training on health.
Westcott, Wayne L
2012-01-01
Inactive adults experience a 3% to 8% loss of muscle mass per decade, accompanied by resting metabolic rate reduction and fat accumulation. Ten weeks of resistance training may increase lean weight by 1.4 kg, increase resting metabolic rate by 7%, and reduce fat weight by 1.8 kg. Benefits of resistance training include improved physical performance, movement control, walking speed, functional independence, cognitive abilities, and self-esteem. Resistance training may assist prevention and management of type 2 diabetes by decreasing visceral fat, reducing HbA1c, increasing the density of glucose transporter type 4, and improving insulin sensitivity. Resistance training may enhance cardiovascular health, by reducing resting blood pressure, decreasing low-density lipoprotein cholesterol and triglycerides, and increasing high-density lipoprotein cholesterol. Resistance training may promote bone development, with studies showing 1% to 3% increase in bone mineral density. Resistance training may be effective for reducing low back pain and easing discomfort associated with arthritis and fibromyalgia and has been shown to reverse specific aging factors in skeletal muscle.
Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee
2017-05-01
Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.
Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.
O'Chiu, Emily; Vardhanabhuti, Bongkosh
2017-05-01
Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at concentrations that provide adequate viscosity, are needed to achieve stability while also maintaining dispersion overrun capabilities. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Andrews, S M; Omed, H M; Phillips, C J
1997-12-01
Broiler chickens are normally housed at a fixed number per unit area throughout their life, which reduces their opportunity for movement during the later stages of rearing. An experiment is described that exposed broilers to a high stocking density either once or twice in the rearing period, and investigated the effects on the birds' behavior, and the response to other birds and humans after the second exposure to high or low stocking density. The stocking density was increased from a low level (1.7 kg/m2) to a high level (14 kg/m2) for the 2nd and/or 4th wk of rearing, or left unchanged at the low level. When stocked at the low rate, the birds spent more time walking and sitting and less time dozing and sleeping. They pecked more at inanimate objects and interacted more with other birds, but this did not include aggressive interaction. The effects of stocking density on behavior were greater in Week 4 than in Week 2, but there was no evidence that exposure to a high stocking density in Week 2 influenced the birds' behavioral response to a high stocking density in Week 4. Where stocking density did affect behavior in both Weeks 2 and 4, there was evidence of the response being cumulative. The activity of birds in the presence of another bird restrained in an open field arena was greatest when they had been stocked at the low density throughout the experiment. When a familiar person was in the arena, the birds that had been stocked at the high density in Week 2 were most active, but these birds showed the longest tonic immobility when inverted in a cradle. It is concluded that a high stocking density reduces activity in broiler chickens, and that birds stocked at a high density early in the rearing period are most active in the presence of people and show the longest tonic immobility in response to a fearful stimulus.
Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R
1997-01-01
The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.
Effects of taurine and housing density on renal function in laying hens*
Ma, Zi-li; Gao, Yang; Ma, Hai-tian; Zheng, Liu-hai; Dai, Bin; Miao, Jin-feng; Zhang, Yuan-shu
2016-01-01
This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens. PMID:27921400
Thermal elastic properties of liquid Fe-C at high pressure
NASA Astrophysics Data System (ADS)
Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Takubo, Y.; Watanuki, T.; Katayama, Y.; Kondo, T.
2015-12-01
Planetary outer core contains some light elements and these elements affect thermo-elastic parameters of pure iron. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. We have measured sound velocity and density of liquid Fe-C simultaneously at high pressure. High pressure experiments were performed using a DIA-type cubic anvil press (SMAP-180) at BL22XU beamline, SPring-8 synchrotron in Japan. Sound velocity (VP) was measured using pulse-echo overlapping method (Higo et al., 2009). Density (ρ) was measured using X-ray absorption method (Katayama et al., 1993). We measured velocity and density of liquid Fe-C between 1.1-5.8 GPa and 1480-1700 K. Obtained density and velocity of Fe-C was found to increase with pressure. This study shows the VP of liquid Fe-C decreased with increasing temperature. Previous study of liquid Fe-S shows little change with increasing temperature at all pressure conditions (Nishida et al., 2013, Jing et al., 2014). We fit the relationship between VP and pressure using Murnaghan's equation of state. We obtained KS0 = 102.5(1.2) GPa, K'S = 5.2(0.4) at 1700 K. Comparison of the present data with previous study, KS is similar to liquid Fe but liquid Fe-S is small. We compared the relation between density and sound velocity of liquid Fe-C. We have found that the behavior of liquid Fe-C is similar to that of liquid Fe in the Birch's plot. The effect of carbon on liquid Fe is small on Birch's plot.
Maciejewski, Kristine; Kerley, Graham I H
2014-07-01
In order to sustainably conserve biodiversity, many protected areas, particularly private protected areas, must find means of self-financing. Ecotourism is increasingly seen as a mechanism to achieve such financial sustainability. However, there is concern that ecotourism operations are driven to achieve successful game-viewing, influencing the management of charismatic species. An abundance of such species, including the African elephant (Loxodonta africana), has been stocked in protected areas under the assumption that they will increase ecotourism value. At moderate to high densities, the impact of elephants is costly; numerous studies have documented severe changes in biodiversity through the impacts of elephants. Protected areas that focus on maintaining high numbers of elephants may therefore face a conflict between socioeconomic demands and the capacity of ecological systems. We address this conflict by analyzing tourist elephant-sighting records from six private and one statutory protected area, the Addo Elephant National Park (AENP), in the Eastern Cape Province of South Africa, in relation to elephant numbers. We found no relationship between elephant density and elephant-viewing success. Even though elephant density in the AENP increased over time, a hierarchical partitioning analysis indicated that elephant density was not a driver of tourist numbers. In contrast, annual tourist numbers for the AENP were positively correlated with general tourist numbers recorded for South Africa. Our results indicate that the socioeconomic and ecological requirements of protected areas in terms of tourism and elephants, respectively, converge. Thus, high elephant densities and their associated ecological costs are not required to support ecotourism operations for financial sustainability. Understanding the social and ecological feedbacks that dominate the dynamics of protected areas, particularly within private protected areas, can help to elucidate the management challenges of minimizing ecological trade-offs while meeting ecotourist demands and achieving sustainability.
Resource selection by black-footed ferrets in South Dakota and Montana
Jachowski, D.S.; Millspaugh, J.J.; Biggins, D.E.; Livieri, T.M.; Matchett, M.R.; Rittenhouse, C.D.
2011-01-01
The black-footed ferret (Mustela nigripes), once extinct in the wild, remains one of the most critically endangered mammals in North America despite 18 years of reintroduction attempts. Because black-footed ferrets are specialized predators of prairie dogs (Cynomys sp.), a better understanding of how black-footed ferrets select resources might provide insight into how best to identify and manage reintroduction sites. We monitored ferret resource selection at two reintroduction sites with different densities of prairie dog populations-one that contained a high density of prairie dogs (Conata Basin, South Dakota) and one that was lower (UL Bend, Montana). We evaluated support for hypotheses about ferret resource selection as related to the distribution of active burrows used by black-tailed prairie dogs (Cynomys ludovicianus), interactions between ferrets, and habitat edge effects. We found support for all three factors within both populations; however, they affected ferret resource selection differently at each site. Ferrets at Conata Basin tended to select areas with high prairie dog burrow density, closer to the colony edge, and that overlapped other ferret ranges. In contrast, ferrets at UL Bend tended not to select areas of high active prairie dog burrow density, avoided areas close to edge habitat, and females avoided areas occupied by other ferrets. The differences observed between the two sites might be best explained by prairie dog densities, which were higher at Conata Basin (119.3 active burrows per ha) than at UL Bend (44.4 active burrows per ha). Given the positive growth of ferret populations at Conata Basin, management that increases the density of prairie dogs might enhance ferret success within natural areas. To achieve long-term recovery of ferrets in the wild, conservationists should increasingly work across and outside natural area boundaries to increase prairie dog populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, M.
1981-07-01
The investigation method reported in earlier articles was applied to preirradiation methods of the reaction of low-density polyethylene (LDPE) in liquid and vapor and compared with high-density polyethylene (HDPE). Monomer concentrations during reactions and monomer feed rates were determined gravimetrically. Increasing patterns of the degree of grafting were obtained and compared. Monomer concentration during the reactions was lower in LDPE than HDPE and radical decay was more rapid in LDPE. A model calculation was applied to this experiment and a schematic explanation was attempted. The differences between the reaction mechanisms of HDPE and LDPE are explained.
Glass polymorphism in amorphous germanium probed by first-principles computer simulations
NASA Astrophysics Data System (ADS)
Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.
2016-01-01
The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.
Population density and mortality among individuals in motor vehicle crashes.
Gedeborg, Rolf; Thiblin, Ingemar; Byberg, Liisa; Melhus, Håkan; Lindbäck, Johan; Michaelsson, Karl
2010-10-01
To assess whether higher mortality rates among individuals in motor vehicle crashes in areas with low population density depend on injury type and severity or are related to the performance of emergency medical services (EMS). Prehospital and hospital deaths were studied in a population-based cohort of 41,243 motor vehicle crashes that occurred in Sweden between 1998 and 2004. The final multivariable analysis was restricted to 6884 individuals in motor vehicle crashes, to minimise the effects of confounding factors. Crude mortality rates following motor vehicle crashes were inversely related to regional population density. In regions with low population density, the unadjusted rate ratio for prehospital death was 2.2 (95% CI 1.9 to 2.5) and for hospital death 1.5 (95% CI 1.1 to 1.9), compared with a high-density population. However, after controlling for regional differences in age, gender and the type/severity of injuries among 6884 individuals in motor vehicle crashes, low population density was no longer associated with increased mortality. At 25 years of age, predicted prehospital mortality was 9% lower (95% CI 5% to 12%) in regions with low population density compared with high population density. This difference decreased with increasing age, but was still 3% lower (95% CI 0.5% to 5%) at 65 years of age. The inverse relationship between population density and mortality among individuals in motor vehicle crashes is related to pre-crash factors that influence the type and severity of injuries and not to differences in EMS.
Dietary energy source and density modulate the expression of immunologic stress in chicks.
Benson, B N; Calvert, C C; Roura, E; Klasing, K C
1993-10-01
To determine how dietary energy level and source influence feed intake, growth and energy partitioning drug immunologic stress, growing chicks were fed diets based on cornstarch and casein with varying energy densities and injected every other day for 6 d with either saline (control), Salmonella typhimurium lipopolysaccharide or heat-killed Staphylococcus aureus. Salmonella typhimurium lipopolysaccharide decreased growth and feed consumption at low energy densities. When the dietary energy density was increased above 13.4 kJ/g using cornstarch, but not corn oil, the growth depressing effect of immunogens was eliminated. Immunologically stressed chicks had a greater proportion of gain in visceral organs and less in the carcass, regardless of the nutrient density of the diet. Immunologic stress decreased intake of metabolizable energy of chicks fed a diet with low nutrient density and increased it for those fed a diet with high nutrient density. Chicks injected with S. typhimurium lipopolysaccharide lost more energy as heat than controls when differences in metabolizable energy intakes were accounted for and modified their preference between two diets differing in metabolizable energy density and fat content as a result of the challenge. Control chicks selected between the 11.7 and 14.2 kJ/g diets to obtain an energy density of 13.2 kJ/g compared with 12.5 kJ/g in the S. typhimurium lipopolysaccharide-challenged chicks. The S. typhimurium lipopolysaccharide-challenged chicks consumed similar amounts of the low energy diet but decreased intake of the high energy diet.
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...
2015-05-26
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
Brennan, Angela K.; Cross, Paul C.; Higgs, Megan D.; Edwards, W. Henry; Scurlock, Brandon M.; Creel, Scott
2014-01-01
Understanding how animal density is related to pathogen transmission is important to develop effective disease control strategies, but requires measuring density at a scale relevant to transmission. However, this is not straightforward or well-studied among large mammals with group sizes that range several orders of magnitude or aggregation patterns that vary across space and time. To address this issue, we examined spatial variation in elk (Cervus canadensis) aggregation patterns and brucellosis across 10 regions in the Greater Yellowstone Area where previous studies suggest the disease may be increasing. We hypothesized that rates of increasing brucellosis would be better related to the frequency of large groups than mean group size or population density, but we examined whether other measures of density would also explain rising seroprevalence. To do this, we measured wintering elk density and group size across multiple spatial and temporal scales from monthly aerial surveys. We used Bayesian hierarchical models and 20 years of serologic data to estimate rates of increase in brucellosis within the 10 regions, and to examine the linear relationships between these estimated rates of increase and multiple measures of aggregation. Brucellosis seroprevalence increased over time in eight regions (one region showed an estimated increase from 0.015 in 1991 to 0.26 in 2011), and these rates of increase were positively related to all measures of aggregation. The relationships were weaker when the analysis was restricted to areas where brucellosis was present for at least two years, potentially because aggregation was related to disease-establishment within a population. Our findings suggest that (1) group size did not explain brucellosis increases any better than population density and (2) some elk populations may have high densities with small groups or lower densities with large groups, but brucellosis is likely to increase in either scenario. In this case, any one control method such as reducing population density or group size may not be sufficient to reduce transmission. This study highlights the importance of examining the density-transmission relationship at multiple scales and across populations before broadly applying disease control strategies.
Enhanced leaf nitrogen status stabilizes omnivore population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2017-01-01
Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.
Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.
Affholder, Marie-Cecile; Weiss, Dominik J; Wissuwa, Matthias; Johnson-Beebout, Sarah E; Kirk, Guy J D
2017-12-01
We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO 2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO 2 through root aerenchyma were responsible for the genotype and planting density effects. © 2017 John Wiley & Sons Ltd.
Santhanagopalan, Sunand; Balram, Anirudh; Meng, Dennis Desheng
2013-03-26
It is commonly perceived that reduction-oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO2 nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO2 nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm(2) have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm(2), indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance.
Sparrevik, Erik; Leonardsson, Kjell
1999-07-01
We performed a 6-month laboratory experiment to investigate the direct and indirect effects of predation by the benthic invertebrate predator Saduria entomon on the growth and survival of Monopreia affinis prey individuals in different age-cohorts at low and high prey densities. The experimental results were compared with changes of growth and abundance in corresponding age-cohorts of M. affinis at sites with different S. entomon and M. affinis densities in the deep sublittoral zone of the Bothnian Sea during the same year. In the experiment, the presence of S. entomon reduced growth rate of M. affinis in the 1-year and 2-year age-cohorts at low amphipod density. Increased refuge use by M. affinis, expressed as a decrease in swimming activity in the presence of S. entomon, is suggested to have reduced feeding rate and therefore growth of the amphipods. The recruitment of M. affinis offspring was reduced in presence of S. entomon. In the field, the growth rate of amphipods in the 1-year cohort increased with increasing S. entomon density at low amphipod density. We found no corresponding increase of M. affinis growth in the 2-year cohort. The positive effect on 1-year amphipod growth indicated that predation reduced intra-cohort competition of M. affinis and increased growth of surviving prey at high predator density. In both the experiment and the field data we found indications of size-selective predation on smaller M. affinis specimens. This was because of the changed ratio between number of individuals in the juvenile age-cohorts and lower recruitment of amphipod offspring connected to S. entomon density. The experimental results and field data suggest that predation by S. entomon may have both direct and indirect effects on the size-structure of M. affinis populations.
Effect of gamma irradiation on high temperature hardness of low-density polyethylene
NASA Astrophysics Data System (ADS)
Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh
2015-11-01
Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
NASA Astrophysics Data System (ADS)
Shen, Liguo; Li, Jianxi; Li, Renjie; Lin, Hongjun; Chen, Jianrong; Liao, Bao-Qiang
2018-04-01
In this study, a new strategy which blends low-density polyethylene (LDPE), magnesium hydroxide (MH) and lauryl acrylate by electron-beam radiation for production of LDPE-based composites with high performance was proposed. It was found that, MH played main roles in flame retardancy but reduced processing flow and mechanical properties of the composites. Meanwhile, melt flow rate (MFR) increased while viscosity of the composites decreased with lauryl acrylate content increased, facilitating LDPE composites processing. Electron beam radiation could prompt crosslinking of lauryl acrylate, which significantly enhanced the mechanical properties of LDPE composites. Meanwhile, lauryl acrylate addition only slightly decreased the flame retardancy, suggesting that LDPE composites could remain high flame retardancy even when lauryl acrylate content was high. The study highly demonstrated the feasibility to produce LDPE-based composites simultaneously with high flame retardancy and high mechanical properties by the blending strategy provided in this study.
R.R. Mason; H.G. Paul
1996-01-01
Larval densities of the western spruce budworm (Choristoneura occidentalis Freeman) were monitored for 12 years (1984-95) on permanent sample plots in northeastern Oregon. The time series spanned a period of general budworm infestations when populations increased rapidly from low densities, plateaued for a time at high-outbreak densities, and then declined suddenly....
Elvira, Sonia; Williams, Trevor; Caballero, Primitivo
2010-06-01
The production of a multiple nucleopolyhedrovirus (SeMNPV) of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), has been markedly increased by using juvenile hormone analog (JHA) technology to generate a supernumerary sixth instar in the species. In the current study we compared the incidence of cannibalism in S. exigua fifth and sixth instars reared at low (two larvae per dish) and a high density (10 larvae per dish). The incidence of cannibalism was significantly higher in fifth instars compared with sixth instars and increased with rearing density on both instars. Infected larvae were more prone to become victims of cannibalism than healthy individuals in mixed groups comprising 50% healthy + 50% infected larvae in both instars reared at high density. Instar had a marked effect on occlusion body (OB) production because JHA-treated insects produced between 4.8- and 5.6-fold increase in OB production per dish compared with fifth instars at high and low densities, respectively. The insecticidal characteristics of OBs produced in JHA-treated insects, as indicated by LD50 values, were similar to those produced in untreated fourth or fifth instars. Because JHA technology did not increase the prevalence of cannibalism and had no adverse effect on the insecticidal properties of SeMNPV OBs, we conclude that the use of JHAs to generate a supernumerary instar is likely to be compatible with mass production systems that involve gregarious rearing of infected insects.
Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia.
Eltz, Thomas; Brühl, Carsten A; van der Kaars, Sander; Linsenmair, Eduard K
2002-03-01
We measured the nest density of stingless bees (Apidae, Meliponini) in undisturbed and logged-over dipterocarp forests in Sabah, northern Borneo, and evaluated hypotheses on proximate factors leading to the observed variation: population control mediated by (1) nest predation, (2) limitation of nest trees, or (3) food limitation. Per-area nest density varied twentyfold across 14 forest sites and was significantly affected by locality, but not by the degree and history of disturbance. Nest density was generally high in sites located in the Sepilok Forest fragment (mean 8.4 nests/ha), bordering mangroves or plantations. In contrast, nest densities in continuous forests were all low (between 0 and 2.1 nests/ha, mean 0.5 nests/ha). Yearly nest mortality was low (13.5-15.0%) over 4 years of observation and did not vary between forest localities, thus limiting the potential of nest predation (1) in creating the observed variation in nest density. The presence of potential nest trees (2), though positively correlated with nest density, explained only a minute fraction of the observed variation. Nest density was best explained by differences in the pollen resources (3) available to the bees (quantified by analysis of pollen in bee garbage). Across five selected sites the amount of nonforest pollen (from mangrove or crop plants) included in diets of Trigona collina was positively correlated with T. collina nest density. External pollen sources are a likely supplement to bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying capacity. Pollen limitation was also indicated by direct measurements of pollen import and foraging activity of T. collina in three selected sites: Pollen traps installed at nests in high-density Sepilok captured significantly more corbicular pollen than colonies in low-density Deramakot. At the same time, morning foraging activity was also greater in Sepilok, indicating a regulatory increase in foraging in response to high pollen availability. We conclude that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Bee populations strongly benefit from edge effects and increased foraging habitat diversity. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00442-001-0848-6.
Reduced impedance and superconductivity of SnAgCu solder alloy at high frequency
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-10-01
Skin effect of lead-free solder joints is investigated over a wide frequency band. Contrary to common believe that `effective impedance of solder alloys increases with frequency', resistance tends to saturate when frequency reaches a critical value, 10 MHz for SAC solder alloys. Negative surface impedance growth rate is observed when employs square waveform AC current loading at high current density. Further increased frequency causes a dramatic reduction of effective resistance. At 11 MHz with current density of 106 A/cm2, effective resistance of solder alloy drops to near zero value.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.
1996-01-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.L.; Herren, K.; Hayden, M.
1996-03-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
Pidgeon, Anna M; Flather, Curtis H; Radeloff, Volker C; Lepczyk, Christopher A; Keuler, Nicholas S; Wood, Eric M; Stewart, Susan I; Hammer, Roger B
2014-10-01
As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response. © 2014 Society for Conservation Biology.
Postmenopausal hormone therapy and changes in mammographic density.
van Duijnhoven, Fränzel J B; Peeters, Petra H M; Warren, Ruth M L; Bingham, Sheila A; van Noord, Paulus A H; Monninkhof, Evelyn M; Grobbee, Diederick E; van Gils, Carla H
2007-04-10
Hormone therapy (HT) use has been associated with an increased breast cancer risk. We explored the underlying mechanism further by determining the effects of HT on mammographic density, a measure of dense tissue in the breast and a consistent breast cancer risk factor. A total of 620 HT users and 620 never users from the Dutch Prospect-European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and 175 HT users and 161 never users from the United Kingdom EPIC-Norfolk cohort were included. For HT users, one mammogram before and one mammogram during HT use was included. For never users, mammograms with similar time intervals were included. Mammographic density was assessed using a computer-assisted method. Changes in density were analyzed using linear regression. The median time between mammograms was 3.0 years and the median duration of HT use was 1 year. The absolute mean decline in percent density was larger in never users (7.3%) than in estrogen therapy users (6.4%; P = .22) and combined HT users (3.5%; P < .01). The effect of HT appeared to be high in a small number of women, whereas most women were unaffected. Our results suggest that HT use, and especially estrogen and progestin use, slows the changes from dense patterns to more fatty patterns that are normally seen in women with increasing age. Given that it is postulated that lifetime cumulative exposure to high density may be related to breast cancer risk, a delay in density decline in HT users potentially could explain their increased breast cancer risk.
Meng, Qi; Sun, Yang; Kang, Jian
2017-12-01
The sound environment and acoustic perception of open-air markets, which are very common in high-density urban open spaces, play important roles in terms of the urban soundscape. Based on objective and subjective measurements of a typical temporary open-air market in Harbin city, China, the effects of the temporary open-air market on the sound environment and acoustic perception were studied, considering different crowd densities. It was observed that a temporary open-air market without zoning increases the sound pressure level and subjective loudness by 2.4dBA and 0.21dBA, respectively, compared to the absence of a temporary market. Different from the sound pressure level and subjective loudness, the relationship between crowd density and the perceived acoustic comfort is parabolic. Regarding the effect of a temporary open-air market with different zones on the sound environment and acoustic perception, when the crowd densities were the same, subjective loudness in the fruit and vegetable sales area was always higher than in the food sales area and the clothing sales area. In terms of acoustic comfort, with an increase in crowd density, acoustic comfort in the fruit and vegetable sales area decreased, and acoustic comfort in the food sales area and the clothing sales area exhibited a parabolic change trend of increase followed by decrease. Overall, acoustic comfort can be effectively improved by better planning temporary open-air markets in high-density urban open spaces. Copyright © 2017 Elsevier B.V. All rights reserved.
YENUGANTI, Vengala Rao; BADDELA, Vijay Simha; BAUFELD, Anja; SINGH, Dheer; VANSELOW, Jens
2015-01-01
Precise regulation of cell type-specific gene expression profiles precedes the profound morphological reorganization of somatic cell layers during folliculogenesis, ovulation and luteinization. Cell culture models are essential to the study of corresponding molecular mechanisms of gene regulation. In a recent study, it was shown that an increased cell plating density can largely change gene expression profiles of cultured bovine granulosa cells. In our present study, we comparatively analyzed cell plating density effects on cultured bovine and buffalo granulosa cells. Cells were isolated from small- to medium-sized follicles (2–6 mm) and cultured under serum-free conditions at different plating densities. The abundance of selected marker transcripts and associated miRNA candidates was determined by quantitative real-time RT-PCR. We found in both species that the abundance of CYP19A1, CCNE1 and PCNA transcripts was remarkably lower at a high plating density, whereas VNN2 and RGS2 transcripts significantly increased. In contrast, putative regulators of CYP19A1, miR-378, miR-106a and let-7f were significantly higher in both species or only in buffalo, respectively. Also miR-15a, a regulator of CCNE1, was upregulated in both species. Thus, increased plating density induced similar changes of mRNA and miRNA expression in granulosa cells from buffalo and cattle. From these data, we conclude that specific miRNA species might be involved in the observed density-induced gene regulation. PMID:25740097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Stephan; Chow, Weng; Schneider, Hans
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Chu, Cheng-Jin; Maestre, Fernando T; Xiao, Sa; Weiner, Jacob; Wang, You-Shi; Duan, Zheng-Hu; Wang, Gang
2008-11-01
Theories based on competition for resources predict a monotonic negative relationship between population density and individual biomass in plant populations. They do not consider the role of facilitative interactions, which are known to be important in high stress environments. Using an individual-based 'zone-of-influence' model, we investigated the hypothesis that the balance between facilitative and competitive interactions determines biomass-density relationships. We tested model predictions with a field experiment on the clonal grass Elymus nutans in an alpine meadow. In the model, the relationship between mean individual biomass and density shifted from monotonic to humped as abiotic stress increased. The model results were supported by the field experiment, in which the greatest individual and population biomass were found at intermediate densities in a high-stress alpine habitat. Our results show that facilitation can affect biomass-density relationships.
Stacking fault density and bond orientational order of fcc ruthenium nanoparticles
NASA Astrophysics Data System (ADS)
Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2017-12-01
We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.
Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342
Mirfendereski, E; Jahanian, R
2015-02-01
The present study was carried out to investigate the effects of dietary supplementation of chromium-methionine (CrMet) and vitamin C (VC) on performance, immune response, and stress status of laying hens subjected to high stocking density. A total of 360 Hy-Line W-36 leghorn hens (at 26 wk old) were used in a 2×3×2 factorial arrangement that had 2 cage densities (5 and 7 hens per cage), 3 Cr levels (0, 500, and 1,000 ppb as CrMet), and 2 dietary VC levels (0 and 500 ppm as L-ascorbic acid). The trial lasted for 12 wk. The first 2 wk were for adaptation (26 to 28 wk of age), and the remaining 10 wk served as the main recording period. In addition to performance, immune response to Newcastle disease virus (NDV) was assessed at d 7 and 14 postvaccination. Also, the birds' stress status was evaluated by analyzing appropriate plasma metabolites. The results showed that hens in cages with higher stocking density had lower hen-day egg production, egg mass, and feed intake compared with those in normal density cages (P<0.05). Dietary CrMet supplementation caused significant increases in egg production and egg mass (P<0.01). There were significant Cr × VC interactions related to egg production and feed conversion efficiency (P<0.01); dietary CrMet supplementation was more effective in improving egg production and feed conversion ratio in VC-unsupplemented diets. Although plasma concentrations of triglycerides and high-density lipoproteins were not influenced by dietary treatments, supplemental CrMet decreased plasma cholesterol levels (P<0.05). Plasma insulin and glucose levels of hens kept at a density of 7 hens/cage were significantly higher than those of hens in normal cage density (P<0.01), and dietary CrMet supplementation decreased plasma concentrations of insulin (P<0.001) and glucose (P<0.01), with higher impacts in high stocking density-challenged hens. While high stocking density caused a marked increase in plasma corticosterone (P<0.01), both supplemental CrMet and VC decreased it to near normal levels. There were significant stocking density×Cr interactions related to plasma insulin and corticosterone concentrations (P<0.01); supplemental CrMet was more effective in lowering these hormones in high stocking density-challenged hens. The high stocking density challenge suppressed NDV antibody response (P<0.001), while dietary supplementation of CrMet improved antibody titers against NDV at d 14 post vaccination particularly in hens kept at a density of 7 hens/cage (P<0.01). From the present observations, it can be concluded that CrMet can improve laying performance largely because it alleviates harmful responses to stressful conditions. © 2015 Poultry Science Association Inc.
Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K
2017-11-01
Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
Zhang, Caixi; Tateishi, Naoya; Tanabe, Kenji
2010-10-01
To clarify the relationship between pollen density and gametophytic competition in Pyrus pyrifolia, gametophytic performance, gibberellin metabolism, fruit set, and fruit quality were investigated by modifying P. pyrifolia pollen grain number and density with Lycopodium spores. Higher levels of pollen density improved seed viability, fruit set, and fruit quality. Treatments with the highest pollen density showed a significantly increased fruit growth rate and larger fruit at harvest. High pollen density increased germination rate and gave a faster pollen tube growth, both in vivo and in vitro. Endogenous gibberellin (GA) concentrations increased in pollen tubes soon after germination and the concentration of two growth-active GAs, GA(3), and GA(4), was positively correlated to final fruit size, cell numbers in the mesocarp, and pollen tube growth rate. These two GAs appear to be biosynthesized de novo in pollen tube and are the main pollen-derived bioactive GAs found after pollen germination. GA(1) levels in the pollen tube appear to be related to a pollen-style interaction that occurred after the pollen grains landed on the stigma.
Effects of Laser Remelting and Oxidation on NiCrAlY/8Y2O3-ZrO2 Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Xu, S. Q.; Zhu, C.; Zhang, Y.
2018-02-01
In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.
NASA Astrophysics Data System (ADS)
Pathak, Nidhi; Kaur, Sukhdeep; Singh, Sukhmander
2018-05-01
In this paper, self-focusing/defocusing effects have been studied by taking into account the combined effect of ponder-motive and relativistic non linearity during the laser plasma interaction with density variation. The formulation is based on the numerical analysis of second order nonlinear differential equation for appropriate set of laser and plasma parameters by employing moment theory approach. We found that self-focusing increases with increasing the laser intensity and density variation. The results obtained are valuable in high harmonic generation, inertial confinement fusion and charge particle acceleration.
Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger-By, G.; Decampy, J.; Goniche, M.
2014-02-12
On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequencymore » spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.« less
Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra
NASA Astrophysics Data System (ADS)
Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team
2014-02-01
On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.
Mangan, Patrick S.; Kapur, Jaideep
2010-01-01
Factors contributing to reduced magnesium-induced neuronal action potential bursting were investigated in primary hippocampal cell culture at high and low culture density. In nominally zero external magnesium medium, pyramidal neurons from high-density cultures produced recurrent spontaneous action potential bursts superimposed on prolonged depolarizations. These bursts were partially attenuated by the NMDA receptor antagonist D-APV. Pharmacological analysis of miniature excitatory postsynaptic currents (EPSCs) revealed 2 components: one sensitive to D-APV and another to the AMPA receptor antagonist DNQX. The components were kinetically distinct. Participation of NMDA receptors in reduced magnesium-induced synaptic events was supported by the localization of the NR1 subunit of the NMDA receptor with the presynaptic vesicular protein synaptophysin. Presynaptically, zero magnesium induced a significant increase in EPSC frequency likely attributable to increased neuronal hyperexcitability induced by reduced membrane surface charge screening. Mean quantal content was significantly increased in zero magnesium. Cells from low-density cultures did not exhibit action potential bursting in zero magnesium but did show increased EPSC frequency. Low-density neurons had less synaptophysin immunofluorescence and fewer active synapses as determined by FM1-43 analysis. These results demonstrate that multiple factors are involved in network bursting. Increased probability of transmitter release presynaptically, enhanced NMDA receptor-mediated excitability postsynaptically, and extent of neuronal interconnectivity contribute to initiation and maintenance of elevated network excitability. PMID:14534286
Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues
NASA Technical Reports Server (NTRS)
Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)
2000-01-01
The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.
High quality InP-on-Si for solar cell applications
NASA Technical Reports Server (NTRS)
Shellenbarger, Zane A.; Goodwin, Thomas A.; Collins, Sandra R.; Dinetta, Louis C.
1994-01-01
InP on Si solar cells combine the low-cost and high-strength of Si with the high efficiency and radiation tolerance of InP. The main obstacle in the growth of single crystal InP-on-Si is the high residual strain and high dislocation density of the heteroepitaxial InP films. The dislocations result from the large differences in lattice constant and thermal expansion mismatch of InP and Si. Adjusting the size and geometry of the growth area is one possible method of addressing this problem. In this work, we conducted a material quality study of liquid phase epitaxy overgrowth layers on selective area InP grown by a proprietary vapor phase epitaxy technique on Si. The relationship between growth area and dislocation density was quantified using etch pit density measurements. Material quality of the InP on Si improved both with reduced growth area and increased aspect ratio (length/width) of the selective area. Areas with etch pit density as low as 1.6 x 10(exp 4) sq cm were obtained. Assuming dislocation density is an order of magnitude greater than etch pit density, solar cells made with this material could achieve the maximum theoretical efficiency of 23% at AMO. Etch pit density dependence on the orientation of the selective areas on the substrate was also studied.
NASA Astrophysics Data System (ADS)
Pantazidou, Marina; Liu, Ke
2008-02-01
This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.
Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance
Zhao, Meng-Qiang; Ren, Chang E.; Ling, Zheng; ...
2014-11-18
Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less
NASA Astrophysics Data System (ADS)
Lin, Dong; Zhang, Martin Yi; Ye, Chang; Liu, Zhikun; Liu, C. Richard; Cheng, Gary J.
2012-03-01
A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.
Dańko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Dańko, Maciej J
2018-01-01
Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma . We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept.
Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study
NASA Astrophysics Data System (ADS)
Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer
2017-11-01
Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at the transition from the calcite to the CaCO3-II stability field, if aragonite does not form.
Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry
2016-03-01
Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry
2015-01-01
Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801
NASA Astrophysics Data System (ADS)
Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.
2017-12-01
Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.
High-dose ascorbic acid decreases cholesterolemic factors of an atherogenic diet in guinea pigs.
Filis, Konstantinos; Anastassopoulou, Aikaterini; Sigala, Fragiska; Theodorou, Dimitrios; Manouras, Andreas; Leandros, Emanouel; Sigalas, Panagiotis; Hepp, Wolfgang; Bramis, John
2007-03-01
The study evaluates the effect of a high supplemental dose of ascorbic acid (AA) on plasma concentrations of total cholesterol (TC), triglycerides (TG), total lipids (TL), and lipoprotein fractions high-density, very-low-density-, and low-density lipoprotein (HDL, VLDL, LDL) in guinea pigs fed with atherogenic diet. Group I consisted of 5 normally fed guinea pigs plus a low dose of AA (1 mg/100 g/day), group II consisted of 7 guinea pigs fed with food enriched with 2% cholesterol plus a low dose of AA (1 mg/100 g/day), and group III consisted of 7 guinea pigs fed with food enriched with 2% cholesterol plus a high dose of AA (30 mg/100 g/day). Cholesterolemic factors concentrations were determined after nine weeks. Concentrations of TC, TG, TL, LDL, and VLDL were increased in group II compared to group I (p < 0.01 for all differences). Supplementation with a high dose of AA resulted in decreased concentrations of TC (p < 0.01), TG (p < 0.01), TL (p < 0.01), and LDL (p < 0.01) in group III compared to group II. Additionally, concentration of HDL was increased in group III compared to group II (p < 0.01). High-dose AA supplementation to an atherogenic diet decreases concentrations of TC, TG, TL, and LDL and increases concentration of HDL compared to low-dose AA.
Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi
2012-01-01
The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...
Pham, Viet Hung; Dickerson, James H.
2016-02-21
Graphene hydrogels have been considered as ideal materials for high-performance supercapacitors. However, their low volumetric capacitance significantly limits its real application. In this study, we report an environment-friendly and scalable method to prepare high packing density, electrochemically reduced graphene oxide hydrogels (ERGO) for supercapacitor application by the electrophoretic deposition of graphene oxide onto nickel foam, followed by the electrochemical reduction and hydraulic compression of the deposited materials. The as-prepared ERGO on nickel foam was hydraulic compressed up to 20 tons, resulting in an increase of the packing density of ERGO from 0.0098 to 1.32 g cm –3. Consequently, the volumetricmore » capacitance and volumetric energy density of ERGOs greatly increased from 1.58 F cm –3 and 0.053 Wh cm –3 (as-prepared ERGO) to 176.5 F cm –3 and 6.02 Wh cm –3 (ERGO compressed at 20 tons), respectively. The ERGOs also exhibited long-term electrochemical stability with a capacitance retention in the range of approximately 79–90% after 10 000 cycles. Lastly, we believe that these high packing density ERGOs are promising for real-world energy storage devices for which scalable, cost-effective manufacturing is of significance and for which space constraints are paramount.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Viet Hung; Dickerson, James H.
Graphene hydrogels have been considered as ideal materials for high-performance supercapacitors. However, their low volumetric capacitance significantly limits its real application. In this study, we report an environment-friendly and scalable method to prepare high packing density, electrochemically reduced graphene oxide hydrogels (ERGO) for supercapacitor application by the electrophoretic deposition of graphene oxide onto nickel foam, followed by the electrochemical reduction and hydraulic compression of the deposited materials. The as-prepared ERGO on nickel foam was hydraulic compressed up to 20 tons, resulting in an increase of the packing density of ERGO from 0.0098 to 1.32 g cm –3. Consequently, the volumetricmore » capacitance and volumetric energy density of ERGOs greatly increased from 1.58 F cm –3 and 0.053 Wh cm –3 (as-prepared ERGO) to 176.5 F cm –3 and 6.02 Wh cm –3 (ERGO compressed at 20 tons), respectively. The ERGOs also exhibited long-term electrochemical stability with a capacitance retention in the range of approximately 79–90% after 10 000 cycles. Lastly, we believe that these high packing density ERGOs are promising for real-world energy storage devices for which scalable, cost-effective manufacturing is of significance and for which space constraints are paramount.« less
NASA Astrophysics Data System (ADS)
Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.
2017-01-01
Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zheng; Gohil, Punit; McKee, George R.
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Yan, Zheng; Gohil, Punit; McKee, George R.; ...
2017-09-18
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Dissepiments, density bands and signatures of thermal stress in Porites skeletons
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.
2017-09-01
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.
Correlates of bushmeat in markets and depletion of wildlife.
Fa, John E; Olivero, Jesus; Farfán, Miguel Á; Márquez, Ana L; Duarte, Jesús; Nackoney, Janet; Hall, Amy; Dupain, Jef; Seymour, Sarah; Johnson, Paul J; Macdonald, David W; Real, Raimundo; Vargas, Juan M
2015-06-01
We used data on number of carcasses of wildlife species sold in 79 bushmeat markets in a region of Nigeria and Cameroon to assess whether species composition of a market could be explained by anthropogenic pressures and environmental variables around each market. More than 45 mammal species from 9 orders were traded across all markets; mostly ungulates and rodents. For each market, we determined median body mass, species diversity (game diversity), and taxa that were principal contributors to the total number of carcasses for sale (game dominance). Human population density in surrounding areas was significantly and negatively related to the percentage ungulates and primates sold in markets and significantly and positively related to the proportion of rodents. The proportion of carnivores sold was higher in markets with high human population densities. Proportion of small-bodied mammals (<1 kg) sold in markets increased as human population density increased, but proportion of large-bodied mammals (>10 kg) decreased as human population density increased. We calculated an index of game depletion (GDI) for each market from the sum of the total number of carcasses traded per annum and species, weighted by the intrinsic rate of natural increase (rmax ) of each species, divided by individuals traded in a market. The GDI of a market increased as the proportion of fast-reproducing species (highest rmax ) increased and as the representation of species with lowest rmax (slow-reproducing) decreased. The best explanatory factor for a market's GDI was anthropogenic pressure-road density, human settlements with >3000 inhabitants, and nonforest vegetation. High and low GDI were significantly differentiated by human density and human settlements with >3000 inhabitants. Our results provided empirical evidence that human activity is correlated with more depleted bushmeat faunas and can be used as a proxy to determine areas in need of conservation action. © 2015 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanny, S; Parsai, E; Harrell, D
2015-06-15
Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc{sup −1} (147 pcf) to 5.6 g cc{sup −1} (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFFmore » on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm{sup 2} were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL{sub 1} and 3.4 cm for TVL{sub E} compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm{sup 2}. TVL{sub 1} for 6FFF was 1.1 cm smaller than TVL{sub 1} for 6MV, but TVL{sub E} was consistent to within 4 mm. TVL{sub 1} and TVL{sub E} for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is an employee of Universal Minerals International, Inc, the company that provided the aggregates for the high density concretes used in the vault construction.« less
Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui
2015-08-01
Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.
2014-01-01
Background Climate change can affect the activity and distribution of species, including pathogens and parasites. The densities and distribution range of the sheep tick (Ixodes ricinus) and it’s transmitted pathogens appears to be increasing. Thus, a better understanding of questing tick densities in relation to climate and weather conditions is urgently needed. The aim of this study was to test predictions regarding the temporal pattern of questing tick densities at two different elevations in Norway. We predict that questing tick densities will decrease with increasing elevations and increase with increasing temperatures, but predict that humidity levels will rarely affect ticks in this northern, coastal climate with high humidity. Methods We described the temporal pattern of questing tick densities at ~100 and ~400 m a.s.l. along twelve transects in the coastal region of Norway. We used the cloth lure method at 14-day intervals during the snow-free season to count ticks in two consecutive years in 20 m2 plots. We linked the temporal pattern of questing tick densities to local measurements of the prevailing weather. Results The questing tick densities were much higher and the season was longer at ~100 compared to at ~400 m a.s.l. There was a prominent spring peak in both years and a smaller autumn peak in one year at ~100 m a.s.l.; but no marked peak at ~400 m a.s.l. Tick densities correlated positively with temperature, from low densities <5°C, then increasing and levelling off >15-17°C. We found no evidence for reduced questing densities during the driest conditions measured. Conclusions Tick questing densities differed even locally linked to elevation (on the same hillside, a few kilometers apart). The tick densities were strongly hampered by low temperatures that limited the duration of the questing seasons, whereas the humidity appeared not to be a limiting factor under the humid conditions at our study site. We expect rising global temperatures to increase tick densities and lead to a transition from a short questing season with low densities in the current cold and sub-optimal tick habitats, to longer questing seasons with overall higher densities and a marked spring peak. PMID:24725997
DeMartini, Edward E.; Anderson, Todd W.; Friedlander, Alan M.; Beets, James P.
2011-01-01
Group incidence and size are described for recruit parrotfishes, wrasses, and damselfishes on Hawaiian reefs over 3 years (2006–2008) at sites spanning the archipelago (20–28°N, 155–177°W). Coral-poor and coral-rich areas were surveyed at sites with both low (Hawaii Island) and high (Midway Atoll) predator densities, facilitating examination of relations among predator and recruit densities, habitat, and group metrics. Predator and recruit densities varied spatially and temporally, with a sixfold range in total recruit densities among years. Group (≥2 recruits) metrics varied with time and tracked predator and recruit densities and the proportion of schooling species. Groups often included heterospecifics whose proportion increased with group size. A non-saturating relationship between group size and recruit density suggests that the anti-predator benefits of aggregation exceeded competitive costs. Grouping behavior may have overarching importance for recruit survival—even at high recruit densities—and merits further study on Hawaiian reefs and elsewhere.
CD16b associates with high-density, detergent-resistant membranes in human neutrophils
Fernandes, Maria J. G.; Rollet-Labelle, Emmanuelle; Paré, Guillaume; Marois, Sébastien; Tremblay, Marie-Lisane; Teillaud, Jean-Luc; Naccache, Paul H.
2005-01-01
CD16b is unique in that it is the only Fc receptor linked to the plasma membrane by a GPI (glycosylphosphatidylinositol) anchor. GPI-anchored proteins often preferentially localize to DRMs (detergent-resistant membranes) that are rich in sphingolipids and cholesterol and play an important role in signal transduction. Even though the responses to CD16b engagement have been intensively investigated, the importance of DRM integrity for CD16b signalling has not been characterized in human neutrophils. We provide direct evidence that CD16b constitutively partitions with both low- and high-density DRMs. Moreover, upon CD16b engagement, a significant increase in the amount of the receptor is observed in high-density DRMs. Similarly to CD16b, CD11b also resides in low- and high-density DRMs. In contrast with CD16b, the partitioning of CD11b in DRMs does not change in response to CD16b engagement. We also provide evidence for the implication of Syk in CD16b signalling and its partitioning to DRMs in resting and activated PMNs (polymorphonuclear neutrophils). Additionally, DRM-disrupting agents, such as nystatin and methyl-β-cyclodextrin, alter cellular responses to CD16b receptor ligation. Notably, a significant increase in the mobilization of intracellular Ca2+ and in tyrosine phosphorylation of intracellular substrates after CD16b engagement is observed. Altogether, the results of this study provide evidence that high-density DRMs play a role in CD16b signalling in human neutrophils. PMID:16171455
Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon
2013-01-01
Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005
Stabell, Ole B; Vegusdal, Anne
2010-09-01
In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.
High/variable mixture ratio O2/H2 engine
NASA Technical Reports Server (NTRS)
Adams, A.; Parsley, R. C.
1988-01-01
Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.
Density of photonic states in cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Dolganov, P. V.
2015-04-01
Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.
Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells
NASA Technical Reports Server (NTRS)
Skandan, Ganesh; Singhal, Amit
2005-01-01
Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
NASA Astrophysics Data System (ADS)
Ballone, P.; Jones, R. O.
2002-10-01
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.
Response of High Latitude Coralline Algae to pCO2 and Thermal Stress
NASA Astrophysics Data System (ADS)
Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.
2016-12-01
The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.
Block, Robert C; Abdolahi, Amir; Niemiec, Christopher P; Rigby, C Scott; Williams, Geoffrey C
2016-12-01
There is a lack of research on the use of electronic tools that guide patients toward reducing their cardiovascular disease risk. We conducted a 9-month clinical trial in which participants who were at low (n = 100) and moderate (n = 23) cardiovascular disease risk-based on the National Cholesterol Education Program III's 10-year risk estimator-were randomized to usual care or to usual care plus use of an Interactive Cholesterol Advisory Tool during the first 8 weeks of the study. In the moderate-risk category, an interaction between treatment condition and Framingham risk estimate on low-density lipoprotein and non-high-density lipoprotein cholesterol was observed, such that participants in the virtual clinician treatment condition had a larger reduction in low-density lipoprotein and non-high-density lipoprotein cholesterol as their Framingham risk estimate increased. Perceptions of the Interactive Cholesterol Advisory Tool were positive. Evidence-based information about cardiovascular disease risk and its management was accessible to participants without major technical challenges. © The Author(s) 2015.
High-Energy-Density Shear Flow and Instability Experiments
NASA Astrophysics Data System (ADS)
Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.
2017-10-01
High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
Chinwong, Surarong; Chinwong, Dujrudee; Mangklabruks, Ampica
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18-25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results . Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL ( p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion . Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported.
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18–25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results. Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL (p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion. Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported. PMID:29387131
Cheng, Qingsu; Bilgin, Cemal Cagatay; Fontenay, Gerald; Chang, Hang; Henderson, Matthew; Han, Ju; Parvin, Bahram
2016-07-07
The effects of the stiffness of the microenvironment on the molecular response of 3D colony organization, at the maximum level of mammographic density (MD), are investigated. Phenotypic profiling reveals that 3D colony formation is heterogeneous and increased stiffness of the microenvironment, within the range of the MD, correlates with the increased frequency of aberrant 3D colony formation. Further integrative analysis of the genome-wide transcriptome and phenotypic profiling hypothesizes overexpression of ERBB2 in the premalignant MCF10A cell lines at a stiffness value that corresponds to the collagen component at high mammographic density. Subsequently, ERBB2 overexpression has been validated in the same cell line. Similar experiments with a more genetically stable cell line of 184A1 also revealed an increased frequency of aberrant colony formation with the increased stiffness; however, 184A1 did not demonstrate overexpression of ERBB2 at the same stiffness value of the high MD. These results suggest that stiffness exacerbates premalignant cell line of MCF10A.
Xian, G.; Crane, M.; McMahon, C.
2008-01-01
Urban development has expanded rapidly in Las Vegas, Nevada of the United States, over the last fifty years. A major environmental change associated with this urbanization trend is the transformation of the landscape from natural cover types to increasingly anthropogenic impervious surface. This research utilizes remote sensing data from both the Landsat and Terra-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments in conjunction with digital orthophotography to estimate urban extent and its temporal changes by determining sub-pixel impervious surfaces. Percent impervious surface area has shown encouraging agreement with urban land extent and development density. Results indicate that total urban land-use increases approximately 110 percent from 1984 to 2002. Most of the increases are associated with medium-to high-density urban development. Places having significant increases in impervious surfaces are in the northwestern and southeastern parts of Las Vegas. Most high-density urban development, however, appears in central Las Vegas. Impervious surface conditions for 2002 measured from Landsat and ASTER satellite data are compared in terms of their accuracy.
Hybrid fuel formulation and technology development
NASA Technical Reports Server (NTRS)
Dean, D. L.
1995-01-01
The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.
Brush in the bath of active particles: Anomalous stretching of chains and distribution of particles
NASA Astrophysics Data System (ADS)
Li, Hui-shu; Zhang, Bo-kai; Li, Jian; Tian, Wen-de; Chen, Kang
2015-12-01
The interaction between polymer brush and colloidal particles has been intensively studied in the last two decades. Here, we consider a flat chain-grafted substrate immersed in a bath of active particles. Simulations show that an increase in the self-propelling force causes an increase in the number of particles that penetrate into the brush. Anomalously, the particle density inside the main body of the brush eventually becomes higher than that outside the brush at very large self-propelling force. The grafted chains are further stretched due to the steric repulsion from the intruded particles. Upon the increase of the self-propelling force, distinct stretching behaviors of the chains were observed for low and high grafting densities. Surprisingly, we find a weak descent of the average end-to-end distance of chains at high grafting density and very large force which is reminiscent of the compression effect of a chain in the active bath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong-Xin; Gao, Fei; Liu, Jia
2014-07-28
Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased,more » in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.« less
Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients.
Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M
2010-11-01
Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat.
Specific non-monotonous interactions increase persistence of ecological networks.
Yan, Chuan; Zhang, Zhibin
2014-03-22
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056
Improvement of Thrust Characteristics of Helicon Plasma Thruster using Local Gas Fueling Method
NASA Astrophysics Data System (ADS)
Kuwahara, Daisuke; Amma, Kosuke; Ishigami, Yuichi; Igarashi, Akihiko; Nishimoto, Shinichi; Shinohara, Shunjiro; Miyazawa, Junichi
2017-10-01
A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. Here, a neutral particle, e.g., H2, Ar, and Xe works, as a fuel gas. In most cases, these gases are supplied into a discharge tube by the use of a simple nozzle. Therefore, the neutral particle fills a discharge tube homogenous. However, there are two problems in this configuration. First, there is a limitation of an electron density increase, due to a neutral particle depletion in the central region of the high-density helicon plasma. This limitation reduces the thrust performance directly. Second, the high-density plasma causes an erosion of an inner discharge tube wall. For the future MW class thruster, this problem will become serious because the particle and heat fluxes of the plasma will increase drastically. To solve above-mentioned problems, we have proposed local fueling methods for the high-density helicon plasma. In this presentation, we will show the methods and experimental results using a fueling tube, inserted in a plasma directly. This work is supported by JSPS KAKENHI Grant Number 16K17843 and NIFS Collaboration Research program (NIFSKBAF016).
Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.
2015-01-01
The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936
Ossicular density in golden moles (Chrysochloridae).
Mason, Matthew J; Lucas, Sarah J; Wise, Erica R; Stein, Robin S; Duer, Melinda J
2006-12-01
The densities of middle ear ossicles of golden moles (family Chrysochloridae, order Afrosoricida) were measured using the buoyancy method. The internal structure of the malleus was examined by high-resolution computed tomography, and solid-state NMR was used to determine relative phosphorus content. The malleus density of the desert golden mole Eremitalpa granti (2.44 g/cm3) was found to be higher than that reported in the literature for any other terrestrial mammal, whereas the ossicles of other golden mole species are not unusually dense. The increased density in Eremitalpa mallei is apparently related both to a relative paucity of internal vascularization and to a high level of mineralization. This high density is expected to augment inertial bone conduction, used for the detection of seismic vibrations, while limiting the skull modifications needed to accommodate the disproportionately large malleus. The mallei of the two subspecies of E. granti, E. g. granti and E. g. namibensis, were found to differ considerably from one another in both size and shape.
Pink-beam focusing with a one-dimensional compound refractive lens
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...
2016-07-28
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang
2011-10-21
We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011
High efficiency silicon solar cell based on asymmetric nanowire.
Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki
2015-07-08
Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.
Investigation of mammographic breast density as a risk factor for ovarian cancer.
Wernli, Karen J; O'Meara, Ellen S; Kerlikowske, Karla; Miglioretti, Diana L; Muller, Carolyn Y; Onega, Tracy; Sprague, Brian L; Henderson, Louise M; Buist, Diana S M
2014-01-01
Endogenous hormones and growth factors that increase mammographic breast density could increase ovarian cancer risk. We examined whether high breast density is associated with ovarian cancer risk. We conducted a cohort study of 724,603 women aged 40 to 79 years with 2,506,732 mammograms participating in the Breast Cancer Surveillance Consortium from 1995 to 2009. Incident epithelial ovarian cancer was diagnosed in 1373 women. We used partly conditional Cox regression to estimate the association between breast density and 5-year risk of incident epithelial ovarian cancer overall and stratified by 10-year age group. All statistical tests were two-sided. Compared with women with scattered fibroglandular densities, women with heterogeneously dense and extremely dense breast tissue had 20% and 18% increased 5-year risk of incident epithelial ovarian cancer (hazard ratio [HR] = 1.20, 95% confidence interval [CI] = 1.06 to 1.36; HR = 1.18, 95% CI = 0.93 to 1.50, respectively; P(trend) = .01). Among women aged 50 to 59 years, we observed a trend in elevated risk associated with increased breast density (P(trend) = .02); women with heterogeneously and extremely dense breast tissue had 30% (HR = 1.30; 95% CI = 1.03 to 1.64) and 65% (HR = 1.65; 95% CI = 1.12 to 2.44) increased risk, respectively, compared with women with scattered fibroglandular densities. The pattern was similar but not statistically significant at age 40 to 49 years. There were no consistent patterns of breast density and ovarian cancer risk at age 60 to 79 years. Dense breast tissue was associated with a modest increase in 5-year ovarian cancer risk in women aged 50 to 59 years but was not associated with ovarian cancer at ages 40 to 49 or 60 to 79 years.
Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.
Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H
2013-11-01
To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.
Numerical analyses of baseline JT-60SA design concepts with the COREDIV code
NASA Astrophysics Data System (ADS)
Zagórski, R.; Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Garzotti, L.; Giruzzi, G.; Neu, R.; Romanelli, M.
2017-06-01
JT-60SA reference design scenarios at high (#3) and low (#2) density have been analyzed with the help of the self-consistent COREDIV code. Simulations results for a standard C wall and full W wall have been compared in terms of the influence of impurities, both intrinsic (C, W) and seeded (N, Ar, Ne, Kr), on the radiation losses and plasma parameters. For scenario #3 in a C environment, the regime of detachment on divertor plates can be achieved with N or Ne seeding, whereas for the low density and high power scenario (#2), the C and seeding impurity radiation does not effectively reduce power to the targets. In this case, only an increase of either average density or edge density together with Kr seeding might help to develop conditions with strong radiation losses and semi-detached conditions in the divertor. The calculations show that, in the case of a W divertor, the power load to the plate is mitigated by seeding and the central plasma dilution is smaller compared to the C divertor. For the high density case (#3) with Ne seeding, operation in full detachment mode is predicted. Ar seems to be an optimal choice for the low-density high-power scenario #2, showing a wide operating window, whereas Ne leads to high plasma dilution at high seeding levels albeit not achieving semi-detached conditions in the divertor.
Sheng, Yinying; Hua, Youlu; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C.; Li, Wei
2018-01-01
The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted. PMID:29364844
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
Calabuig, Álvaro; Barba, Joaquín; Guembe, María Jesús; Díez, Javier; Berjón, Jesús; Martínez-Vila, Eduardo; Irimia, Pablo; Toledo, Estefanía
2017-04-01
There is currently increasing interest in epicardial adipose tissue (EAT) as a marker of cardiovascular disease. Our purpose was to describe EAT, measured by transthoracic echocardiography, and to assess its association with metabolic syndrome (MS) in the RIVANA population-based study. Physical examination was performed in 880 participants aged 45 to 74 years (492 of them with MS according to the harmonized definition). Fasting glucose, high-density lipoprotein cholesterol, triglyceride, and C-reactive protein concentrations were determined in a blood sample. In all participants, EAT thickness was measured with transthoracic echocardiography at end-systole. Among participants without MS, the prevalence of EAT ≥ 5mm significantly increased with age (OR > 65 years vs 45-54 years=8.22; 95%CI, 3.90-17.35; P for trend<.001). Increasing EAT quintiles were significantly associated with MS (OR fifth quintile vs first quintile=3.26; 95%CI, 1.59-6.71; P for trend=.001). Considering the different MS criteria, increasing quintiles of EAT were independently associated with low high-density lipoprotein cholesterol (OR fifth quintile vs first quintile=2.65; 95%CI, 1.16-6.05; P for trend=.028), high triglycerides (OR fifth quintile vs first quintile=2.22; 95%CI, 1.26-3.90; P for trend=.003), and elevated waist circumference (OR fifth quintile vs first quintile=6.85; 95%CI, 2.91-16.11; P for trend<.001). In a subsample of the general population, EAT measured by echocardiography increased significantly and independently with age. Increased EAT thickness was independently associated with MS and with low high-density lipoprotein cholesterol, high triglycerides, and elevated waist circumference as individual criteria. Copyright © 2016. Published by Elsevier España, S.L.U.
Laminar composite structures for high power actuators
NASA Astrophysics Data System (ADS)
Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.
2017-05-01
Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.
NASA Astrophysics Data System (ADS)
Won, Sung Sik; Kawahara, Masami; Kuhn, Lindsay; Venugopal, Vineeth; Kwak, Jiyeon; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun
2017-04-01
Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.
Intraspecific variation and species coexistence.
Lichstein, Jeremy W; Dushoff, Jonathan; Levin, Simon A; Pacala, Stephen W
2007-12-01
We use a two-species model of plant competition to explore the effect of intraspecific variation on community dynamics. The competitive ability ("performance") of each individual is assigned by an independent random draw from a species-specific probability distribution. If the density of individuals competing for open space is high (e.g., because fecundity is high), species with high maximum (or large variance in) performance are favored, while if density is low, species with high typical (e.g., mean) performance are favored. If there is an interspecific mean-variance performance trade-off, stable coexistence can occur across a limited range of intermediate densities, but the stabilizing effect of this trade-off appears to be weak. In the absence of this trade-off, one species is superior. In this case, intraspecific variation can blur interspecific differences (i.e., shift the dynamics toward what would be expected in the neutral case), but the strength of this effect diminishes as competitor density increases. If density is sufficiently high, the inferior species is driven to extinction just as rapidly as in the case where there is no overlap in performance between species. Intraspecific variation can facilitate coexistence, but this may be relatively unimportant in maintaining diversity in most real communities.
Richter, Almut; Heidemann, Christin; Schulze, Matthias B; Roosen, Jutta; Thiele, Silke; Mensink, Gert B M
2012-03-22
The aim of this study was to identify dietary patterns among a representative sample of German adolescents and their associations with energy and nutrient intake, socioeconomic and lifestyle characteristics, and overweight status. In the analysis, data from the German Health Interview and Examination Survey for Children and Adolescents were used. The survey included a comprehensive dietary history interview conducted among 1272 adolescents aged 12 to 17 years. Dietary patterns were determined with principal component analysis (PCA) based on 48 food groups, for boys and girls separately. Three dietary patterns among boys and two among girls were identified. Among boys, high adherence to the 'western' pattern was associated with higher age, lower socioeconomic status (SES), and lower physical activity level (PA). High adherence to the 'healthy' pattern among boys, but not among girls, was associated with higher SES, and higher PA. Among boys, high adherence to the 'traditional' pattern was associated with higher age. Among girls, high adherence to the 'traditional and western' pattern was associated with lower age, lower SES and more hours watching TV per day. The nutrient density of several vitamins and minerals, particularly of B-vitamins and calcium, increased with increasing scores of the 'healthy' pattern among both sexes. Conversely, with increasing scores of the 'western' pattern among boys, most nutrient densities decreased, particularly of fibre, beta-carotene, vitamin D, biotin and calcium. Among girls with higher scores of the 'traditional and western' pattern, nutrient densities of vitamin A, C, E, K and folate decreased. Among boys, high adherence to the 'traditional' pattern was correlated with higher densities of vitamin B12 and vitamin D and lower densities of fibre, magnesium and iron. No significant associations between dietary patterns and overweight were found. Higher scores for dietary patterns characterized by higher consumption of take away food, meat, confectionary and soft drinks ('western' and 'traditional and western') were found particularly among 16- to 17-years old boys and among adolescents with lower SES. These patterns were also associated with higher energy density, higher percent of energy from unsaturated fatty acids and lower percent of energy from carbohydrates as well as lower nutrient densities of several vitamins and minerals. Therefore, nutritional interventions should try to focus more on adolescents with lower SES and boys in general.
Yin, L Y; Wang, Z Y; Yang, H M; Xu, L; Zhang, J; Xing, H
2017-09-01
This experiment was conducted to evaluate the effects of stocking density on the growth performance, feather growth, intestinal development, and serum parameters of geese. In total, 336 healthy, 28-day-old, male Yangzhou goslings were randomly allotted to 30 plastic wire-floor pens according to 5 stocking densities (2, 3, 4, 5 and 6 birds/m2). The results showed that with the stocking density increased from 2 birds/m2 to 6 birds/m2, the body weights of geese at 42 d (P < 0.001) and 70 d (P < 0.001) were reduced by 10.53% and 10.43% respectively, the primary feather lengths of geese at 42 d (P < 0.001) and 70 d (P = 0.021) were reduced by 20.38% and 6.62% respectively, whereas the feed/gain ratios for 28- to 42-d period and 28- to 70-d period increased from 2.50 to 2.90 (P = 0.001), and 3.80 to 4.24 (P < 0.001), respectively. The relative weights of the jejunum, ileum, and small intestine and the lengths of the jejunum, ileum, and small intestine were all adversely affected (P < 0.05) when stocking density was increased to 6 birds/m2. Serum concentrations of alkaline phosphatase (P = 0.013) and triiodothyronine (P < 0.001) decreased as the stocking density increased. The serum thyroxine concentration of geese from the 6 birds/m2 group was lower than that of geese from the other groups (P < 0.05). The reduction in thyroid hormone concentrations was similar to what was observed in growth rate. All the results suggested that high stocking density will adversely influence thyroid function and the developments of the body weight, body size, feathers, and small intestine. Under our experimental conditions, we recommend that the stocking density of geese should be kept to 5 or fewer birds/m2 to avoid the negative effects of high stocking density on geese. © 2017 Poultry Science Association Inc.
Triggs, Alison; Knell, Robert J
2012-03-01
1. Animals raised in good environmental conditions are expected to have more resources to invest in immunity than those raised in poor conditions. Variation in immune activity and parasite resistance in response to changes in environmental temperature, population density and food quality have been shown in many invertebrate species. 2. Almost all studies to date have examined the effects of individual variables in isolation. The aim of this study was to address whether environmental factors interact to produce synergistic effects on phenoloxidase (PO) activity and haemocyte count, both indicators of immune system activity. Temperature, food quality and density were varied in a fully factorial design for a total of eight treatment combinations. 3. Strong interactions between the three environmental variables led to the magnitude and in some cases the direction of the effect of most variables changing as the other environmental factors were altered. Overall, food quality had the most important and consistent influence, larvae raised on a good-quality diet having substantially higher PO activity in every case and substantially higher haemocyte counts in all treatments except unheated/low density. 4. When food quality was good, the larvae showed 'density-dependent prophylaxis': raising their investment in immunity when population density is high. When food quality was poor and the temperature low, however, those larvae raised at high densities invested less in immunity. 5. Increased temperature is often thought to lead to increased immune reactivity in ectotherms, but we found that the effect of temperature was strongly dependent on the values of other environmental variables. PO activity increased with temperature when larvae were raised on good food or when density was high, but when food was poor and density low, a higher temperature led to reduced PO activity. A higher temperature led to higher haemocyte counts when density was high and food quality was poor, but in all other cases, the effect of increased temperature was either close to zero or somewhat negative. 6. Although PO activity and haemocyte count were weakly correlated across the whole data set, there were a number of treatments where the two measures responded in different ways to environmental change. Overall, effect sizes for PO activity were substantially higher than those for haemocyte count, indicating that the different components of the immune system vary in their sensitivity to environmental change. 7. Predictions of the effect of environmental or population change on immunity and disease dynamics based on laboratory experiments that only investigate the effects of single variable are likely to be inaccurate or even entirely wrong. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
A look at dairy mob grazing in the Northeast
USDA-ARS?s Scientific Manuscript database
Proponents of ultra-high stocking density (UHSD) grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg/ha of beef cattle on small paddocks with rest periods up to 125 days. However, it is unclear if this management te...
Epidemiology of Osteoporosis in Women with Cognitive Impairment
ERIC Educational Resources Information Center
Schrager, Sarina
2006-01-01
Osteoporosis is increasing due to the aging of the population. Women with cognitive impairment from childhood are at disproportionally high risk for osteoporosis and fractures. Suggested explanations for this increased risk include high use of anticonvulsant medications, lower peak bone densities, and higher rates of nonambulation. Down syndrome…
Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability
NASA Astrophysics Data System (ADS)
Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija
Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.
Influence of a surface film on the particles on the electrorheological response
NASA Astrophysics Data System (ADS)
Wu, C. W.; Conrad, H.
1997-01-01
A conduction model is developed for the dc electrorheological (ER) response of highly conducting particles (e.g., metal particles) suspended in a weakly conducting oil. The numerical analyses show that a surface film with some conductivity is desired, but not a completely insulating film as previously proposed. Increasing the film conductivity leads to an increase in the ER yield stress. However, too high a conductivity will give an unacceptable level of current density. The film should also have an intermediate thickness. A small thickness increases the possibility of electrical breakdown in the film; too large a thickness decreases the ER effect. Good agreement exists between the yield stress and the current density predicted by our model and those measured.
Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.
2014-01-01
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).
Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887
Density Variations in the Earth's Magnetospheric Cusps
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.
2016-01-01
Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.
NASA Astrophysics Data System (ADS)
Wu, Shan; Burlingame, Quinn; Lin, Minren; Zhang, Qiming
2013-03-01
There is an increasing demand on dielectric materials with high electric energy density and low loss for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. One major challenge in developing dielectric polymers is how to achieve high energy density Ue while maintaining low dielectric loss, even at very high-applied electric fields. Here we show that amorphous polar-polymers with very low impurity concentration can be promising for realizing such a dielectric polymer. Polar-polymer with high dipole moment and weak dipole coupling can provide relatively high dielectric constant for high Ue, eliminate polarization and conduction losses due to weak dipolar coupling and strong polar-scattering to charge carriers. Indeed, an aromatic polythiourea thin film can maintain low loss to high fields (>1 GV/m) with a high Ue (~ 24 J/cm3) , which is very attractive for energy storage capacitors.
Ooi, Esther M M; Watts, Gerald F; Sprecher, Dennis L; Chan, Dick C; Barrett, P Hugh R
2011-10-01
Dyslipidemia increases the risk of cardiovascular disease in obesity. Peroxisome proliferator-activated receptor (PPAR)-δ agonists decrease plasma triglycerides and increase high-density lipoprotein (HDL)-cholesterol in humans. The aim of the study was to examine the effect of GW501516, a PPAR-δ agonist, on lipoprotein metabolism. Design, Setting, and Intervention: We conducted a randomized, double-blind, crossover trial of 6-wk intervention periods with placebo or GW501516 (2.5 mg/d), with 2-wk placebo washout between treatment periods. We recruited 13 dyslipidemic men with central obesity from the general community. We measured the kinetics of very low-density lipoprotein (VLDL)-, intermediate-density lipoprotein-, and low-density lipoprotein (LDL)-apolipoprotein (apo) B-100, plasma apoC-III, and high-density lipoprotein (HDL) particles (LpA-I and LpA-I:A-II). GW501516 decreased plasma triglycerides, fatty acid, apoB-100, and apoB-48 concentrations. GW501516 decreased the concentrations of VLDL-apoB by increasing its fractional catabolism and of apoC-III by decreasing its production rate (P < 0.05). GW501516 reduced VLDL-to-LDL conversion and LDL-apoB production. GW501516 increased HDL-cholesterol, apoA-II, and LpA-I:A-II concentrations by increasing apoA-II and LpA-I:A-II production (P < 0.05). GW501516 decreased cholesteryl ester transfer protein activity, and this was paralleled by falls in the triglyceride content of VLDL, LDL, and HDL and the cholesterol content of VLDL and LDL. GW501516 increased the hepatic removal of VLDL particles, which might have resulted from decreased apoC-III concentration. GW501516 increased apoA-II production, resulting in an increased concentration of LpA-I:A-II particles. This study elucidates the mechanism of action of this PPAR-δ agonist on lipoprotein metabolism and supports its potential use in treating dyslipidemia in obesity.
High-density capacitors pack more energy in a smaller space
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1985-05-01
Attention is given to the design features and performance characteristics of novel high density capacitor banks which furnish a tenfold energy increase over conventional capacitors, to values of the order of 100 J/kg or 0.28 J/cu cm. The essential feature of the new design is the replacement of plastic dielectric films interleaved with oil-soaked films by a paperless film system that uses perfluorocarbon rather than oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.S. Asiq; Wasekar, Nitin P.; Sundararajan, G.
Nanoindentation was performed on silicon carbide (SiC) reinforced pulse electrodeposited nickel-tungsten (Ni-W) composite coating. Addition of 5 vol.% of SiC in Ni-W coating increased the hardness from 10.31 ± 0.65 GPa to 14.32 ± 0.63 GPa and elastic modulus from 119.74 ± 3.15 GPa to 139.26 ± 2.09 GPa. Increased hardness and elastic modulus directly translates to the improved strengthening in the coating. An experimental investigation of strengthening mechanism was carried out in Ni-W-5 vol.% SiC alloy. Two simultaneous phenomena viz. grain refinement and increased internal strain was observed, which increased the dislocation density from 5.51 × 10{sup 18} m{supmore » −2} to 1.346 × 10{sup 19} m{sup −2} on reinforcement of 5 vol.% of SiC in Ni-W coating. Increased dislocation density promoted the formation of grain boundary misorientations and nano twinning. Low angle grain boundary, high angle grain boundary and nano twinning were identified using high resolution transmission electron microscope (HR-TEM) image and their role in strengthening mechanism was discussed in details. - Highlights: • SiC reinforced pulse electrodeposition Ni-W coating was deposited on steel. • Nanoindentation showed the increased mechanical properties on addition of SiC. • Grain refinement and increased internal strain was observed in Ni-W-SiC coating. • Dislocation density increased on reinforcement of SiC in Ni-W coating. • Increased dislocation density triggered grain boundary misorientation and twinning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervikov, A. V.
The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.
1995-01-01
A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.
1996-01-01
A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.
NASA Astrophysics Data System (ADS)
Majzoobi, G. H.; Rahmani, K.; Atrian, A.
2018-01-01
In this paper, dynamic compaction is employed to produce Mg-SiC nanocomposite samples using a mechanical drop hammer. Different volume fractions of SiC nano reinforcement and magnesium (Mg) micron-size powder as the matrix are mechanically milled and consolidated at different temperatures. It is found that with the increase of temperature the sintering requirements is satisfied and higher quality samples are fabricated. The density, hardness, compressive strength and the wear resistance of the compacted specimens are characterized in this work. It was found that by increasing the content of nano reinforcement, the relative density of the compacted samples decreases, whereas, the micro-hardness and the strength of the samples enhance. Furthermore, higher densification temperatures lead to density increase and hardness reduction. Additionally, it is found that the wear rate of the nanocomposite is increased remarkably by increasing the SiC nano reinforcement.
NASA Astrophysics Data System (ADS)
Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian
2017-05-01
A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.
Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest
NASA Astrophysics Data System (ADS)
Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.
2017-12-01
Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests as they become denser.
Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2
NASA Astrophysics Data System (ADS)
Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon
2017-03-01
We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.
NASA Astrophysics Data System (ADS)
Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai
2013-05-01
A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c
Can only poorer European countries afford large carnivores?
Kojola, Ilpo; Hallikainen, Ville; Helle, Timo; Swenson, Jon E
2018-01-01
One of the classic approaches in environmental economics is the environmental Kuznets curve, which predicts that when a national economy grows from low to medium levels, threats to biodiversity conservation increase, but they decrease when the economy moves from medium to high. We evaluated this approach by examining how population densities of the brown bear (Ursus arctos), gray wolf (Canis lupus), and Eurasian lynx (Lynx lynx) were related to the national economy in 24 European countries. We used forest proportions, the existence of a compensation system, and country group (former socialist countries, Nordic countries, other countries) as covariates in a linear model with the first- and the second-order polynomial terms of per capita gross domestic product (GDP). Country group was treated as a random factor, but remained insignificant and was ignored. All models concerning brown bear and wolf provided evidence that population densities decreased with increasing GDP, but densities of lynx were virtually independent of GDP. Models for the wolf explained >80% of the variation in densities, without a difference between the models with all independent variables and the model with only GDP. For the bear, the model with GDP alone accounted for 10%, and all three variables 33%, of the variation in densities. Wolves exhibit a higher capacity for dispersal and reproduction than bear or lynx, but still exists at the lowest densities in wealthy European countries. We are aware that several other factors, not available for our models, influenced large carnivore densities. Based on the pronounced differences among large carnivore species in their countrywide relationships between densities and GDP, and a strikingly high relationship for the gray wolf, we suggest that our results reflected differences in political history and public acceptance of these species among countries. The compensation paid for the damages caused by the carnivores is not a key to higher carnivore densities, but might be necessity for the presence of large carnivores to be accepted in countries with high GDP.
NASA Astrophysics Data System (ADS)
Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.
2013-08-01
The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.
Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO 2 Nanotube Anode
Ren, Kai; Gan, Yong X.; Nikolaidis, Efstratios; ...
2013-01-01
The photoelectrochemical responses of a TiO 2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na 2 S electrolytes with different concentrations were investigated. The TiO 2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na 2 S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage is alsomore » an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na 2 S solutions did not show obvious concentration effect.« less
Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan
2017-05-01
Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za
2014-11-15
Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less
Mansø, Mads; Petersen, Anne Ugleholdt; Wang, Zhihang; Erhart, Paul; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper
2018-05-16
Molecular photoswitches can be used for solar thermal energy storage by photoisomerization into high-energy, meta-stable isomers; we present a molecular design strategy leading to photoswitches with high energy densities and long storage times. High measured energy densities of up to 559 kJ kg -1 (155 Wh kg -1 ), long storage lifetimes up to 48.5 days, and high quantum yields of conversion of up to 94% per subunit are demonstrated in norbornadiene/quadricyclane (NBD/QC) photo-/thermoswitch couples incorporated into dimeric and trimeric structures. By changing the linker unit between the NBD units, we can at the same time fine-tune light-harvesting and energy densities of the dimers and trimers so that they exceed those of their monomeric analogs. These new oligomers thereby meet several of the criteria to be met for an optimum molecule to ultimately enter actual devices being able to undergo closed cycles of solar light-harvesting, energy storage, and heat release.
Improving the circular economy via hydrothermal processing of high-density waste plastics.
Helmer Pedersen, Thomas; Conti, Federica
2017-10-01
Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes
NASA Technical Reports Server (NTRS)
Kameyama, Ikuya
1997-01-01
Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.
NASA Astrophysics Data System (ADS)
Lee, Kang Min; Einkhah, Feryar; Sani, Mohammad Ali Faghihi; Ko, Young Gun; Shin, Dong Hyuk
The effects of the current density on the micro structure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg alloy applied at 100 mA/cm2 of current density exhibited better corrosion properties than the others.
Underscreening in ionic liquids: a first principles analysis.
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-07
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these 'primitive' and 'semi-primitive' models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length [Formula: see text], which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where [Formula: see text] increases with density beyond a critical density at which the Debye length [Formula: see text] becomes comparable to the ion diameter. In this high density regime the ratio [Formula: see text] increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
Underscreening in ionic liquids: a first principles analysis
NASA Astrophysics Data System (ADS)
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-01
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these ‘primitive’ and ‘semi-primitive’ models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length λS , which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where λS increases with density beyond a critical density at which the Debye length λD becomes comparable to the ion diameter. In this high density regime the ratio λ_S/λD increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
NASA Astrophysics Data System (ADS)
Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.
2010-03-01
This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.
NASA Astrophysics Data System (ADS)
Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas
2016-03-01
Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.
Ultra-High Density Holographic Memory Module with Solid-State Architecture
NASA Technical Reports Server (NTRS)
Markov, Vladimir B.
2000-01-01
NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.
Landers, Mark N.; Ankcorn, Paul D.
2008-01-01
The influence of onsite septic wastewater-treatment systems (OWTS) on base-flow quantity needs to be understood to evaluate consumptive use of surface-water resources by OWTS. If the influence of OWTS on stream base flow can be measured and if the inflow to OWTS is known from water-use data, then water-budget approaches can be used to evaluate consumptive use. This report presents a method to evaluate the influence of OWTS on ground-water recharge and base-flow quantity. Base flow was measured in Gwinnett County, Georgia, during an extreme drought in October 2007 in 12 watersheds that have low densities of OWTS (22 to 96 per square mile) and 12 watersheds that have high densities (229 to 965 per square mile) of OWTS. Mean base-flow yield in the high-density OWTS watersheds is 90 percent greater than in the low-density OWTS watersheds. The density of OWTS is statistically significant (p-value less than 0.01) in relation to base-flow yield as well as specific conductance. Specific conductance of base flow increases with OWTS density, which may indicate influence from treated wastewater. The study results indicate considerable unexplained variation in measured base-flow yield for reasons that may include: unmeasured processes, a limited dataset, and measurement errors. Ground-water recharge from a high density of OWTS is assumed to be steady state from year to year so that the annual amount of increase in base flow from OWTS is expected to be constant. In dry years, however, OWTS contributions represent a larger percentage of natural base flow than in wet years. The approach of this study could be combined with water-use data and analyses to estimate consumptive use of OWTS.
Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun
2012-07-01
Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
NASA Astrophysics Data System (ADS)
Horwitz, James; Zeng, Wen
2007-10-01
Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.
A High Performance H2-Cl2 Fuel Cell for Space Power Applications
NASA Technical Reports Server (NTRS)
Anderson, Everett B.; Taylor, E. Jennings; Wilemski, Gerald; Gelb, Alan
1993-01-01
NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant.
High-Performance Supercapacitors from Niobium Nanowire Yarns.
Mirvakili, Seyed M; Mirvakili, Mehr Negar; Englezos, Peter; Madden, John D W; Hunter, Ian W
2015-07-01
The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles and use in wearable devices.
On the equilibrium charge density at tilt grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Euihan; Hwang, Gwangseok; Chung, Jaehun
2015-01-26
Performance degradation resulting from efficiency droop during high-power operation is a critical problem in the development of high-efficiency light-emitting diodes (LEDs). In order to resolve the efficiency droop and increase the external quantum efficiency of LEDs, the droop's origin should be identified first. To experimentally investigate the cause of efficiency droop, we used null-point scanning thermal microscopy to quantitatively profile the temperature distribution on the cross section of the epi-layers of an operating GaN-based vertical LED with nanoscale spatial resolution at four different current densities. The movement of temperature peak towards the p-GaN side as the current density increases suggestsmore » that more heat is generated by leakage current than by Auger recombination. We therefore suspect that at higher current densities, current leakage becomes the dominant cause of the droop problem.« less
Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.
Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E
2011-06-13
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M
2006-04-15
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.
Multi-species genetic connectivity in a terrestrial habitat network.
Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J
2017-01-01
Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.
Mammographic breast density in recent and longer-standing ethiopian immigrants to israel.
Sklair-Levy, Miri; Segev, Anat; Sella, Tamar; Calderon-Margalit, Ronit; Zippel, Douglas
2018-04-23
High breast density is associated with an increased risk of breast cancer development. Little is known concerning ethnic variations in breast density and its relevant contributing factors. We aimed to study breast density among Ethiopian immigrants to Israel in comparison with Israeli-born women and to determine any effect on breast density of the length of residency in the immigrant population. Mammographic breast density using the BI-RADS system was estimated and compared between 77 women of Ethiopian origin who live in Israel and 177 Israeli-born controls. Logistic regression analysis was performed to estimate the odds ratios (OR) for high density (BI-RADS score ≥ 3) vs low density (BI-RADS score < 3) cases, comparing the 2 origin groups. Ethiopian-born women had a crude OR of 0.15 (95% CI: 0.08-0.26) for high breast density compared with Israeli-born women. Adjustments for various cofounders did not affect the results. Time since immigration to Israel seemed to modify the relationship, with a stronger association for women who immigrated within 2 years prior to mammography (OR:0.07, 95% CI: 0.03-0.17) as opposed to women with a longer residency stay in Israel (OR:0.23, 95% CI:0.10-0.50). Adjustments of various confounders did not alter these findings. Breast density in Ethiopian immigrants to Israel is significantly lower than that of Israeli-born controls. Our study suggests a positive association between time since immigration and breast density. Future studies are required to define the possible effects of dietary change on mammographic density following immigration. © 2018 Wiley Periodicals, Inc.
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
Anomalous and non-Gaussian diffusion in Hertzian spheres
NASA Astrophysics Data System (ADS)
Ouyang, Wenze; Sun, Bin; Sun, Zhiwei; Xu, Shenghua
2018-09-01
By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator of the dynamic heterogeneity, is increased with the increasing of temperature. When the temperature is high enough, the dynamic heterogeneity becomes very significant, and it seems counterintuitive that the maximum of non-Gaussian parameter and the position of its peak decrease monotonically with the increasing of density. By fitting the curves of self intermediate scattering function, we find that the character relaxation time τα is surprisingly not coupled with the time τmax where the non-Gaussian parameter reaches to a maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures can be associated with the weakly correlated mean-field behavior of Hertzian spheres. Especially the time τmax is nearly inversely proportional to the density at extremely high temperatures.
2012-07-02
more effective grain growth inhibitors. Transverse Rupture Strength of TaC reinforced with shorter CNTs displayed highest strength/density ratio with...microstructural features. 6. Strength to density ratio of CNT reinforced TaC increased from 17 to 28, which is an increase of ~ 65%. 7. Oxidation behavior of... reinforced with carbon fibers for space applications [15,16]. In recent years, Spark Plasma Sintering (SPS) also known as Electric Field Assisted Sintering
Berlin, Claudia; Busato, André; Rosemann, Thomas; Djalali, Sima; Maessen, Maud
2014-07-03
Avoidable hospitalizations (AH) are hospital admissions for diseases and conditions that could have been prevented by appropriate ambulatory care. We examine regional variation of AH in Switzerland and the factors that determine AH. We used hospital service areas, and data from 2008-2010 hospital discharges in Switzerland to examine regional variation in AH. Age and sex standardized AH were the outcome variable, and year of admission, primary care physician density, medical specialist density, rurality, hospital bed density and type of hospital reimbursement system were explanatory variables in our multilevel poisson regression. Regional differences in AH were as high as 12-fold. Poisson regression showed significant increase of all AH over time. There was a significantly lower rate of all AH in areas with more primary care physicians. Rates increased in areas with more specialists. Rates of all AH also increased where the proportion of residences in rural communities increased. Regional hospital capacity and type of hospital reimbursement did not have significant associations. Inconsistent patterns of significant determinants were found for disease specific analyses. The identification of regions with high and low AH rates is a starting point for future studies on unwarranted medical procedures, and may help to reduce their incidence. AH have complex multifactorial origins and this study demonstrates that rurality and physician density are relevant determinants. The results are helpful to improve the performance of the outpatient sector with emphasis on local context. Rural and urban differences in health care delivery remain a cause of concern in Switzerland.
Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...
2015-11-16
Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less
High-power AlGaInN lasers for Blu-ray disc system
NASA Astrophysics Data System (ADS)
Takeya, Motonubu; Ikeda, Shinroh; Sasaki, Tomomi; Fujimoto, Tsuyoshi; Ohfuji, Yoshio; Mizuno, Takashi; Oikawa, Kenji; Yabuki, Yoshifumi; Uchida, Shiro; Ikeda, Masao
2003-07-01
This paper describes an improved laser structure for AlGaInN based blue-violet lasers (BV-LDs). The design realizes a small beam divergence angle perpendicular to the junction plane and high characteristic temperature wihtout significant increase in threshold current density (Jth) by optimizing the position of the Mg-doped layer and introducing an undoped AlGaN layer between the active layer and the Mg-doped electron-blocking layer. The mean time to failure (MTTF) of devices based on this design was found to be closely related to the dislocation density of ELO-GaN basal layer. Under 50 mW CW operation at 70°C, a MTTF of over 5000 h was realized whenthe dark spot density (indicative of dislocation density) is less than ~5×106 cm-2. Power consumption under 50mW CW operation at 70°C was approximately 0.33 W, independent of the dislocation density.
Excessive centrifugal fields damage high density lipoprotein[S
Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.
2015-01-01
HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed. PMID:28403227
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed.
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-01-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-07-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geerkens, A.; Frenck, H.J.; Ewert, S.
1994-12-31
The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.
NASA Technical Reports Server (NTRS)
Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.
1995-01-01
The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.
Density-associated recruitment mediates coral population dynamics on a coral reef
NASA Astrophysics Data System (ADS)
Bramanti, Lorenzo; Edmunds, Peter J.
2016-06-01
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.
A mass-density model can account for the size-weight illusion
Bergmann Tiest, Wouter M.; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception. PMID:29447183
A mass-density model can account for the size-weight illusion.
Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.
Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing
Svenson, Mouritz N.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.
2017-01-01
Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a “forbidden glass” regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses. PMID:28418017
Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu
2011-02-01
The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.
Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study
Michael, Stephan; Chow, Weng; Schneider, Hans
2016-05-01
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Barnes, A I; Siva-Jothy, M T
2000-01-01
If there are costs involved with the maintenance of pathogen resistance, then higher investment in this trait is expected when the risk of pathogenesis is high. One situation in which the risk of pathogenesis is elevated is at increased conspecific density. This paper reports the results of a study of density-dependent polyphenism in pathogen resistance and immune function in the mealworm beetle Tenebrio molitor. Beetles reared at high larval densities showed lower mortality when exposed to a generalist entomopathogenic fungus and a higher degree of cuticular melanization than those reared solitarily. The degree of cuticular melanization was a strong indicator of resistance, with darker beetles being more resistant than lighter ones regardless of rearing density. No differences were found between rearing densities in the levels of phenoloxidase, an enzyme key to the insect immune response. The results show that pathogen resistance is phenotypically plastic in T. molitor, suggesting that the maintenance of this trait is costly. PMID:10687824
NASA Astrophysics Data System (ADS)
van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan
2016-08-01
The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.
Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T
2016-03-30
The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P < 0.05) increased the serum levels of blood glucose, insulin, total cholesterol (TC), triacylglycerol (TAG), low-density lipoprotein cholesterol (LDLc) and very-low-density lipoprotein cholesterol (VLDLc), with a concomitant reduction in high-density lipoprotein cholesterol (HDLc). These alterations were significantly ameliorated by the extract. High-fructose diet-mediated decreases in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSH-red) and glucose 6-phosphate dehydrogenase (Glc 6-PD) were significantly (P < 0.05) attenuated. Altered levels of reduced glutathione (GSH) and glutathione disulfide (GSSG) were significantly (P < 0.05) restored to normal. High-fructose diet-mediated increases in the concentrations of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and percentage fragmented DNA were significantly (P < 0.05) lowered by the Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Kishore, N.; Nagarajan, V.; Chandiramouli, R.
2018-04-01
Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.
NASA Astrophysics Data System (ADS)
Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori
2013-11-01
Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.
Prediction and realization of ITER-like pedestal pressure in the high- B tokamak Alcator C-Mod
NASA Astrophysics Data System (ADS)
Hughes, Jerry
2017-10-01
Fusion power in a burning plasma will scale as the square of the plasma pressure, which is increased in a straightforward way by increasing magnetic field: Pfus p2 B4 . Experiments on Alcator C-Mod, a compact high- B tokamak, have tested predictive capability for pedestal pressure, at toroidal field BT up to 8T , and poloidal field BP up to 1T . These reactor-like fields enable C-Mod to approach an ITER predicted value of 90kPa . This is expected if, as in the EPED model, the pedestal is constrained by onset of kinetic ballooning modes (KBMs) and peeling-ballooning modes (PMB), yielding a pressure pedestal approximately as pped BT ×BP . One successful path to high confinement on C-Mod is the high-density (ne > 3 ×1020m-3) approach, pursued using enhanced D-alpha (EDAs) H-mode. In EDA H-mode, transport regulates both the pedestal profiles and the core impurity content, holding the pedestal stationary, at just below the PBM stability boundary. We have extended this stationary ELM-suppressed regime to the highest magnetic fields achievable on C-Mod, and used it to approach the maximum pedestal predicted by EPED at high density: pped 60kPa . Another approach to high pressure utilizes a pedestal limited by PBMs at low collisionality, where pressure increases with density and EPED predicts access to a higher ``Super H'' solution for pped. Experiments at reduced density (ne < 2 ×1020m-3) and strong plasma shaping (δ > 0.5) accessed these regimes on C-Mod, producing pedestals with world record pped 80kPa , at Tped 2keV . In both the high and low density approaches, the impact of the pedestal on core performance is substantial. Our exploration of high pedestal regimes yielded a volume-averaged pressure 〈 p 〉 > 2atm , a world record value for a magnetic fusion device. The results hold promise for the projection of pedestal pressure and overall performance of high field burning plasma devices. Supported by U.S. Department of Energy awards DE-FC02-99ER54512, DE-FG02-95ER54309, DE-FC02-06ER54873, DE-AC02-09CH11466, DE-SC0007880 using Alcator C-Mod, a DOE Office of Science User Facility.