Science.gov

Sample records for increased inflammatory gene

  1. Bactericidal Permeability Increasing Protein Gene Polymorphism is Associated with Inflammatory Bowel Diseases in the Turkish Population

    PubMed Central

    Can, Güray; Akın, Hakan; Özdemir, Filiz T.; Can, Hatice; Yılmaz, Bülent; Eren, Fatih; Atuğ, Özlen; Ünsal, Belkıs; Hamzaoğlu, Hülya O.

    2015-01-01

    Background/Aims: Inflammatory bowel disease, a chronic inflammatory disease with unknown etiology, affects the small and large bowel at different levels. It is increasingly considered that innate immune system may have a central position in the pathogenesis of the disease. As a part of the innate immune system, bactericidal permeability increasing protein has an important role in the recognition and neutralization of gram-negative bacteria. The aim of our study was to investigate the involvement of bactericidal permeability increasing protein gene polymorphism (bactericidal permeability increasing protein Lys216Glu) in inflammatory bowel disease in a large group of Turkish patients. Patients and Methods: The present study included 528 inflammatory bowel disease patients, 224 with Crohn's disease and 304 with ulcerative colitis, and 339 healthy controls. Results: Bactericidal permeability increasing protein Lys216Glu polymorphism was found to be associated with both Crohn's disease and ulcerative colitis (P = 0.0001). The frequency of the Glu/Glu genotype was significantly lower in patients using steroids and in those with steroid dependence (P = 0.012, OR, 0.80; 95% confidence interval [CI]: 0.68-0.94; P = 0.0286, OR, 0.75; 95% CI: 0.66-0.86, respectively). There was no other association between bactericidal permeability increasing protein gene polymorphism and phenotypes of inflammatory bowel disease. Conclusions: Bactericidal permeability increasing protein Lys216Glu polymorphism is associated with both Crohn's disease and ulcerative colitis. This is the first study reporting the association of bactericidal permeability increasing protein gene polymorphism with steroid use and dependence in Crohn's disease. PMID:26228368

  2. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  3. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression

    PubMed Central

    Labadorf, Adam; Hoss, Andrew G.; Lagomarsino, Valentina; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Bregu, Joli; MacDonald, Marcy E.; Gusella, James F.; Chen, Jiang-Fan; Akbarian, Schahram; Weng, Zhiping; Myers, Richard H.

    2015-01-01

    Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD. PMID:26636579

  4. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  5. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-06

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality.

  6. Targeted rejection predicts decreased anti-inflammatory gene expression and increased symptom severity in youth with asthma

    PubMed Central

    Murphy, Michael Liam; Slavich, George; Chen, Edith; Miller, Greg

    2014-01-01

    Although responses to stress are sometimes assumed to be similar across different stressors, recent research has demonstrated that certain types of stress, such as targeted rejection, are particularly impactful. To test such associations in a chronic disease model, we examined how non-interpersonal, interpersonal, and targeted rejection life events predicted changes in gene expression and symptom severity in 121 youth with asthma who were assessed every 6 months for 2 years. Youth who recently experienced targeted rejection had less mRNA for signaling molecules that control airway inflammation and obstruction, specifically the glucocorticoid receptor and β2-adrenergic receptor. These associations were specific to targeted rejection and stronger for higher-status youth. Higher-status youth exposed to targeted rejection (but not other types of stress) also exhibited more asthma symptoms. These data demonstrate stressor-specific associations with molecular signaling pathways and asthma disease severity, and suggests threats to the social self may be particularly deleterious. PMID:25564524

  7. Harsh parent-child conflict is associated with decreased anti-inflammatory gene expression and increased symptom severity in children with asthma.

    PubMed

    Ehrlich, Katherine B; Miller, Gregory E; Chen, Edith

    2015-11-01

    Asthma is a chronic respiratory disorder that affects over 7 million children in the United States. Evidence indicates that family stressors are associated with worsening of asthma symptoms, and some research suggests that these stressful experiences engender changes in children's immune systems in ways that exacerbate airway inflammation and contribute to both acute and chronic asthma symptoms. We examined the association between observed experiences of parent-child conflict and the expression of signaling molecules involved in the transduction of anti-inflammatory signals that regulate airway inflammation and obstruction. Fifty-seven children and their parents participated in a conflict task, and coders rated interactions for evidence of harsh and supportive behaviors. Children reported on their perceptions of parental support and reported on their daily asthma symptoms for 2 weeks. We collected peripheral blood in children to measure leukocyte expression of messenger RNA for the glucocorticoid receptor and the β2-adrenergic receptor. Analyses revealed that harsh conflict behaviors were associated with decreased expression of both messenger RNAs and more severe asthma symptoms. Neither supportive behaviors nor perceived parental support was associated with gene expression or asthma symptoms. These findings suggest that harsh interactions with parents are associated with downregulation of key anti-inflammatory signaling molecules and difficulties breathing in children with asthma. Children with asthma who are also victims of maltreatment may be particularly susceptible to transcriptional changes in immune cells that could worsen asthma over time.

  8. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMA(III)) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression.

    PubMed

    Escudero-Lourdes, C; Uresti-Rivera, E E; Oliva-González, C; Torres-Ramos, M A; Aguirre-Bañuelos, P; Gandolfi, A J

    2016-10-01

    Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMA(III)), which accumulates in glial cells without compromising cell viability. MMA(III) LD50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMA(III) concentrations (50-1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMA(III) concentrations that also induced TNF-α over-expression. Other effects of MMA(III) on cortical astrocytes included increased proliferative and metabolic activity. All tested MMA(III) concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMA(III) induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

  9. Polymorphisms within inflammatory genes and colorectal cancer

    PubMed Central

    Landi, Stefano; Gemignani, Federica; Bottari, Fabio; Gioia-Patricola, Lydie; Guino, Elisabet; Cambray, María; Biondo, Sebastiano; Capella, Gabriel; Boldrini, Laura; Canzian, Federico; Moreno, Victor

    2006-01-01

    Background Chronic inflammation is a risk factor for colorectal cancer and polymorphisms in the inflammatory genes could modulate the levels of inflammation. We have investigated ten single nucleotide polymorphisms (SNPs) in the following inflammation-related genes: TLR4 (Asp299Gly), CD14 (-260 T>C), MCP1 (-2518 A>G), IL12A (+7506 A>T, +8707 A>G, +9177 T>A, +9508 G>A), NOS2A (+524T>C), TNF (-857C>T), and PTGS1 (V444I) in 377 colorectal (CRC) cancer cases and 326 controls from Barcelona (Spain). Results There was no statistically significant association between the SNPs investigated and colorectal cancer risk. Conclusion The lack of association may show that the inflammatory genes selected for this study are not involved in the carcinogenic process of colorectum. Alternatively, the negative results may derive from no particular biological effect of the analysed polymorphisms in relation to CRC. Otherwise, the eventual biological effect is so little to go undetected, unless analysing a much larger sample size. PMID:17062130

  10. Metabolic and inflammatory genes in schizophrenia.

    PubMed

    Chase, Kayla A; Rosen, Cherise; Gin, Hannah; Bjorkquist, Olivia; Feiner, Benjamin; Marvin, Robert; Conrin, Sean; Sharma, Rajiv P

    2015-01-30

    Energy metabolism and immunity are characterized as abnormal in schizophrenia. Because these two systems are highly coordinated, we measured expression of prototypic obesogenic and immunogenic genes in freshly harvested PBMC from controls and participants with schizophrenia. We report significant increases in PPARγ, SREBP1, IL-6 and TNFα, and decreases in PPARα and C/EPBα and mRNA levels from patients with schizophrenia, with additional BMI interactions, characterizing dysregulation of genes relating to metabolic-inflammation in schizophrenia.

  11. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves.

    PubMed

    Taylor, Geraldine; Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J

    2014-06-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity.

  12. Flavone deglycosylation increases their anti-inflammatory activity and absorption

    PubMed Central

    Hostetler, Gregory; Riedl, Ken; Cardenas, Horacio; Diosa-Toro, Mayra; Arango, Daniel; Schwartz, Steven; Doseff, Andrea I.

    2014-01-01

    Scope Flavones have reported anti-inflammatory activities, but the ability of flavone-rich foods to reduce inflammation is unclear. Here, we report the effect of flavone glycosylation in the regulation of inflammatory mediators in vitro and the absorption of dietary flavones in vivo. Methods and results The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects. Deglycosylation of flavones increased cellular uptake and cytoplasmic localization as shown by high-performance liquid chromatography (HPLC) and microscopy using the flavonoid fluorescent dye diphenyl-boric acid 2-aminoethyl ester (DPBA). Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5 or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). Conclusion These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases. PMID:22351119

  13. Increased circulating inflammatory endothelial cells in blacks with essential hypertension.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Woollard, John R; Herrmann, Sandra M; Gloviczki, Monika L; Saad, Ahmed; Juncos, Luis A; Calhoun, David A; Rule, Andrew D; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2013-09-01

    Morbidity and mortality attributable to hypertension are higher in black essential hypertensive (EH) compared with white EH patients, possibly related to differential effects on vascular injury and repair. Although circulating endothelial progenitor cells (EPCs) preserve endothelial integrity, inflammatory endothelial cells (IECs) detach from sites of injury and represent markers of vascular damage. We hypothesized that blood levels of IECs and inflammatory markers would be higher in black EH compared with white EH patients. Inferior vena cava and renal vein levels of CD34+/KDR+ (EPC) and VAP-1+ (IEC) cells were measured by fluorescence-activated cell sorting in white EH and black EH patients under fixed sodium intake and blockade of the renin-angiotensin system, and compared with systemic levels in normotensive control subjects (n=19 each). Renal vein and inferior vena cava levels of inflammatory cytokines and EPC homing factors were measured by Luminex. Blood pressure, serum creatinine, lipids, and antihypertensive medications did not differ between white and black EH patients, and EPC levels were decreased in both. Circulating IEC levels were elevated in black EH patients, and inversely correlated with EPC levels (R(2)=0.58; P=0.0001). Systemic levels of inflammatory cytokines and EPC homing factors were higher in black EH compared with white EH patients, and correlated directly with IECs. Renal vein inflammatory cytokines, EPCs, and IECs did not differ from their circulating levels. Most IECs expressed endothelial markers, fewer expressed progenitor cell markers, but none showed lymphocyte or phagocytic cell markers. Thus, increased release of cytokines and IECs in black EH patients may impair EPC reparative capacity and aggravate vascular damage, and accelerate hypertension-related complications.

  14. Deregulation of inflammatory response in the diabetic condition is associated with increased ischemic brain injury

    PubMed Central

    2014-01-01

    Background Although elicited inflammation contributes to tissue injury, a certain level of inflammation is necessary for subsequent tissue repair/remodeling. Diabetes, a chronic low-grade inflammatory state, is a predisposing risk factor for stroke. The condition is associated with delayed wound healing, presumably due to disrupted inflammatory responses. With inclusion of the diabetic condition in an experimental animal model of stroke, this study investigates whether the condition alters inflammatory response and influences stroke-induced brain injury. Methods C57BL/6 mice were fed a diabetic diet (DD) for 8 weeks to induce an experimental diabetic condition or a normal diet (ND) for the same duration. Gene expression of inflammatory factors including monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), CCR2, and CD36 was assessed in the peripheral immune cells and brains of normal and diabetic mice before and after focal cerebral ischemia. The expression of these factors was also determined in lipopolysaccharide (LPS)-treated cultured normal and diabetic macrophages. Ischemic outcome was assessed in these mice at 3 days post-ischemia. Results DD intervention in mice resulted in obesity and elevated insulin and glucose level in the blood. The peritoneal immune cells from the diabetic mice showed higher MCP-1 mRNA levels before and after stroke. Compared to normal mice, diabetic mice showed reduced MCP-1, IL-6, and CCR2 gene expression in the brain at 6 h post-ischemia. LPS-stimulated inflammatory responses were also reduced in the diabetic macrophages. The diabetic mice showed larger infarct size and percent swelling. Conclusions These results showed that diabetic conditions deregulate acute inflammatory response and that the condition is associated with increased stroke-induced injury. The study suggests that interventions aimed at restoring appropriate inflammatory response in peripheral immune cells/macrophages may be beneficial in reducing

  15. Increased Prevalence of Methanosphaera stadtmanae in Inflammatory Bowel Diseases

    PubMed Central

    Blais Lecours, Pascale; Marsolais, David; Cormier, Yvon; Berberi, Marie; Haché, Chantal; Bourdages, Raymond; Duchaine, Caroline

    2014-01-01

    Background The gut microbiota is associated with the modulation of mucosal immunity and the etiology of inflammatory bowel diseases (IBD). Previous studies focused on the impact of bacterial species on IBD but seldom suspected archaea, which can be a major constituent of intestinal microbiota, to be implicated in the diseases. Recent evidence supports that two main archaeal species found in the digestive system of humans, Methanobrevibacter smithii (MBS) and Methanosphaera stadtmanae (MSS) can have differential immunogenic properties in lungs of mice; with MSS but not MBS being a strong inducer of the inflammatory response. We thus aimed at documenting the immunogenic potential of MBS and MSS in humans and to explore their association with IBD. Methods To validate the immunogenicity of MBS and MSS in humans, peripheral blood mononuclear cells from healthy subjects were stimulated with these two microorganisms and the production of inflammatory cytokine TNF was measured by ELISA. To verify MBS and MSS prevalence in IBD, stool samples from 29 healthy control subjects and 29 patients suffering from IBD were collected for DNA extraction. Plasma was also collected from these subjects to measure antigen-specific IgGs by ELISA. Quantitative PCR was used for bacteria, methanogens, MBS and MSS quantification. Results Mononuclear cells stimulated with MSS produced higher concentrations of TNF (39.5 ng/ml) compared to MBS stimulation (9.1 ng/ml). Bacterial concentrations and frequency of MBS-containing stools were similar in both groups. However, the number of stool samples positive for the inflammatory archaea MSS was higher in patients than in controls (47% vs 20%). Importantly, only IBD patients developed a significant anti-MSS IgG response. Conclusion The prevalence of MSS is increased in IBD patients and is associated with an antigen-specific IgG response. PMID:24498365

  16. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease

    PubMed Central

    Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn’s disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn’s disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn’s disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies. PMID:28052094

  17. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    PubMed

    Costa Pereira, Cristiana; Durães, Cecília; Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito; Magro, Fernando

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  18. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications

    PubMed Central

    Sjogren, M; Folkesson, S; Blennow, K; Tarkowski, E

    2004-01-01

    Objective: Immunological mechanisms may be part of the pathophysiological mechanisms in frontotemporal dementia (FTD), but hitherto only vague evidence of such mechanisms has been presented. The aim of this study was to compare the cerebrospinal fluid (CSF) levels of the pro-inflammatory cytokines interleukin (IL)-1ß and tumour necrosis factor (TNF)-α, and the anti-inflammatory cytokine transforming growth factor (TGF)-ß in patients with FTD and normal controls. Furthermore, serum levels of TNF-α, TGF-ß, and IL-1ß were measured in FTD patients. Methods: The CSF levels of IL-1ß, TNFα, and TGF-ß were measured using ELISA in 19 patients with FTD and 24 sex and age matched healthy controls. Results: The CSF levels of TNF-α (FTD 0.6 pg/mL (median: lower, upper quartile 0.3, 0.7); controls: 0.0 pg/mL (0.0, 0.0); p = 0.008) and TGF-ß (FTD 266 pg/mL (157, 371), controls: 147 pg/mL (119, 156); p = 0.0001) were significantly increased in FTD patients compared with controls. No correlations were found between CSF and serum levels of the cytokines. In the controls, but not in the FTD patients, a positive correlation was found between the CSF levels of TGF-ß and age (r = 0.42, p<0.05). No correlation was found between any of the cytokines and degree of brain atrophy or white matter changes. No differences between the groups were found for age, gender, or CSF/serum albumin ratio. Conclusions: The results suggest an increased intrathecal production of both pro- and anti-inflammatory cytokines in FTD. As no correlations were found with the albumin ratio, and no correlations between CSF and serum levels of the cytokines were found, these changes in the CSF cannot be explained by a systemic overproduction of cytokines. PMID:15258209

  19. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    PubMed

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  20. WISP1 Is Increased in Intestinal Mucosa and Contributes to Inflammatory Cascades in Inflammatory Bowel Disease

    PubMed Central

    Zhang, Qi; Zhang, Cuiping; Li, Xiaoyu; Yu, Yanan; Liang, Kun; Shan, Xinzhi; Zhao, Kun; Niu, Qinghui; Tian, Zibin

    2016-01-01

    Inflammatory bowel disease (IBD) is mainly characterized by intestinal tissue damage, which is caused by excessive autoimmune responses poorly controlled by corresponding regulatory mechanisms. WISP1, which belongs to the CCN protein family, is a secreted matricellular protein regulating several inflammatory pathways, such as Wnt/β-catenin pathway, and has been reported in several diseases including cancer. Here we examined the expression, regulatory mechanisms, and functions of WISP1 in IBD. WISP1 mRNA and protein expression was upregulated in colonic biopsies and lamina propria mononuclear cells (LPMC) of IBD patients compared with those of healthy controls. Tumor necrosis factor- (TNF-) α induced WISP1 expression in LPMC from healthy controls. Consistently, WISP1 mRNA expression was downregulated in colonic biopsies from IBD patients who had achieved clinical remission with infliximab (IFX). Furthermore, WISP1 expression was also found to be increased in colons from 2,4,6-trinitrobenzenesulfonic acid- (TNBS-) induced mice compared with those from control mice. Further studies confirmed that administration of rWISP1 could aggravate TNBS-induced colitis in vivo. Therefore, we concluded that WISP1 is increased in IBD and contributes to the proinflammatory cascades in the gut. PMID:27403031

  1. Systematically identify key genes in inflammatory and non-inflammatory breast cancer.

    PubMed

    Chai, Fan; Liang, Yan; Zhang, Fan; Wang, Minghao; Zhong, Ling; Jiang, Jun

    2016-01-10

    Although the gene expression in breast tumor stroma, playing a critical role in determining inflammatory breast cancer (IBC) phenotype, has been proved to be significantly different between IBC and non-inflammatory breast cancer (non-IBC), more effort needs to systematically investigate the gene expression profiles between tumor epithelium and stroma and to efficiently uncover the potential molecular networks and critical genes for IBC and non-IBC. Here, we comprehensively analyzed and compared the transcriptional profiles from IBC and non-IBC patients using hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, and identified PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1 and MMP2 to be the key genes for breast cancer. Interestingly, PDGFRβ was found to be the hub gene in both IBC and non-IBC; SUMO1 and COL1A1 were respectively the key genes for IBC and non-IBC. These analysis results indicated that those key genes might play important role in IBC and non-IBC and provided some clues for future studies.

  2. Variants in the inflammatory IL6 and MPO genes modulate stroke susceptibility through main effects and gene–gene interactions

    PubMed Central

    Manso, Helena; Krug, Tiago; Sobral, João; Albergaria, Isabel; Gaspar, Gisela; Ferro, José M; Oliveira, Sofia A; Vicente, Astrid M

    2011-01-01

    There is substantial evidence that inflammation within the central nervous system contributes to stroke risk and recovery. Inflammatory conditions increase stroke risk, and the inflammatory response is of major importance in recovery and healing processes after stroke. We investigated the role of inflammatory genes IL1B, IL6, MPO, and TNF in stroke susceptibility and recovery in a population sample of 672 patients and 530 controls, adjusting for demographic, clinical and lifestyle risk factors, and stroke severity parameters. We also considered the likely complexity of inflammatory mechanisms in stroke, by assessing the combined effects of multiple genes. Two interleukin 6 (IL6) and one myeloperoxidase (MPO) single-nucleotide polymorphisms were significantly associated with stroke risk (0.022gene variants of low to moderate effect in stroke risk. An epistatic interaction between the IL6 and MPO genes was also identified in association with stroke susceptibility (P=0.031 after 1,000 permutations). In a subset of 546 patients, one IL6 haplotype was associated with stroke outcome at 3 months (correctedP=0.024), an intriguing finding warranting further validation. Our findings support the association of the IL6 gene and present novel evidence for the involvement of MPO in stroke susceptibility, suggesting a modulation of stroke risk by main gene effects, clinical and lifestyle factors, and gene–gene interactions. PMID:21407237

  3. Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    PubMed Central

    Denzler, Karen L.; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Langland, Jeffrey O.

    2010-01-01

    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses. PMID:20838436

  4. Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies.

    PubMed

    Puttini, Stefania; Panaite, Petrica-Adrian; Mermod, Nicolas; Renaud, Susanne; Steck, Andreas J; Kuntzer, Thierry

    2014-05-15

    Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder.

  5. Increased production of inflammatory cytokines in mild cognitive impairment.

    PubMed

    Magaki, Shino; Mueller, Claudius; Dickson, Cindy; Kirsch, Wolff

    2007-03-01

    Recent studies indicate that chronic inflammation plays a pathogenic role in both the central nervous system (CNS) and periphery in Alzheimer's disease (AD). We have screened for cytokines differentially produced by peripheral blood mononuclear cells (PBMCs) isolated from subjects with mild cognitive impairment (MCI) and mild AD subjects who had progressed from MCI using a commercially available cytokine array. Following determination of expressed cytokines, we quantified levels of the proinflammatory cytokines TNF-alpha, IL-6, and IL-8, and the anti-inflammatory cytokine IL-10 using flow cytometry. We have found a significant increase in the levels of IL-6, IL-8, and IL-10 produced by PBMCs stimulated for 24 h with phytohemagglutinin (PHA) in MCI subjects compared to healthy elderly controls. However, in PBMCs stimulated for 48 h with lipopolysaccharide (LPS), lower TNF-alpha/IL-10, IL-6/IL-10, and IL-8/IL-10 ratios were seen in MCI subjects. There were no differences in plasma levels of IL-8 between aged controls, MCI, and mild AD, and the levels of circulating IL-6 and IL-10 were below detection limits. Our data indicate that changes in cytokine production by PBMCs may be detected early in MCI, and an alteration of the immune response may precede clinical AD.

  6. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  7. Influence of triterpenoids present in apple peel on inflammatory gene expression associated with inflammatory bowel disease (IBD).

    PubMed

    Mueller, Dolores; Triebel, Sven; Rudakovski, Olga; Richling, Elke

    2013-08-15

    Various ursanic, oleanic and lupanic pentacyclic triterpenoids found in apple peel were studied for anti-inflammatory effects in vitro using T84 colon carcinoma cells. After pretreatment with single triterpenoids, cells were stimulated with pro-inflammatory cytokines (TNF-α, INF-γ, IL-1β). Regulation of mRNA expression was analysed for three specific inflammation-associated marker genes (TNF-α, IL-8, IP-10) using qRT-PCR. Furthermore, the effects of ursolic acid (UA) and oleanolic acid (OA) on the synthesis of certain pro-inflammatory proteins were examined. IP-10 expression was inhibited in a dose-dependent manner by all the tested compounds at concentrations ≥25 μM. The mRNA expression of TNF-α was slightly affected and the IL-8 level was increased. At the protein level, UA and OA (25 μM) reduced the synthesis of IP-10; sICAM-1, IL-23 and GROα were slightly repressed. The TNF-α level was not modulated, whereas induction of IL-8 was increased. UA also enhanced the synthesis of IL-1ra, while OA suppressed the level of I-TAC. The present study confirms that triterpenoids present in apple peel and β-damascone may be implicated in the anti-inflammatory properties of apple constituents, suggesting that these substances might be helpful in the treatment of IBD as nutrient supplements.

  8. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers

    PubMed Central

    Saadi, Amel; Shannon, Nicholas B.; Lao-Sirieix, Pierre; O’Donovan, Maria; Walker, Elaine; Clemons, Nicholas J.; Hardwick, James S.; Zhang, Chunsheng; Das, Madhumita; Save, Vicki; Novelli, Marco; Balkwill, Frances; Fitzgerald, Rebecca C.

    2010-01-01

    The stromal compartment is increasingly recognized to play a role in cancer. However, its role in the transition from preinvasive to invasive disease is unknown. Most gastrointestinal tumors have clearly defined premalignant stages, and Barrett’s esophagus (BE) is an ideal research model. Supervised clustering of gene expression profiles from microdissected stroma identified a gene signature that could distinguish between BE metaplasia, dysplasia, and esophageal adenocarcinoma (EAC). EAC patients overexpressing any of the five genes (TMEPAI, JMY, TSP1, FAPα, and BCL6) identified from this stromal signature had a significantly poorer outcome. Gene ontology analysis identified a strong inflammatory component in BE disease progression, and key pathways included cytokine–cytokine receptor interactions and TGF-β. Increased protein levels of inflammatory-related genes significantly up-regulated in EAC compared with preinvasive stages were confirmed in the stroma of independent samples, and in vitro assays confirmed functional relevance of these genes. Gene set enrichment analysis of external datasets demonstrated that the stromal signature was also relevant in the preinvasive to invasive transition of the stomach, colon, and pancreas. These data implicate inflammatory pathways in the genesis of gastrointestinal tract cancers, which can affect prognosis. PMID:20080664

  9. Increased Dietary Inflammatory Index (DII) Is Associated With Increased Risk of Prostate Cancer in Jamaican Men

    PubMed Central

    Shivappa, Nitin; Jackson, Maria D.; Bennett, Franklyn; Hébert, James R.

    2015-01-01

    Purpose Prostate cancer is the most common non-skin malignancy; and it accounts for the most cancer deaths among Jamaican males. Diet has been implicated in the etiology of prostate cancer, including through its effects on inflammation. Method We examined the association between a newly developed dietary inflammatory index (DII) and prostate cancer in a case-control study of 40-80 year-old Jamaican males. A total of 229 incident cases and 250 controls attended the same urology out-patient clinics at 2 major hospitals and private practitioners in the Kingston, Jamaica Metropolitan area between March 2005 and July 2007. The DII was computed based on dietary intake assessed using a previously validated food frequency questionnaire (FFQ) that was expanded to assess diet and cancer in this Jamaican population. Multivariable logistic regression was used to estimate odds ratios, with DII as continuous and expressed as quartiles. Logistic regression analysis adjusted for age, total energy intake, education, body mass index (BMI), smoking status, physical activity and family history of prostate cancer. Results Men in the highest quartile of the DII were at higher risk of prostate cancer [odds ratio (OR) = 2.39; 95% confidence interval (CI) =1.14–5.04 (Ptrend = 0.08)] compared to men in the lowest DII quartile. Conclusion These data suggest a pro-inflammatory diet, as indicated by increasing DII score, may be a risk factor for prostate cancer in Jamaican men. PMID:26226289

  10. Transcription of Inflammatory Genes: Long Noncoding RNA and Beyond

    PubMed Central

    Carpenter, Susan

    2015-01-01

    The innate immune system must coordinate elaborate signaling pathways to turn on expression of hundreds of genes to provide protection against pathogens and resolve acute inflammation. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional on and off switches in response to distinct external stimuli. Three classes of transcription factors act together with transcriptional coregulators and chromatin-modifying complexes to control these programs. In addition, newer studies implicate long noncoding RNA (lncRNA) as additional regulators of these responses. LncRNAs promote, fine-tune, and restrain the inflammatory program. In this study, we provide an overview of gene regulation and the emerging importance of lncRNAs in the immune system. PMID:25250698

  11. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells.

    PubMed

    Smith, Kathryn E; Metzler, Scott A; Warnock, James N

    2010-02-01

    Mechanical in vitro preconditioning of tissue engineered heart valves is viewed as an essential process for tissue development prior to in vivo implantation. However, a number of pro-inflammatory genes are mechanosensitive and their elaboration could elicit an adverse response in the host. We hypothesized that the application of normal physiological levels of strain to isolated valve interstitial cells would inhibit the expression of pro-inflammatory genes. Cells were subjected to 0, 5, 10, 15 and 20% strain. Expression of VCAM-1, MCP-1, GM-CSF and OPN was then measured using qRT-PCR. With the exception of OPN, all genes were significantly up regulated when no strain was applied. MCP-1 expression was significantly lower in the presence of strain, although strain magnitude did not affect the expression level. VCAM-1 and GM-CSF had the lowest expression levels at 15% strain, which represent normal physiological conditions. These findings were confirmed using confocal microscopy. Additionally, pSMAD 2/3 and IkappaBalpha expression were imaged to elucidate potential mechanisms of gene expression. Data showed that 15% strain increased pSMAD 2/3 expression and prevented phosphorylation of IkappaBalpha. In conclusion, cyclic strain reduces expression of pro-inflammatory genes, which may be beneficial for the in vitro pre-conditioning of tissue engineered heart valves.

  12. Inflammatory bowel disease: An increased risk factor for neurologic complications

    PubMed Central

    Morís, Germán

    2014-01-01

    Only a very few systematic studies have investigated the frequency of neurologic disorders in patients with Crohn’s disease (CD) and ulcerative colitis (UC), which are the two main types of inflammatory bowel disease (IBD). Results have been inconsistent and variable, owing to differences in case-finding methods and evaluated outcomes in different studies. The most frequent neurologic manifestations reported in CD and UC populations are cerebrovascular disease (with either arterial or venous events), demyelinating central nervous system disease, and peripheral neuropathy (whether axonal or demyelinating); however, the literature describes numerous nervous system disorders as being associated with IBD. The pathogenesis of nervous system tissue involvement in IBD has yet to be elucidated, although it seems to be related to immune mechanisms or prothrombotic states. The recently-introduced tumor necrosis factor (TNF) inhibitors have proven successful in controlling moderate to severe IBD activity. However, severe neurologic disorders associated with TNF inhibitors have been reported, which therefore raises concerns regarding the effect of anti-TNF-α antibodies on the nervous system. Although neurological involvement associated with IBD is rarely reported, gastroenterologists should be aware of the neurologic manifestations of IBD in order to provide early treatment, which is crucial for preventing major neurologic morbidity. PMID:24574797

  13. Anti-inflammatory genes associated with multiple sclerosis: a gene expression study.

    PubMed

    Perga, S; Montarolo, F; Martire, S; Berchialla, P; Malucchi, S; Bertolotto, A

    2015-02-15

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system caused by a complex interaction between multiple genes and environmental factors. HLA region is the strongest susceptibility locus, but recent huge genome-wide association studies identified new susceptibility genes. Among these, BACH2, PTGER4, RGS1 and ZFP36L1 were highlighted. Here, a gene expression analysis revealed that three of them, namely BACH2, PTGER4 and ZFP36L1, are down-regulated in MS patients' blood cells compared to healthy subjects. Interestingly, all these genes are involved in the immune system regulation with predominant anti-inflammatory role and their reduction could predispose to MS development.

  14. Control of Middle Ear Inflammatory and Ion Homeostasis Genes by Transtympanic Glucocorticoid and Mineralocorticoid Treatments

    PubMed Central

    Lighthall, Jessyka G.; Kempton, J. Beth; Hausman, Frances; MacArthur, Carol J.; Trune, Dennis R.

    2015-01-01

    Hypothesis Transtympanic steroid treatment will induce changes in ion homeostasis and inflammatory gene expression to decrease middle ear inflammation due to bacterial inoculation. Background Otitis media is common, but treatment options are limited to systemic antibiotic therapy or surgical intervention. Systemic glucocorticoid treatment of mice decreases inflammation and improves fluid clearance. However, transtympanic delivery of glucocorticoids or mineralocorticoid has not been explored to determine if direct steroid application is beneficial. Methods Balb/c mice received transtympanic inoculation of heat-killed Haemophilus influenzae (H flu), followed by transtympanic treatment with either prednisolone or aldosterone. Mice given PBS instead of steroid and untreated mice were used as controls. Four hours after steroid treatment, middle ears were harvested for mRNA extraction and 24 hours after inoculation middle ears were harvested and examined for measures of inflammation. Results H flu inoculation caused the increased expression of nearly all inflammatory cytokine genes and induced changes in expression of several genes related to cellular junctions and transport channels. Both steroids generally reversed the expression of inflammatory genes and caused ion and water regulatory genes to return to normal or near normal levels. Histologic evaluation of middle ears showed improved fluid and inflammatory cell clearance. Conclusion Improvement in middle ear inflammation was noted with both the glucocorticoid prednisolone and the mineralocorticoid aldosterone. This was due to reversal of inflammation-induced changes in middle ear cytokine genes, as well as those involved in ion and water homeostasis. Because glucocorticoids bind to the mineralocorticoid receptor, but not the reverse, it is concluded that much of the reduction of fluid and other inflammation measures was due to these steroids impact on ion and water transport channels. Further research is necessary

  15. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy.

    PubMed

    Matsuda, Naoyuki; Hattori, Yuichi

    2006-07-01

    In recent years, extensive basic science research has led to a clear understanding of the molecular mechanisms contributing to the pathophysiology of sepsis. Sepsis is now defined as a systemic inflammatory response syndrome (SIRS) in which there is an identifiable focus of infection. SIRS can be also precipitated by non-infective events such as trauma, pancreatitis, and surgery. As a consequence of an overactive SIRS response, the function of various organ systems may be compromised, resulting in multiple organ dysfunction syndrome (MODS) and death. Production and activation of multiple proinflammatory genes are likely to play a key role in the pathogenesis of MODS development. This review article focuses on the molecular mechanisms and components involved in the pathogenesis of severe sepsis. This includes cellular targets of sepsis-inducing bacterial products and their signaling pathways with a major emphasis on transcription factors and new therapeutic approaches to severe sepsis.

  16. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells.

    PubMed

    Chou, Hsin-Hua; Yumoto, Hiromichi; Davey, Michael; Takahashi, Yusuke; Miyamoto, Takanari; Gibson, Frank C; Genco, Caroline A

    2005-09-01

    Epidemiological and pathological studies have suggested that infection with the oral pathogen Porphyromonas gingivalis can potentiate atherosclerosis and human coronary heart disease. Furthermore, infection with invasive, but not noninvasive P. gingivalis has been demonstrated to accelerate atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice and to accelerate local inflammatory responses in aortic tissue. In the present study, using high-density oligonucleotide microarrays, we have defined the gene expression profile of human aortic endothelial cells (HAEC) after infection with invasive and noninvasive P. gingivalis. After infection of HAEC with invasive P. gingivalis strain 381, we observed the upregulation of 68 genes. Genes coding for the cytokines Gro2 and Gro3; the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM)-1, and ELAM-1 (E-selectin); the chemokine interleukin-8 (IL-8); and the proinflammatory molecules IL-6 and cyclooxygenase-2 were among the most highly upregulated genes in P. gingivalis 381-infected HAEC compared to uninfected HAEC control. Increased mRNA levels for signaling molecules, transcriptional regulators, and cell surface receptors were also observed. Of note, only 4 of these 68 genes were also upregulated in HAEC infected with the noninvasive P. gingivalis fimA mutant. Reverse transcription-PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting analysis confirmed the expression of ICAM-1, VCAM-1, E-/P-selectins, IL-6, and IL-8 in HAEC infected with invasive P. gingivalis. We also demonstrated that increased expression of ICAM-1 and VCAM-1 in aortic tissue of ApoE(-/-) mice orally challenged with invasive P. gingivalis but not with the noninvasive P. gingivalis fimA mutant by immunohistochemical analysis. Taken together, these results demonstrate that P. gingivalis fimbria-mediated invasion upregulates inflammatory gene expression in HAEC and in aortic

  17. Activation of the IL-1 gene in UV-irradiated mouse skin: association with inflammatory sequelae and pharmacologic intervention.

    PubMed

    Griswold, D E; Connor, J R; Dalton, B J; Lee, J C; Simon, P; Hillegass, L; Sieg, D J; Hanna, N

    1991-12-01

    The relationship between ultraviolet irradiation, interleukin-1 production, and inflammatory sequelae and the pharmacologic inhibition of these events was investigated in Balb/c mice exposed to ultraviolet irradiation from a bank of six Westinghouse FS40 sunlamps. The resulting edema (66% increase), inflammatory cell infiltration, and rise in the acute-phase reactant (fourfold) serum amyloid P component was preceded by the activation of the interleukin-1 beta gene and enhanced product formation. Administration of dexamethasone, which is known to inhibit interleukin-1 production, inhibited the inflammatory response to ultraviolet irradiation. Thus, production of interleukin-1 may be one of the initial events leading to the consequences of ultraviolet irradiation exposure.

  18. Epigenetic regulation of inflammatory gene expression in macrophages by selenium.

    PubMed

    Narayan, Vivek; Ravindra, Kodihalli C; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A; Prabhu, K Sandeep

    2015-02-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of proinflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNFα promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1-infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the down-regulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone-marrow-derived macrophages from Trsp(fl/fl)Cre(LysM) mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid contributes, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of proinflammatory genes.

  19. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression.

    PubMed

    Quinn, Matthew A; Cidlowski, John A

    2016-02-01

    An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression.

  20. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  1. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.

    PubMed

    de Lange, Katrina M; Moutsianas, Loukas; Lee, James C; Lamb, Christopher A; Luo, Yang; Kennedy, Nicholas A; Jostins, Luke; Rice, Daniel L; Gutierrez-Achury, Javier; Ji, Sun-Gou; Heap, Graham; Nimmo, Elaine R; Edwards, Cathryn; Henderson, Paul; Mowat, Craig; Sanderson, Jeremy; Satsangi, Jack; Simmons, Alison; Wilson, David C; Tremelling, Mark; Hart, Ailsa; Mathew, Christopher G; Newman, William G; Parkes, Miles; Lees, Charlie W; Uhlig, Holm; Hawkey, Chris; Prescott, Natalie J; Ahmad, Tariq; Mansfield, John C; Anderson, Carl A; Barrett, Jeffrey C

    2017-02-01

    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 and ITGB8) and at previously implicated loci (ITGAL and ICAM1). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2, and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.

  2. Asian Sand Dust Enhances the Inflammatory Response and Mucin Gene Expression in the Middle Ear

    PubMed Central

    Chang, Jiwon; Go, Yoon Young; Park, Moo Kyun; Chae, Sung-Won; Lee, Seon-Heui; Song, Jae-Jun

    2016-01-01

    Objectives. Asia sand dust (ASD) is known to cause various human diseases including respiratory infection. The aim of this study was to examine the effect of ASD on inflammatory response in human middle ear epithelial cells (HMEECs) in vitro and in vivo. Methods. Cell viability was assessed using the cell counting kit-8 assay. The mRNA levels of various genes including COX-2, TNF-a, MUC 5AC, MUC 5B, TP53, BAX, BCL-2, NOX4, and SOD1 were analyzed using semiquantitative realtime polymerase chain reaction. COX-2 protein levels were determined by western blot analysis. Sprague Dawley rats were used for in vivo investigations of inflammatory reactions in the middle ear epithelium as a result of ASD injection. Results. We observed dose-dependent decrease in HMEEC viability. ASD exposure significantly increased COX-2, TNF-a, MUC5AC, and MUC5B mRNA expression. Also, ASD affected the mRNA levels of apoptosis- and oxidative stress-related genes. Western blot analysis revealed a dose-dependent increase in COX-2 production. Animal studies also demonstrated an ASD-induced inflammatory response in the middle ear epithelium. Conclusion. Environmental ASD exposure can result in the development of otitis media. PMID:27095518

  3. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  4. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures.

  5. Calcitonin gene-related peptide as inflammatory mediator.

    PubMed

    Springer, Jochen; Geppetti, Pierangelo; Fischer, Axel; Groneberg, David A

    2003-01-01

    Sensory neuropeptides have been proposed to play a key role in the pathogenesis of a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease or chronic cough. Next to prominent neuropeptides such as tachykinins or vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) has long been suggested to participate in airway physiology and pathophysiology. CGRP is a 37 amino-acid peptide which is expressed by nerve fibers projecting to the airways and by pulmonary neuroendocrine cells. The most prominent effects of CGRP in the airways are vasodilatation and in a few instances bronchoconstriction. A further pulmonary effect of CGRP is the induction of eosinophil migration and the stimulation of beta-integrin-mediated T cell adhesion to fibronectin at the site of inflammation. By contrast, CGRP inhibits macrophage secretion and the capacity of macrophages to activate T-cells, indicating a potential anti-inflammatory effect. Due to the complex pulmonary effects of CGRP with bronchoconstriction and vasodilatation and diverse immunomodulatory actions, potential anti-asthma drugs based on this peptide have not been established so far. However, targeting the effects of CGRP may be of value for future strategies in nerve modulation.

  6. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  7. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  8. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis

    PubMed Central

    Feng, Xi; Chen, Zhihong; Heinzmann, David; Rasmussen, Rikke Darling; Alvarez-Garcia, Virginia; Kim, Yeonghwan; Wang, Bingcheng; Tamagno, Ilaria; Zhou, Hao; Li, Xiaoxia; Kettenmann, Helmut; Ransohoff, Richard M.; Hambardzumyan, Dolores

    2015-01-01

    The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G−F4/80−/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. PMID:25987130

  9. Age-associated differences in cardiovascular inflammatory gene induction during endotoxic stress.

    PubMed

    Saito, H; Papaconstantinou, J

    2001-08-03

    Upon physiological stress, families of stress response genes are activated as natural defense mechanisms. Here, we show that induction of specific inflammatory genes is significantly dysregulated and altered in the heart of aged (24--26-month-old) versus young (4-month-old) mice experimentally challenged with a bacterial endotoxin, lipopolysaccharide (LPS, 1.5 mg/kg of body mass). Whereas the LPS-mediated induction of cardiac mRNA for tumor necrosis factor alpha or inducible nitric-oxide synthase showed no age-associated differences, the induction of interleukin-1 beta (IL-1 beta) and intracellular adhesion molecule-1 was modestly extended with aging, and the induction of IL-6 was significantly prolonged with aging. This age-associated phenomenon occurred gradually from 4 to 17 months of age and became more evident after 23 months of age. The age-associated augmentation of the cardiac IL-6 induction was also dramatic at the protein level. Immunohistochemically, the LPS-induced cardiac IL-6 was localized mainly in the microvascular walls. Aged but not young mice showed a high mortality rate during these experiments. These results demonstrate that endotoxin-mediated induction of specific inflammatory genes in cardiovascular tissues is altered with aging, which may be causally related to the increased susceptibility of aged animals to endotoxic stress.

  10. Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease?

    PubMed Central

    Kaunitz, Jonathan; Nayyar, Piyush

    2015-01-01

    The annual incidence of the inflammatory bowel diseases (IBDs) ulcerative colitis and Crohn’s disease has increased at an alarming rate. Although the specific pathophysiology underlying IBD continues to be elusive, it is hypothesized that IBD results from an aberrant and persistent immune response directed against microbes or their products in the gut, facilitated by the genetic susceptibility of the host and intrinsic alterations in mucosal barrier function. In this review, we will describe advances in the understanding of how the interaction of host genetics and the intestinal microbiome contribute to the pathogenesis of IBD, with a focus on bacterial metabolites such as short chain fatty acids (SCFAs) as possible key signaling molecules.  In particular, we will describe alterations of the intestinal microbiota in IBD, focusing on how genetic loci affect the gut microbial phylogenetic distribution and the production of their major microbial metabolic product, SCFAs. We then describe how enteroendocrine cells and myenteric nerves express SCFA receptors that integrate networks such as the cholinergic and serotonergic neural systems and the glucagon-like peptide hormonal pathway, to modulate gut inflammation, permeability, and growth as part of an integrated model of IBD pathogenesis.  Through this integrative approach, we hope that novel hypotheses will emerge that will be tested in reductionist, hypothesis-driven studies in order to examine the interrelationship of these systems in the hope of better understanding IBD pathogenesis and to inform novel therapies. PMID:27508055

  11. [Influence of silver and titanium dioxide nanoparticles on the expression of genes of biomarkers of inflammatory responses and apoptosis].

    PubMed

    Baranova, L A; Zhornik, E V; Volotovski, I D

    2015-01-01

    In order to evaluate the toxic effect of silver (AgNP) and titanium dioxide (TiO2) nanoparticles their influence on the expression of genes of biomarkers of inflammatory responses and apoptosis in human lymphocytes was studied. An increase in the IL-6, IL-8, TNF-α and p53 genes expression in the concentration range of silver and titanium dioxide nanoparticles of 10-40 μk g/ml was found. Increased expression of IL-6, IL-8, TNF-α and p53 genes under the nanoparticles action indicates the stimulation of the immune system and of apoptosis, respectively.

  12. Insulin-Like Growth Factor-1 Increases the Expression of Inflammatory Biomarkers and Sebum Production in Cultured Sebocytes

    PubMed Central

    Kim, Hyojin; Moon, Sun Young; Sohn, Mi Yeung

    2017-01-01

    Background Acne vulgaris has been linked to the Western diet. Hyperglycemic diet increases insulin and insulin-like growth factor (IGF)-1. Deeper insights into IGF-1-mediated signal pathway are critical importance to understand the impact of Western diet. Objective We investigated the effect of IGF-1 on the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Methods Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to measure changes in the expression of inflammatory biomarkers including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), IGF1R, IGFBP2, sterol response element-binding protein (SREBP), and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PI3KCA) after the treatment of cultured sebocytes with 10−7 M or 10−5 M IGF-1. Sebum production was evaluated after the treatment of cultured sebocytes with 10−7 M or 10−5 M IGF-1 using lipid analysis. Results The expression levels of IL-1β, IL-6, IL-8, and TNF-α in cultured sebocytes after treatment with 10−7 M or 10−5 M IGF-1 were increased. Increased gene expression levels of NF-κB in cultured sebocytes were also shown after 10−7 M or 10−5 M IGF-1 treatments. Gene expression of these inflammatory biomarkers was decreased after 10−7 M or 10−5 M IGF-1 treatment in the presence of 100 nM NF-κB inhibitor. Treatment with 10−7 M or 10−5 M IGF-1 increased the gene expression levels of IGF1R, IGFBP2, SREBP and PI3KCA in cultured sebocytes. Sebum production from cultured sebocytes treated with 10−7 M or 10−5 M IGF-1 was also increased. Conclusion It is suggestive that IGF-1 might be involved in the pathogenesis of acne by increasing both expression of inflammatory biomarkers and also sebum production in sebocytes. PMID:28223742

  13. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome

    PubMed Central

    Torene, Rebecca; Nirmala, Nanguneri; Obici, Laura; Cattalini, Marco; Tormey, Vincent; Caorsi, Roberta; Starck-Schwertz, Sandrine; Letzkus, Martin; Hartmann, Nicole; Abrams, Ken; Lachmann, Helen; Gattorno, Marco

    2017-01-01

    Objective To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). Methods Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. Results Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. Conclusions These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1β. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. Trial registration number NCT01242813. PMID:27474763

  14. MYO9B gene polymorphisms are associated with the risk of inflammatory bowel diseases

    PubMed Central

    Yu, Qiang; Zhu, Chun-Fu; Kong, Zhi-Jun; Zhao, Hui; Tang, Li-Ming; Qin, Xi-Hu

    2016-01-01

    Myosin IXB (MYO9B) gene polymorphisms have been extensively investigated in terms of their associations with inflammatory bowel disease (IBD), with contradictory results. The aim of this meta-analysis was to evaluate associations between MY09B gene polymorphisms and the risk of IBD, Crohn's disease (CD) and ulcerative colitis (UC). Eligible studies from PubMed, Embase, and CNKI databases were identified. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Ten studies published in eight papers reporting 8,975 cases and 9,482 controls were included in this meta-analysis. Five MY09B gene polymorphisms were evaluated: rs1545620, rs962917, rs1457092, rs2305764, and rs2305767. Our data suggested that the rs1545620 polymorphism was associated with a decreased risk of IBD. A similar result was found for rs2305767 and UC. The rs962917 single nucleotide polymorphism (SNP) increased the risk of IBD, CD and UC. Moreover, rs1457092 increased the risk of IBD and UC. Rs2305764 was also associated with an increased risk of IBD. Furthermore, stratification analyses indicated that rs1545620 decreased the risk of IBD, while rs962917 increased the risk of IBD, CD and UC in Caucasian populations. To sum up, our data indicate that these five SNPs in MY09B are significantly associated with the risk of IBD. PMID:27556856

  15. Inflammatory bowel disease associations with HLA Class II genes

    SciTech Connect

    Castro, R.; Yang, H.; Targan, S.

    1994-09-01

    A PCR-SSOP assay has been used to analyze HLA-Class II DRB1 and DQB1 alleles in 378 Caucasians from a population in Southern California. The data has been analyzed separately for the Ashkenasi Jews and non-Jewish patients (n=286) and controls (n=92). Two common clinical forms of inflammatory bowel disease (IBD) have been studied: ulcerative colitis (UC) and Crohn`s disease (CD). In CD, we observed a susceptible effect with the rare DR1 allele - DRB*0103 [O.R.=4.56; 95% CI (0.96, 42.97); p=0.03]; a trend for an increase in DRB1*0103 was also observed in UC patients. A susceptible effect with DRB1*1502 [O.R.=5.20; 95% CI (1.10, 48.99); p=0.02] was observed in non-Jewish UC patients. This susceptible effect was restricted to UC ANCA-positive (antineutrophil cytoplasmic antibodies) patients. In addition, a significant association with DRB1*1101-DQB1*0301 [O.R.=9.46; 95% CI (1.30, 413.87); p=0.01] was seen with UC among non-Jewish patients: this haplotype was increased with CD among non-Jewish patients. Two protective haplotypes were detected among CD non-Jewish patients: DRB1*1301-DQB1*0603 [O.R.=0.34; 95% CI (0.09, 1.09); p=0.04], and DRB*0404-DQB1*0302 [O.R.=<0.08; 95% CI (0.0, 0.84); p=0.01]. When the same data were analyzed at the serology level, we observed a positive association in UC with DR2 [O.R.6.77; 95% CI (2.47, 22.95); p=2 x 10{sup -4}], and a positive association in CD with DR1 [O.R.=2.63; 95% CI (1.14, 6.62); p=0.01] consistent with previous reports. Thus, some IBD disease associations appear to be common to both UC and CD, while some are unique to one disease.

  16. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation.

    PubMed

    van den Broek, Lenie J; van der Veer, Willem M; de Jong, Etty H; Gibbs, Susan; Niessen, Frank B

    2015-08-01

    Hypertrophic scar formation is a result of adverse cutaneous wound healing. The pathogenesis of hypertrophic scar formation is still poorly understood. A problem next to the lack of suitable animal models is that often normal skin is compared to hypertrophic scar (HTscar) and not to normotrophic scar (NTscar) tissue. Another drawback is that often only one time period after wounding is studied, while scar formation is a dynamic process over a period of several months. In this study, we compared the expression of genes involved in inflammation, angiogenesis and extracellular matrix (ECM) formation and also macrophage infiltration in biopsies obtained before and up to 52 weeks after standard surgery in five patients who developed HTscar and six patients who developed NTscar. It was found that HTscar formation coincided with a prolonged decreased expression of inflammatory genes (TNFα, IL-1α, IL-1RN, CCL2, CCL3, CXCL2, CXCR2, C3 and IL-10) and an extended increased expression of ECM-related genes (PLAU, Col3A1, TGFβ3). This coincided with a delayed but prolonged infiltration of macrophages (type 2) in HTscar tissue compared to NTscar tissue. These findings were supported by immunohistochemical localization of proteins coding for select genes named above. Our study emphasizes that human cutaneous wound healing is a dynamic process that is needed to be studied over a period of time rather than a single point of time. Taken together, our results suggest innate immune stimulatory therapies may be a better option for improving scar quality than the currently used anti-inflammatory scar therapies.

  17. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  18. Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners.

    PubMed

    Rehm, K; Sunesara, I; Marshall, G D

    2015-10-01

    Exercise training can alter immune function. Marathon training has been associated with an increased susceptibility to infectious diseases and an increased activity of inflammatory-based diseases, but the precise mechanisms are unknown. The purpose of this study was to compare levels of circulating CD4+  T cell subsets in the periphery of marathon-trained runners and matched non-marathon controls. 19 recreational marathoners that were 4 weeks from running a marathon and 19 demographically-matched healthy control subjects had the percentage of CD4+ T cell subpopulations (T helper 1, T helper 2, T helper 1/T helper 2 ratio, regulatory T cells, CD4+ IL10+, and CD4+ TGFβ+ (Transforming Growth Factor-beta) measured by flow cytometry. Marathon-trained runners had significantly less T helper 1 and regulatory T cells and significantly more T helper 2, CD4+ IL10+, and TGFβ+ cells than the control subjects. The alterations in the percentage of T helper 1 and T helper 2 cells led to a significantly lower T helper 1/T helper 2 ratio in the marathon-trained runners. These data suggest that endurance-based training can increase the number of anti-inflammatory cells. This may be a potential mechanism for the increased incidence of both infectious and inflammatory diseases observed in endurance athletes.

  19. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes

    PubMed Central

    Wilson, Julie L.; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ∼12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ∼35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  20. LINE-1 and inflammatory gene methylation levels are early biomarkers of metabolic changes: association with adiposity.

    PubMed

    Carraro, Júlia Cristina Cardoso; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Chaves, Larissa Oliveira; Vidigal, Fernanda Carvalho; Bressan, Josefina; Martínez, J Alfredo

    2016-11-01

    We analyzed whether global and inflammatory genes methylation can be early predictors of metabolic changes and their associations with the diet, in a cross-sectional study (n = 40). Higher global methylation was associated to adiposity, insulin resistance, and lower quality of the diet. Methylation of IL-6, SERPINE1 and CRP genes was related to adiposity traits and macronutrients intake. SERPINE1 hypermethylation was also related to some metabolic alterations. CRP methylation was a better predictor of insulin resistance than CRP plasma concentrations. Global and inflammatory gene promoter hypermethylation can be good early biomarkers of adiposity and metabolic changes and are associated to the quality of the diet.

  1. GESTATIONAL DIABETES MELLITUS ALTERS APOPTOTIC AND INFLAMMATORY GENE EXPRESSION OF TROPHOBASTS FROM HUMAN TERM PLACENTA

    PubMed Central

    MAGEE, Thomas R.; ROSS, Michael G.; WEDEKIND, Lauren; DESAI, Mina; KJOS, Siri; BELKACEMI, Louiza

    2014-01-01

    AIM Increased placental growth secondary to reduced apoptosis may contribute to the development of macrosomia in GDM pregnancies. We hypothesize that reduced apoptosis in GDM placentas is caused by dysregulation of apoptosis related genes from death receptors or mitochondrial pathway or both to enhance placental growth in GDM pregnancies. METHODS Newborn and placental weights from women with no pregnancy complications (controls; N=5), or with GDM (N=5) were recorded. Placental villi from both groups were either fixed for TUNEL assay, or snap frozen for gene expression analysis by apoptosis PCR microarrays and qPCR. RESULTS Maternal, placental and newborn weights were significantly higher in the GDM group vs. Controls. Apoptotic index of placentas from the GDM group was markedly lower than the Controls. At a significant threshold of 1.5, seven genes (BCL10, BIRC6, BIRC7, CASP5, CASP8P2, CFLAR, and FAS) were down regulated, and 13 genes (BCL2, BCL2L1, BCL2L11, CASP4, DAPK1, IκBκE, MCL1, NFκBIZ, NOD1, PEA15, TNF, TNFRSF25, and XIAP) were unregulated in the GDM placentas. qPCR confirmed the consistency of the PCR microarray. Using Western blotting we found significantly decreased placental pro-apoptotic FAS receptor and FAS ligand (FASL), and increased mitochondrial anti-apoptotic BCL2 post GDM insult. Notably, caspase-3, which plays a central role in the execution-phase of apoptosis, and its substrate poly (ADP-ribose) polymerase (PARP) were significantly down regulated in GDM placentas, as compared to non-diabetic Control placentas. CONCLUSION . Women with gestational diabetes (GDM) are at increased risk for having macrosomic newborns, and larger placentas with reduced apoptosis. Decreased apoptosis subsequent to alterations in apoptotic and inflammatory genes may promote elevated weight in the GDM placentas. PMID:24768206

  2. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression.

    PubMed

    Chen, Xi-Lin; Dodd, Geraldine; Thomas, Suzanne; Zhang, Xiaolan; Wasserman, Martin A; Rovin, Brad H; Kunsch, Charles

    2006-05-01

    The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-alpha-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-alpha-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1beta-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-alpha-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-alpha-induced NF-kappaB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.

  3. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  4. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  5. Aggravated renal inflammatory responses in TRPV1 gene knockout mice subjected to DOCA-salt hypertension.

    PubMed

    Wang, Youping; Wang, Donna H

    2009-12-01

    To test the hypothesis that deletion of the transient receptor potential vanilloid type 1 (TRPV1) channel exaggerates hypertension-induced renal inflammatory response, wild-type (WT) or TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for 4 wk. Mean arterial pressure (MAP) determined by radiotelemetry increased in DOCA-salt-treated WT or TRPV1(-/-) mice, whereas there was no difference in MAP between two strains at the baseline or after DOCA-salt treatment. DOCA-salt treatment increased urinary excretion of albumin and 8-isoprostane in both WT and TRPV1(-/-) mice, and the increases were greater in magnitude in the latter strain. Periodic acid-Schiff and Mason's trichrome staining showed that kidneys of DOCA-salt-treated TRPV1(-/-) mice exhibited more severe glomerulosclerosis and tubulointerstitial injury compared with DOCA-salt-treated WT mice. NF-kappaB assay showed that DOCA-salt treatment increased renal activated NF-kappaB concentrations in TRPV1(-/-) mice compared with WT mice. Immunostaining and ELISA assay revealed that DOCA-salt-treated TRPV1(-/-) mice had enhanced renal infiltration of monocyte/macrophage and lymphocyte, as well as increased renal levels of proinflammatory cytokine (TNF-alpha, IL-6) and chemokine (MCP-1) compared with DOCA-salt-treated WT mice. Renal ICAM-1 but not VCAM-1 expression was also greater in DOCA-salt-treated TRPV1(-/-) than WT mice. Dexamethasone (DEXA), an immunosuppressive drug, conveyed a renoprotective effect that was greater in DOCA-salt-treated TRPV1(-/-) compared with WT mice. These data show that renal inflammation is exacerbated in DOCA-salt hypertension when TRPV1 gene is deleted and that the deterioration is ameliorated by DEXA treatment, indicating that TRPV1 may act as a potential regulator of the inflammatory process to lessen renal injury in DOCA-salt hypertension.

  6. Inflammatory chemokines and their receptors in human visceral leishmaniasis: Gene expression profile in peripheral blood, splenic cellular sources and their impact on trafficking of inflammatory cells.

    PubMed

    Singh, Neetu; Sundar, Shyam

    2017-02-18

    Chemokines play an important role in determining cellular composition at inflammatory sites, and as such, influence disease outcome. In this study, we investigated the expression profile and splenic cellular source of various inflammatory chemokines and their receptors in human visceral leishmaniasis (VL). The expression of chemokines or their receptors was measured at the gene and protein level by employing real time qPCR and a cytometric bead array assay, respectively. In addition, the cellular source of chemokines and their receptors in the spleen was identified employing gene expression analyses in sequentially selected cell subsets. We identified elevated expression of CXCL10, CXCL9, CXCL8, and decreased CCL2 from VL patients. Further, we found reduced expression of the chemokine receptors CXCR1, CXCR2, CXCR3 and CCR2, but increased expression of CCR7 on VL PBMC, compared to endemic healthy controls. Additionally, splenic monocytes were found to be the major source of CXCL10, CXCL9 and CCR2, whereas T cells were the main source of CXCR3 and CCR7. We also report a strong association between plasma IFN-γ and CXCL-10, CXCL-9 levels. Enhanced parasite burden positively correlates with increased expression of CXCL10, CXCL9, IFN-γ and IL-10. Overall our result indicates that VL patients have an elevated inflammatory chemokine milieu which correlated with disease severity. However, expression of their chemokine receptors was significantly impaired, which may have contributed to reduced frequencies of blood monocytes and neutrophils in peripheral blood. In contrast, enhanced expression of CCR7 was associated with increased numbers of activated T cells in circulation. These findings highlight the importance of chemokines for recruitment of various cell populations in VL, and the knowledge gained may help in global understandings of the complex interaction between chemokines and pathological processes, and therefore will contribute towards the design of novel

  7. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  8. Antineutrophil cytoplasm autoantibodies against bactericidal/permeability-increasing protein in inflammatory bowel disease.

    PubMed Central

    Walmsley, R S; Zhao, M H; Hamilton, M I; Brownlee, A; Chapman, P; Pounder, R E; Wakefield, A J; Lockwood, C M

    1997-01-01

    BACKGROUND: Bactericidal/permeability-increasing protein (BPI), a constituent of primary neutrophil granules, is a potent natural antibiotic and an antineutrophil cytoplasm antibody (ANCA) antigen in cases of vasculitis in which the target antigen is neither myeloperoxidase (MPO) nor proteinase-3 (PR3). AIM: To investigate BPI as a possible target antigen for ANCAs in inflammatory bowel disease. METHODS: ANCAs were detected by routine immunofluorescence (IIF) and solid phase enzyme linked immunosorbent assay (ELISA) performed for antibodies to the purified neutrophil granule proteins; MPO, PR3, cathepsin-G, lactoferrin, and BPI in serum samples from 88 patients with inflammatory bowel disease (36 with Crohn's disease, 52 with ulcerative colitis). Thirty patients with bacterial enteritis acted as controls. RESULTS: Significantly more patients with ulcerative colitis were ANCA positive by IIF (60%) than patients with Crohn's disease (28%) or infectious enteritis (23%) (p < 0.001). IgG anti-BPI antibodies were present in 29% of patients with ulcerative colitis, 14% of patients with Crohn's disease, and 23% of patients with infectious enteritis, occurring in 44% of those patients with inflammatory bowel disease who were ANCA positive by IIF. Antibodies to other ANCA antigens were rare. The presence of ANCAs was not related to either disease activity or extent; presence of anti-BPI antibodies was significantly related to both a lower serum albumin concentration (p = 0.001) and a higher erythrocyte sedimentation rate (p = 0.02) in patients with ulcerative colitis, and to colonic involvement in patients with Crohn's disease (p = 0.01). CONCLUSION: BPI is a significant minority target antigen for ANCAs in inflammatory bowel disease that seems related to colonic Crohn's disease and disease activity in ulcerative colitis. Anti-BPI antibodies occur in infectious enteritis. PMID:9155585

  9. Soya protein hydrolysates modify the expression of various pro-inflammatory genes induced by fatty acids in ovine phagocytes.

    PubMed

    Politis, Ioannis; Theodorou, Georgios; Lampidonis, Antonios D; Chronopoulou, Roubini; Baldi, Antonella

    2012-10-01

    The objective of the present study was to test the hypothesis that fatty acids are the circulating mediators acting in a pro-inflammatory manner towards activated circulating ovine monocyte/macrophages and neutrophils. Furthermore, whether soya protein hydrolysates (SPH) inhibit the fatty acid-induced increase in the production of pro-inflammatory responses by ovine phagocytes was tested in vitro. All the fatty acids tested (myristic, palmitic, palmitoleic, stearic and oleic) increased (P<0·01; C18>C16>C14) membrane-bound urokinase plasminogen activator (u-PA) and u-PA free binding sites in cell membranes of activated ovine blood monocytes/macrophages, but only the C18 fatty acids (stearic, oleic) were effective towards blood neutrophils. The C18 fatty acids up-regulated (P<0·05) the gene expression of u-PA, u-PA receptor, intercellular adhesion molecule 1 and inducible NO synthase (in monocytes) but not that of cyclo-oxygenase-2, integrin α X and plasminogen activator inhibitor types 1 and 2 by ovine phagocytes. SPH blocked completely or partially all C18 fatty acid-induced changes in the expression of various pro-inflammatory genes. In conclusion, fatty acids selectively 'activate' ovine phagocytes, suggesting that these cells 'sense' metabolic signals derived from adipocytes. Soya protein peptides inhibit all changes in gene expression induced by fatty acids in ovine phagocytes in vitro. This constitutes a novel mechanism of action.

  10. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines.

    PubMed

    Chang, Tammy T; Spurlock, Sandra M; Candelario, Tara Lynne T; Grenon, S Marlene; Hughes-Fulford, Millie

    2015-10-01

    The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-γ and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses.

  11. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows

    PubMed Central

    Zhang, Kai; Chang, Guangjun; Xu, Tianle; Xu, Lei; Guo, Junfei; Jin, Di; Shen, Xiangzhen

    2016-01-01

    To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet. PMID:26893357

  12. OPN‐a induces muscle inflammation by increasing recruitment and activation of pro‐inflammatory macrophages

    PubMed Central

    Many, Gina M.; Yokosaki, Yasuyuki; Uaesoontrachoon, Kitipong; Nghiem, Peter P.; Bello, Luca; Dadgar, Sherry; Yin, Ying; Damsker, Jesse M.; Cohen, Heather B.; Kornegay, Joe N.; Bamman, Marcas M.; Mosser, David M.; Nagaraju, Kanneboyina

    2016-01-01

    New Findings What is the central question of this study? What is the functional relevance of OPN isoform expression in muscle pathology? What is the main finding and its importance? The full‐length human OPN‐a isoform is the most pro‐inflammatory isoform in the muscle microenvironment, acting on macrophages and myoblasts in an RGD‐integrin‐dependent manner. OPN‐a upregulates expression of tenascin‐C (TNC), a known Toll‐like receptor 4 (TLR4) agonist. Blocking TLR4 signalling inhibits the pro‐inflammatory effects of OPN‐a, suggesting that a potential mechanism of OPN action is by promoting TNC–TLR4 signalling. Although osteopontin (OPN) is an important mediator of muscle remodelling in health and disease, functional differences in human spliced OPN variants in the muscle microenvironment have not been characterized. We thus sought to define the pro‐inflammatory activities of human OPN isoforms (OPN‐a, OPN‐b and OPN‐c) on cells present in regenerating muscle. OPN transcripts were quantified in normal and dystrophic human and dog muscle. Human macrophages and myoblasts were stimulated with recombinant human OPN protein isoforms, and cytokine mRNA and protein induction was assayed. OPN isoforms were greatly increased in dystrophic human (OPN‐a > OPN‐b > OPN‐c) and dog muscle (OPN‐a = OPN‐c). In healthy human muscle, mechanical loading also upregulated OPN‐a expression (eightfold; P < 0.01), but did not significantly upregulate OPN‐c expression (twofold; P > 0.05). In vitro, OPN‐a displayed the most pronounced pro‐inflammatory activity among isoforms, acting on both macrophages and myoblasts. In vitro and in vivo data revealed that OPN‐a upregulated tenascin‐C (TNC), a known Toll‐like receptor 4 (TLR4) agonist. Inhibition of TLR4 signalling attenuated OPN‐mediated macrophage cytokine production. In summary, OPN‐a is the most abundant and functionally active human spliced isoform in the skeletal muscle

  13. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  14. Association of Fucosyltransferase 2 Gene Polymorphisms with Inflammatory Bowel Disease in Patients from Southeast China

    PubMed Central

    Wu, Hao; Sun, Liang; Lin, Dao-po; Shao, Xiao-xiao; Xia, Sheng-long

    2017-01-01

    Aims. Fucosyltransferase 2 (FUT2) gene potentially affects the constituent of intestinal microbiota, which play a crucial role in the pathogenesis of inflammatory bowel disease (IBD). This study investigated the association of FUT2 gene polymorphisms with IBD in southeast China. Methods. We collected 671 IBD patients and 502 healthy controls. FUT2 gene polymorphisms (C357T, A385T, and G428A) were determined by SNaPshot. Frequencies of the FUT2 genotypes, alleles, and haplotype between groups were compared by χ2 test. Results. The allele and genotype frequencies of FUT2 did not differ between ulcerative colitis patients and controls (all P > 0.05). However, mutant allele and genotype of FUT2 (A385T) were significantly increased in Crohn's disease (CD) patients (P = 0.024, OR = 1.271, and 95% CI = 1.031–1.565; P < 0.001, OR = 1.927, and 95% CI = 1.353–2.747, resp.). The same conclusion was drawn from FUT2 (G428A) (P = 0.023, OR = 3.324, and 95% CI = 1.108–9.968; P = 0.044, OR = 1.116–10.137, and 95% CI = 1.116–10.137, resp.). The haplotype TT formed with “C357T and A385T” was more prevalent in CD patients than in controls (P = 0.020, OR = 1.277, and 95% CI = 1.036–1.573). Besides, frequencies of mutant allele and genotype of FUT2 (A385T) were significantly lower in patients with ileocolonic CD than in those with colonic CD (P = 0.001 and 0.002, resp.) and ileal CD (P = 0.007 and 0.004, resp.). Conclusions. FUT2 gene polymorphisms and haplotypes were associated with the susceptibility to CD but not UC. PMID:28167958

  15. Sputum Inflammatory Mediators Are Increased in Aspergillus fumigatus Culture-Positive Asthmatics

    PubMed Central

    Ghebre, Michael A; Desai, Dhananjay; Singapuri, Amisha; Woods, Joanne; Rapley, Laura; Cohen, Suzanne; Herath, Athula; Wardlaw, Andrew J; Pashley, Catherine H; May, Richard

    2017-01-01

    Aspergillus fumigatus sensitization and culture in asthma are associated with disease severity and lung function impairment, but their relationship with airway inflammation is poorly understood. We investigated the profile of 24 sputum inflammatory mediators in A. fumigatus culture-positive or-negative moderate-to-severe asthmatics. Fifty-two subjects were recruited from a single center. A. fumigatus was cultured from 19 asthmatics. Asthma control, symptom score, lung function, and sputum cell count were not significantly different between the asthmatics with and without a positive A. fumigatus culture. All of the sputum mediators were numerically increased in subjects with a positive versus negative sputum A. fumigatus culture. Sputum TNF-R2 was significantly elevated (P=0.03) and the mediator that best distinguished A. fumigatus culture-positive from culture-negative subjects (receiver-operator characteristic area under the curve 0.66 [95% CI: 0.51 to 0.82, P=0.045]). A. fumigates-positive culture in moderate-to-severe asthma is associated with increased inflammatory sputum mediators. PMID:28102063

  16. Sputum Inflammatory Mediators Are Increased in Aspergillus fumigatus Culture-Positive Asthmatics.

    PubMed

    Ghebre, Michael A; Desai, Dhananjay; Singapuri, Amisha; Woods, Joanne; Rapley, Laura; Cohen, Suzanne; Herath, Athula; Wardlaw, Andrew J; Pashley, Catherine H; May, Richard; Brightling, Chris E

    2017-03-01

    Aspergillus fumigatus sensitization and culture in asthma are associated with disease severity and lung function impairment, but their relationship with airway inflammation is poorly understood. We investigated the profile of 24 sputum inflammatory mediators in A. fumigatus culture-positive or-negative moderate-to-severe asthmatics. Fifty-two subjects were recruited from a single center. A. fumigatus was cultured from 19 asthmatics. Asthma control, symptom score, lung function, and sputum cell count were not significantly different between the asthmatics with and without a positive A. fumigatus culture. All of the sputum mediators were numerically increased in subjects with a positive versus negative sputum A. fumigatus culture. Sputum TNF-R2 was significantly elevated (P=0.03) and the mediator that best distinguished A. fumigatus culture-positive from culture-negative subjects (receiver-operator characteristic area under the curve 0.66 [95% CI: 0.51 to 0.82, P=0.045]). A. fumigates-positive culture in moderate-to-severe asthma is associated with increased inflammatory sputum mediators.

  17. Nedd4-2 haploinsufficiency causes hyperactivity and increased sensitivity to inflammatory stimuli

    PubMed Central

    Yanpallewar, Sudhirkumar; Wang, Ting; Koh, Dawn C. I.; Quarta, Eros; Fulgenzi, Gianluca; Tessarollo, Lino

    2016-01-01

    Nedd4-2 (NEDD4L in humans) is a ubiquitin protein ligase best known for its role in regulating ion channel internalization and turnover. Nedd4-2 deletion in mice causes perinatal lethality associated with increased epithelial sodium channel (ENaC) expression in lung and kidney. Abundant data suggest that Nedd4-2 plays a role in neuronal functions and may be linked to epilepsy and dyslexia in humans. We used a mouse model of Nedd4-2 haploinsufficiency to investigate whether an alteration in Nedd4-2 levels of expression affects general nervous system functions. We found that Nedd4-2 heterozygous mice are hyperactive, have increased basal synaptic transmission and have enhanced sensitivity to inflammatory pain. Thus, Nedd4-2 heterozygous mice provide a new genetic model to study inflammatory pain. These data also suggest that in human, SNPs affecting NEDD4L levels may be involved in the development of neuropsychological deficits and peripheral neuropathies and may help unveil the genetic basis of comorbidities. PMID:27604420

  18. Increased red blood cell aggregation in patients with Gaucher disease is non-inflammatory.

    PubMed

    Adar, T; Ben-Ami, R; Elstein, D; Zimran, P; Berliner, S; Yedgar, S; Barshtein, G

    2008-01-01

    Red blood cell (RBC) aggregation is enhanced in the presence of ongoing inflammation, because of plasma protein effects, especially fibrinogen. Large RBC aggregates, in addition to being a marker of systemic inflammation, may hinder tissue perfusion and oxygenation. Gaucher disease, the most common lysosomal storage disorder, evinces many of the hallmarks of chronic inflammation. Manifestations of Gaucher disease which may be related to microvascular occlusion include avascular necrosis (AVN), bone crisis, and pulmonary hypertension. This study aims to determine whether increased RBC aggregation in non-splenectomized patients with Gaucher disease is due to Gaucher-related inflammation. The Cell Flow Properties Analyzer (CFA) monitors blood under conditions of different shear stress by creating varying pressure gradients. Blood from non-splenectomized patients with Gaucher disease showed only a slight correlation between aggregation parameters and fibrinogen levels, whereas blood from non-splenectomized patients treated with enzyme replacement therapy (ERT) showed marked correlation between aggregation parameters and fibrinogen, as in the control group. These results underscore the hypothesis that RBC aggregation in Gaucher disease is increased by (at least) two mechanisms: a fibrinogen-mediated inflammatory process and another non-inflammatory process that may be induced by elevated glucocerebroside levels in the RBC and/or inhibited by elevated plasma cerebroside levels.

  19. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages

    PubMed Central

    Orozco, Luz D.; Bennett, Brian J.; Farber, Charles R.; Ghazalpour, Anatole; Pan, Calvin; Che, Nam; Wen, Pingzi; Qi, Hong Xiu; Mutukulu, Adonisa; Siemers, Nathan; Neuhaus, Isaac; Yordanova, Roumyana; Gargalovic, Peter; Pellegrini, Matteo; Kirchgessner, Todd; Lusis, Aldons J.

    2012-01-01

    SUMMARY Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide, or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions and several eQTL “hotspots” that specifically control LPS responses. We validated an eQTL hotspot in chromosome 8 using siRNA knock-down of candidate genes and identified the gene 2310061C15Rik, as a novel regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits which are modeled in the mouse, and for the dissection of regulatory relationships between genes. PMID:23101632

  20. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages.

    PubMed

    Orozco, Luz D; Bennett, Brian J; Farber, Charles R; Ghazalpour, Anatole; Pan, Calvin; Che, Nam; Wen, Pingzi; Qi, Hong Xiu; Mutukulu, Adonisa; Siemers, Nathan; Neuhaus, Isaac; Yordanova, Roumyana; Gargalovic, Peter; Pellegrini, Matteo; Kirchgessner, Todd; Lusis, Aldons J

    2012-10-26

    Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide (LPS), or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions, and eQTL "hot spots" that specifically control LPS responses. We used siRNA knockdown of candidate genes to validate an eQTL hot spot in chromosome 8 and identified the gene 2310061C15Rik as a regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits that are modeled in the mouse and for the dissection of regulatory relationships between genes.

  1. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  2. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  3. Increased Anxiety-Like Behaviors in Rats Experiencing Chronic Inflammatory Pain

    PubMed Central

    Parent, Alexandre J.; Beaudet, Nicolas; Beaudry, Hélène; Bergeron, Jenny; Bérubé, Patrick; Drolet, Guy; Sarret, Philippe; Gendron, Louis

    2013-01-01

    For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freund’s adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: 1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), 2) a decrease in number of central squares visited in the open field (OF), and 3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance travelled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3 mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1 mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety. PMID:22245257

  4. Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain.

    PubMed

    Parent, Alexandre J; Beaudet, Nicolas; Beaudry, Hélène; Bergeron, Jenny; Bérubé, Patrick; Drolet, Guy; Sarret, Philippe; Gendron, Louis

    2012-04-01

    For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: (1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), (2) a decrease in number of central squares visited in the open field (OF), and (3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance traveled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety.

  5. Microarray analysis of inflammatory response-related gene expression in the uteri of dogs with pyometra.

    PubMed

    Bukowska, D; Kempisty, B; Zawierucha, P; Jopek, K; Piotrowska, H; Antosik, P; Ciesiółka, S; Woźna, M; Brüssow, K P; Jaśkowski, J M

    2014-01-01

    Pyometra, which is accompanied by bacterial contamination of the uterus, is defined as a complex disease associated with the activation of several systems, including the immune system. The objective of the study was to evaluate the gene expression profile in dogs with pyometra compared with those that were clinically normal. The study included uteri from 43 mongrel bitches (23 with pyometra, 20 clinically healthy). RNA used for the microarray study was pooled to four separated vials for control and pyometra. A total of 17,138 different transcripts were analyzed on the uteri of female dogs with pyometra and of healthy controls. From 264 inflammatory response-related transcripts, we found 23 transcripts that revealed a 10- to 77-fold increased expression. Thereby, the expression of interleukin 8 (IL8), interleukin-1-beta (IL1B), interleukin 18 receptor (IL18RAP), interleukin 1-alpha (IL1A), interleukin receptor antagonist (IL1RN) and interleukin 6 (IL6) increased 77-, 20-, 17-, 13-, 13- and 11-fold, respectively. Furthermore, the expression of the calcium binding proteins S100A8 was 44-fold higher, and that of S100A12 and S100A9 37-fold, respectively, in the uteri of canines with pyometra compared with that of the controls. Moreover, the expression of the transcripts of toll-like receptors (TLR8 and TLR2), integrin beta 2 (ITGB2), chemokine ligand 3 (CCL3), semaphorin 7A (SEMA7A), CD14 and prostaglandin-endoperoxide synthase 2 (PTGS2) was increased between 10- and 18-fold. Furthermore, after using RT-qPCR we found an increased expression of AOAH, IL1A, IL8, CCL3, IL1RN and SERPINE 1 mRNAs which can be served also as markers of the occurrence of pyometra in domestic bitches. In summary, it is concluded that up-regulation of interleukins may be used as a marker of the inflammatory response in dogs with pyometra. Moreover, all of the 23 up-regulated transcripts may be novel molecular markers of the pathogenesis of canine pyometra. Several proteins--–products of these

  6. A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival

    PubMed Central

    Botta, C; Di Martino, M T; Ciliberto, D; Cucè, M; Correale, P; Rossi, M; Tagliaferri, P; Tassone, P

    2016-01-01

    Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment. PMID:27983725

  7. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain.

    PubMed

    Campbell, A; Becaria, A; Lahiri, D K; Sharman, K; Bondy, S C

    2004-02-15

    A link between aluminum (Al) exposure and age-related neurological disorders has long been proposed. Although the exact mechanism by which the metal may influence disease processes is unknown, there is evidence that exposure to Al causes an increase in both oxidative stress and inflammatory events. These processes have also been suggested to play a role in Alzheimer's disease (AD), and exposure to the metal may contribute to the disorder by potentiating these events. Al lactate (0.01, 0.1, and 1 mM) in drinking water for 10 weeks increased inflammatory processes in the brains of mice. The lowest of these levels is in the range found to increase the prevalence of AD in regions where the concentrations of the metal are elevated in residential drinking water (Flaten [2001] Brain Res. Bull. 55:187-196). Nuclear factor-kappaB as well as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1alpha (IL-1alpha) levels were increased in the brains of treated animals. The mRNA for TNF-alpha was also up-regulated following treatment. Enhancement of glial fibrillary acidic protein levels and reactive microglia was seen in the striatum of Al-treated animals. The level of amyloid beta (Abeta40) was not significantly altered in the brains of exposed animals. Insofar as no parallel changes were observed in the serum or liver of treated animals, the proinflammatory effects of the metal may be selective to the brain. Al exposure may not be sufficient to cause abnormal production of the principal component of senile plaques directly but does exacerbate underlying events associated with brain aging and thus could contribute to progression of neurodegeneration.

  8. A microarray whole-genome gene expression dataset in a rat model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Lindvall, Jessica M.; Xeroudaki, Maria; Peebo, Beatrice; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse Dahl Ejby; Lagali, Neil

    2016-01-01

    In angiogenesis with concurrent inflammation, many pathways are activated, some linked to VEGF and others largely VEGF-independent. Pathways involving inflammatory mediators, chemokines, and micro-RNAs may play important roles in maintaining a pro-angiogenic environment or mediating angiogenic regression. Here, we describe a gene expression dataset to facilitate exploration of pro-angiogenic, pro-inflammatory, and remodelling/normalization-associated genes during both an active capillary sprouting phase, and in the restoration of an avascular phenotype. The dataset was generated by microarray analysis of the whole transcriptome in a rat model of suture-induced inflammatory corneal neovascularisation. Regions of active capillary sprout growth or regression in the cornea were harvested and total RNA extracted from four biological replicates per group. High quality RNA was obtained for gene expression analysis using microarrays. Fold change of selected genes was validated by qPCR, and protein expression was evaluated by immunohistochemistry. We provide a gene expression dataset that may be re-used to investigate corneal neovascularisation, and may also have implications in other contexts of inflammation-mediated angiogenesis. PMID:27874850

  9. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks.

    PubMed

    Zhang, Jiu-Li; Xu, Bo; Huang, Xiao-Dan; Gao, Yu-Hong; Chen, Yu; Shan, An-Shan

    2016-05-01

    The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

  10. Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells.

    PubMed

    Chantong, Boonrat; Kratschmar, Denise V; Lister, Adam; Odermatt, Alex

    2014-10-15

    The organotin dibutyltin (DBT) is used as biocide and as stabilizer in the manufacture of silicones, polyvinyl chloride plastics, polyurethanes and polyester systems. Although the immuno- and neurotoxicity of DBT has been recognized, the underlying mechanisms remained unclear and the impact of DBT on microglia cells has not yet been established. We now used cultured mouse BV-2 cells as a model of activated microglia to investigate the impact of DBT on oxidative stress and pro-inflammatory cytokines. DBT, at subcytotoxic concentrations, increased intracellular reactive oxygen species (ROS), mitochondrial mass, mitochondrial ROS, and the mRNA expression of inducible nitric oxide synthase (iNOS) and NADPH-dependent oxidase-2 (NOX-2). ATP levels were decreased by DBT, followed by activation of AMP-activated protein kinase (AMPK). Moreover, DBT potentiated the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Inhibition of NOX-2 diminished both ROS production and induction of IL-6 expression. The DBT-mediated increase in NF-κB activity and subsequent up regulation of IL-6 was abolished by co-treatment with a NF-κB inhibitor. Treatment of cells with pharmacological inhibitors indicated a role for mitogen-activated protein kinases (MAPKs), PI3K/Akt, protein kinase C (PKC) and phospholipase C (PLC) in the DBT-induced toxicity. Finally, the calcium chelator BAPTA-AM diminished oxidative stress and induction of IL-6 expression, indicating the involvement of increased intracellular calcium in the enhanced microglia activity upon exposure to DBT. Together, the results suggest that a potentiation of oxidative stress and pro-inflammatory cytokine expression in microglia cells contribute to the toxicity of DBT in the CNS.

  11. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms

    PubMed Central

    Luo, Yang; Zheng, Song Guo

    2016-01-01

    Pro-inflammatory cytokines that are generated by immune system cells and mediate many kinds of immune responses are kinds of endogenous polypeptides. They are also the effectors of the autoimmune system. It is generally accepted that interleukin (IL)-4, IL-6, IL-9, IL-17, and tumor necrosis factor-α are pro-inflammatory cytokines; however, IL-6 becomes a protagonist among them since it predominately induces pro-inflammatory signaling and regulates massive cellular processes. It has been ascertained that IL-6 is associated with a large number of diseases with inflammatory background, such as anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, cartilage metabolism, and multiple cancers. Despite great progress in the relative field, the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to be understood. Therefore, it is conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the disease, providing more solid scientific basis for clinical treatment translation. In this review, we summarize the candidate genes that have been implicated in clinical target therapy from the perspective of gene transcription regulation. PMID:28066415

  12. Inflammatory Gene Response in Rat Brain Following Soman Exposure

    DTIC Science & Technology

    2005-10-01

    thalamus, and piriform cortex at 2, 6, 24, or 48 h for mRNA analysis (4-5 rats per group). Tissue samples were homogenized and total RNA was...dramatically increased by 154 fold in the piriform cortex (Table 1), 58 fold in hippocampal (Table 2), and 29 fold in thalamic tissues (Table 3...fold in the piriform cortex (Table 1) and 45 fold in the hippocampus (Table 2). Increases of IL-1β in thalamic tissue were not as dramatic (max = 21

  13. Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression

    PubMed Central

    Eberlein, Michael; Scheibner, Kara A; Black, Katharine E; Collins, Samuel L; Chan-Li, Yee; Powell, Jonathan D; Horton, Maureen R

    2008-01-01

    Background The balance between reactive oxygen species (ROS) and endogenous anti-oxidants is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS and Idiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate tissue injury. HA fragments, via a TLR and NF-κB pathway, induce inflammatory gene expression in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help balance excess ROS states. Methods We evaluated the effect of H2O2, NAC and DMSO on HA fragment induced inflammatory gene expression in alveolar macrophages and epithelial cells. Results NAC and DMSO inhibit HA fragment-induced expression of TNF-α and KC protein in alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H2O2 synergizes with HA fragments to induce inflammatory genes, which are inhibited by NAC. Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-κB activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression. Conclusion ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with ROS to activate the innate immune system and further promote ROS, HA fragment generation, inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting the HA induced inflammatory gene expression, may help re-balance excessive ROS induced inflammation. PMID:18986521

  14. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.

    PubMed

    de Andrés, Paloma Jimena; Illera, Juan Carlos; Cáceres, Sara; Díez, Lucía; Pérez-Alenza, Maria Dolores; Peña, Laura

    2013-04-15

    Inflammatory mammary cancer (IMC) is a distinct form of mammary cancer that affects dogs and women [in humans, IMC is known as inflammatory breast cancer (IBC)], and is characterized by a sudden onset and an aggressive clinical course. Spontaneous canine IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as the best spontaneous animal model for studying IBC, although several aspects remain unstudied. Interleukins (ILs) play an important role in cancer as potential modulators of angiogenesis, leukocyte infiltration and tumor growth. The aims of the present study were to assess serum and tumor levels of several ILs (IL-1α, IL-1β, IL-6, IL-8 and IL-10) by enzyme-immunoassay in dogs bearing benign and malignant mammary tumors, including dogs with IMC, for a better understanding of this disease. Forty-eight dogs were prospectively included. Animals consisted of 7 healthy Beagles used as donors for normal mammary glands (NMG) and serum controls (SCs), 10 dogs with hyperplasias and benign mammary tumors (HBMT), 24 with non-inflammatory malignant mammary tumors (non-IMC MMT) and 7 dogs with clinical and pathological IMC. IL-8 (serum) and IL-10 (serum and tissue homogenate) levels were higher in the dogs with IMC compared with the non-IMC MMT group. ILs were increased with tumor malignancy as follows: in tumor homogenates IL-6 levels were higher in malignant tumors (IMC and non-IMC MMT) versus HBMT and versus NMG and tumor IL-8 was increased in malignant tumors versus NMG; in serum, IL-1α and IL-8 levels were higher in the malignant groups respect to HBMT and SCs; interestingly, IL-10 was elevated only in the serum of IMC animals. To the best of our knowledge, this is the first report that analyzes ILs in IMC and IL-10 in canine mammary tumors. Our results indicate a role for IL-6, IL-8 and IL-10 in canine mammary malignancy and specific differences in ILs content in IMC versus non-IMC MMT that could

  15. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    PubMed

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults.

  16. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  17. Identification and Evaluation of New Immunoregulatory Genes in Mesenchymal Stromal Cells of Different Origins: Comparison of Normal and Inflammatory Conditions

    PubMed Central

    Fayyad-Kazan, Mohammad; Najar, Mehdi; Fayyad-Kazan, Hussein; Raicevic, Gordana; Lagneaux, Laurence

    2017-01-01

    Background Mesenchymal stromal cells (MSCs) possess potent immunomodulatory properties that increase their value as a cell-based therapeutic tool for managing various immune-based disorders. Over the past years, accumulated results from trials using MSCs-based therapy have shown substantial contradictions. Although the reasons underlying these discrepancies are still not completely understood, it is well known that the immunomodulatory activities mediated by distinct MSCs differ in a manner dependent on their tissue origin and adequate response to inflammation priming. Thus, characterization of new molecular pathway(s) through which distinct MSC populations can exert their immunomodulatory effects, particularly during inflammation, will undoubtedly enhance their therapeutic potential. Material/Methods After confirming their compliance with ISCT criteria, quantitative real time-PCR (qRT-PCR) was used to screen new immunoregulatory genes in MSCs, derived from adipose tissue, foreskin, Wharton’s jelly or the bone-marrow, after being cultivated under normal and inflammatory conditions. Results FGL2, GAL, SEMA4D, SEMA7A, and IDO1 genes appeared to be differentially transcribed in the different MSC populations. Moreover, these genes were not similarly modulated following MSCs-exposure to inflammatory signals. Conclusions Our observations suggest that these identified immunoregulatory genes may be considered as potential candidates to be targeted in order to enhance the immunomodulatory properties of MSCs towards more efficient clinical use. PMID:28336906

  18. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and Expression of Certain Genes

    PubMed Central

    Chakravarty, Ashim K.; Mazumder, Tamal; Chatterjee, Shankar N.

    2011-01-01

    Search for a novel anti-inflammatory agent from a herbal source, such as Eupatorium adenophorum Spreng., a plant from the Eastern Himalayas, is of prime interest in the present investigation. Inflammation causes tissue destruction and development of diseases such as asthma, rheumatoid arthritis, and so forth. The ethanolic leaf extract of E. adenophorum (EEA) was administered intravenously and in other cases topically at the site of delayed type hypersensitivity (DTH) reaction in mouse foot paw induced with dinitrofluorobenzene. EEA can effectively inhibit DTH reaction and bring back normalcy to the paw much earlier than the controls. Efficacy of EEA on regulatory mechanisms for inflammation has also been considered. Intravenous administration of EEA increased the number of CD4+ T cells in spleen and tumor necrosis factor (TNF)-α in serum of DTH mice. Initially it was difficult to reconcile with the anti-inflammatory role of EEA and simultaneous induction of TNF-α, an established pro-inflammatory cytokine. EEA induces higher expression of TNF-α gene and amount of the cytokine in serum. We discussed the other role of TNF-α, its involvement in repairing tissue damage incurred in course of inflammatory reaction. EEA also induces TGF-β encoding a cytokine involved in tissue repair mechanism. EEA inhibits expression of another pro-inflammatory cytokine gene IL-1β and downregulates cycloxygenase 2 (COX2) gene responsible for metabolism of inflammatory mediators like prostaglandins. Furthermore, anti-inflammatory role of EEA is also revealed through its inhibition of hydroxyl radical generation. Notably EEA does not necessarily affect the expression of other inflammation-related genes such as IL-6, IL-10 and IKK. The present study reports and analyzes for the first time the anti-inflammatory property of the leaf extract of E. adenophorum. PMID:21808653

  19. Microarray analysis of glial cells resistant to JCV infection suggests a correlation between viral infection and inflammatory cytokine gene expression

    PubMed Central

    Manley, Kate; Gee, Gretchen V; Simkevich, Carl P; Sedivy, John M; Atwood, Walter J

    2007-01-01

    The human polyomavirus, JCV, has a highly restricted tropism and primarily infects glial cells. The mechanisms restricting infection of cells by JCV are poorly understood. Previously we developed and described a glial cell line that was resistant to JCV infection with the aim of using these cells to identify factors that determine JCV tropism. Gene expression profiling of susceptible and resistant glial cells revealed a direct correlation between the expression of inflammatory cytokines and susceptibility to JCV infection. This correlation manifested at the level of viral gene transcription. Previous studies have suggested a link between an increase in cytokine gene expression in HIV patients and the development of PML and these data support this hypothesis. PMID:17555786

  20. Delta 32 mutation of the chemokine-receptor 5 gene in inflammatory bowel disease.

    PubMed

    Martin, K; Heinzlmann, M; Borchers, R; Mack, M; Loeschke, K; Folwaczny, C

    2001-01-01

    The gene encoding chemokine receptor 5 (CCR5) is colocalized to the microsatellite marker D3S1573, which was linked with inflammatory bowel disease. Genetic heterogeneity in inflammatory bowel disease might be defined by a combination of the p-ANCA status and immunoregulatory genes. One hundred and twenty healthy unrelated controls, 101 patients with Crohn's disease, and 99 patients with ulcerative colitis were genotyped for the Delta 32 mutation of the CCR5 gene. The presence of p-ANCA was determined by the use of indirect immunofluorescence. After genotyping, patients were stratified according to p-ANCA status. The frequency of the Delta 32 mutation was not significantly different in controls and patients with Crohn's disease or ulcerative colitis (P 0.207 or more). Moreover, the frequency of the mutation was not significantly different in patients with inflammatory bowel disease after stratification for the p-ANCA status (P 0.482). Regardless of the p-ANCA status, Crohn's disease and ulcerative colitis are not associated with the Delta 32 mutation of the CCR5 gene.

  1. Injury Induces Localized Airway Increases in Pro-Inflammatory Cytokines in Humans and Mice

    PubMed Central

    Jonker, Mark A.; Hermsen, Joshua L.; Gomez, F. Enrique; Sano, Yoshifumi

    2011-01-01

    Abstract Background Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. Methods In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. Results Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. Conclusions Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury. PMID:21166596

  2. Cardiac Dysfunction in Association with Increased Inflammatory Markers in Primary Aldosteronism

    PubMed Central

    Lim, Jung Soo; Park, Sungha; Park, Sung Il; Oh, Young Taik; Choi, Eunhee; Kim, Jang Young

    2016-01-01

    Background Oxidative stress in primary aldosteronism (PA) is thought to worsen aldosterone-induced damage by activating proinflammatory processes. Therefore, we investigated whether inflammatory markers associated with oxidative stress is increased with negative impacts on heart function as evaluated by echocardiography in patients with PA. Methods Thirty-two subjects (mean age, 50.3±11.0 years; 14 males, 18 females) whose aldosterone-renin ratio was more than 30 among patients who visited Severance Hospital since 2010 were enrolled. Interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein 1, tumor necrosis factor α (TNF-α), and matrix metalloproteinase 2 (MMP-2), and MMP-9 were measured. All patients underwent adrenal venous sampling with complete access to both adrenal veins. Results Only MMP-2 level was significantly higher in the aldosterone-producing adenoma (APA) group than in the bilateral adrenal hyperplasia (BAH). Patients with APA had significantly higher left ventricular (LV) mass and A velocity, compared to those with BAH. IL-1β was positively correlated with left atrial volume index. Both TNF-α and MMP-2 also had positive linear correlation with A velocity. Furthermore, MMP-9 showed a positive correlation with LV mass, whereas it was negatively correlated with LV end-systolic diameter. Conclusion These results suggest the possibility that some of inflammatory markers related to oxidative stress may be involved in developing diastolic dysfunction accompanied by LV hypertrophy in PA. Further investigations are needed to clarify the role of oxidative stress in the course of cardiac remodeling. PMID:27834080

  3. Oscillation of p38 activity controls efficient pro-inflammatory gene expression

    PubMed Central

    Tomida, Taichiro; Takekawa, Mutsuhiro; Saito, Haruo

    2015-01-01

    The p38 MAP kinase signalling pathway controls inflammatory responses and is an important target of anti-inflammatory drugs. Although pro-inflammatory cytokines such as interleukin-1β (IL-1β) appear to induce only transient activation of p38 (over ∼60 min), longer cytokine exposure is necessary to induce p38-dependent effector genes. Here we study the dynamics of p38 activation in individual cells using a Förster resonance energy transfer (FRET)-based p38 activity reporter. We find that, after an initial burst of activity, p38 MAPK activity subsequently oscillates for more than 8 h under continuous IL-1β stimulation. However, as this oscillation is asynchronous, the measured p38 activity population average is only slightly higher than basal level. Mathematical modelling, which we have experimentally verified, indicates that the asynchronous oscillation of p38 is generated through a negative feedback loop involving the dual-specificity phosphatase MKP-1/DUSP1. We find that the oscillatory p38 activity is necessary for efficient expression of pro-inflammatory genes such as IL-6, IL-8 and COX-2. PMID:26399197

  4. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice

    PubMed Central

    Sanosaka, Masato; Fujimoto, Minoru; Ohkawara, Tomoharu; Nagatake, Takahiro; Itoh, Yumi; Kagawa, Mai; Kumagai, Ayako; Fuchino, Hiroyuki; Kunisawa, Jun; Naka, Tetsuji; Takemori, Hiroshi

    2015-01-01

    Macrophages play important roles in the innate immune system during infection and systemic inflammation. When bacterial lipopolysaccharide (LPS) binds to Toll-like receptor 4 on macrophages, several signalling cascades co-operatively up-regulate gene expression of inflammatory molecules. The present study aimed to examine whether salt-inducible kinase [SIK, a member of the AMP-activated protein kinase (AMPK) family] could contribute to the regulation of immune signal not only in cultured macrophages, but also in vivo. LPS up-regulated SIK3 expression in murine RAW264.7 macrophages and exogenously over-expressed SIK3 negatively regulated the expression of inflammatory molecules [interleukin-6 (IL-6), nitric oxide (NO) and IL-12p40] in RAW264.7 macrophages. Conversely, these inflammatory molecule levels were up-regulated in SIK3-deficient thioglycollate-elicited peritoneal macrophages (TEPM), despite no impairment of the classical signalling cascades. Forced expression of SIK3 in SIK3-deficient TEPM suppressed the levels of the above-mentioned inflammatory molecules. LPS injection (10 mg/kg) led to the death of all SIK3-knockout (KO) mice within 48 hr after treatment, whereas only one mouse died in the SIK1-KO (n = 8), SIK2-KO (n = 9) and wild-type (n = 8 or 9) groups. In addition, SIK3-KO bone marrow transplantation increased LPS sensitivity of the recipient wild-type mice, which was accompanied by an increased level of circulating IL-6. These results suggest that SIK3 is a unique negative regulator that suppresses inflammatory molecule gene expression in LPS-stimulated macrophages. PMID:25619259

  5. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  6. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  7. Analysis of the contribution of HLA genes to genetic predisposition in inflammatory bowel disease

    SciTech Connect

    Naom, I.; Haris, I.; Hodgson, S.V.; Mathew, C.G.

    1996-07-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBDs) of unknown etiology. First-degree relatives of IBD patients have a 10-fold increase in risk of developing the same disease, and distinct associations between specific HLA types and both CD and UC have been reported. We have evaluated the contribution of genes at the HLA locus to susceptibility in IBD by linkage analysis of highly informative microsatellite polymorphisms in 43 families with multiple affected cases. No evidence for linkage of HLA to IBD was obtained under any of the four models tested. Analysis of HLA haplotype sharing in affected relatives indicated that the relative risk to a sibling conferred by the HLA locus was 1.11 in UC and 0.75 in CD, with upper (95%) confidence limits of 2.41 and 1.37, respectively. This suggests that other genetic or environmental factors are responsible for most of the familial aggregation in IBD. 31 refs., 1 fig., 2 tabs.

  8. Genetic Variations in Inflammatory Response Genes and Their Association with the Risk of Prostate Cancer

    PubMed Central

    Cui, Xin; Yan, Hao; Ou, Tong-Wen; Jia, Chun-Song; Wang, Qi; Xu, Jian-Jun

    2015-01-01

    Prostate cancer is a common cancer in men. Genetic variations in inflammatory response genes can potentially influence the risk of prostate cancer. We aimed to examine the association between PPARG Pro12Ala, NFKB1 -94 ins/del, NFKBIA -826C/T, COX-1 (50C>T), and COX-2 (-1195G>A) polymorphisms on prostate cancer risk. The genotypes of the polymorphisms were ascertained in 543 prostate cancer patients and 753 controls through PCR-RFLP and the risk association was evaluated statistically using logistic regression analysis. The NFKB1 -94 polymorphism was shown to decrease prostate cancer risk in both heterozygous and homozygous comparison models (odds ratios of 0.74 (95% CI = 0.58–0.96) (P = 0.02) and 0.57 (95% CI = 0.42–0.78) (P < 0.01), resp.). An opposite finding was observed for COX-2 (-1195) polymorphism (odds ratios of 1.58 (95% CI = 1.15–2.18) (P < 0.01) for heterozygous comparison model and 2.08 (95% CI = 1.48–2.92) (P < 0.01) for homozygous comparison model). No association was observed for other polymorphisms. In conclusion, NFKB1 -94 ins/del and COX-2 (-1195G>A) polymorphisms may be, respectively, associated with decreased and increased prostate cancer risk in the Chinese population. PMID:26788504

  9. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    reads over 100-bp windows. Read distribution in inputs (In) was used to establish background. Peaks were called (marked in red) using CLC Genomics...acetylation were also limited to initiation-controlled genes, and were not seen at elongations-controlled Tnf (Fig. 3). Modifications are read by so- called ...is driven by immune cells such as macrophages that migrate into the affected joints and produce small proteins called inflammatory cytokines. This

  10. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  11. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  12. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    PubMed

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases.

  13. Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    PubMed Central

    Surls, Jacqueline; Nazarov-Stoica, Cristina; Kehl, Margaret; Olsen, Cara; Casares, Sofia; Brumeanu, Teodor-D.

    2012-01-01

    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response. PMID:22723880

  14. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  15. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease.

    PubMed

    Karatzas, Pantelis S; Mantzaris, Gerassimos J; Safioleas, Michael; Gazouli, Maria

    2014-12-01

    The contribution of epigenetic alterations to disease pathogenesis is emerging as a research priority. In this study, we aimed to seek DNA methylation changes in peripheral blood and tissue biopsies from patients with inflammatory bowel disease. The promoter methylation status of genes involved in inflammation and autoimmunity was profiled using the Human Inflammatory Response and Autoimmunity EpiTect Methyl II Signature PCR Array profiles. Methylation was considered to be hypermethylated if >20% according to the instructions of the manufacturer. The microarrays were validated with Quantitative Real-time PCR. Regarding Crohn disease (CD) no gene appeared hypermethylated compared to healthy controls. In ulcerative colitis (UC) 5 genes (CXCL14, CXCL5, GATA3, IL17C, and IL4R) were hypermethylated compared to healthy controls. Some of the examined genes show different methylation patterns between CD and UC. Concerning tissue samples we found that all hypermethylated genes appear the same methylation pattern and confirmed a moderate-strong correlation between methylation levels in colon biopsies and peripheral blood (Pearson coefficients r=0.089-0.779, and r=0.023-0.353, respectively). The epigenetic changes observed in this study indicate that CD and UC exhibit specific DNA methylation signatures with potential clinical applications in IBD non-invasive diagnosis and prognosis.

  16. Formula milk feeding does not increase the release of the inflammatory marker calprotectin, compared to human milk.

    PubMed

    Rosti, L; Braga, M; Fulcieri, C; Sammarco, G; Manenti, B; Costa, E

    2011-01-01

    Calprotectin is a protein released into stools, used as a marker of inflammation in inflammatory bowel diseases. We tested the hypothesis that cow's milk protein in formula milk may increase the intestinal release of calprotectin, as a consequence of a subclinical inflammatory reaction. At 12 weeks of age, we measured fecal calprotectin by an immunoenzyme assay (Calprest, Eurospital, Trieste, Italy), in 38 exclusively breastfed and in 32 exclusively formula-fed infants. Fecal calprotectin levels were not different in the two groups (p = 0.09), although a trend to higher values in infants with colic, or with family history of allergies was noted. This suggest that, in general, formula milk does not promote activation of an intestinal inflammatory reaction, compared to human milk, although a subclinical activation of the inflammatory response in infants at risk for allergic diseases may be present.

  17. The alteration of zinc transporter gene expression is associated with inflammatory markers in obese women.

    PubMed

    Noh, Hwayoung; Paik, Hee Young; Kim, Jihye; Chung, Jayong

    2014-04-01

    Obesity, a chronic inflammatory state, is associated with altered zinc metabolism. ZnT and Zip transporters are involved in the regulation of zinc metabolism. This study examined the relationships among obesity, zinc transporter gene expression, and inflammatory markers in young Korean women. The messenger RNA (mRNA) levels of leukocyte zinc transporters between obese (BMI = 28.3 ± 0.5 kg/m(2), n = 35) and nonobese (BMI = 20.7 ± 0.2 kg/m(2), n = 20) women aged 18-28 years were examined using quantitative real-time polymerase chain reaction. Inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6, were measured in serum by enzyme immunoassay. ZnT1 and Zip1 were the most abundantly expressed zinc transporters in leukocytes. The mRNA levels of many zinc transporters (ZnT4, ZnT5, ZnT9, Zip1, Zip4, and Zip6) were significantly lower in obese women, and expression of these genes was inversely correlated with BMI and body fat percentage. In addition, inflammatory markers (CRP and TNF-α) were significantly higher in obese women. The mRNA levels of ZnT4, Zip1, and Zip6 were inversely correlated with CRP (P < 0.05), and mRNA levels of ZnT4 and ZnT5 were inversely correlated with TNF-α (P < 0.05). In standardized simple regression models, levels of TNF-α and CRP were negatively associated with mRNA levels of zinc transporters such as ZnT4, ZnT5, Zip1, and Zip6 (P < 0.05). These results suggest that the expression of zinc transporters may be altered in obese individuals. Changes in zinc transporters may also be related to the inflammatory state associated with obesity.

  18. Epac1 agonist decreased inflammatory proteins in retinal endothelial cells, and loss of Epac1 increased inflammatory proteins in the retinal vasculature of mice

    PubMed Central

    Liu, Li; Jiang, Youde; Chahine, Adam; Curtiss, Elizabeth

    2017-01-01

    Purpose Increased inflammatory mediator levels are reported in diabetic retinopathy. We previously reported that β-adrenergic receptor agonists reduced inflammatory mediators in the diabetic retina; however, these agents cannot be given systemically. Here, we investigated whether Epac1 is key to the protective effects of β-adrenergic receptor agonists. Methods We cultured primary human retinal endothelial cells (RECs) in normal (5 mM) or high (25 mM) glucose and treated them with an Epac1-specific agonist. Additionally, we generated Epac1 conditional vascular endothelial cell knockout mice by breeding Epac1 floxed mice with Cdh5 Cre mice to investigate the role of Epac1 in the retinal levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa beta (NFκB), and inhibitor of kappa beta (IκB). Confocal microscopy was performed to localize Epac1 in the mouse retina. Results Data showed that high glucose increased the TNF-α and IL-1β levels in the RECs, which were reduced cells treated with the Epac1 agonist. The loss of Epac1 in the retinas of the conditional knockout mice resulted in statistically significantly increased levels of TNF-α and IL-1β, as well as NFκB. Conclusions These data indicate that Epac1 may be protective to the retina through inhibition of key inflammatory mediators. PMID:28210097

  19. Peptidoglycan recognition protein–peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response

    PubMed Central

    De Marzi, Mauricio C; Todone, Marcos; Ganem, María B; Wang, Qian; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2015-01-01

    Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S–PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile. PMID:25752767

  20. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response.

    PubMed

    De Marzi, Mauricio C; Todone, Marcos; Ganem, María B; Wang, Qian; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2015-07-01

    Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile.

  1. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels.

    PubMed

    Dutta, Anindita; Ray, Manas Ranjan; Banerjee, Anirban

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate >100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM₁₀ and PM₂.₅, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM₁₀ and PM₂.₅ levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD.

  2. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    SciTech Connect

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.; Collins, S.M.; Coates, G.; Hunt, R.H.; Bienenstock, J.

    1987-11-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered /sup 51/Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion of /sup 51/Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease.

  3. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  4. Characterization of candidate genes in inflammatory bowel disease–associated risk loci

    PubMed Central

    Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.

    2016-01-01

    GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286

  5. Loss of parasympathetic innervation leads to sustained expression of pro-inflammatory genes in the rat lacrimal gland

    PubMed Central

    Nguyen, Doan H.; Vadlamudi, Venu; Toshida, Hiroshi; Beuerman, Roger W.

    2009-01-01

    It has been shown that removal of parasympathetic innervation to the lacrimal gland (LG) leads to rapid reduction in tear flow. Additionally, removal of the neural input resulted in disorganization of LG structure and changes in the expression of genes associated with the secretory pathway and inflammation. The goal of this study was to investigate the change in pro-inflammatory and pro-apoptotic gene expression in the rat LG following parasympathetic denervation. Male Long- Evans rats underwent unilateral sectioning of the greater superficial petrosal nerve and were sacrificed 7 days or 2.5 months later. cDNA was synthesized from LG RNA from the contralateral control (Ctla) and parasympathectomized (Px) glands and comparative real-time PCR was performed. Mean threshold cycles (MCT) for the Ctla and Px LG genes were normalized to 18S rRNA MCT values, and the relative fold change was calculated for each gene using the 2T−ΔΔC method. The expression of nuclear factor kappa B1, caspase 1, eotaxin, leukocyte antigen MRC-OX44, allograft inflammatory factor-1, MHC class II molecules RT.1B and RT.1D, IgG receptor FcRn, and macrophage metalloelastase was increased and remained elevated in the Px LG, compared with the Ctla LG. Increased expression of the initiator of apoptosis gene, caspase 2, was confirmed, but expression of the executor gene, caspase 6, was not elevated in the Px LG. Reduced expression of genes associated with post-translational protein processing-furin convertase, protein disulfide isomerase, and UDP-gal transporter isozyme 1-was noted in the Px LG. No significant changes in the expression of genes associated with lysosomal and non-lysosomal-mediated protein degradation were found. Removal of parasympathetic input may lead to decreased capacity for protein synthesis and elevated immune responses in the Px LG. These changes occur without increases in expression of the muscarinic acetylcholine receptor subtype 3, and may suggest the early changes in LG

  6. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  7. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    PubMed

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response.

  8. Abnormal expression of inflammatory genes in placentas of women with sickle cell anemia and sickle hemoglobin C disease.

    PubMed

    Baptista, Letícia C; Costa, Maria Laura; Ferreira, Regiane; Albuquerque, Dulcinéia M; Lanaro, Carolina; Fertrin, Kleber Y; Surita, Fernanda G; Parpinelli, Mary A; Costa, Fernando F; Melo, Mônica Barbosa de

    2016-10-01

    Sickle cell disease (SCD) is a complex disease that is characterized by the polymerization of deoxyhemoglobin S, altered red blood cell membrane biology, endothelial activation, hemolysis, a procoagulant state, acute and chronic inflammation, and vaso-occlusion. Among the physiological changes that occur during pregnancy, oxygen is consumed by fetal growth, and pregnant women with SCD are more frequently exposed to low oxygen levels. This might lead to red blood cells sickling, and, consequently, to vaso-occlusion. The mechanisms by which SCD affects placental physiology are largely unknown, and chronic inflammation might be involved in this process. This study aimed to evaluate the gene expression profile of inflammatory response mediators in the placentas of pregnant women with sickle cell cell anemia (HbSS) and hemoglobinopathy SC (HbSC). Our results show differences in a number of these genes. For the HbSS group, when compared to the control group, the following genes showed differential expression: IL1RAP (2.76-fold), BCL6 (4.49-fold), CXCL10 (-2.12-fold), CXCR1 (-3.66-fold), and C3 (-2.0-fold). On the other hand, the HbSC group presented differential expressions of the following genes, when compared to the control group: IL1RAP (4.33-fold), CXCL1 (3.05-fold), BCL6 (4.13-fold), CXCL10 (-3.32-fold), C3 (-2.0-fold), and TLR3 (2.38-fold). Taken together, these data strongly suggest a differential expression of several inflammatory genes in both SCD (HbSS and HbSC), indicating that the placenta might become an environment with hypoxia, and increased inflammation, which could lead to improper placental development.

  9. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer.

    PubMed

    Trejo-de la O, A; Hernández-Sancén, P; Maldonado-Bernal, C

    2014-04-01

    Innate and adaptive immune responses in humans have evolved as protective mechanisms against infectious microorganisms. Toll-like receptors (TLRs) have an important role in the recognition of invading microorganisms. TLRs are the first receptors to detect potential pathogens and to initiate the immune response, and they form the crucial link between the innate and adaptive immune responses. TLRs also have an important role in the pathophysiology of infectious and inflammatory diseases. Increasing data suggest that the ability of certain individuals to respond properly to TLR ligands may be impaired by single-nucleotide polymorphisms (SNPs) within TLR genes, resulting in an altered susceptibility to infectious or inflammatory disease that might contribute to the pathogenesis of complex diseases such as cancer. The associations between diseases and SNPs are in the early stage of discovery. Important clinical insights are emerging, and these polymorphisms provide new understanding of common diseases. This review summarizes and discusses the studies that shed light on the relevance of these polymorphisms in human infectious and inflammatory diseases and cancer.

  10. Increased Expression of Versican in the Inflammatory Response to UVB- and Reactive Oxygen Species-Induced Skin Tumorigenesis

    PubMed Central

    Kunisada, Makoto; Yogianti, Flandiana; Sakumi, Kunihiko; Ono, Ryusuke; Nakabeppu, Yusaku; Nishigori, Chikako

    2011-01-01

    Excessive exposure to UV radiation is a major risk factor for developing skin cancer. UV-induced reactive oxygen species (ROS) cause accumulation of DNA damage products such as 8-oxoguanine (8-oxoG) in the skin. We have previously shown that mice lacking the repair enzyme 8-oxoguanine glycosylase (Ogg1 knockout mice) are highly susceptible to skin cancer after long-term UVB exposure. To investigate the genes involved, we performed gene profiling of Ogg1 knockout mouse skin after UVB exposure. Among the up-regulated genes in UVB-treated Ogg1 knockout mice, inflammatory response pathway-related genes were most affected. The Vcan gene, which encodes the large extracellular matrix proteoglycan versican, was continuously up-regulated in UVB-treated Ogg1 knockout mice, suggesting that versican is a mediator of skin cancer development. We examined the expression pattern of versican in skin tumors from wild-type mice and UVB-treated Ogg1 knockout mice, and also analyzed 157 sun-related human skin tumors. Versican was strongly expressed in malignant skin tumors in both mice and humans, and especially in Ogg1 knockout mice. Additionally, infiltrating neutrophils strongly colocalized with versican in UVB-treated Ogg1 knockout mouse skin. These data demonstrate that inflammatory responses, particularly neutrophil infiltration and versican up-regulation, are closely involved in UVB/ROS-induced skin tumorigenesis. PMID:22001346

  11. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  12. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect

    Dutta, Anindita; Ray, Manas Ranjan; Banerjee, Anirban

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  13. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  14. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  15. Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance.

    PubMed

    Carasi, Paula; Racedo, Silvia María; Jacquot, Claudine; Elie, Anne Marie; Serradell, María de Los Ángeles; Urdaci, María C

    2017-01-01

    Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-α/IL-10 and IL-1β/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1β, IFN-γ, and CXCL1 gene expression significantly decreased on day 21 in Peyer's patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1β, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory

  16. Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance

    PubMed Central

    Carasi, Paula; Racedo, Silvia María; Jacquot, Claudine; Elie, Anne Marie; Serradell, María de los Ángeles; Urdaci, María C.

    2017-01-01

    Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-α/IL-10 and IL-1β/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1β, IFN-γ, and CXCL1 gene expression significantly decreased on day 21 in Peyer’s patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1β, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory

  17. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis.

    PubMed

    Hueston, Cara M; Deak, Terrence

    2014-01-30

    Acute stress increases the expression of cytokines and other inflammatory-related factors in the CNS, plasma, and endocrine glands, and activation of inflammatory signaling pathways within the hypothalamic-pituitary-adrenal (HPA) axis may play a key role in later stress sensitization. In addition to providing a summary of stress effects on neuroimmune changes within the CNS, we present a series of experiments that characterize stress effects on members of the interleukin-1β (IL-1) super-family and other inflammatory-related genes in key structures comprising the HPA axis (PVN, pituitary and adrenal glands), followed by a series of experiments examining the impact of exogenous hormone administration (CRH and ACTH) and dexamethasone on the expression of inflammatory-related genes in adult male Sprague-Dawley rats. The results demonstrated robust, time-dependent, and asynchronous expression patterns for IL-1 and IL-1R2 in the PVN, with substantial increases in IL-6 and COX-2 in the adrenal glands emerging as key findings. The effects of exogenous CRH and ACTH were predominantly isolated within the adrenals. Finally, pretreatment with dexamethasone severely blunted neuroimmune changes in the adrenal glands, but not in the PVN. These findings provide novel insight into the relationship between stress, the expression of inflammatory signaling factors within key structures comprising the HPA axis, and their interaction with HPA hormones, and provide a foundation for better understanding the role of cytokines as modulators of hypothalamic, pituitary and adrenal sensitivity.

  18. Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation.

    PubMed

    Gunbin, Konstantin V; Ponomarenko, Mikhail P; Suslov, Valentin V; Gusev, Fedor; Fedonin, Gennady G; Rogaev, Evgeny I

    2017-02-24

    Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.

  19. Promoter demethylation of cystathionine-β-synthetase gene contributes to inflammatory pain in rats.

    PubMed

    Qi, Feihu; Zhou, Youlang; Xiao, Ying; Tao, Jin; Gu, Jianguo; Jiang, Xinghong; Xu, Guang-Yin

    2013-01-01

    Hydrogen sulfide (H(2)S), an endogenous gas molecule synthesized by cystathionine-β-synthetase (CBS), is involved in inflammation and nociceptive signaling. However, the molecular and epigenetic mechanisms of CBS-H(2)S signaling in peripheral nociceptive processing remain unknown. We demonstrated that peripheral inflammation induced by intraplantar injection of complete Freund adjuvant significantly up-regulated expression of CBS at both protein and mRNA levels in rat dorsal root ganglia (DRG). The CBS inhibitors hydroxylamine and aminooxyacetic acid attenuated mechanical hyperalgesia in a dose-dependent manner and reversed hyperexcitability of DRG neurons in inflamed rats. Intraplantar administration of NaHS (its addition mimics CBS production of H(2)S) or l-cysteine in healthy rats elicited mechanical hyperalgesia. Application of NaHS in vitro enhanced excitability and tetrodotoxin (TTX)-resistant sodium current of DRG neurons from healthy rats, which was attenuated by pretreatment of protein kinase A inhibitor H89. Methylation-specific PCR and bisulfite sequencing demonstrated that promoter region of cbs gene was less methylated in DRG samples from inflamed rats than that from controls. Peripheral inflammation did not alter expression of DNA methyltransferase 3a and 3b, the 2 major enzymes for DNA methylation, but led to a significant up-regulation of methyl-binding domain protein 4 and growth arrest and DNA damage inducible protein 45α, the enzymes involved in active DNA demethylation. Our findings suggest that epigenetic regulation of CBS expression may contribute to inflammatory hyperalgesia. H(2)S seems to increase TTX-resistant sodium channel current, which may be mediated by protein kinase A pathway, thus identifying a potential therapeutic target for the treatment of chronic pain.

  20. HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis

    PubMed Central

    2011-01-01

    Background Although the high mobility group A1 (HMGA1) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. HMGA1 functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, HMGA1 is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from HMGA1a transgenic mice at different stages in tumorigenesis. Results RNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors. Conclusions We found that HMGA1 induces inflammatory pathways early in

  1. Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice

    PubMed Central

    Kim, J; Carlson, M E; Kuchel, G A; Newman, J W; Watkins, B A

    2016-01-01

    Objectives: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type 2 diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids (ECs) derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid (AA) occur in obese and diabetic patients. Here we investigate whether the n-3 PUFA docosahexaenoic acid (DHA) in the diet can reduce ECS overactivation (that is, action of ligands, receptors and enzymes of EC synthesis and degradation) to influence glycemic control. This study targets the ECS tonal regulation of circulating glucose uptake by skeletal muscle as its primary end point. Design: Male C57BL/6J mice were fed a semipurified diet containing DHA or the control lipid. Serum, skeletal muscle, epididymal fat pads and liver were collected after 62 and 118 days of feeding. Metabolites, genes and gene products associated with the ECS, glucose uptake and metabolism and inflammatory status were measured. Results: Dietary DHA enrichment reduced epididymal fat pad mass and increased ECS-related genes, whereas it reduced downstream ECS activation markers, indicating that ECS activation was diminished. The mRNA of glucose-related genes and proteins elevated in mice fed the DHA diet with increases in DHA-derived and reductions in AA-derived EC and EC-like compounds. In addition, DHA feeding reduced plasma levels of various inflammatory cytokines, 5-lipoxygenase-dependent inflammatory mediators and the vasoconstrictive 20-HETE. Conclusions: This study provides evidence that DHA feeding altered ECS gene expression to reduce CB1 activation and reduce fat accretion. Furthermore, the DHA diet led to higher expression of genes associated with glucose use by muscle in mice, and reduced those associated with systemic inflammatory status. PMID:26219414

  2. Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.

    PubMed

    Prescott, Natalie J; Lehne, Benjamin; Stone, Kristina; Lee, James C; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M; Simpson, Michael A; Spain, Sarah L; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu'Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C; Mansfield, John C; Sanderson, Jeremy; Lewis, Cathryn M; Weale, Michael E; Schlitt, Thomas; Mathew, Christopher G

    2015-02-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1-5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis.

  3. Genetic predisposition and induced pro-inflammatory/pro-oxidative status may play a role in increased atherothrombotic events in nilotinib treated chronic myeloid leukemia patients.

    PubMed

    Bocchia, Monica; Galimberti, Sara; Aprile, Lara; Sicuranza, Anna; Gozzini, Antonella; Santilli, Francesca; Abruzzese, Elisabetta; Baratè, Claudia; Scappini, Barbara; Fontanelli, Giulia; Trawinska, Monika Malgorzata; Defina, Marzia; Gozzetti, Alessandro; Bosi, Alberto; Petrini, Mario; Puccetti, Luca

    2016-11-01

    Several reports described an increased risk of cardiovascular (CV) events, mainly atherothrombotic, in Chronic Myeloid Leukemia (CML) patients receiving nilotinib. However, the underlying mechanism remains elusive. The objective of the current cross-sectional retrospective study is to address a potential correlation between Tyrosine Kinase Inhibitors (TKIs) treatment and CV events. One hundred and 10 chronic phase CML patients in complete cytogenetic response during nilotinib or imatinib, were screened for CV events and evaluated for: traditional CV risk factors, pro/anti-inflammatory biochemical parameters and detrimental ORL1 gene polymorphisms (encoding for altered oxidized LDL receptor-1). Multivariate analysis of the whole cohort showed that the cluster of co-existing nilotinib treatment, dyslipidaemia and G allele of LOX-1 polymorphism was the only significant finding associated with CV events. Furthermore, multivariate analysis according to TKI treatment confirmed IVS4-14 G/G LOX-1 polymorphism as the strongest predictive factor for a higher incidence of CV events in nilotinib patients. Biochemical assessment showed an unbalanced pro-inflammatory cytokines network in nilotinib vs imatinib patients. Surprisingly, pre-existing traditional CV risk factors were not always predictive of CV events. We believe that in nilotinib patients an induced "inflammatory/oxidative status", together with a genetic pro-atherothrombotic predisposition, may favour the increased incidence of CV events. Prospective studies focused on this issue are ongoing.

  4. Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes

    PubMed Central

    2013-01-01

    Background In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways. Methods RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000 cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and immunohistochemistry. Results Four hundred and sixteen differentially expressed genes were identified that clearly delineated between AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell associated, matrix catabolic, and metabolic pathways. Altered "myogene" profiling was also identified. The inflammatory mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold) and Kremen1 (1.5-fold) were downregulated. Conclusions Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly involved in the destructive tissue remodelling. PMID:24330574

  5. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.

    PubMed

    Boesch-Saadatmandi, Christine; Loboda, Agnieszka; Wagner, Anika E; Stachurska, Anna; Jozkowicz, Alicja; Dulak, Jozef; Döring, Frank; Wolffram, Siegfried; Rimbach, Gerald

    2011-03-01

    In the present study the effect of quercetin and its major metabolites quercetin-3-glucuronide (Q3G) and isorhamnetin on inflammatory gene expression was determined in murine RAW264.7 macrophages stimulated with lipopolysaccharide. Quercetin and isorhamnetin but not Q3G significantly decreased mRNA and protein levels of tumor necrosis factor alpha. Furthermore a significant decrease in mRNA levels of interleukin 1β, interleukin 6, macrophage inflammatory protein 1α and inducible nitric oxide synthase was evident in response to the quercetin treatment. However Q3G did not affect inflammatory gene expression. Anti-inflammatory properties of quercetin and isorhamnetin were accompanied by an increase in heme oxygenase 1 protein levels, a downstream target of the transcription factor Nrf2, known to antagonize chronic inflammation. Furthermore, proinflammatory microRNA-155 was down-regulated by quercetin and isorhamnetin but not by Q3G. Finally, anti-inflammatory properties of quercetin were confirmed in vivo in mice fed quercetin-enriched diets (0.1 mg quercetin/g diet) over 6 weeks.

  6. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  7. Plasma inflammatory and vascular homeostasis biomarkers increase during human pregnancy but are not affected by oily fish intake.

    PubMed

    García-Rodríguez, Cruz E; Olza, Josune; Aguilera, Concepción M; Mesa, María D; Miles, Elizabeth A; Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Godfrey, Keith M; Calder, Philip C; Gil, Angel

    2012-07-01

    The Salmon in Pregnancy Study investigated whether the increased consumption of (n-3) long-chain PUFA (LC-PUFA) from farmed Atlantic salmon affects immune function during pregnancy and atopic disease in neonates compared with a habitual diet low in oily fish. In this context, because the ingestion of (n-3) LC-PUFA may lower the concentrations of inflammatory biomarkers, we investigated whether the consumption of oily fish affects the levels of inflammatory cytokines and vascular adhesion factors during pregnancy. Pregnant women (n = 123) were randomly assigned to continue their habitual diet (control group, n = 61), which was low in oily fish, or to consume two 150-g salmon portions/wk (salmon group, n = 62; providing 3.45 g EPA plus DHA) from 20 wk of gestation until delivery. Plasma inflammatory cytokines and vascular adhesion factors were measured in maternal plasma samples. Inflammatory biomarkers, including IL-8, hepatocyte growth factor, and monocyte chemotactic protein, increased over the course of pregnancy (P < 0.001), whereas plasma matrix metalloproteinase 9, IL-6, TNFα, and nerve growth factor concentrations were not affected. Vascular homeostasis biomarkers soluble E-selectin, soluble vascular adhesion molecule-1, soluble intercellular adhesion molecule (sICAM)-1, and total plasminogen activator inhibitor-1 increased as pregnancy progressed (P < 0.001). The plasma sICAM-1 concentration was greater in the control group than in the salmon group at wk 20 (baseline) and 38 (P = 0.007) but there was no group x time interaction, and when baseline concentration was used as a covariate, the groups did not differ (P = 0.69). The remaining biomarkers analyzed were similar in both groups. Therefore, although some inflammatory and vascular homeostasis biomarkers change during pregnancy, they are not affected by the increased intake of farmed salmon.

  8. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...

  9. Empowering Multi-Cohort Gene Expression Analysis to Increase Reproducibility

    PubMed Central

    Haynes, Winston A; Vallania, Francesco; Liu, Charles; Bongen, Erika; Tomczak, Aurelie; Andres-Terrè, Marta; Lofgren, Shane; Tam, Andrew; Deisseroth, Cole A; Li, Matthew D; Sweeney, Timothy E

    2016-01-01

    A major contributor to the scientific reproducibility crisis has been that the results from homogeneous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data from diverse populations into a single analysis. To make the multi-cohort analysis process more feasible, we have assembled an analysis pipeline which implements rigorously studied meta-analysis best practices. We have compiled and made publicly available the results of our own multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive web application. As a result, we have made both the process of and the results from multi-cohort gene expression analysis more approachable for non-technical users. PMID:27896970

  10. Adenovirus with DNA Packaging Gene Mutations Increased Virus Release

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; McMasters, Kelly M.; Zhou, Heshan Sam

    2016-01-01

    Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis. PMID:27999391

  11. Mutation of cysteine 46 in IKK-beta increases inflammatory responses

    PubMed Central

    Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-01-01

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  12. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    PubMed

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  13. Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities.

    PubMed

    Oceandy, Delvac; McMorran, Brendan J; Smith, Stephen N; Schreiber, Rainer; Kunzelmann, Karl; Alton, Eric W F W; Hume, David A; Wainwright, Brandon J

    2002-05-01

    Increasingly, cystic fibrosis (CF) is regarded as an inflammatory disorder where the response of the lung to Pseudomonas aeruginosa is exaggerated as a consequence of processes mediated by the product of the CF gene, CFTR. Of importance to any gene-replacement strategy for treatment of CF is the identification of the cell type(s) within the lung milieu that need to be corrected and an indication whether this is sufficient to restore a normal inflammatory response and bacterial clearance. We generated G551D CF mice transgenically expressing the human CFTR gene in two tissue compartments previously demonstrated to mediate a CFTR-dependent inflammatory response: lung epithelium and alveolar macrophages. Following chronic pulmonary infection with P. aeruginosa, CF mice with epithelial-expressed but not macrophage-specific CFTR showed an improvement in pathogen clearance and inflammatory markers compared with control CF animals. Additionally, these data indicate the general role for epithelial cell-mediated events in the response of the lung to bacterial pathogens and the importance of CFTR in mediating these processes.

  14. Allelic polymorphism in IL-1 beta and IL-1 receptor antagonist (IL-1Ra) genes in inflammatory bowel disease.

    PubMed Central

    Bioque, G; Crusius, J B; Koutroubakis, I; Bouma, G; Kostense, P J; Meuwissen, S G; Peña, A S

    1995-01-01

    Recent reports have shown that allele 2 of the IL-1 receptor antagonist (IL-1Ra) gene is over-represented in ulcerative colitis (UC). Healthy individuals carrying allele 2 of this gene have increased production of IL-1Ra protein. Since the final outcome of the biological effects of IL-1 beta may depend on the relative proportion of these two cytokines, we have studied if a TaqI polymorphism in the IL-1 beta gene, which is relevant to IL-1 beta protein production, may be involved in the genetic susceptibility to UC and Crohn's disease (CD), in association with the established IL-1Ra gene polymorphism. Polymorphisms in the closely linked genes for IL-1 beta and IL-1Ra were typed in 100 unrelated Dutch patients with UC, 79 with CD, and 71 healthy controls. The polymorphic regions in exon 5 of the IL-1 beta gene and in intron 2 of the IL-1Ra gene, were studied by polymerase chain reaction (PCR)-based methods. The IL-1 beta allele frequencies in UC and CD patients did not differ from those in healthy controls. In order to study if the IL-1 beta gene polymorphism might participate synergistically with the IL-1Ra gene polymorphism in susceptibility to UC and CD, individuals were distributed into carriers and non-carriers of allele 2 of the genes encoding IL-1 beta and IL-1Ra, in each of the patient groups and controls. Results indicated a significant association of this pair of genes, estimated by the odds ratio (OR) after performing Fisher's exact test, in the UC group (P = 0.023, OR = 2.81), as well as in the CD group (P = 0.01, OR = 3.79). Thus, non-carriers of IL-1 beta allele 2 were more often present in the subgroup of patients carrying the IL-1Ra allele 2. By contrast, no association of these alleles was detected in the group of healthy controls (P = 1.00, OR = 0.92). These results suggest that the IL-1 beta/IL-1Ra allelic cluster may participate in defining the biological basis of predisposition to chronic inflammatory bowel diseases. PMID:7586694

  15. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    PubMed

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes.

  16. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    PubMed

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  17. Inflammatory Cytokine Gene Expression in Mesenteric Adipose Tissue during Acute Experimental Colitis

    PubMed Central

    Mustain, W. Conan; Starr, Marlene E.; Valentino, Joseph D.; Cohen, Donald A.; Okamura, Daiki; Wang, Chi; Evers, B. Mark; Saito, Hiroshi

    2013-01-01

    Background Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. Methods Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes. Results During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. Conclusions Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes. PMID:24386254

  18. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  19. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  20. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity.

    PubMed

    Trivedi, Palak J; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M; Weston, Chris J; Adams, David H

    2016-04-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4(+)) and 30% (CD8(+)) of tissue-infiltrating T-cells in colitis were identified as CCR9(+) effector lymphocytes, compared to <10% of T-cells being CCR9(+) in normal colon. Sorted CCR9(+) lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9(-) counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver.

  1. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  2. Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.

    PubMed

    Drägert, Katja; Bhattacharya, Indranil; Pellegrini, Giovanni; Seebeck, Petra; Azzi, Abdelhalim; Brown, Steven A; Georgiopoulou, Stavroula; Held, Ulrike; Blyszczuk, Przemyslaw; Arras, Margarete; Humar, Rok; Hall, Michael N; Battegay, Edouard; Haas, Elvira

    2015-08-01

    The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to the regulation of glucose and lipid metabolism. In the perivascular adipose tissue, mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (Rictor(aP2KO)) mice generated using adipocyte protein-2 gene promoter-driven CRE recombinase expression to delete Rictor. The 24-hour mean arterial pressure was increased in Rictor(aP2KO) mice, and the physiological decline in mean arterial pressure during the dark period was impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides, and their receptor expression in adipocytes. Moreover, clock gene expression was reduced or phase-shifted in perivascular adipose tissue. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus, although Rictor gene expression was also lower in brain of Rictor(aP2KO) mice. Thus, this study highlights the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes, and brain to tune physiological outcomes, such as blood pressure and locomotor activity.

  3. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  4. Effect of Cyperus Rotundus on Cytokine Gene Expression in Experimental Inflammatory Bowel Disease

    PubMed Central

    Johari, Sarika; Joshi, Chaitanya; Gandhi, Tejal

    2016-01-01

    Background: The protective effect of the chloroform extract of Cyperus rotundus (CHCR) is attributed to its anti-inflammatory and antioxidant activities. Cytokines, important regulators of inflammation and repair, play a key role in the pathogenesis of inflammatory bowel disease (IBD). Targeting these cytokines can effectively ameliorate the symptoms of IBD. The aim of the present study was to unravel the molecular mechanism through cytokine regulation in rats in experimental IBD. Methods: Sprague Dawley rats were randomly allocated to 5 groups (n=6). Group I served as the normal control. Group II served as the vehicle control and received 50% ethanol intracolonically on day 11 of the study. Group III served as the model control. Group IV and Group V were given standard drug 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg), respectively, for 18 days once a day orally. Colitis was induced with dinitrobenzene sulfonic acid (180 mg/kg in 50% ethanol) intracolonically in groups III–V on day 11 of the study. On day 18, the rats were euthanized and colon tissues were removed for IL-4, IL-6, IL-12, and IFN-gamma gene expression studies using quantitative RT-PCR. Results: The expression levels of proinflammatory cytokines IL-4, IL-6, IL-12, and IFN-gamma were upregulated in the model control rats. Pretreatment with 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg) significantly decreased the fold of the expression of the above cytokines. Conclusion: CHCR acts as a molecular brake and downregulates the expression of proinflammatory cytokine genes; this is beneficial for reducing the severity of the experimental IBD. Thus, Cyperus rotundus is a safe, economical, and effective alternative for the treatment of patients with IBD. PMID:27582588

  5. Notochordal Cells Influence Gene Expression of Inflammatory Mediators of Annulus Fibrosus Cells in Proinflammatory Cytokines Stimulation

    PubMed Central

    Moon, Hong Joo; Joe, Hoon; Kwon, Taek Hyun; Choi, Hye-Kyoung; Park, Youn Kwan

    2010-01-01

    Objective Notochordal cells in the intervertebral disc interact with nucleus pulposus (NP) cells and support the maintenance of disc homeostasis by regulation of matrix production. However, the influence of notochordal cells has not been evaluated in the annulus fibrosus (AF), which is the primary pain generator in the disc. We hypothesized that the notochordal cell has the capacity to modulate inflammatory mediators secreted by AF cells secondary to stimulation. Methods Notochordal and AF cells were isolated from adult New Zealand white rabbits. AF pellets were cultured with notochordal cell clusters or in notochordal cell-conditioned media (NCCM) for 24 or 48 hours with proinflammatory cytokines at varying concentrations. Gene expression in AF pellets were assayed for nitric oxide synthase (iNOS), cyclo-oxygenase (COX)-2, and interleukin (IL)-6 by real time reverse transcriptase polymerase chain reaction (RT-PCR). Results AF pellet in NCCM significantly decreased the iNOS and COX-2 messenger ribonucleic acid (mRNA) levels compared to AF pellets alone and AF pellets with notochordal cells (p < 0.05). AF pellet resulted in dose-dependent iNOS and COX-2 expression in response to IL-1β, stimulation, demonstrating that 1 ng/ml for 24 hours yielded a maximal response. AF pellet in NCCM significantly decreased the expression of iNOS and COX-2 in response to 1ng/ml IL-1β, stimulation at 24 hours (p < 0.05). There was no difference in IL-6 expression compared to AF pellets alone or AF pellets with notochordal cell clusters. Conclusion We conclude that soluble factors from notochordal cells mitigate the gene expression of inflammatory mediators in stimulated AF, as expected after annular injury, suggesting that notochordal cells could serve as a novel therapeutic approach in symptomatic disc development. PMID:20717505

  6. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.

    PubMed

    Espagnolle, Nicolas; Balguerie, Adélie; Arnaud, Emmanuelle; Sensebé, Luc; Varin, Audrey

    2017-03-07

    Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy.

  7. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription

    SciTech Connect

    Waldron, Elaine; Isbert, Simone; Kern, Andreas; Jaeger, Sebastian; Martin, Anne M.; Hebert, Sebastien S.; Behl, Christian; Weggen, Sascha; De Strooper, Bart; Pietrzik, Claus U.

    2008-08-01

    A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid {beta} peptide (A{beta}) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target 0011gen.

  8. Exaggerated Increases in Microglia Proliferation, Brain Inflammatory Response and Sickness Behaviour upon Lipopolysaccharide Stimulation in Non-Obese Diabetic Mice

    PubMed Central

    McGuiness, Barry; Gibney, Sinead M.; Beumer, Wouter; Versnel, Marjan A.; Sillaber, Inge; Harkin, Andrew; Drexhage, Hemmo A.

    2016-01-01

    The non-obese diabetic (NOD) mouse, an established model for autoimmune diabetes, shows an exaggerated reaction of pancreas macrophages to inflammatory stimuli. NOD mice also display anxiety when immune-stimulated. Chronic mild brain inflammation and a pro-inflammatory microglial activation is critical in psychiatric behaviour. Objective To explore brain/microglial activation and behaviour in NOD mice at steady state and after systemic lipopolysaccharide (LPS) injection. Methods Affymetrix analysis on purified microglia of pre-diabetic NOD mice (8-10 weeks) and control mice (C57BL/6 and CD1 mice, the parental non-autoimmune strain) at steady state and after systemic LPS (100 μg/kg) administration. Quantitative PCR was performed on the hypothalamus for immune activation markers (IL-1β, IFNγ and TNFα) and growth factors (BDNF and PDGF). Behavioural profiling of NOD, CD1, BALB/c and C57BL/6 mice at steady state was conducted and sickness behaviour/anxiety in NOD and CD1 mice was monitored before and after LPS injection. Results Genome analysis revealed cell cycle/cell death and survival aberrancies of NOD microglia, substantiated as higher proliferation on BrdU staining. Inflammation signs were absent. NOD mice had a hyper-reactive response to novel environments with some signs of anxiety. LPS injection induced a higher expression of microglial activation markers, a higher brain pro-inflammatory set point (IFNγ, IDO) and a reduced expression of BDNF and PDGF after immune stimulation in NOD mice. NOD mice displayed exaggerated and prolonged sickness behaviour after LPS administration. Conclusion After stimulation with LPS, NOD mice display an increased microglial proliferation and an exaggerated inflammatory brain response with reduced BDNF and PDGF expression and increased sickness behaviour as compared to controls. PMID:27529430

  9. Training increases anabolic response and reduces inflammatory response to a single practice in elite male adolescent volleyball players.

    PubMed

    Nemet, Dan; Portal, Shawn; Zadik, Zvi; Pilz-Burstein, Rutie; Adler-Portal, Dana; Meckel, Yoav; Eliakim, Alon

    2012-01-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Fourteen male, elite, national team-level, Israeli volleyball players (age, 16.3±1.1 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60-min volleyball practice, before and after 7 weeks of training during the initial phases of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, and testosterone; the catabolic hormone cortisol; the pro-inflammatory markers interleukin (IL) 6, and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of both anaerobic and aerobic properties. Before the training intervention, the typical volleyball practice was associated with a significant increase of GH and testosterone and also with a significant increase of IL-6. Training resulted in a significantly greater GH response (ΔGH, 2.5±2.4 vs. 4.7±3.0 ng/mL, before and after training, respectively; p<0.02) and reduced IL-6 response (ΔIL-6, 2.0±1.6 vs. 0.6±0.7 pg/mL, before and after training, respectively; p<0.01) to the same relative intensity volleyball practice. The results suggest that, along with the improvement of anaerobic and aerobic characteristics, training leads to a greater anabolic and reduced inflammatory response to exercise.

  10. Inhibition of Inflammatory Gene Expression in Keratinocytes Using a Composition Containing Carnitine, Thioctic Acid and Saw Palmetto Extract

    PubMed Central

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities. PMID:19692448

  11. Inhibition of inflammatory gene expression in keratinocytes using a composition containing carnitine, thioctic Acid and saw palmetto extract.

    PubMed

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  12. Combinatorial gene therapy renders increased survival in cirrhotic rats

    PubMed Central

    2010-01-01

    Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g) underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively) or with Ad-beta-Gal (4.5 × 1011) and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8) showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis. PMID:20509929

  13. Increasing Patient Activation Could Improve Outcomes for Patients with Inflammatory Bowel Disease.

    PubMed

    Shah, Shawn L; Siegel, Corey A

    2015-12-01

    Inflammatory bowel disease (IBD) is a complex disease process that often requires the integration of skills from various health care providers to adequately meet the needs of patients with IBD. The medical and surgical treatment options for IBD have become more complicated and are frequently a source of angst for both the patient and provider. However, it has become more important than ever to engage patients in navigating the treatment algorithm. Although novel in the IBD world, the concept of patients' becoming more active and effective managers of their care has been well studied in other disease processes such as diabetes mellitus and mental illness. This idea of patient activation refers to a patient understanding his or her role in the care process and having the skill sets and self-reliance necessary to manage his or her own health care. Over the past decade, evidence supporting the role of patient activation in chronic illness has grown, revealing improved health outcomes, enhanced patient experiences, and lower overall costs. Patient activation can be measured, and interventions have been shown to improve levels of activation over time and influence outcomes. A focus on patient activation is very appropriate for patients with IBD because this may potentially serve as a tool for IBD providers to not only improve patient outcomes and experience but also reduce health care costs.

  14. Increased urinary levels of podocyte glycoproteins, matrix metallopeptidases, inflammatory cytokines, and kidney injury biomarkers in women with preeclampsia.

    PubMed

    Wang, Yuping; Gu, Yang; Loyd, Susan; Jia, Xiuyue; Groome, Lynn J

    2015-12-15

    To investigate kidney injury in preeclampsia, we analyzed 14 biomarkers in urine specimen from 4 groups of pregnant women (normotensive pregnant women and those with pregnancy complicated with chronic hypertension or mild or severe preeclampsia). These biomarkers included 1) podocyte glycoproteins nephrin and podocalyxin, 2) matrix metallopeptidase (MMP)-2 and MMP-9 and their inhibitor tissue inhibitor of metalloproteinase-2, 3) inflammatory molecules and cytokines soluble VCAM-1, TNF-α, soluble TNF receptor receptor-1, IL-6, IL-8, IL-10, and IL-18, and 4) kidney injury biomarkers neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Postpartum urine specimens (6-8 wk) from normotensive women and those with severe preeclampsia were also evaluated. We found that, first, urine levels of nephrin, MMP-2, MMP-9, and kidney injury molecule-1 were significantly higher before delivery in severe preeclampsia than normotensive groups. The increased levels were all reduced to levels similar to those of the normotensive control group in postpartum specimens from the severe preeclampsia group. Second, soluble VCAM-1, soluble TNF receptor-1, and neutrophil gelatinase-associated lipocalin levels were significantly increased in the severe preeclampsia group compared with the normotensive control group before delivery, but levels of these molecules were significantly reduced in postpartum specimens in both groups. Third, IL-6 and IL-8 levels were not different between preeclampsia and normotensive groups but significantly increased in pregnancy complicated with chronic hypertension. Finally, tissue inhibitor of metalloproteinase-2 and IL-18 levels were not different among the study groups before delivery but were significantly reduced in postpartum specimens from normotensive controls. Our results indicate that the kidney experiences an increased inflammatory response during pregnancy. Most interestingly, tubular epithelial cell injury may also occur in severe

  15. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65

    PubMed Central

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E.; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S.; Kaneki, Masao

    2015-01-01

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-Nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson’s disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. PMID:25389371

  16. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Yang, Hsin-Ling; Lin, Shu-Wei; Lee, Chuan-Chen; Lin, Kai-Yuan; Liao, Chun-Huei; Yang, Ting-Yu; Wang, Hui-Min; Huang, Hui-Chi; Wu, Chi-Rei; Hseu, You-Cheng

    2015-01-01

    Antrodia salmonea (AS), a well-known medicinal mushroom in Taiwan, has been reported to exhibit anti-oxidant, anti-angiogenic, anti-atherogenic, and anti-inflammatory effects. In the present study, we investigated the activation of Nrf2-mediated antioxidant genes in RAW264.7 macrophages by the fermented culture broth of AS, studied the resulting protection against lipopolysaccharide (LPS)-stimulated inflammation, and revealed the molecular mechanisms underlying these protective effects. We found that non-cytotoxic concentrations of AS (25-100 μg mL⁻¹) protected macrophages from LPS-induced cell death and ROS generation in a dose-dependent manner. The antioxidant potential of AS was directly correlated with the increased expression of the antioxidant genes HO-1, NQO-1, and γ-GCLC, as well as the level of intracellular GSH followed by an increase in the nuclear translocation and transcriptional activation of the Nrf2-ARE pathway. Furthermore, Nrf2 knockdown diminished the protective effects of AS, as evidenced by the increased production of pro-inflammatory cytokines and chemokines, including PGE₂, NO, TNF-α, and IL-1β, in LPS-stimulated macrophages. Notably, AS treatment significantly inhibited LPS-induced ICAM-1 expression in macrophages. Our data suggest that the anti-inflammatory potential of Antrodia salmonea is mediated by the activation of Nrf2-dependent antioxidant defense mechanisms. Results support the traditional usage of this beneficial mushroom for the treatment of free radical-related diseases and inflammation.

  17. Longitudinal Study of DNA Methylation of Inflammatory Genes and Cancer Risk

    PubMed Central

    Joyce, Brian Thomas; Gao, Tao; Liu, Lei; Zheng, Yinan; Liu, Siran; Zhang, Wei; Penedo, Frank; Dai, Qi; Schwartz, Joel; Baccarelli, Andrea A.; Hou, Lifang

    2015-01-01

    Background Chronic inflammation plays a key role in cancer etiology. DNA methylation modification, one of the epigenetic mechanisms regulating gene expression, is considered a hallmark of cancer. Human and animal models have identified numerous links between DNA methylation and inflammatory biomarkers. Our objective was to prospectively and longitudinally examine associations between methylation of four inflammatory genes and cancer risk. Methods We included 795 Normative Aging Study participants with blood drawn 1-4 times from 1999-2012 (median follow up 10.6 years). Promoter DNA methylation of IL-6, ICAM-1, IFN, and TLR2 in blood leukocytes was measured using pyrosequencing at multiple CpG sites and averaged by gene for data analysis. We used Cox regression models to examine prospective associations of baseline and time-dependent methylation with cancer risk, and compared mean methylation differences over time between cancer cases and cancer-free participants. Results Baseline IFN hypermethylation was associated with all-cancer (HR=1.49, p=0.04) and prostate cancer incidence (HR=1.69, p=0.02). Baseline ICAM-1 and IL-6 hypermethylation were associated with prostate cancer incidence (HR=1.43, p=0.02; HR=0.70, p=0.03 respectively). In our time-dependent analyses, IFN hypermethylation was associated with all-cancer (HR=1.79, p=0.007) and prostate cancer (HR=1.57, p=0.03) incidence; and ICAM-1 and IL-6 hypermethylation were associated with prostate cancer incidence (HR=1.39, p=0.02; HR=0.69, p=0.03 respectively). We detected significant ICAM-1 hypermethylation in cancer cases (p=0.0003) 10-13 years pre-diagnosis. Conclusion Hypermethylation of IFN and ICAM-1 may play important roles in early carcinogenesis, particularly that of prostate cancer. Impact These methylation changes could inform the development of early detection biomarkers and potential treatments of inflammation-related carcinogenesis. PMID:26265203

  18. TNFA gene variants related to the inflammatory status and its association with cellular aging: From the CORDIOPREV study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Several single nucleotide polymorphisms have been proposed as potential predictors of the development of age-related diseases. Objective: To explore whether Tumor Necrosis Factor Alpha (TNFA) gene variants were associated with inflammatory status, thus facilitating the rate of telomere s...

  19. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity

    PubMed Central

    Choquet, Hélène; Pawlikowska, Ludmila; Nelson, Jeffrey; McCulloch, Charles E.; Akers, Amy; Baca, Beth; Khan, Yasir; Hart, Blaine; Morrison, Leslie; Kim, Helen

    2014-01-01

    Background Familial cerebral cavernous malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions that often result in intracerebral hemorrhage (ICH), seizures, and neurological deficits. Carriers of the same genetic mutation can present with variable symptoms and severity of disease, suggesting the influence of modifier factors. Evidence is emerging that inflammation and immune response play a role in the pathogenesis of CCM. The purpose of this study was to investigate whether common variants in inflammatory and immune response genes influence the severity of familial CCM1 disease, as manifested by ICH and greater brain lesion count. Methods Hispanic CCM1 patients (n=188) harboring the founder Q455X ‘common Hispanic mutation’ (CHM) in the KRIT1 gene were analyzed at baseline. Participants were enrolled between June 2010 and March 2014 either through the Brain Vascular Malformation Consortium (BVMC) study or through the Angioma Alliance organization. Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging were performed to determine ICH as well as total and large (≥5 mm in diameter) lesion counts. Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 830 variants in 56 inflammatory and immune response genes for association with ICH and residuals of log-transformed total or large lesion count adjusted for age at enrollment and gender. Variants were analyzed individually, grouped by sub-pathways or whole pathway. Results At baseline, 30.3% of CCM1-CHM subjects had ICH, with a mean ± standard deviation (SD) of 60.1 ± 115.0 (range 0 to 713) for total lesions and 4.9 ± 8.7 (range 0 to 104) for large lesions. The heritability estimates explained by all autosomal variants were 0.20 (SE=0.31), 0.81 (SE=0.17) and 0.48 (SE=0.19), for ICH, total lesion count and large lesion count

  20. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    PubMed

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells.

  1. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture.

    PubMed

    Lukiw, Walter J; Percy, Maire E; Kruck, Theo P

    2005-09-01

    Aluminum, the most abundant neurotoxic metal in our biosphere, has been implicated in the etiology of several neurodegenerative disorders including Alzheimer's disease (AD). To further understand aluminum's influence on gene expression, we examined total messenger RNA levels in untransformed human neural cells exposed to 100 nanomolar aluminum sulfate using high density DNA microarrays that interrogate the expression of every human gene. Preliminary data indicate that of the most altered gene expression levels, 17/24 (70.8%) of aluminum-affected genes, and 7/8 (87.5%) of aluminum-induced genes exhibit expression patterns similar to those observed in AD. The seven genes found to be significantly up-regulated by aluminum encode pro-inflammatory or pro-apoptotic signaling elements, including NF-kappaB subunits, interleukin-1beta precursor, cytosolic phospholipase A2, cyclooxygenase-2, beta-amyloid precursor protein and DAXX, a regulatory protein known to induce apoptosis and repress transcription. The promoters of genes up-regulated by aluminum are enriched in binding sites for the stress-inducible transcription factors HIF-1 and NF-kappaB, suggesting a role for aluminum, HIF-1 and NF-kappaB in driving atypical, pro-inflammatory and pro-apoptotic gene expression. The effect of aluminum on specific stress-related gene expression patterns in human brain cells clearly warrant further investigation.

  2. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    PubMed

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.

  3. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens

    PubMed Central

    Mehaisen, Gamal M. K.; Eshak, Mariam G.; El Sabry, M. I.; Abass, Ahmed O.

    2016-01-01

    Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107 E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1β and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These

  4. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease

    PubMed Central

    Soderquest, Katrina; Hertweck, Arnulf; Mohamed, Rami; Goldberg, Rimma; Perucha, Esperanza; Franke, Lude; Herrero, Javier; Lord, Graham M.

    2017-01-01

    The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21) specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn’s disease, ulcerative colitis (UC) and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL) for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner. PMID:28187197

  5. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes.

    PubMed

    Lee, Tih-Shih; Mane, Shrikant; Eid, Tore; Zhao, Hongyu; Lin, Aiping; Guan, Zhong; Kim, Jung H; Schweitzer, Jeffrey; King-Stevens, David; Weber, Peter; Spencer, Susan S; Spencer, Dennis D; de Lanerolle, Nihal C

    2007-01-01

    Patients with temporal lobe epilepsy (TLE) often have a shrunken hippocampus that is known to be the location in which seizures originate. The role of the sclerotic hippocampus in the causation and maintenance of seizures in temporal lobe epilepsy (TLE) has remained incompletely understood despite extensive neuropathological investigations of this substrate. To gain new insights and develop new testable hypotheses on the role of sclerosis in the pathophysiology of TLE, the differential gene expression profile was studied. To this end, DNA microarray analysis was used to compare gene expression profiles in sclerotic and non-sclerotic hippocampi surgically removed from TLE patients. Sclerotic hippocampi had transcriptional signatures that were different from non-sclerotic hippocampi. The differentially expressed gene set in sclerotic hippocampi revealed changes in several molecular signaling pathways, which included the increased expression of genes associated with astrocyte structure (glial fibrillary acidic protein, ezrin-moesin-radixin, palladin), calcium regulation (S100 calcium binding protein beta, chemokine (C-X-C motif) receptor 4) and blood-brain barrier function (Aquaaporin 4, Chemokine (C-C- motif) ligand 2, Chemokine (C-C- motif) ligand 3, Plectin 1, intermediate filament binding protein 55kDa) and inflammatory responses. Immunohistochemical localization studies show that there is altered distribution of the gene-associated proteins in astrocytes from sclerotic foci compared with non-sclerotic foci. It is hypothesized that the astrocytes in sclerotic tissue have activated molecular pathways that could lead to enhanced release of glutamate by these cells. Such glutamate release may excite surrounding neurons and elicit seizure activity.

  6. The pro-inflammatory cytokines IFNγ/TNFα increase chromogranin A-positive neuroendocrine cells in the colonic epithelium.

    PubMed

    Hernández-Trejo, José Antonio; Suárez-Pérez, Dimelza; Gutiérrez-Martínez, Itzel Zenidel; Fernandez-Vargas, Omar Eduardo; Serrano, Carolina; Candelario-Martínez, Aurora Antonia; Meraz-Ríos, Marco Antonio; Citalán-Madrid, Alí Francisco; Hernández-Ruíz, Marcela; Reyes-Maldonado, Elba; Valle-Rios, Ricardo; Feintuch-Unger, Jacobo H; Schnoor, Michael; Villegas-Sepúlveda, Nicolás; Medina-Contreras, Oscar; Nava, Porfirio

    2016-11-01

    The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.

  7. Ursolic acid induces allograft inflammatory factor-1 expression via a nitric oxide-related mechanism and increases neovascularization.

    PubMed

    Lee, Ai-Wei; Chen, Ta-Liang; Shih, Chun-Ming; Huang, Chun-Yao; Tsao, Nai-Wen; Chang, Nen-Chung; Chen, Yung-Hsiang; Fong, Tsorng-Harn; Lin, Feng-Yen

    2010-12-22

    Ursolic acid (UA), a triterpenoid compound found in plants, is used in the human diet and in medicinal herbs and possesses a wide range of biological benefits including antioxidative, anti-inflammatory, and anticarcinogenic effects. Endothelial expression of allograft inflammatory factor-1 (AIF-1) mediates vasculogenesis, and nitric oxide (NO) produced by endothelial NO (eNOS) represents a mechanism of vascular protection. It is unclear whether UA affects the neovascularization mediated by AIF-1 and eNOS expression. This study investigated the effects and mechanisms of UA on angiogenesis in vivo in hind limb ischemic animal models and in vitro in human coronary artery endothelial cells (HCECs). This study explored the impact of UA on endothelial cell (EC) activities in vitro in HCECs, vascular neovasculogenesis in vivo in a mouse hind limb ischemia model, and the possible role of AIF-1 in vasculogenesis. The results demonstrate that UA enhances collateral blood flow recovery through induction of neovascularization in a hind limb ischemia mouse model. In vitro data showed that UA increases tube formation and migration capacities in human endothelial cells, and exposing HCECs to UA increased AIF-1 expression through a NO-related mechanism. Moreover, UA administration increased capillary density and eNOS and AIF-1 expression in ischemic muscle. These findings suggest that UA may be a potential therapeutic agent in the induction of neovascularization and provide a novel mechanistic insight into the potential effects of UA on ischemic vascular diseases.

  8. The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration.

    PubMed

    Ruggiu, Alessandra; Ulivi, Valentina; Sanguineti, Francesca; Cancedda, Ranieri; Descalzi, Fiorella

    2013-12-01

    Platelet Lysate (PL) contains a cocktail of growth factors and cytokines, which actively participates in tissue repair and its clinical application has been broadly described. The aim of this study was to assess the regenerative potential of PL for bone repair. We demonstrated that PL stimulation induces a transient increase of the inflammatory response in quiescent human osteoblasts, via NF-kB activation, COX-2 induction, PGE2 production and secretion of pro-inflammatory cytokines. Furthermore, we showed that long-term PL stimulation enhances proliferation of actively replicating osteoblasts, without affecting their differentiation potential, along with changes of cell morphology, resulting in increased cell density at confluence. In confluent resting osteoblasts, PL treatment induced resumption of proliferation, change in cell morphology and increase of cell density at confluence. A burst of PL treatment (24-h) was sufficient to trigger such processes in both conditions. These results correlated with up-regulation of the proliferative and survival pathways ERKs and Akt and with cell cycle re-activation via induction of CyclinD1 and phosphorylation of Rb, following PL stimulation. Our findings demonstrate that PL treatment results in activation and expansion of resting osteoblasts, without affecting their differentiation potential. Therefore PL represents a good therapeutic candidate in regenerative medicine for bone repair.

  9. Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers.

    PubMed

    Moreno-Navarrete, José María; Serrano, Marta; Sabater, Mònica; Ortega, Francisco; Serino, Matteo; Pueyo, Neus; Luche, Elodie; Waget, Aurelie; Rodriguez-Hermosa, José Ignacio; Ricart, Wifredo; Burcelin, Remy; Fernández-Real, José Manuel

    2013-07-01

    Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.

  10. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial.

    PubMed

    Di Renzo, Laura; Carraro, Alberto; Valente, Roberto; Iacopino, Leonardo; Colica, Carmen; De Lorenzo, Antonino

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.

  11. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    PubMed Central

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  12. Thrombomodulin Gene Variants are Associated with Increased Mortality Following Coronary Artery Bypass Surgery in Replicated Analyses

    PubMed Central

    Lobato, Robert L.; White, William D.; Mathew, Joseph P.; Newman, Mark F.; Smith, Peter K.; McCants, Charles B.; Alexander, John H.; Podgoreanu, Mihai V.

    2011-01-01

    Background We tested the hypothesis that genetic variation in thrombotic and inflammatory pathways is independently associated with long-term mortality following coronary artery bypass grafting (CABG). Methods and Results Two separate cohorts of patients undergoing CABG at a single institution were examined, and all-cause mortality between 30 days and 5 years after the index CABG was ascertained from the National Death Index. In a discovery cohort of 1018 patients, a panel of 90 single nucleotide polymorphisms (SNPs) in 49 candidate genes was tested in Cox proportional hazard models to identify clinical and genomic multivariate predictors of incident death. After adjustment for multiple comparisons and clinical predictors of mortality, the homozygote minor allele of a common variant in the thrombomodulin (THBD) gene (rs1042579) was independently associated with significantly increased risk of all-cause mortality (HR 2.26; 95%CI, 1.31–3.92; p=0.003). Six tag SNPs in the THBD gene, one of which (rs3176123) in complete linkage disequilibrium with rs1042579, were then assessed in an independent validation cohort of 930 patients. Following multivariate adjustment for the clinical predictors identified in the discovery cohort and multiple testing, the homozygote minor allele of rs3176123 independently predicted all-cause mortality (HR 3.6; 95%CI, 1.67–7.78; p=0.001). Conclusion In two independent cardiac surgery cohorts, linked common allelic variants in the THBD gene are independently associated with increased long-term mortality risk following CABG, and significantly improve the classification ability of traditional postoperative mortality prediction models. PMID:21911804

  13. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension

    PubMed Central

    Soon, Elaine; Crosby, Alexi; Southwood, Mark; Yang, Peiran; Tajsic, Tamara; Toshner, Mark; Appleby, Sarah; Shanahan, Catherine M.; Bloch, Kenneth D.; Pepke-Zaba, Joanna; Upton, Paul

    2015-01-01

    Rationale: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20–30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. Objectives: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. Methods: We used pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2+/−) and wild-type littermates. Measurements and Main Results: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2+/− mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2+/− mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. Conclusions: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension. PMID:26073741

  14. Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    PubMed Central

    Traks, Tanel; Koido, Kati; Eller, Triin; Maron, Eduard; Kingo, Külli; Vasar, Veiko; Vasar, Eero; Kõks, Sulev

    2008-01-01

    Background Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD. Methods Case-control association study was performed with seven SNPs from the IL10 gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited. Results None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the IL10 gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (IL20 and IL24 genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097). Conclusion Our study established increased risk for MDD related to the IL20 and IL24 haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation. PMID:19087313

  15. Articular Ankle Fracture Results in Increased Synovitis, Synovial Macrophage Infiltration, and Synovial Fluid Concentrations of Inflammatory Cytokines and Chemokines

    PubMed Central

    Furman, Bridgette D.; Kimmerling, Kelly A.; Zura, Robert D.; Reilly, Rachel M.; Zlowodzki, Michal P.; Huebner, Janet L.; Kraus, Virginia B.; Guilak, Farshid; Olson, Steven A.

    2016-01-01

    Objective The inflammatory response following an articular fracture is thought to play a role in the development of posttraumatic arthritis (PTA) but has not been well characterized. The objective of this study was to characterize the acute inflammatory response, both locally and systemically, in joint synovium, synovial fluid (SF), and serum following articular fracture of the ankle. We hypothesized that intraarticular fracture would alter the synovial environment and lead to increased local and systemic inflammation. Methods Synovial tissue biopsy specimens, SF samples, and serum samples were collected from patients with an acute articular ankle fracture (n = 6). Additional samples (normal, ankle osteoarthritis [OA], and knee OA [n = 6 per group]) were included for comparative analyses. Synovial tissue was assessed for synovitis and macrophage count. SF and serum were assessed for cytokines (interferon-γ [IFNγ], interleukin-1β [IL-1β], IL-6, IL-8, IL-10, IL-12p70, and tumor necrosis factor α) and chemokines (eotaxin, eotaxin 3, IFNγ-inducible 10-kd protein, monocyte chemotactic protein 1 [MCP-1], MCP-4, macrophage-derived chemokine, macrophage inflammatory protein 1β, and thymus and activation–regulated chemokine). Results Synovitis scores were significantly higher in ankle fracture tissue compared with normal ankle tissue (P = 0.007), and there was a trend toward an increased abundance of CD68+ macrophages in ankle fracture synovium compared with normal knee synovium (P = 0.06). The concentrations of all cytokines and chemokines were elevated in the SF of patients with ankle fracture compared with those in SF from OA patients with no history of trauma. Only the concentration of IL-6 was significantly increased in the serum of patients with ankle fracture compared with normal serum (P = 0.027). Conclusion Articular fracture of the ankle increased acute local inflammation, as indicated by increased synovitis, increased macrophage infiltration into

  16. Fatigue and gene expression in human leukocytes: increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Irwin, Michael R; Arevalo, Jesusa M G; Cole, Steve W

    2011-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n=11) and non-fatigued controls (n=10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p<.05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors.

  17. Maternal Supplementation with Oligofructose (10%) during Pregnancy and Lactation Leads to Increased Pro-Inflammatory Status of the 21-D-Old Offspring.

    PubMed

    Mennitti, Laís Vales; Oyama, Lila Missae; de Oliveira, Juliana Lopez; Hachul, Ana Claudia Losinskas; Santamarina, Aline Boveto; de Santana, Aline Alves; Okuda, Marcos Hiromu; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha; Pisani, Luciana Pellegrini

    2015-01-01

    Previously, we showed that oligofructose (10%) supplementation during pregnancy and lactation increased endotoxemia in 21-d-old pups. The present study evaluated the effect of 10% oligofructose diet supplementation during pregnancy and lactation in the presence or absence of hydrogenated vegetable fat on the pro-inflammatory status of 21-d-old offspring. On the first day of pregnancy, female Wistar rats were divided into the following groups: control diet (C), control diet supplemented with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat (T) or diet enriched with hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and lactation. Serum TNF-α (tumor necrosis factor alpha) was assessed using a specific kit. Protein expression was determined by Western Blotting, and the relative mRNA levels were analyzed by RT-PCR (real-time polymerase chain reaction). We observed that 10% oligofructose supplementation during pregnancy and lactation increased offspring's IL-6R (interleukin-6 receptor) mRNA levels in the liver and RET (retroperitoneal white adipose tissue) and decreased ADIPOR2 (adiponectin receptor 2) and ADIPOR1 (adiponectin receptor 1) gene expression in liver and EDL (extensor digital longus)/ SOL (soleus) muscles of CF group. Additionally, TF group presented with increased serum TNF-α, protein expression of p-NFκBp65 (phosphorylated form of nuclear factor kappa B p65 subunit) in liver and IL-6R mRNA levels in RET. These findings were accompanied by decreased levels of ADIPOR1 mRNA in the EDL and SOL muscles of the TF group. In conclusion, supplementing the dam's diet with 10% of oligofructose during pregnancy and lactation, independent of hydrogenated vegetable fat addition, contributes to the increased pro-inflammatory status of 21-d-old offspring, possibly through the activation of the TLR4 (toll like receptor 4) pathway.

  18. Dissecting Inflammatory Complications in Critically Injured Patients by Within-Patient Gene Expression Changes: A Longitudinal Clinical Genomics Study

    PubMed Central

    Leek, Jeffrey T.; Maier, Ronald V.; Tompkins, Ronald G.; Storey, John D.

    2011-01-01

    Background Trauma is the number one killer of individuals 1–44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition. Methods and Findings We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure) clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40–80 h window post-injury. Conclusions The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions. Trial Registration ClinicalTrials.gov NCT00257231 Please see later in the article for the Editors

  19. Comprehensive mutation screening for 10 genes in Chinese patients suffering very early onset inflammatory bowel disease

    PubMed Central

    Xiao, Yuan; Wang, Xin-Qiong; Yu, Yi; Guo, Yan; Xu, Xu; Gong, Ling; Zhou, Tong; Li, Xiao-Qin; Xu, Chun-Di

    2016-01-01

    AIM: To perform sequencing analysis in patients with very early-onset inflammatory bowel disease (VEO-IBD) to determine the genetic basis for VEO-IBD in Chinese pediatric patients. METHODS: A total of 13 Chinese pediatric patients with VEO-IBD were diagnosed from May 2012 and August 2014. The relevant clinical characteristics of these patients were analyzed. Then DNA in the peripheral blood from patients was extracted. Next generation sequencing (NGS) based on an Illumina-Miseq platform was used to analyze the exons in the coding regions of 10 candidate genes: IL-10, IL-10RA, IL-10RB, NOD2, FUT2, IL23R, GPR35, GPR65, TNFSF15, and ADAM30. The Sanger sequencing was used to verify the variations detected in NGS. RESULTS: Out of the 13 pediatric patients, ten were diagnosed with Crohn’s disease, and three diagnosed with ulcerative colitis. Mutations in IL-10RA and IL-10RB were detected in five patients. There were four patients who had single nucleotide polymorphisms associated with IBD. Two patients had IL-10RA and FUT2 polymorphisms, and two patients had IL-10RB and FUT2 polymorphisms. Gene variations were not found in the rest four patients. Children with mutations had lower percentile body weight (1.0% vs 27.5%, P = 0.002) and hemoglobin (87.4 g/L vs 108.5 g/L, P = 0.040) when compared with children without mutations. Although the age of onset was earlier, height was shorter, and the response to treatment was poorer in the mutation group, there was no significant difference in these factors between groups. CONCLUSION: IL-10RA and IL-10RB mutations are common in Chinese children with VEO-IBD. Patients with mutations have an earlier disease onset, lower body weight and hemoglobin, and poorer prognosis. PMID:27350736

  20. The Diverse Roles of Nonsteroidal Anti-inflammatory Drug Activated Gene (NAG-1/GDF15) in Cancer

    PubMed Central

    Wang, Xingya; Baek, Seung Joon; Eling, Thomas E.

    2013-01-01

    Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1, NAG-1, is a divergent member of the transforming growth factor-beta (TGF-β) superfamily that plays a complex but poorly understood role in several human diseases including cancer. NAG-1 expression is substantially increased during cancer development and progression especially in gastrointestinal, prostate, pancreatic, colorectal, breast, melanoma, and glioblastoma brain tumors. Aberrant increases in the serum levels of secreted NAG-1 correlate with poor prognosis and patient survival rates in some cancers. In contrast, the expression of NAG-1 is up-regulated by several tumor suppressor pathways including p53, GSK-3β, and EGR-1. NAG-1 expression is also induced by many drugs and dietary compounds which are documented to prevent the development and progression of cancer in mouse models. Studies with transgenic mice expressing human NAG-1 demonstrated that the expression of NAG-1 inhibits the development of intestinal tumors and prostate tumors in animal models. Laboratory and clinical evidence suggest that NAG-1, like other TGF-β family members, may have different or pleiotropic functions in the early and late stages of carcinogenesis. Upon understanding the molecular mechanism and function of NAG-1 during carcinogenesis, NAG-1 may serve as a potential biomarker for the diagnosis and prognosis of cancer and a therapeutic target for the inhibition and treatment of cancer development and progression. PMID:23220538

  1. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells.

    PubMed

    Tsiotra, Panayoula C; Boutati, Eleni; Dimitriadis, George; Raptis, Sotirios A

    2013-01-01

    Resistin and the proinflammatory cytokines, such as TNF- α , IL-6, and IL-1 β , produced by adipocytes, and macrophages, are considered to be important modulators of chronic inflammation contributing to the development of obesity and atherosclerosis. Human monocyte-enriched mononuclear cells, from ten healthy individuals, were exposed to high concentrations of insulin, leptin, and glucose (alone or in combination) for 24 hours in vitro. Resistin, TNF- α , IL-6, and IL-1 β production was examined and compared to that in untreated cells. High insulin and leptin concentrations significantly upregulated resistin and the cytokines. The subsequent addition of high glucose significantly upregulated resistin and TNF- α mRNA and protein secretion, while it did not have any effect on IL-6 or IL-1 β production. By comparison, exposure to dexamethasone reduced TNF- α , IL-6, and IL-1 β production, while at this time point it increased resistin protein secretion. These data suggest that the expression of resistin, TNF- α , IL-6, and IL-1 β from human mononuclear cells, might be enhanced by the hyperinsulinemia and hyperleptinemia and possibly by the hyperglycemia in metabolic diseases as obesity, type 2 diabetes, and atherosclerosis. Therefore, the above increased production may contribute to detrimental effects of their increased adipocyte-derived circulating levels on systemic inflammation, insulin sensitivity, and endothelial function of these patients.

  2. The Inflammatory Response to Social Defeat is Increased in Older Mice

    PubMed Central

    Kinsey, Steven G.; Bailey, Michael T.; Sheridan, John F.; Padgett, David A.

    2009-01-01

    Previous research indicates that repeated social defeat of mice causes increased lymphocyte trafficking to the spleen, elevated proinflammatory cytokine production, and induced glucocorticoid insensitivity in splenocytes. Social defeat also causes increases in anxiety-like behavior. This study investigated whether repeated social defeat results in similar immunoregulatory and behavioral changes in older mice as those seen previously in young adult mice. The data revealed that, regardless of age, defeated mice had significantly more splenic CD11b+ Gr-1+ monocytes and neutrophils than controls. Supernatants harvested from cultured splenocytes from older mice contained comparatively higher IL-6 and TNF-α than supernatants from younger animals. In addition, those same cells derived from older defeated mice were hypersensitive to lipopolysaccharide (LPS) and insensitive to glucocorticoids in vitro. As seen previously in young adult mice, social defeat caused an increase in anxiety-like behavior in the open field test, but had no effect on learned helplessness in the forced swim test. These data indicated that repeated social defeat results in a proinflammatory state that is exacerbated in older mice. The implications of these data are noteworthy, given the strong role of inflammation in many age-related diseases. PMID:18068740

  3. TNF-α gene expression is increased following zinc supplementation in type 2 diabetes mellitus.

    PubMed

    Chu, Anna; Foster, Meika; Hancock, Dale; Bell-Anderson, Kim; Petocz, Peter; Samman, Samir

    2015-01-01

    Chronic low-grade inflammation in type 2 diabetes mellitus (DM) can elicit changes in whole-body zinc metabolism. The interaction among the expression of inflammatory cytokines, zinc transporter and metallothionein (MT) genes in peripheral blood mononuclear cells in type 2 DM remains unclear. In a 12-week randomized controlled trial, the effects of zinc (40 mg/day) supplementation on the gene expression of cytokines, zinc transporters and MT in women with type 2 DM were examined. In the zinc-supplemented group, gene expression of tumour necrosis factor (TNF)-α tended to be upregulated by 27 ± 10 % at week 12 compared to baseline (P = 0.053). TNF-α fold change in the zinc-treated group was higher than in those without zinc supplementation (P < 0.05). No significant changes were observed in the expression or fold change of interleukin (IL)-1β or IL-6. Numerous bivariate relationships were observed between the fold changes of cytokines and zinc transporters, including ZnT7 with IL-1β (P < 0.01), IL-6 (P < 0.01) and TNF-α (P < 0.01). In multiple regression analysis, IL-1β expression was predicted by the expression of all zinc transporters and MT measured at baseline (r (2) = 0.495, P < 0.05) and at week 12 (r (2) = 0.532, P < 0.03). The current study presents preliminary evidence that zinc supplementation increases cytokine gene expression in type 2 DM. The relationships found among zinc transporters, MT and cytokines suggest close  interactions between zinc homeostasis and inflammation.

  4. Increase in cholinergic modulation with pyridostigmine induces anti-inflammatory cell recruitment soon after acute myocardial infarction in rats.

    PubMed

    Rocha, Juraci Aparecida; Ribeiro, Susan Pereira; França, Cristiane Miranda; Coelho, Otávio; Alves, Gisele; Lacchini, Silvia; Kallás, Esper Georges; Irigoyen, Maria Cláudia; Consolim-Colombo, Fernanda M

    2016-04-15

    We tested the hypothesis that an increase in the anti-inflammatory cholinergic pathway, when induced by pyridostigmine (PY), may modulate subtypes of lymphocytes (CD4+, CD8+, FOXP3+) and macrophages (M1/M2) soon after myocardial infarction (MI) in rats. Wistar rats, randomly allocated to receive PY (40 mg·kg(-1)·day(-1)) in drinking water or to stay without treatment, were followed for 4 days and then were subjected to ligation of the left coronary artery. The groups-denominated as the pyridostigmine-treated infarcted (IP) and infarcted control (I) groups-were submitted to euthanasia 3 days after MI; the heart was removed for immunohistochemistry, and the peripheral blood and spleen were collected for flow cytometry analysis. Noninfarcted and untreated rats were used as controls (C Group). Echocardiographic measurements were registered on the second day after MI, and heart rate variability was measured on the third day after MI. The infarcted groups had similar MI areas, degrees of systolic dysfunction, blood pressures, and heart rates. Compared with the I Group, the IP Group showed a significant higher parasympathetic modulation and a lower sympathetic modulation, which were associated with a small, but significant, increase in diastolic function. The IP Group showed a significant increase in M2 macrophages and FOXP3(+)cells in the infarcted and peri-infarcted areas, a significantly higher frequency of circulating Treg cells (CD4(+)CD25(+)FOXP3(+)), and a less extreme decrease in conventional T cells (CD25(+)FOXP3(-)) compared with the I Group. Therefore, increasing cholinergic modulation with PY induces greater anti-inflammatory cell recruitment soon after MY in rats.

  5. Sucrose Counteracts the Anti-Inflammatory Effect of Fish Oil in Adipose Tissue and Increases Obesity Development in Mice

    PubMed Central

    Ma, Tao; Liaset, Bjørn; Hao, Qin; Petersen, Rasmus Koefoed; Fjære, Even; Ngo, Ha Thi; Lillefosse, Haldis Haukås; Ringholm, Stine; Sonne, Si Brask; Treebak, Jonas Thue; Pilegaard, Henriette; Frøyland, Livar; Kristiansen, Karsten; Madsen, Lise

    2011-01-01

    Background Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. Methodology/Principal Findings We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. Conclusions/Significance The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PMID:21738749

  6. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review.

    PubMed

    Mocchegiani, Eugenio; Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; Ostan, Rita; Cevenini, Elisa; Gonos, Efstathios S; Monti, Daniela

    2014-01-01

    Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.

  7. Eicosapentaenoic and docosahexaenoic acid supplementation and inflammatory gene expression in the duodenum of obese patients with type 2 diabetes

    PubMed Central

    2013-01-01

    Background The extent to which long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert their anti-inflammatory effects by down-regulating intestinal inflammation in humans is unknown. We investigated the impact of LCn-3PUFA supplementation on inflammatory gene expression in the duodenum of obese patients with type 2 diabetes. Findings This placebo-controlled randomized crossover study included 12 men with type 2 diabetes. After a 4-week run-in period, patients received in a random sequence 5 g/d of fish oil (providing 3 g of EPA + DHA) and a placebo (corn and soybean oil) for 8 weeks each. The two treatment phases were separated by a 12-week washout period. Gene expression was assessed by real-time polymerase chain reaction in duodenal biopsy samples obtained in the fasted state at the end of each treatment phase. Intestinal mRNA expression levels of interleukin (IL)-6 and tumor-necrosis factor (TNF)-α were hardly detectable after either treatment (<100 copies/105 copies of the reference gene ATP5o). Intestinal mRNA expression of IL-18 and of the transcription factor signal transducer and activator of transcription 3 (STAT3) was higher (>5000 copies/105 copies ATP5o) but still relatively low. EPA + DHA supplementation had no impact on any of these levels (all P ≥ 0.73). Conclusions These data suggest that duodenal cells gene expression of pro-inflammatory cytokines is low in patients with type 2 diabetes and not affected by EPA + DHA supplementation. Further studies are warranted to determine if inflammatory gene expression in other tissues surrounding the intestine is modulated by EPA + DHA supplementation. Trial registration ClinicalTrials.gov ID: NCT01449773 PMID:23855973

  8. Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride.

    PubMed

    Salgado-Bustamante, Mariana; Ortiz-Pérez, María D; Calderón-Aranda, Emma; Estrada-Capetillo, Lizbeth; Niño-Moreno, Perla; González-Amaro, Roberto; Portales-Pérez, Diana

    2010-01-15

    We have assessed whether the combined exposure to arsenic (As) and fluoride (F) exerts a different effect than the exposure to As alone on the pattern of expression of apoptosis and inflammatory genes by immune cells. RNA was extracted from peripheral blood mononuclear cells from twenty individuals exposed or not to As or F or both. Then, cDNA was isolated, and the expression of 180 genes related to apoptosis and inflammation was tested by a cDNA array test. We found significant differences in the expression of 9 apoptosis and 15 inflammation genes in the three exposed groups compared to non-exposed individuals. In addition, subjects exposed to As or F or both showed different patterns of expression of at least 19 genes. Our data indicate that the combined exposure to As and F has a different effect on gene expression than the exposure to As or F alone.

  9. Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats.

    PubMed

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Francelle, Laetitia; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2017-04-01

    There have been a few descriptive studies in aged rodents about transcriptome changes in the hippocampus, most of them in males. Here, we assessed the age changes in spatial memory performance and hippocampal morphology in female rats and compared those changes with changes in the hippocampal transcriptome. Old rats displayed significant deficits in spatial memory. In both age groups, hole exploration frequency showed a clear peak at hole 0 (escape hole), but the amplitude of the peak was significantly higher in the young than in the old animals. In the hippocampus, there was a dramatic reduction in neurogenesis, whereas reactive microglial infiltrates revealed an inflammatory hippocampal state in the senile rats. Hippocampal RNA-sequencing showed that 210 genes are differentially expressed in the senile rats, most of them being downregulated. Our RNA-Seq data showed that various genes involved in the immune response, including TYROBP, CD11b, C3, CD18, CD4, and CD74, are overexpressed in the hippocampus of aged female rats. Enrichment analysis showed that the pathways overrepresented in the senile rats matched those of an exacerbated inflammatory environment, reinforcing our morphologic findings. After correlating our results with public data of human and mouse hippocampal gene expression, we found an 11-gene signature of overexpressed genes related to inflammatory processes that was conserved across species. We conclude that age-related hippocampal deficits in female rats share commonalities between human and rodents. Interestingly, the 11-gene signature that we identified may represent a cluster of immune and regulatory genes that are deregulated in the hippocampus and possibly other brain regions during aging as well as in some neurodegenerative diseases and low-grade brain tumors. Our study further supports neuroinflammation as a promising target to treat cognitive dysfunction in old individuals and some brain tumors. © 2017 Wiley Periodicals, Inc.

  10. Combination of Interleukin-27 and MicroRNA for Enhancing Expression of Anti-Inflammatory and Proosteogenic Genes

    PubMed Central

    Figueiredo Neto, Manoel

    2017-01-01

    Remission of inflammation has become an achievable goal in inflammatory or rheumatoid arthritis (RA); however, bone erosion continues in many patients. Interleukin- (IL-) 27 regulates immune and bone cell balance and also suppresses activities of several inflammatory cell types in RA. Despite its promise, challenges to clinical translation of IL-27 have been its partial effects in vivo. Due to their ability to modulate plasticity of bone and immune cell differentiation, we examined the potential for several microRNA (miR) candidates in enhancing the effects of IL-27. Using differentiation, luciferase, and real time quantitative PCR assays, we show that IL-27 promotes osteoblast differentiation, reduces expression of osteoblast inhibitory genes, and reduces osteoclast differentiation, and results suggest a potential coordination with TGFβ/BMP/SMAD and JAK/STAT pathways. We selected miRNA regulators of these and related pathways to examine whether the effects of IL-27 could be augmented for therapeutic applications. miR-29b and miR-21 augmented IL-27 proosteogenic while downregulating osteoclastogenic signals and also worked to reduce inflammatory signaling in activated macrophages, while miR-21 and miR-20b worked with IL-27 to reduce inflammatory gene expression in fibroblasts and T cells. It appears that several miRNAs can be utilized to enhance IL-27's impact on modulating osteogenesis and reducing proinflammatory signaling. PMID:28265470

  11. The bacterial load of Ureaplasma parvum in amniotic fluid is correlated with an increased intrauterine inflammatory response.

    PubMed

    Kasper, David C; Mechtler, Thomas P; Reischer, Georg H; Witt, Armin; Langgartner, Michaela; Pollak, Arnold; Herkner, Kurt R; Berger, Angelika

    2010-06-01

    Ureaplasma spp. are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), and preterm labor (PL). We analyzed 118 samples from amniotic fluid of preterm infants before 34 weeks of gestation by quantitative polymerase chain reaction (qPCR). Bacterial load, Ureaplasma biovar discrimination (Ureaplasma urealyticum and Ureaplasma parvum), and the level of inflammation were correlated with short-term clinical outcome. U. parvum was the predominant biovar, and increased bacterial load was significantly linked to histologic chorioamnionitis, PROM + PL, early-onset sepsis, and bronchopulmonary dysplasia. Furthermore, there was a positive correlation between the amount of U. parvum and the magnitude of inflammatory response inside the amniotic cavity observed by elevated interleukin 8 levels. We postulate that the bacterial load of Ureaplasma spp. measured by qPCR should be determined in studies investigating the potential clinical impact of intrauterine Ureaplasma spp. on the outcome of preterm infants.

  12. A mutant gene that increases gibberellin production in Brassica

    SciTech Connect

    Rood, S.B. ); Williams, P.H. ); Pearce, D.; Pharis, R.P. ); Murofushi, Noboru ); Mander, L.N. )

    1990-07-01

    A single gene mutant (elongated internode (ein/ein)) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A{sub 3} (GA{sub 3}) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA{sub 1} and GA{sub 3} were estimated by gas chromatography-selected ion monitoring using ({sup 2}H)GA{sub 1} as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA{sub 20} and GA{sub 1}, and the rate of GA{sub 19} metabolism were simultaneously analyzed. Levels of GA{sub 1} and GA{sub 20} were 4.6- and 12.9-fold higher, respectively, and conversions to GA{sub 20} and GA{sub 1} were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA{sub 1} biosynthesis in ein, the conversion of ({sup 3}H)GA{sub 20} to ({sup 3}H) GA{sub 1} was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA{sub 1} biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A{sub 1} and A{sub 3}.

  13. Resuscitation with lactated ringer's does not increase inflammatory response in a Swine model of uncontrolled hemorrhagic shock.

    PubMed

    Watters, Jennifer M; Brundage, Susan I; Todd, S Rob; Zautke, Nathan A; Stefater, J A; Lam, J C; Muller, Patrick J; Malinoski, Darren; Schreiber, Martin A

    2004-09-01

    Lactated Ringer's (LR) and normal saline (NS) are widely and interchangeably used for resuscitation of trauma victims. Studies show LR to be superior to NS in the physiologic response to resuscitation. Recent in vitro studies demonstrate equivalent effects of LR and NS on leukocytes. We aimed to determine whether LR resuscitation would produce an equivalent inflammatory response compared with normal saline (NS) resuscitation in a clinically relevant swine model of uncontrolled hemorrhagic shock. Thirty-two swine were randomized. Control animals (n = 6) were sacrificed following induction of anesthesia for baseline data. Sham animals (n = 6) underwent laparotomy and 2 h of anesthesia. Uncontrolled hemorrhagic shock animals (n = 10/group) underwent laparotomy, grade V liver injury, and blinded resuscitation with LR or NS to maintain baseline blood pressure for 1.5 h before sacrifice. Lung was harvested, and tissue mRNA levels of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and tumor necrosis factor-alpha (TNF-alpha) were determined using quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR). Sections of lung were processed and examined for neutrophils sequestered within the alveolar walls. Cytokine analysis showed no difference in IL-6 gene transcription in any group (P = 0.99). Resuscitated swine had elevated G-CSF and TNF-alpha gene transcription, but LR and NS groups were not different from each other (P= 0.96 and 0.10, respectively). Both resuscitation groups had significantly more alveolar neutrophils present than controls (P < 0.01) and shams (P < 0.05) but were not different from one another (P= 0.83). LR and NS resuscitation have equivalent effects on indices of inflammation in the lungs in our model of uncontrolled hemorrhagic shock.

  14. Genetic inactivation of PERK signaling in mouse oligodendrocytes: normal developmental myelination with increased susceptibility to inflammatory demyelination.

    PubMed

    Hussien, Yassir; Cavener, Douglas R; Popko, Brian

    2014-05-01

    The immune-mediated central nervous system (CNS) demyelinating disorder multiple sclerosis (MS) is the most common neurological disease in young adults. One important goal of MS research is to identify strategies that will preserve oligodendrocytes (OLs) in MS lesions. During active myelination and remyelination, OLs synthesize large quantities of membrane proteins in the endoplasmic reticulum (ER), which may result in ER stress. During ER stress, pancreatic ER kinase (PERK) phosphorylates eukaryotic translation initiation factor 2α (elF2α), which activates the integrated stress response (ISR), resulting in a stress-resistant state. Previous studies have shown that PERK activity is increased in OLs within the demyelinating lesions of experimental autoimmune encephalomyelitis (EAE), a model of MS. Moreover, our laboratory has shown that PERK protects OLs from the adverse effects of interferon-γ, a key mediator of the CNS inflammatory response. Here, we have examined the role of PERK signaling in OLs during development and in response to EAE. We generated OL-specific PERK knockout (OL-PERK(ko/ko) ) mice that exhibited a lower level of phosphorylated elF2α in the CNS, indicating that the ISR is impaired in the OLs of these mice. Unexpectedly, OL-PERK(ko/ko) mice develop normally and show no myelination defects. Nevertheless, EAE is exacerbated in these mice, which is correlated with increased OL loss, demyelination, and axonal degeneration. These data indicate that although not needed for developmental myelination, PERK signaling provides protection to OLs against inflammatory demyelination and suggest that the ISR in OLs could be a valuable target for future MS therapeutics.

  15. Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes.

    PubMed

    Reardon, Meaghan; Gobern, Semone; Martinez, Kristina; Shen, Wan; Reid, Tanya; McIntosh, Michael

    2012-11-01

    The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12 h to 7 days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.

  16. Disparate effects of LPS infusion and carbohydrate overload on inflammatory gene expression in equine laminae.

    PubMed

    Kwon, S; Moore, J N; Robertson, T P; Hurley, D J; Wagner, B; Vandenplas, M L

    2013-09-01

    Although clinical evidence of endotoxemia has been associated with the development of acute laminitis in hospitalized horses with gastrointestinal diseases and endotoxins have been detected in the circulation of horses with experimentally-induced laminitis, it is unclear what role, if any, endotoxins have play the pathogenesis of the disease. Therefore, in the present study we compared the effects of endotoxin infusion to that of intra-gastric administration of mixed carbohydrate (CHO) on clinical signs of laminitis, plasma concentrations of TNF-α and IL-10, and laminar tissue expression of 20 genes associated with inflammation. Horses were divided into 4 groups: Control (water placebo, n=7), endotoxin infusion (LPS, n=6), CHO/Developmental (30% decrease in central venous pressure, n=6) and CHO/Lame (Obel grade I laminitis, n=7). Horses in the LPS group developed clinical signs consistent with systemic inflammation, had rapid increases in plasma concentrations of both TNF-α and IL-10, and leukopenia, but did not have any changes in laminar tissue expression of the genes associated with inflammation. In contrast, horses administered CHO developed clinical signs consistent with systemic inflammation, had more delayed increases in TNF-α, IL-10 and total leukocyte counts, and had marked increases in laminar tissue expression of the genes associated with inflammation. Only the horses administered CHO developed clinical signs of laminitis, providing additional credence to the concept that factors other than endotoxin are responsible for the changes in laminar tissue gene expression that occur during the development of acute equine laminitis.

  17. Immunoglobulin Gene Polymorphisms are Susceptibility Factors for Clinical and Autoantibody Subgroups of the Idiopathic Inflammatory Myopathies

    PubMed Central

    O’Hanlon, Terrance P.; Rider, Lisa G.; Schiffenbauer, Adam; Targoff, Ira N.; Malley, Karen; Pandey, Janardan P.; Miller, Frederick W.

    2009-01-01

    Objective To investigate possible associations of GM and KM markers in European Americans (EA) and African Americans (AA) with adult and juvenile forms of the idiopathic inflammatory myopathies (IIM). Methods We performed serologic analyses of polymorphic determinants associated with immunoglobulin gamma heavy (GM) and kappa light chains (KM) in large populations of EA (n=514: 297 adults and 217 juveniles) and AA IIM patients (n=109: 73 adults and 50 juveniles) representing the major clinicopathologic and autoantibody groups. Results For EA dermatomyositis (DM) patients, the GM 3 23 5,13 phenotype was a risk factor for both adults (OR=2.2; Pc=0.020) and juveniles (OR=2.2; Pc=0.0013). Of interest, the GM 13 allotype was a risk factor for juvenile DM (JDM) for both EA (OR=3.9; Pc<0.0001) and AA (OR=4.8; Pc=0.033). However, the GM 1,3,17 5,13,21 phenotype was a risk factor for JDM in EA but not in AA. Among the IIM autoantibody groups, GM 3 23 5,13 was a risk factor for EA adults with anti-Jo-1 autoantibodies (OR=3.4; Pc=0.0031), while the GM 3 allotype was protective for adults with anti-threonyl tRNA synthetase or anti-RNP autoantibodies (OR=0.1; Pc=0.047 and OR=0.2; Pc=0.034, respectively). In contrast, GM 6 was a risk factor for AA adults with anti-SRP autoantibodies (OR=7.5; Pc=0.041). Conclusions These data suggest that polymorphic alleles of GM and KM loci are differentially associated with IIM subgroups defined by age, ethnicity, clinical features and autoantibodies, and expand the list of immune response genes possibly important in the pathogenesis of myositis. PMID:18821675

  18. Upregulation of skeletal muscle inflammatory genes links inflammation with insulin resistance in women with the metabolic syndrome.

    PubMed

    Poelkens, Fleur; Lammers, Gerwen; Pardoel, Elisabeth M; Tack, Cees J; Hopman, Maria T E

    2013-10-01

    The metabolic syndrome, a combination of interrelated metabolic risk factors, is associated with insulin resistance and promotes the development of cardiovascular diseases and type 2 diabetes mellitus. There is a close link between inflammation and metabolic disease, but the responsible mechanisms remain elusive. The aim of this study was to identify differentially expressed genes in insulin-resistant skeletal muscle tissue of women with the metabolic syndrome compared with healthy control women. Women with the metabolic syndrome (n = 19) and healthy control women (n = 20) were extensively phenotyped, insulin sensitivity was measured using a hyperinsulinaemic euglycaemic clamp, and a skeletal muscle biopsy was obtained. Gene expression levels were compared between the two groups by microarrays. The upregulated genes in skeletal muscle of the women with the metabolic syndrome were primarily enriched for inflammatory response-associated genes. The three most significantly upregulated of this group, interleukin 6 receptor (IL6R), histone deacetylase 9 (HDAC9) and CD97 molecule (CD97), were significantly correlated with insulin resistance. Taken together, these findings suggest an important role for a number of inflammatory-related genes in the development of skeletal muscle insulin resistance.

  19. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    PubMed Central

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  20. Increasing the complexity: new genes and new types of albinism.

    PubMed

    Montoliu, Lluís; Grønskov, Karen; Wei, Ai-Hua; Martínez-García, Mónica; Fernández, Almudena; Arveiler, Benoît; Morice-Picard, Fanny; Riazuddin, Saima; Suzuki, Tamio; Ahmed, Zubair M; Rosenberg, Thomas; Li, Wei

    2014-01-01

    Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells.

  1. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    PubMed

    Banerjee, Atrayee; Abdelmegeed, Mohamed A; Jang, Sehwan; Song, Byoung-Joon

    2015-01-01

    The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT) or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH) (3.5 g/kg/dose oral gavages at 12-h intervals) or dextrose (Control). Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4), leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1) were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART), are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  2. Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules.

    PubMed

    Yuan, Dong; He, Pingnian

    2012-10-01

    Vascular remodeling has been implicated in many inflammation-involved diseases. This study aims to investigate the microvascular remodeling-associated alterations in cell-cell adhesion and cytoskeleton reactions to inflammatory stimuli and their impact on microvessel permeability. Experiments were conducted in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial intracellular calcium concentration, [Ca(2+)](i), was measured in fura-2-perfused vessels. Alterations in VE-cadherin and F-actin arrangement were examined by confocal imaging. Vascular wall cellular composition and structural changes were evaluated by electron microscopy. Vessels exposed to platelet activating factor (PAF) on day 1 were reevaluated 3 days later in rats that had undergone survival surgery. Initial PAF exposure and surgical disturbance increased microvascular wall thickness along with perivascular cell proliferation and altered F-actin arrangement. Although basal permeability was not changed, upon reexposure to PAF, peak endothelial [Ca(2+)](i) was augmented and the peak Lp was 9.3 ± 1.7 times higher than that of day 1. In contrast to patterns of PAF-induced stress fiber formation and VE-cadherin redistribution observed in day 1 vessels, the day 4 vessels at the potentiated Lp peak exhibited wide separations of VE-cadherin between endothelial cells and striking stress fibers throughout the vascular walls. Confocal images and ultrastructural micrographs also revealed that the largely separated VE-cadherin and endothelial gaps were completely covered by F-actin bundles in extended pericyte processes at the PAF-induced Lp peak. These results indicate that inflammation-induced vascular remodeling increased endothelial susceptibility to inflammatory stimuli with augmented Ca(2+) response resulting in upregulated contractility and potentiated permeability increase. Weakened adhesions between the endothelial

  3. Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy

    PubMed Central

    Chen, Heling; Xie, Yirui; Su, Junwei; Huang, Ying; Xu, Lijun; Yin, Michael; Zhou, Qihui

    2017-01-01

    Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS. PMID:28316373

  4. Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high‐fat feeding

    PubMed Central

    Linden, Melissa A.; Pincu, Yair; Martin, Stephen A.; Woods, Jeffrey A.; Baynard, Tracy

    2014-01-01

    Abstract As white adipose tissue (WAT) expands under obesogenic conditions, local WAT hypoxia may contribute to the chronic low‐grade inflammation observed in obesity. Aerobic exercise training is beneficial in treating WAT inflammation after obesity is established, but it remains unknown whether exercise training, while on a concomitant high‐fat (HF) diet, influences WAT inflammation during the development of obesity. We sought to determine the effects of 4, 8, and 12 weeks of HF feeding and/or moderate intensity treadmill exercise training (EX) on the relationship between inflammatory and hypoxic gene expression within mouse WAT. Male C57Bl6/J mice (n = 113) were randomized into low‐fat (LF)/sedentary (SED), LF/EX, HF/SED, or HF/EX groups. The low‐fat and high‐fat diets contained 10% and 60% energy from fat, respectively. Exercise training consisted of treadmill running 5 days/week at 12 m/min, 8% incline, 40 min/day. Quantitative real‐time PCR was used to assess gene expression. HF diet impaired glucose regulation, and upregulated WAT gene expression of inflammation (IL‐1β, IL‐1ra, TNFα), macrophage recruitment and infiltration (F4/80 and monocyte chemoattractant protein), and M1 (CD11c) and M2 (CD206 and Arginase‐1) macrophage polarization markers. Treadmill training resulted in a modest reduction of WAT macrophage and inflammatory gene expression. HF diet had little effect on hypoxia‐inducible factor‐1α and vascular endothelial growth factor, suggesting that WAT inflammatory gene expression may not be driven by hypoxia within the adipocytes. Treadmill training may provide protection by preventing WAT expansion and macrophage recruitment. PMID:25347855

  5. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    PubMed

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation.

  6. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  7. ACUTE OZONE-INDUCED INFLAMMATORY GENE EXPRESSION IN THE RAT LUNG IS NOT RELATED TO LEVELS OF ANTIOXIDANTS IN THE LAVAGE FLUID

    EPA Science Inventory

    ABSTRACT BODY: Ozone causes oxidative stress and lung inflammation. We hypothesized that rat strains with or without genetic susceptibility to cardiovascular disease will have different antioxidant levels in alveolar lining, and that ozone induced inflammatory gene expression wil...

  8. Genetic polymorphisms of tumour necrosis factor alpha (TNF-α) promoter gene and response to TNF-α inhibitors in Spanish patients with inflammatory bowel disease.

    PubMed

    López-Hernández, R; Valdés, M; Campillo, J A; Martínez-Garcia, P; Salama, H; Salgado, G; Boix, F; Moya-Quiles, M R; Minguela, A; Sánchez-Torres, A; Miras, M; Garcia, A; Carballo, F; Álvarez-López, M R; Muro, M

    2014-02-01

    Tumour necrosis factor alpha (TNF-α) has an important role in inflammatory response. Alterations in the regulation of TNF-α have been implicated in a variety of inflammatory disorders, including Inflammatory bowel disease (IBD). Indeed, a common treatment for IBD is the use of TNF-α inhibitors. Polymorphisms in the TNF-α promoter region are known to affect the level of gene expression. Our aim was to investigate the influence of these single nucleotide polymorphisms (SNPs) in TNF-α promoter gene play in the risk of IBD in a Spanish population and their individual response to anti-TNF-α treatment. DNA samples from patients with IBD and controls were screened for TNF-α -238G/A (rs361525) and -308G/A (rs1800629) SNPs by PCR-SSOP using a microbeads luminex assay and compared with response to TNF-α inhibitors. There were not statistical differences in -238G/A and -308G/A allele and genotype frequencies between patients. However, we found an increased frequency of -308A allele and -308GA genotype in these nonresponders patients to TNF-α inhibitors with respect to responders patients (Pc < 0.05). This -308GA genotype has been classified as high producer of this cytokine. This fact could actually be interesting to explain the different response of patients with IBD with respect to TNF-α inhibitors. TNF-α promoter gene polymorphism does not seem to play a role in IBD susceptibility, but particular TNF-α genotypes may be involved in the different responses to TNF-α inhibitor treatment in Spanish patients with IBD.

  9. Chemotherapy-induced Inflammatory Gene Signature and Pro-tumorigenic Phenotype in Pancreatic CAFs via Stress-associated MAPK

    PubMed Central

    Toste, Paul A.; Nguyen, Andrew H.; Kadera, Brian E.; Duong, Mindy; Wu, Nanping; Gawlas, Irmina; Tran, Linh M.; Bikhchandani, Mihir; Li, Luyi; Patel, Sanjeet G.; Dawson, David W.; Donahue, Timothy R.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a characteristically dense stroma comprised predominantly of cancer associated fibroblasts (CAFs). CAFs promote tumor growth, metastasis and treatment resistance. This study aimed to investigate the molecular changes and functional consequences associated with chemotherapy treatment of PDAC CAFs. Chemoresistant immortalized CAFs (R-CAFs) were generated by continuous incubation in gemcitabine. Gene expression differences between treatment naïve CAFs (N-CAFs) and R-CAFs were compared by array analysis. Functionally, tumor cells (TCs) were exposed to N-CAF or R-CAF conditioned media and assayed for migration, invasion and viability in vitro. Furthermore, a co-injection (TC and CAF) model was used to compare tumor growth in vivo. R-CAFs increased TC viability, migration and invasion compared to N-CAFs. In vivo, TCs co-injected with R-CAFs grew larger than those accompanied by N-CAFs. Genomic analysis demonstrated that R-CAFs had increased expression of various inflammatory mediators, similar to the previously described senescence-associated secretory phenotype (SASP). In addition, SASP mediators were found to be upregulated in response to short duration treatment with gemcitabine in both immortalized and primary CAFs. Inhibition of stress-associated MAPK signaling (P38 MAPK or JNK) attenuated SASP induction as well as the tumor-supportive functions of chemotherapy-treated CAFs in vitro and in vivo. These results identify a negative consequence of chemotherapy on the PDAC microenvironment that could be targeted to improve the efficacy of current therapeutic regimens. PMID:26979711

  10. Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients.

    PubMed

    Drexhage, Roosmarijn C; van der Heul-Nieuwenhuijsen, Leonie; Padmos, Roos C; van Beveren, Nico; Cohen, Dan; Versnel, Marjan A; Nolen, Willem A; Drexhage, Hemmo A

    2010-11-01

    Accumulating evidence indicates an activated inflammatory response system as a vulnerability factor for schizophrenia (SZ) and bipolar disorder (BD). We aimed to detect a specific inflammatory monocyte gene expression signature in SZ and compare such signature with our recently described inflammatory monocyte gene signature in BD. A quantitative-polymerase chain reaction (Q-PCR) case-control gene expression study was performed on monocytes of 27 SZ patients and compared to outcomes collected in 56 BD patients (all patients naturalistically treated). For Q-PCR we used nine 'SZ specific genes' (found in whole genome analysis), the 19 BD signature genes (previously found by us) and six recently described autoimmune diabetes inflammatory monocyte genes. Monocytes of SZ patients had (similar to those of BD patients) a high inflammatory set point composed of three subsets of strongly correlating genes characterized by different sets of transcription/MAPK regulating factors. Subset 1A, characterized by ATF3 and DUSP2, and subset 1B, characterized by EGR3 and MXD1, were shared between BD and SZ patients (up-regulated in 67% and 51%, and 34% and 41%, respectively). Subset 2, characterized by PTPN7 and NAB2 was up-regulated in the monocytes of 62% BD, but down-regulated in the monocytes of 48% of SZ patients. Our approach shows that monocytes of SZ and BD patients overlap, but also differ in inflammatory gene expression. Our approach opens new avenues for nosological classifications of psychoses based on the inflammatory state of patients, enabling selection of those patients who might benefit from an anti-inflammatory treatment.

  11. An LXR–NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux

    PubMed Central

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-01-01

    LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249

  12. An LXR-NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux.

    PubMed

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-05-05

    LXR-cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3-LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux.

  13. Hepatic expression of inflammatory genes and microRNAs in pigs with high "cholesteryl ester transfer protein" (CETP) activity.

    PubMed

    Cirera, Susanna; Tørsleff, Benedicte C Juul; Ritz, Christian; Fredholm, Merete; Heegaard, Peter M H; Skovgaard, Kerstin

    2016-10-01

    Human obesity and obesity-related diseases (ORD) are growing health problems worldwide and represent a major public health challenge. Most of these diseases are complex conditions, influenced by many genes (including microRNAs) and environmental factors. Many metabolic perturbations are associated with obesity; e.g., low levels of high-density lipoproteins (HDL) are high risk factors of cardiovascular events. A number of genetic, lifestyle, and environmental factors have been shown to contribute to the lowering of HDL-cholesterol. One of these factors is cholesteryl ester transfer protein (CETP) promoting the redistribution of cholesteryl esters, triglycerides, and phospholipids between plasma proteins. Moreover, obesity and ORD are often linked with chronic low-grade inflammation leading to insulin resistance and endothelial and microvascular dysfunctions. The aim of this study was to detect differences in the hepatic expression of genes involved in low-grade inflammation and of obesity- and cholesterol-related microRNAs in two mixed breed populations of pigs (Yorkshire-Göttingen minipig, YM and Duroc-Göttingen minipig, DM) including males and females, with extreme phenotypes for CETP activity levels (designated as CETP-high and CETP-low, respectively). Furthermore, breed and gender differences were also investigated. We found significant difference (P < 0.05) in hepatic expression levels of several mRNAs and microRNAs between the CETP-high and -low groups (C5, IL1RN, IL18, and miR-223-5p); between the two mixed breeds (IL1RAP and miR-140-5p); and between gender (APOA1, IL1RN, and FBLN1). Furthermore, when taking breed into account we show that the transcriptional levels of TNF, miR20a, miR33b, and miR130a differed between the two CETP groups. We conclude that increased CETP activity is accompanied by a modest differential hepatic expression of several microRNAs and inflammatory-related genes. Furthermore, our study demonstrates that when modeling the analysis

  14. Effect of adenoviral delivery of prodynorphin gene on experimental inflammatory pain induced by formalin in rats

    PubMed Central

    Chen, Xionggang; Wang, Tingting; Lin, Caizhu; Chen, Baihong

    2014-01-01

    Circumstantial evidences suggest that dynorphins and their common precursor prodynorphin (PDYN) are involved in antinociception and neuroendocrine signaling. DREAM knockout mice had increased levels of PDYN and dynorphin expression, and reduced sensitivity to painful stimuli. However, some data support the notion that the up-regulation of spinal dynorphin expression is a common critical feature in neuropathic pain. It is not clear whether the production of dynorphin A can be increased when more PDYN is present. In this study we investigated the changes in pain behaviors, spinal PDYN mRNA expression and dynorphin A production on formalin-induced pain in rats receiving the pretreatment of adenoviral delivery of PDYN. Our results showed that the adenoviral transfer of PDYN gene was sufficient to reduce pain behaviors resulting from formalin injection, and the antinociceptive effect after receiving the pretreatment of adenoviral delivery of PDYN was mediated at the level of the spinal cord via KOR. PMID:25663984

  15. Hormonal contraceptives and venous thromboembolism: Are inflammatory bowel disease patients at increased risk? A retrospective study on a prospective database.

    PubMed

    Pellino, Gianluca; Sciaudone, Guido; Caprio, Francesca; Candilio, Giuseppe; De Fatico, G Serena; Reginelli, Alfonso; Canonico, Silvestro; Selvaggi, Francesco

    2015-12-01

    Recent studies showed an increased risk of venous thromboembolism (VTE) in patients receiving oral hormonal contraceptives. Inflammatory bowel diseases (IBD) often affect young patients and represent a pro-coagulant condition. This could result from active inflammation, but a potential role for genetic and molecular factors has been suggested. Hormonal contraceptives have also been associated with increased risk of VTE and the risk may be greater in IBD patients that already are in a pro-coagulant status, but no definitive data are available in this population. The purpose of our study was to seek for differences of the risk of VTE in IBD patients receiving hormonal contraceptives compared with controls. This is a retrospective study. We interrogated a prospectively maintained database of IBD patients observed at our outpatient clinic between 2000 and 2014. All female patients managed conservatively, with no active disease, who were taking oral hormone contraceptives in the study period, were included. Patients observed for other-than-IBD conditions at our Unit and at the Unit of Gynaecology and Obstetrics, receiving contraceptives, served as controls (ratio 1:2). Patients with cancer, those receiving hormonal therapy, and those with known genetic predisposition to VTE were excluded. We included 146 six IBD patients and 290 controls. One patient in each group developed VTE. Overall, the incidence of VTE associated with oral contraceptives was 0.5%. IBD was associated with increased risk of VTE (OR 1.9, 95% CI 0.12-32.12, p > 0.99). Active smokers since 10 years (17.2%) had higher risks of VTE (OR 8.6, 95% CI 1.16-19.25, p = 0.03). Our data show that patients with IBD in remission are not at higher risk of VTE due to oral oestrogen-containing contraceptives compared with non-IBD controls. Smokers are at increased risk, irrespective of the baseline disease.

  16. Intra-city Differences in Cardiac Expression of Inflammatory Genes and Inflammasomes in Young Urbanites: A Pilot Study

    PubMed Central

    Villarreal-Calderon, Rodolfo; Dale, Gary; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; Zhu, Hongtu; Herritt, Lou; Gónzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Yuan, Ying; Wang, Jiaping; Solorio-López, Edelmira; Medina-Cortina, Humberto; Calderón-Garcidueñas, Lilian

    2012-01-01

    Southwest Mexico City (SWMC) air pollution is characterized by high concentrations of ozone and particulate matter < 10 μm (PM10) containing lipopolysaccharides while in the North PM2.5 is high. These intra-city differences are likely accounting for higher CD14 and IL-1β in SWMC v NMC mice myocardial expression. This pilot study was designed to investigate whether similar intra-city differences exist in the levels of myocardial inflammatory genes in young people. Inflammatory mediator genes and inflammasome arrays were measured in right and left autopsy ventricles of 6 southwest/15 north (18.5 ± 2.6 years) MC residents after fatal sudden accidental deaths. There was a significant S v N right ventricle up-regulation of IL-1β (p=0.008), TNF-α (p=0.001), IL-10 (p=0.001), and CD14 (p=0.002), and a left ventricle difference in TNF-α (p=0.007), and IL-10 (p=0.02). SW right ventricles had significant up-regulation of NLRC1, NLRP3 and of 29/84 inflammasome genes, including NOD factors and caspases. There was significant degranulation of mast cells both in myocardium and epicardial nerve fibers. Differential expression of key inflammatory myocardial genes and inflammasomes are influenced by the location of residence. Myocardial inflammation and inflammasome activation in young hearts is a plausible pathway of heart injury in urbanites and adverse effects on the cardiovascular system are expected. PMID:22907983

  17. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  18. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential

    PubMed Central

    Haas, Bruno; Grenier, Daniel

    2016-01-01

    Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β) by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor. PMID:27104570

  19. Immune and inflammatory gene expressions are different in Behçet’s disease compared to those in Familial Mediterranean Fever

    PubMed Central

    Özdemir, Filiz Türe; Demiralp, Emel Ekşioğlu; Aydın, Sibel Z.; Atagündüz, Pamir; Ergun, Tülin; Direskeneli, Haner

    2016-01-01

    Objective The immune classification of Behçet’s disease (BD) is still controversial. In this study, we aimed to compare the immune/inflammatory gene expressions in BD with those in familial Mediterranean fever (FMF), an autoinflammatory disorder with innate immune activation. Material and Methods CD4+ T cells and CD14+ monocytes were isolated from the peripheral blood mononuclear cells of Behçet’s disease patients (n=10), FMF (n=6) patients, and healthy controls (n=4) with microbeads, and then, the mRNA was isolated. The expressions of 440 genes associated with immune and inflammatory responses were studied with a focused DNA microarray using a chemiluminescent tagging system. Changes above 1.5-fold and below 0.8-fold were accepted to be significant. Results In BD patients, in the CD4+ T-lymphocyte subset, interleukin 18 receptor accessory protein (1.7-fold), IL-7 receptor (1.9-fold), and prokineticin 2 (2.5-fold) were all increased compared to those in FMF patients, whereas chemokine (C-X3-C motif ) receptor-1 (CX3CR1) (0.7-fold) and endothelial cell growth factor-1 (0.6-fold) were decreased. In the CD14+ monocyte population, the V-fos FBJ murine osteosarcoma viral oncogene homolog (1.5-fold), Interleukin-8 (IL-8) (2.1-fold), and Tumor Necrosis Factor alpha (TNF-α) (1.8-fold) were all increased, whereas the chemokine (C-C motif ) ligand 5 (CCL5) (0.6-fold), C-C chemokine receptor type 7 (0.6-fold), and CX3CR1 (0.7-fold) were decreased, again when compared to those in FMF. Compared to healthy controls in the CD4+ T-lymphocyte population, in both BD and FMF patients, pro-platelet basic protein and CD27 had elevated expression. In BD and FMF patients, 24 and 19 genes, respectively, were downregulated, with 15 overlapping genes between both disorders. In the CD14+ monocytes population, chemokine (C-C motif ) receptor-1 (CCR1) was upregulated both in BD and FMF patients compared to that in the controls, whereas CCL5 was downregulated. Conclusion Immune and

  20. Differential regulation of adipose tissue and vascular inflammatory gene expression by chronic systemic inhibition of NOS in lean and obese rats

    PubMed Central

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Lansford, Kasey A.; Fleming, Nicholas J.; Bayless, David S.; Sheldon, Ryan D.; Rector, R. Scott; Laughlin, M. Harold

    2014-01-01

    Abstract We tested the hypothesis that a decrease in bioavailability of nitric oxide (NO) would result in increased adipose tissue (AT) inflammation. In particular, we utilized the obese Otsuka Long Evans Tokushima Fatty rat model (n = 20) and lean Long Evans Tokushima Otsuka counterparts (n = 20) to determine the extent to which chronic inhibition of NO synthase (NOS) with Nω‐nitro‐l‐arginine methyl ester (L‐NAME) treatment (for 4 weeks) upregulates expression of inflammatory genes and markers of immune cell infiltration in retroperitoneal white AT, subscapular brown AT, periaortic AT as well as in its contiguous aorta free of perivascular AT. As expected, relative to lean rats (% body fat = 13.5 ± 0.7), obese rats (% body fat = 27.2 ± 0.8) were hyperlipidemic (total cholesterol 77.0 ± 2.1 vs. 101.0 ± 3.3 mg/dL), hyperleptinemic (5.3 ± 0.9 vs. 191.9 ± 59.9 pg/mL), and insulin‐resistant (higher HOMA IR index [3.9 ± 0.8 vs. 25.2 ± 4.1]). Obese rats also exhibited increased expression of proinflammatory genes in perivascular, visceral, and brown ATs. L‐NAME treatment produced a small but statistically significant decrease in percent body fat (24.6 ± 0.9 vs. 27.2 ± 0.8%) and HOMA IR index (16.9 ± 2.3 vs. 25.2 ± 4.1) in obese rats. Further, contrary to our hypothesis, we found that expression of inflammatory genes in all AT depots examined were generally unaltered with L‐NAME treatment in both lean and obese rats. This was in contrast with the observation that L‐NAME produced a significant upregulation of inflammatory and proatherogenic genes in the aorta. Collectively, these findings suggest that chronic NOS inhibition alters transcriptional regulation of proinflammatory genes to a greater extent in the aortic wall compared to its adjacent perivascular AT, or visceral white and subscapular brown AT depots. PMID:24744894

  1. The effect of PrP(Sc) accumulation on inflammatory gene expression within sheep peripheral lymphoid tissue.

    PubMed

    Gossner, Anton G; Hopkins, John

    2015-12-31

    Accumulation of the misfolded prion protein, PrP(Sc) in the central nervous system (CNS) is strongly linked to progressive neurodegenerative disease. For many transmissible spongiform encephalopathies (TSEs), peripheral lymphoid tissue is an important site of PrP(Sc) amplification but without gross immunological consequence. Susceptible VRQ homozygous New Zealand Cheviot sheep were infected with SSBP/1 scrapie by inoculation in the drainage area of the prescapular lymph nodes. The earliest time that PrP(Sc) was consistently detected by immunohistology in these nodes was D50 post infection. This transcriptomic study of lymph node taken before (D10) and after (D50) the detection of PrP(Sc), aimed to identify the genes and physiological pathways affected by disease progression within the nodes as assessed by PrP(Sc) detection. Affymetrix Ovine Gene arrays identified 75 and 80 genes as differentially-expressed at D10 and D50, respectively, in comparison with control sheep inoculated with uninfected brain homogenate. Approximately 70% of these were repressed at each time point. RT-qPCR analysis of seven genes showed statistically significant correlation with the array data, although the results for IL1RN and TGIF were different between the two technologies. The ingenuity pathway analysis (IPA) and general low level of repression of gene expression in lymphoid tissue, including many inflammatory genes, contrasts with the pro-inflammatory and pro-apoptotic events that occur within the CNS at equivalent stages of disease progression as assessed by PrP(Sc) accumulation.

  2. Chorioamnionitis and increased galectin-1 expression in PPROM –an anti-inflammatory response in the fetal membranes?

    PubMed Central

    Than, Nandor Gabor; Kim, Sung-Su; Abbas, Asad; Han, Yu Mi; Hotra, John; Tarca, Adi L.; Erez, Offer; Wildman, Derek E.; Kusanovic, Juan Pedro; Pineles, Beth; Montenegro, Daniel; Edwin, Samuel S.; Mazaki-Tovi, Shali; Gotsch, Francesca; Espinoza, Jimmy; Hassan, Sonia S.; Papp, Zoltan; Romero, Roberto

    2008-01-01

    Problem Galectin-1 can regulate immune responses upon infection and inflammation. We determined galectin-1 expression in the chorioamniotic membranes and its changes during histological chorioamnionitis. Methods of Study Chorioamniotic membranes were obtained from women with normal pregnancy (n=5) and from patients with pre-term pre-labor rupture of the membranes (PPROM) with (n=8) and without histological chorioamnionitis (n=8). Galectin-1 mRNA and protein were localized by in situ hybridization and immunohistochemistry. Galectin-1 mRNA expression was also determined by quantitative RT-PCR. Results Galectin-1 mRNA and protein were detected in the amnion epithelium, chorioamniotic fibroblasts/myofibroblasts and macrophages, chorionic trophoblasts, and decidual stromal cells. In patients with PPROM, galectin-1 mRNA expression in the fetal membranes was higher (2.07-fold, p=0.002) in those with chorioamnionitis than in those without. Moreover, chorioamionitis was associated with a strong galectin-1 immunostaining in amniotic epithelium, chorioamniotic mesodermal cells, and apoptotic bodies. Conclusions Chorioamnionitis is associated with an increased galectin-1 mRNA expression and strong immunoreactivity of the chorioamniotic membranes; thus, galectin-1 may be involved in the regulation of the inflammatory responses to chorioamniotic infection. PMID:18691335

  3. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein.

    PubMed

    Wijnholds, J; Evers, R; van Leusden, M R; Mol, C A; Zaman, G J; Mayer, U; Beijnen, J H; van der Valk, M; Krimpenfort, P; Borst, P

    1997-11-01

    The multidrug resistance-associated protein (MRP) mediates the cellular excretion of many drugs, glutathione S-conjugates (GS-X) of lipophilic xenobiotics and endogenous cysteinyl leukotrienes. Increased MRP levels in tumor cells can cause multidrug resistance (MDR) by decreasing the intracellular drug concentration. The physiological role or roles of MRP remain ill-defined, however. We have generated MRP-deficient mice by using embryonic stem cell technology. Mice homozygous for the mrp mutant allele, mrp-/-, are viable and fertile, but their response to an inflammatory stimulus is impaired. We attribute this defect to a decreased secretion of leukotriene C4 (LTC4) from leukotriene-synthesizing cells. Moreover, the mrp-/- mice are hypersensitive to the anticancer drug etoposide. The phenotype of mrp-/- mice is consistent with a role for MRP as the main LTC4-exporter in leukotriene-synthesizing cells, and as an important drug exporter in drug-sensitive cells. Our results suggest that this ubiquitous GS-X pump is dispensable in mice, making treatment of MDR with MRP-specific reversal agents potentially feasible.

  4. Transcriptional profiling of inflammatory cytokine genes in African buffaloes (Syncerus caffer) infected with Theileria parva.

    PubMed

    Okagawa, Tomohiro; Konnai, Satoru; Mekata, Hirohisa; Githaka, Naftaly; Suzuki, Saori; Kariuki, Edward; Gakuya, Francis; Kanduma, Esther; Shirai, Tatsuya; Ikebuchi, Ryoyo; Ikenaka, Yoshinori; Ishizuka, Mayumi; Murata, Shiro; Ohashi, Kazuhiko

    2012-08-15

    Theileria parva (T. parva) causes East Coast fever (ECF), which is of huge economic importance to Eastern and Southern African countries. In a previous bovine model, inflammatory cytokines were closely associated with disease progression in animals experimentally infected with T. parva. The African Cape buffalo (Syncerus caffer), the natural reservoir for T. parva, is completely resistant to ECF despite a persistently high parasitaemia following infection with T. parva. Characterizing basic immunological interactions in the host is critical to understanding the mechanism underlying disease resistance in the African Cape buffalo. In this study, the expression level of several cytokines was analyzed in T. parva-infected buffaloes. There were no significant differences in the expression profiles of inflammatory cytokines between the infected and uninfected animals despite a remarkably high parasitaemia in the former. However, the expression level of IL-10 was significantly upregulated in the infected animals. These results indicate a correlation between diminished inflammatory cytokines response and disease resistance in the buffalo.

  5. Increased mRNA expression of selected pro-inflammatory factors in inflamed bovine endometrium in vivo as well as in endometrial epithelial cells exposed to Bacillus pumilus in vitro.

    PubMed

    Gärtner, Martina A; Peter, Sarah; Jung, Markus; Drillich, Marc; Einspanier, Ralf; Gabler, Christoph

    2015-01-07

    Endometrial epithelium plays a crucial role in the first immune response to invading bacteria by producing cytokines and chemokines. The aim of this study was to investigate the first inflammatory response of the endometrium in vivo and in vitro. Gene expression of several pro-inflammatory factors and Toll-like receptors (TLR2, -4, -6) was determined in endometrial cytobrush samples obtained from healthy cows and cows with clinical or subclinical endometritis. Endometrial epithelial cells were co-cultured with an isolated autochthonous uterine bacterial strain Bacillus pumilus. Total RNA was extracted from in vivo and in vitro samples and subjected to real-time reverse transcription polymerase chain reaction. CXC ligands (CXCL) 1/2 and CXC chemokine receptor (CXCR) 2 mRNA expression was higher in cows with subclinical endometritis and CXCL3 mRNA expression was higher in cows with clinical endometritis compared with healthy cows. B. pumilus induced cell death of epithelial cells within 24h of co-culturing. The presence of B. pumilus resulted in significantly higher mRNA expression of interleukin 1? (IL1A), IL6, IL8, CXCL1-3 and prostaglandin-endoperoxide synthase 2 in co-cultured cells compared with untreated controls. The maximum increase was mainly detected after 2h. These results support the hypothesis that bacterial infection of endometrial cells might induce prompt synthesis of pro-inflammatory cytokines resulting in a local inflammatory reaction.

  6. Genetic polymorphisms of inflammatory response gene TNF-α and its influence on sporadic pancreatic neuroendocrine tumors predisposition risk.

    PubMed

    Karakaxas, Dimitrios; Gazouli, Maria; Coker, Ahmet; Agalianos, Christos; Papanikolaou, Ioannis S; Patapis, Pavlos; Liakakos, Theodoros; Dervenis, Christos

    2014-10-01

    The diagnosed incidence of pancreatic neuroendocrine tumors (pNETs) is increasing; however, their etiology remains poorly understood. PNETs are a rare, heterogeneous group of tumors arising from the endocrine cells of the pancreas, and genetic risk factors for sporadic pNETs are inadequately understood. It is known that pNETs secrete biogenic amines, hormones and growth factors, tumor necrosis factor-a (TNF-α) being one of them. Furthermore, cytokines and other proinflammatory mediators have been implicated in inflammatory pancreatic diseases including pancreatitis and cancer. The aim of our study was to analyze TNF-α promoter gene polymorphisms as risk factors for pNETs using germline DNA collected in a population-based case-control study of pancreatic cancer [42 pNET cases, 78 pancreatic ductal adenocarcinoma (PDAC) cases, 17 intraductal papillary mucinous neoplasm (IPMN) and 98 healthy controls] conducted in the Athens, Greece and Izmir, Turkey areas. For subsequent analysis, we excluded cases and controls with known genetic syndromes. The CC genotype at the -1031 position was more frequent in pNET and IPMN patients (p=0.0002 and p=0.009, respectively), suggesting its possible role in pNET development. Furthermore, the AA genotype at the -308 position was overrepresented in IPMN cases (p=0.03), and AA genotype at the -238 position was more frequent in PDAC cases (p=0.03) compared to healthy individuals. With regard to tumor characteristics, no statistically significant association was detected. Our findings suggest the putative role of TNF-α -1031 polymorphism in the development of pNET and IPMN, whereas the -308 polymorphism seems to be overrepresented among IPMN cases and -238 polymorphism among PDAC cases.

  7. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection.

  8. Effect of Selenium Against Lead-Induced Damage on the Gene Expression of Heat Shock Proteins and Inflammatory Cytokines in Peripheral Blood Lymphocytes of Chickens.

    PubMed

    Sun, G X; Chen, Y; Liu, C P; Li, S; Fu, J

    2016-08-01

    The possible beneficial role of selenium (Se) in heat shock proteins (HSPs) and inflammation damage induced by lead (Pb) in chickens is unclear. Therefore, the aim of this study was to investigate the effect of Se against Pb on the messenger RNA (mRNA) expression levels of HSPs (HSP 27, 40, 60, 70, and 90); heme oxygenase-1 (HO-1); and the inflammatory cytokines nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in the peripheral blood lymphocytes of chickens. A total of 360 1-day-old broiler chickens were randomly allocated into four groups (n = 90/group). The control group was fed a basic diet containing 0.2 mg/kg Se and 0.5 mg/kg Pb; the Se supplementation group (+Se group) was fed a Se-adequate (sodium selenite) diet containing 1 mg/kg Se and 0.5 mg/kg Pb; the Pb-supplemented group (+Pb group) was fed a Pb acetate diet containing 0.2 mg/kg Se and 350 mg/kg Pb; and the Se and Pb compound group (Se + Pb group) was fed a diet containing 1 mg/kg Se and 350 mg/kg Pb. The blood was collected and examined for the mRNA levels of HSP and inflammatory cytokine genes at 30 and 60 days old. The results showed that Pb poisoning induced the mRNA expression of HSPs and inflammatory cytokines in the peripheral blood lymphocytes of chickens. In addition, Se alleviated the Pb-induced increase in HSP and inflammatory cytokine mRNA levels in chicken peripheral blood lymphocytes. In conclusion, Se can antagonize the toxic effects of Pb on chickens and protect the chickens' peripheral blood lymphocytes in normal physiological function.

  9. Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis

    PubMed Central

    Weinmann, Daniela; Schlangen, Karin; André, Sabine; Schmidt, Sebastian; Walzer, Sonja M.; Kubista, Bernd; Windhager, Reinhard; Toegel, Stefan; Gabius, Hans-Joachim

    2016-01-01

    Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin’s collagen-like repeat region. Gal-3’s activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade. PMID:27982117

  10. Pregnancy in patients with rheumatic disease: anti-inflammatory cytokines increase in pregnancy and decrease post partum

    PubMed Central

    Ostensen, M; Forger, F; Nelson, J; Schuhmacher, A; Hebisch, G; Villiger, P

    2005-01-01

    Objective: To investigate changes in the levels of circulating cytokines with a focus on the Th1/Th2 balance during and after pregnancy in patients with rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and ankylosing spondylitis (AS). Methods: Plasma and serum samples of 34 pregnant patients, 19 with RA, 6 with JIA, and 9 with AS, and of 30 healthy pregnant women, 20 non-pregnant patients, and 10 non-pregnant healthy women were analysed for levels of interferon γ (IFNγ), interleukin (IL) 1ß, IL10, IL1 receptor antagonist (IL1Ra), soluble tumour necrosis factor receptor (sTNFR), and soluble CD30 (sCD30) by ELISA. Clinical assessment and blood sampling in pregnant women was done once in each trimester and 6, 12, and 24 weeks post partum. Disease activity in the patients was evaluated by validated clinical instruments and correlated with circulating levels of cytokines. Results: Low levels of IL10 were found sporadically, whereas IFNγ and IL1ß were below detection level in the samples tested. Significantly higher concentrations of sTNFR and IL1Ra were measured in pregnant than in non-pregnant subjects. An increase of IL1Ra from the second to the third trimester correlated with improvement of disease activity in patients with RA and AS. Compared with non-pregnant patients and the other pregnant women, patients with RA showed markedly raised levels of sCD30 during pregnancy. Conclusions: IFNγ and IL10, markers of a Th1 and Th2 response, respectively, were either low or undetectable in the cohorts analysed. The increase of cytokine inhibitors IL1Ra and sTNFR was related to pregnancy and was independent of an underlying disease. These anti-inflammatory mediators seem to affect disease activity. PMID:15539410

  11. eQTL analysis links inflammatory bowel disease associated 1q21 locus to ECM1 gene.

    PubMed

    Repnik, Katja; Potočnik, Uroš

    2016-08-01

    Genome-wide association studies (GWAS) have been highly successful in inflammatory bowel disease (IBD) with 163 confirmed associations so far. We used expression quantitative trait loci (eQTL) mapping to analyze IBD associated regions for which causative gene from the region is still unknown. First, we performed an extensive literature search and in silico analysis of published GWAS in IBD and eQTL studies and extracted 402 IBD associated SNPs assigned to 208 candidate loci, and 9562 eQTL correlations. When crossing GWA and eQTL data we found that for 50 % of loci there is no eQTL gene, while for 31.2 % we can determine one gene, for 11.1 % two genes and for the remaining 7.7 % three or more genes. Based on that we selected loci with one, two, and three or more eQTL genes and analyzed them in peripheral blood lymphocytes and intestine tissue samples of 606 Slovene patients with IBD and in 449 controls. Association analysis of selected SNPs showed statistical significance for three (rs2631372 and rs1050152 on 5q locus and rs13294 on 1q locus) out of six selected SNPs with at least one phenotype. Furthermore, with eQTL analysis of selected chromosomal regions, we confirmed a link between SNP and gene for four (SLC22A5 on 5q, ECM1 on 1q, ORMDL3 on 17q, and PUS10 on 2p locus) out of five selected regions. For 1q21 loci, we confirmed gene ECM1 as the most plausible gene from this region to be involved in pathogenesis of IBD and thereby contributed new eQTL correlation from this genomic region.

  12. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  13. Spi2 gene polymorphism is not associated with recurrent airway obstruction and inflammatory airway disease in thoroughbred horses

    PubMed Central

    da Silva, Aline Correa; Brass, Karin Erica; da Silva Loreto, Elgion; Vinocur, Myriam Elizabeth; Pozzobon, Ricardo; da Silva Azevedo, Marcos

    2011-01-01

    The aim was to detect the presence of polymorphisms at exons 1, 2, 3 and 4 of the Spi2 gene, and evaluate a possible association between them and recurrent airway obstruction (RAO) or inflammatory airway disease (IAD) in thoroughbred horses, through single-strand conformational-polymorphism (SSCP) screening. Although polymorphism was not detected in exons 1, 2 and 3, three alleles and six genotypes were identified in exon 4. The frequencies of allele A (0.6388) and genotype AA (0.3888) were higher in horses affected by RAO, although no association was found between polymorphism and horses with either RAO or IAD. PMID:21931519

  14. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain.

    PubMed

    Nassar, Mohammed A; Stirling, L Caroline; Forlani, Greta; Baker, Mark D; Matthews, Elizabeth A; Dickenson, Anthony H; Wood, John N

    2004-08-24

    Nine voltage-gated sodium channels are expressed in complex patterns in mammalian nerve and muscle. Three channels, Na(v)1.7, Na(v)1.8, and Na(v)1.9, are expressed selectively in peripheral damage-sensing neurons. Because there are no selective blockers of these channels, we used gene ablation in mice to examine the function of Na(v)1.7 (PN1) in pain pathways. A global Na(v)1.7-null mutant was found to die shortly after birth. We therefore used the Cre-loxP system to generate nociceptor-specific knockouts. Na(v)1.8 is only expressed in peripheral, mainly nociceptive, sensory neurons. We knocked Cre recombinase into the Na(v)1.8 locus to generate heterozygous mice expressing Cre recombinase in Na(v)1.8-positive sensory neurons. Crossing these animals with mice where Na(v)1.7 exons 14 and 15 were flanked by loxP sites produced nociceptor-specific knockout mice that were viable and apparently normal. These animals showed increased mechanical and thermal pain thresholds. Remarkably, all inflammatory pain responses evoked by a range of stimuli, such as formalin, carrageenan, complete Freund's adjuvant, or nerve growth factor, were reduced or abolished. A congenital pain syndrome in humans recently has been mapped to the Na(v)1.7 gene, SCN9A. Dominant Na(v)1.7 mutations lead to edema, redness, warmth, and bilateral pain in human erythermalgia patients, confirming an important role for Na(v)1.7 in inflammatory pain. Nociceptor-specific gene ablation should prove useful in understanding the role of other broadly expressed genes in pain pathways.

  15. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain

    PubMed Central

    Nassar, Mohammed A.; Stirling, L. Caroline; Forlani, Greta; Baker, Mark D.; Matthews, Elizabeth A.; Dickenson, Anthony H.; Wood, John N.

    2004-01-01

    Nine voltage-gated sodium channels are expressed in complex patterns in mammalian nerve and muscle. Three channels, Nav1.7, Nav1.8, and Nav1.9, are expressed selectively in peripheral damage-sensing neurons. Because there are no selective blockers of these channels, we used gene ablation in mice to examine the function of Nav1.7 (PN1) in pain pathways. A global Nav1.7-null mutant was found to die shortly after birth. We therefore used the Cre-loxP system to generate nociceptor-specific knockouts. Nav1.8 is only expressed in peripheral, mainly nociceptive, sensory neurons. We knocked Cre recombinase into the Nav1.8 locus to generate heterozygous mice expressing Cre recombinase in Nav1.8-positive sensory neurons. Crossing these animals with mice where Nav1.7 exons 14 and 15 were flanked by loxP sites produced nociceptor-specific knockout mice that were viable and apparently normal. These animals showed increased mechanical and thermal pain thresholds. Remarkably, all inflammatory pain responses evoked by a range of stimuli, such as formalin, carrageenan, complete Freund's adjuvant, or nerve growth factor, were reduced or abolished. A congenital pain syndrome in humans recently has been mapped to the Nav1.7 gene, SCN9A. Dominant Nav1.7 mutations lead to edema, redness, warmth, and bilateral pain in human erythermalgia patients, confirming an important role for Nav1.7 in inflammatory pain. Nociceptor-specific gene ablation should prove useful in understanding the role of other broadly expressed genes in pain pathways. PMID:15314237

  16. Gemfibrozil, a Lipid-lowering Drug, Increases Myelin Genes in Human Oligodendrocytes via Peroxisome Proliferator-activated Receptor-β*

    PubMed Central

    Jana, Malabendu; Mondal, Susanta; Gonzalez, Frank J.; Pahan, Kalipada

    2012-01-01

    An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(−/−) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(−/−) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases. PMID:22879602

  17. Acute Effects of Dietary Fat on Inflammatory Markers and Gene Expression in First-Degree Relatives of Type 2 Diabetes Patients

    PubMed Central

    Pietraszek, Anna; Gregersen, Søren; Hermansen, Kjeld

    2011-01-01

    BACKGROUND: Subjects with type 2 diabetes (T2D) and their relatives (REL) carry an increased risk of cardiovascular disease (CVD). Low-grade inflammation, an independent risk factor for CVD, is modifiable by diet. Subjects with T2D show elevated postprandial inflammatory responses to fat-rich meals, while information on postprandial inflammation in REL is sparse. AIM: To clarify whether medium-chain saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) have differential acute effects on low-grade inflammation in REL compared to controls (CON). METHODS: In randomized order, 17 REL and 17 CON ingested two fat-rich meals, with 72 energy percent from MUFA and 79 energy percent from mainly medium-chain SFA, respectively. Plasma high sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), adiponectin, and leptin were measured at baseline, 15 min, 60 min, and 240 min postprandially. Muscle and adipose tissue biopsies were taken at baseline and 210 min after the test meal, and expression of selected genes was analyzed. RESULTS: Plasma IL-6 increased (p < 0.001) without difference between REL and CON and between the meals, whereas plasma adiponectin and plasma hs-CRP were unchanged during the 240 min observation period. Plasma leptin decreased slightly in response to medium-chain SFA in both groups, and to MUFA in REL. Several genes were differentially regulated in muscle and adipose tissue of REL and CON. CONCLUSIONS: MUFA and medium-chain SFA elicit similar postprandial circulating inflammatory responses in REL and CON. Medium-chain SFA seems more proinflammatory than MUFA, judged by the gene expression in muscle and adipose tissue of REL and CON. PMID:22580729

  18. Maternal high-fat diet-induced programing of gut taste receptor and inflammatory gene expression in rat offspring is ameliorated by CLA supplementation.

    PubMed

    Reynolds, Clare M; Segovia, Stephanie A; Zhang, Xiaoyuan D; Gray, Clint; Vickers, Mark H

    2015-10-01

    Consumption of a high-fat (HF) diet during pregnancy and lactation influences later life predisposition to obesity and cardiometabolic disease in offspring. The mechanisms underlying this phenomenon remain poorly defined, but one potential target that has received scant attention and is likely pivotal to disease progression is that of the gut. The present study examined the effects of maternal supplementation with the anti-inflammatory lipid, conjugated linoleic acid (CLA), on offspring metabolic profile and gut expression of taste receptors and inflammatory markers. We speculate that preventing high-fat diet-induced metainflammation improved maternal metabolic parameters conferring beneficial effects on adult offspring. Sprague Dawley rats were randomly assigned to a purified control diet (CD; 10% kcal from fat), CD with CLA (CLA; 10% kcal from fat, 1% CLA), HF (45% kcal from fat) or HF with CLA (HFCLA; 45% kcal from fat, 1% CLA) throughout gestation and lactation. Plasma/tissues were taken at day 24 and RT-PCR was carried out on gut sections. Offspring from HF mothers were significantly heavier at weaning with impaired insulin sensitivity compared to controls. This was associated with increased plasma IL-1β and TNFα concentrations. Gut Tas1R1, IL-1β, TNFα, and NLRP3 expression was increased and Tas1R3 expression was decreased in male offspring from HF mothers and was normalized by maternal CLA supplementation. Tas1R1 expression was increased while PYY and IL-10 decreased in female offspring of HF mothers. These results suggest that maternal consumption of a HF diet during critical developmental windows influences offspring predisposition to obesity and metabolic dysregulation. This may be associated with dysregulation of taste receptor, incretin, and inflammatory gene expression in the gut.

  19. Molecular mechanisms underlying the regulation of the MFG-E8 gene promoter activity in physiological and inflammatory conditions

    PubMed Central

    Wang, Xiao; Bu, Heng-Fu; Liu, Shirley XL; De Plaen, Isabelle G.; Tan, Xiao-Di

    2015-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) is expressed by macrophages and plays an important role in attenuating inflammation and maintaining tissue homeostasis. Previously, we and others found that LPS inhibits MFG-E8 gene expression in macrophages. Here, we characterized the 5′-flanking region of the mouse MFG-E8 gene. To functionally analyze the upstream regulatory region of the MFG-E8 gene, a series of luciferase reporter gene constructs containing deleted or mutated regulatory elements were prepared. Using the luciferase assay, we revealed that Sp1 binding motifs within the proximal promoter region were necessary for full activity of the MFG-E8 promoter, whereas AP-1 like binding sequence at −372 played a role in governing the promoter activity at a homeostatic level. With chromatin immunoprecipitation assay, we showed that Sp1 and c-Jun physically interact with the MFG-E8 promoter region in vivo. In addition, Sp1 was found to regulate the MFG-E8 promoter activity positively and c-Jun negatively. Furthermore, we demonstrated that LPS inhibited MFG-E8 promoter activity via targeting Sp1 and AP-1-like motifs in the 5′-flanking region. Collectively, our data indicate that Sp1 and AP-1-related factors are involved in the regulation of MFG-E8 gene transcription by targeting their binding sites in the 5′-flanking region under physiological and inflammatory states. PMID:25711369

  20. Genetically modified crops for biomass increase. Genes and strategies.

    PubMed

    Rojas, Cristian Antonio; Hemerly, Adrianna Silva; Ferreira, Paulo Cavalcanti Gomes

    2010-01-01

    Genetically modified crops (GMCs) have been developed to accelerate the creation of new varieties with improved characteristics such as disease resistance, stress tolerance and higher quality composition. However, agriculture, without minimizing its role in food, feed and fiber source, has become important for the energy matrix of many countries. GMCs are also attractive systems that could fulfill the requirements for these new necessities. An increase of crop yields in an environmental friendly system is a new goal for plant biology research in the twenty-first century. In particular, biomass yield improvement is needed to render the use of biofuels economically feasible. In this context, research directed toward increasing biomass production has attracted much attention and a considerable effort is being made to reach new goals. Nonetheless, in some cases differentiated strategies are needed, as biomass improvement requires approaches other than those employed with traditional crops. This review summarizes the various approaches applied so far to modulate plant growth applying molecular biology-based strategies and increase biomass production, and it highlights several outstanding issues about the developmental constraints that must be addressed.

  1. Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Mirza, Bushra

    2017-03-01

    Lettuce is an edible crop that is well known for dietary and antioxidant benefits. The present study was conducted to investigate the effects of rol ABC genes on antioxidant and medicinal potential of lettuce by Agrobacterium-mediated transformation. Transgene integration and expression was confirmed through PCR and real-time RT-PCR, respectively. The transformed plants showed 91-102 % increase in total phenolic contents and 53-65 % increase in total flavonoid contents compared to untransformed plants. Total antioxidant capacity and total reducing power increased up to 112 and 133 % in transformed plants, respectively. Results of DPPH assay showed maximum 51 % increase, and lipid peroxidation assay exhibited 20 % increase in antioxidant activity of transformed plants compared to controls. Different in vivo assays were carried out in rats. The transgenic plants showed up to 80 % inhibition in both hot plate analgesic assay and carrageenan-induced hind paw edema test, while untransformed plants showed only 45 % inhibition. Antidepressant and anticoagulant potential of transformed plants was also significantly enhanced compared to untransformed plants. Taken together, the present work highlights the use of rol genes to enhance the secondary metabolite production in lettuce and improve its analgesic, anti-inflammatory, antidepressant, and anticoagulatory properties.

  2. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    PubMed

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  3. Chronic binge alcohol administration accentuates expression of pro-fibrotic and inflammatory genes in the skeletal muscle of simian immunodeficiency virus-infected macaques

    PubMed Central

    Dodd, Tracy; Simon, Liz; LeCapitaine, Nicole J.; Zabaleta, Jovanny; Mussell, Jason; Berner, Paul; Ford, Stephen; Dufour, Jason; Bagby, Gregory J.; Nelson, Steve; Molina, Patricia E.

    2014-01-01

    Background Chronic binge alcohol (CBA) administration exacerbates skeletal muscle (SKM) wasting at the terminal stage of simian immunodeficiency virus (SIV) infection in rhesus macaques. This is associated with a pro-inflammatory and oxidative milieu which we have previously shown to be associated with a disrupted balance between anabolic and catabolic mechanisms. In this study, we attempted to characterize the SKM gene expression signature in CBA-administered SIV-infected macaques; using the same animals from the previous study. Methods Administration of intragastric alcohol or sucrose to male rhesus macaques began three months prior to SIV infection and continued throughout the duration of study. Gene transcriptomes of SKM excised at necropsy (~10 mo. post-SIV) from healthy naive control (Control), sucrose-administered, SIV-infected (SUC-SIV), and CBA-administered, SIV-infected (CBA-SIV) macaques were evaluated in microarray datasets. The Protein Analysis Through Evolutionary Relationships (PANTHER) classification tool was used to filter differentially regulated genes based on their predicted function into select biological processes relevant to SKM wasting which were: inflammation, extracellular matrix (ECM) remodeling, and metabolism. Results In total, 1124 genes were differentially regulated between SUC-SIV and controls, 2022 genes were differentially expressed between the CBA-SIV and controls and 836 genes were differentially expressed between CBA-SIV and SUC-SIV animals. The relevance of altered gene expression was reflected in the up-regulation of pro-inflammatory CCL-2, CCL-8, CX3CL1, SELE, HP, and TNFRS10A mRNA expression. In addition, ECM remodeling was reflected in the up-regulation of TIMP-1, MMP2 and MMP9 mRNA expression and TGF-β protein expression. In addition, hydroxyproline content and picrosirius staining reflected increased collagen deposition in the CBA-SIV muscle tissue. Conclusions The results of the study demonstrate SKM inflammation as an

  4. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  5. Pelvic inflammatory disease increases the risk of a second primary malignancy in patients with cervical cancer treated by surgery alone.

    PubMed

    Chiou, Wen-Yen; Chen, Chien-An; Lee, Moon-Sing; Lin, Hon-Yi; Li, Chung-Yi; Su, Yu-Chieh; Tsai, Shiang-Jiun; Hung, Shih-Kai

    2016-11-01

    As the number of long-term cervical cancer survivors continues to increase because of improvements in treatment, concerns about second primary malignancy have grown. The high-risk area of second primary cancers in cervical cancer survivors is the pelvis. Pelvic inflammatory disease (PID) could be a useful marker for gynecological cancers. Thus, we designed a large-scale, nationwide, controlled cohort study to investigate whether PID or other risk factors increased the risk of second primary cancers in patients with cervical cancer treated by surgery alone.Between 2000 and 2010, a total of 24,444 cervical cancer patients were identified using the Registry Data for Catastrophic Illness and the National Health Insurance Research Database (NHIRD) of Taiwan. Patients who received definite surgery were selected. To exclude the effect on second primary malignancy by treatment modalities, all cervical patients who ever having received adjuvant or definite radiotherapy or chemotherapy for primary cervical cancer were excluded. Finally, 3860 cervical cancer patients treated by surgery alone without adjuvant treatments were analyzed.Cox proportional hazards model was used for multivariate analysis and the Kaplan-Meier method was used to assess the cumulative risks. Regarding the incidence of second primary cancers, the standardized incidence ratio (SIR) was used.The median follow-up time was 56.6 months. The 6-year cumulative risk of second primary cancers is 0.16% and 0.12% for PID and without PID, respectively. After adjustment for confounders, age of less than 50 years, the presence of diabetes mellitus, and PID were significantly positivity associated with the risk of second primary cancers. The hazard ratios (HRs) of age less than 50 years, diabetes mellitus, and PID were 1.38 (95% CI = 1.11-2.04), 1.40 (95% CI = 1.06-1.85), and 1.35 (95% CI = 1.00-1.81), respectively. A higher incidence of second primary cancers was observed in the genitals, bladder, and

  6. The Immediate Intramedullary Nailing Surgery Increased the Mitochondrial DNA Release That Aggravated Systemic Inflammatory Response and Lung Injury Induced by Elderly Hip Fracture.

    PubMed

    Gan, Li; Zhong, Jianfeng; Zhang, Ruhui; Sun, Tiansheng; Li, Qi; Chen, Xiaobin; Zhang, Jianzheng

    2015-01-01

    Conventional concept suggests that immediate surgery is the optimal choice for elderly hip fracture patients; however, few studies focus on the adverse effect of immediate surgery. This study aims to examine the adverse effect of immediate surgery, as well as to explore the meaning of mtDNA release after trauma. In the experiment, elderly rats, respectively, received hip fracture operations or hip fracture plus intramedullary nail surgery. After fracture operations, the serum mtDNA levels as well as the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. After immediate surgery, the above variables were further increased. The serum mtDNA levels were significantly related with the serum cytokine (TNF-α and IL-10) levels and pulmonary histological score. In order to identify the meaning of mtDNA release following hip fracture, the elderly rats received injections with mtDNA. After treatment, the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. These results demonstrated that the immediate surgery increased the mtDNA release that could aggravate systemic inflammatory response and lung injury induced by elderly hip fracture; serum mtDNA might serve as a potential biomarker of systemic inflammatory response and lung injury following elderly hip fracture.

  7. Neutrophil anti-neutrophil cytoplasmic autoantibody proteins: bactericidal increasing protein, lactoferrin, cathepsin, and elastase as serological markers of inflammatory bowel and other diseases

    PubMed Central

    Kyriakidi, Kallirroi S.; Tsianos, Vasileios E.; Karvounis, Evaggelos; Christodoulou, Dimitrios K.; Katsanos, Konstantinos H.; Tsianos, Epameinondas V.

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract comprising Crohn’s disease and ulcerative colitis. Although the pathogenesis of the disease is not clearly defined yet, environmental, genetic and other factors contribute to the onset of the disease. Apart from the clinical and histopathological findings, several serological biomarkers are also employed to detect IBD. One of the most thoroughly studied biomarker is anti-neutrophil cytoplasmic autoantibody (ANCA). We herein provide an overview of the current knowledge on the use of ANCA and certain ANCA proteins, such as bactericidal increasing protein, lactoferrin, cathepsin G and elastase, as serological markers for IBD and other diseases. PMID:27366026

  8. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    PubMed

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.

  9. Age-related switch of bone mass in p47phox deficient mice through increased inflammatory milieu in bone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Excessive accumulation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and hydroxyl radicals, has been suggested to be the leading cause of many inflammatory and degener...

  10. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  11. PARK2 and proinflammatory/anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case–control study of North Indian population

    PubMed Central

    Chopra, Rupali; Kalaiarasan, Ponnusamy; Ali, Shafat; Srivastava, Amit K; Aggarwal, Shweta; Garg, Vijay K; Bhattacharya, Sambit N; Bamezai, Rameshwar N K

    2014-01-01

    Objectives Cytokines and related molecules in immune-response pathways seem important in deciding the outcome of the host–pathogen interactions towards different polar forms in leprosy. We studied the role of significant and functionally important single-nucleotide polymorphisms (SNPs) in these genes, published independently from our research group, through combined interaction with an additional analysis of the in silico network outcome, to understand how these impact the susceptibility towards the disease, leprosy. Design The study was designed to assess an overall combined contribution of significantly associated individual SNPs to reflect on epistatic interactions and their outcome in the form of the disease, leprosy. Furthermore, in silico approach was adopted to carry out protein–protein interaction study between PARK2 and proinflammatory/anti-inflammatory cytokines. Setting Population-based case–control study involved the data of North India. Protein–protein interaction networks were constructed using cytoscape. Participants Study included the data available from 2305 Northern Indians samples (829 patients with leprosy; 1476 healthy controls), generated by our research group. Primary and secondary outcome measures For genotype interaction analysis, all possible genotype combinations between selected SNPs were used as an independent variable, using binary logistic regression with the forward likelihood ratio method, keeping the gender as a covariate. Results Interaction analysis between PARK2 and significant SNPs of anti-inflammatory/proinflammatory cytokine genes, including BAT1 to BTNL2-DR spanning the HLA (6p21.3) region in a case–control comparison, showed that the combined analysis of: (1) PARK2, tumour necrosis factor (TNF), BTNL2-DR, interleukin (IL)-10, IL-6 and TGFBR2 increased the risk towards leprosy (OR=2.54); (2) PARK2, BAT1, NFKBIL1, LTA, TNF-LTB, IL12B and IL10RB provided increased protection (OR=0.26) in comparison with their

  12. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    SciTech Connect

    Marín-Prida, Javier; Riva, Federica; Pentón-Arias, Eduardo

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  13. Polymorphism in the Alpha Cardiac Muscle Actin 1 Gene Is Associated to Susceptibility to Chronic Inflammatory Cardiomyopathy

    PubMed Central

    Frade, Amanda Farage; Teixeira, Priscila Camilo; Ianni, Barbara Maria; Pissetti, Cristina Wide; Saba, Bruno; Wang, Lin Hui Tzu; Kuramoto, Andréia; Nogueira, Luciana Gabriel; Buck, Paula; Dias, Fabrício; Giniaux, Helene; Llored, Agnes; Alves, Sthefanny; Schmidt, Andre; Donadi, Eduardo; Marin-Neto, José Antonio; Hirata, Mario; Sampaio, Marcelo; Fragata, Abílio; Bocchi, Edimar Alcides; Stolf, Antonio Noedir; Fiorelli, Alfredo Inacio; Santos, Ronaldo Honorato Barros; Rodrigues, Virmondes; Pereira, Alexandre Costa; Kalil, Jorge; Cunha-Neto, Edecio; Chevillard, Christophe

    2013-01-01

    Aims Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1) have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. Methods and Results We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP) in the ACTC1 gene identified rs640249 SNP, located at the 5’ region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. Conclusions Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions. PMID:24367596

  14. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    SciTech Connect

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber; and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  15. The modulation of inflammatory oedema by calcitonin gene-related peptide.

    PubMed Central

    Newbold, P.; Brain, S. D.

    1993-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) when given with or as a pretreatment to oedema inducing agents was investigated in the skin and paws of male Wistar and Sprague Dawley rats. 2. Oedema formation at intradermally-injected sites in the skin was measured by a 125I-labelled human serum albumin accumulation technique and paw oedema was measured by a weight displacement technique. 3. CGRP (30 pmol) when given with, or as a 20 min pretreatment, markedly potentiated oedema formation induced by substance P (100 pmol) in rat skin. In comparison, CGRP had little effect on 5-hydroxytryptamine (5-HT, 0.1-3 nmol)-induced oedema when given as a co-injection but significantly potentiated 5-HT-induced oedema when given as a 20 min pretreatment in the skin. Similar results were obtained in both Wistar and Sprague Dawley rats. 4. Pretreatment with CGRP (30 pmol) had little modulatory effect on oedema induced by substance P (100 pmol) in the presence of the vasodilator prostanoid, prostaglandin E1 (PGE1, 850 pmol) in the skin of Wistar rats. 5. Pretreatment with CGRP (30 pmol) caused a non-significant increase in carrageenin (300 micrograms)-induced oedema in the hind paw of Wistar rats. Capsaicin (100 nmol) given as a pretreatment had little effect on carrageenin-induced oedema. 6. CGRP (30 pmol), given as a pretreatment, had little modulatory effect on 5-HT (3 nmol)-induced oedema in the paw of Wistar rats but a non-significant decrease in paw oedema was observed in Sprague Dawley rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682134

  16. Interactive roles of NPR1 gene-dosage and salt diets on cardiac angiotensin II, aldosterone and pro-inflammatory cytokines levels inmutantmice

    PubMed Central

    Zhao, Di; Das, Subhankar; Pandey, Kailash N.

    2015-01-01

    Objective The objective of the present study was to elucidate the interactive roles of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) gene (Npr1) and salt diets on cardiac angiotensin II (ANG II), aldosterone and proinflammatory cytokines levels in Npr1 gene-targeted (1-copy, 2-copy, 3-copy, 4-copy) mice. Methods Npr1 genotypes included 1-copy gene-disrupted heterozygous (+/−), 2-copy wild-type (+/+), 3-copy gene-duplicated heterozygous (++/+) and 4-copy gene-duplicated homozygous (++/++) mice. Animals were fed low, normal and high-salt diets. Plasma and cardiac levels of ANG II, aldosterone and pro-inflammatory cytokines were determined. Results With a high-salt diet, cardiac ANG II levels were increased (+) in 1-copy mice (13.7 ± 2.8 fmol/mg protein, 111%) compared with 2-copy mice (6.5 ± 0.6), but decreased (−) in 4-copy (4.0 ± 0.5, 38%) mice. Cardiac aldosterone levels were increased (+) in 1-copy mice (80 ± 4 fmol/mg protein, 79%) compared with 2-copy mice (38 ± 3). Plasma tumour necrosis factor alpha was increased (+) in 1-copy mice (30.27 ± 2.32 pg/ml, 38%), compared with 2-copy mice (19.36 ± 2.49, 24%), but decreased (−) in 3-copy (11.59 ± 1.51, 12%) and 4-copy (7.13 ± 0.52, 22%) mice. Plasma interleukin (IL)-6 and IL-1α levels were also significantly increased (+) in 1-copy compared with 2-copy mice but decreased (−) in 3-copy and 4-copy mice. Conclusion These results demonstrate that a high-salt diet aggravates cardiac ANG II, aldosterone and proinflammatory cytokine levels in Npr1 gene-disrupted 1-copy mice, whereas, in Npr1 gene-duplicated (3-copy and 4-copy) mice, high salt did not render such elevation, suggesting the potential roles of Npr1 against salt loading. PMID:23188418

  17. Variants in Toll-like Receptor 1 and 4 Genes Are Associated With Chlamydia trachomatis Among Women With Pelvic Inflammatory Disease

    PubMed Central

    Darville, Toni; Ferrell, Robert E.; Kammerer, Candace M.; Ness, Roberta B.; Haggerty, Catherine L.

    2012-01-01

    Background. Toll-like receptors (TLRs) are involved in the innate immune response. We examined whether TLR variants are associated with Chlamydia trachomatis infection among women with pelvic inflammatory disease (PID). Methods. We tested whether 18 tagging single nucleotide polymorphisms (tagSNPs) assayed in 4 TLR genes (TLR1, TLR2, TLR4, TLR6) and 2 adaptor molecules (TIRAP, MyD88) were associated with C. trachomatis among 205 African American women with clinically suspected PID from the PID Evaluation and Clinical Health Study. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). An empirical P value of <.004 was considered significant. Results. Women with PID who carried the TLR4 rs1927911 CC genotype had significantly increased odds of C. trachomatis (OR, 3.7; 95% CI, 1.6–8.8; P = .002). The TLR1 rs5743618TT genotype was also associated with C. trachomatis (OR, 2.8; 95% CI, 1.3–6.2; P = .008). Conclusions. Among African American women with PID, variants in the TLR1 and TLR4 genes, which may increase signaling, were associated with increased C. trachomatis infection. PMID:22238472

  18. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators.

    PubMed

    Köhnke, Thomas; Gomolka, Beate; Bilal, Süleyman; Zhou, Xiangzhi; Sun, Yanping; Rothe, Michael; Baumgart, Daniel C; Weylandt, Karsten H

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation.

  19. Transcriptional Analysis of PRRSV-Infected Porcine Dendritic Cell Response to Streptococcus suis Infection Reveals Up-Regulation of Inflammatory-Related Genes Expression

    PubMed Central

    Auray, Gaël; Lachance, Claude; Wang, Yingchao; Gagnon, Carl A.; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection. PMID:27213692

  20. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC).

    PubMed

    Kadiyala, Chandra Sekhar Rao; Zheng, Ling; Du, Yunpeng; Yohannes, Elizabeth; Kao, Hung-Ying; Miyagi, Masaru; Kern, Timothy S

    2012-07-27

    Histone acetylation was significantly increased in retinas from diabetic rats, and this acetylation was inhibited in diabetics treated with minocycline, a drug known to inhibit early diabetic retinopathy in animals. Histone acetylation and expression of inflammatory proteins that have been implicated in the pathogenesis of diabetic retinopathy were increased likewise in cultured retinal Müller glia grown in a diabetes-like concentration of glucose. Both the acetylation and induction of the inflammatory proteins in elevated glucose levels were significantly inhibited by inhibitors of histone acetyltransferase (garcinol and antisense against the histone acetylase, p300) or activators of histone deacetylase (theophylline and resveratrol) and were increased by the histone deacetylase inhibitor, suberolylanilide hydroxamic acid. We conclude that hyperglycemia causes acetylation of retinal histones (and probably other proteins) and that the acetylation contributes to the hyperglycemia-induced up-regulation of proinflammatory proteins and thereby to the development of diabetic retinopathy.

  1. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    PubMed Central

    2011-01-01

    Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals. PMID:22118513

  2. Effect of medium/ω-6 long chain triglyceride-based emulsion on leucocyte death and inflammatory gene expression

    PubMed Central

    Cury-Boaventura, M F; Gorjão, R; Martins de Lima, T; Fiamoncini, J; Godoy, A B P; Deschamphs, F C; Soriano, F G; Curi, R

    2011-01-01

    Lipid emulsion (LE) containing medium/ω-6 long chain triglyceride-based emulsion (MCT/ω-6 LCT LE) has been recommended in the place of ω-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/ω-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/ω-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/ω-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/ω-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription. PMID:21682721

  3. Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility.

    PubMed

    Garrett, Norman E; Grainger, Andrew T; Li, Jing; Chen, Mei-Hua; Shi, Weibin

    2017-01-23

    Nearly all genetic crosses generated from Apoe(-/-) or Lldlr(-/-) mice for genetic analysis of atherosclerosis have used C57BL/6 J (B6) mice as one parental strain, thus limiting their mapping power and coverage of allelic diversity. SM/J-Apoe (-/-) and BALB/cJ-Apoe (-/-) mice differ significantly in atherosclerosis susceptibility. 224 male F2 mice were generated from the two Apoe (-/-) strains to perform quantitative trait locus (QTL) analysis of atherosclerosis. F2 mice were fed 5 weeks of Western diet and analyzed for atherosclerotic lesions in the aortic root. Genome-wide scans with 144 informative SNP markers identified a significant locus near 20.2 Mb on chromosome 10 (LOD score: 6.03), named Ath48, and a suggestive locus near 49.5 Mb on chromosome 9 (LOD: 2.29; Ath29) affecting atherosclerotic lesion sizes. Using bioinformatics tools, we prioritized 12 candidate genes for Ath48. Of them, Tnfaip3, an anti-inflammatory gene, is located precisely underneath the linkage peak and contains two non-synonymous SNPs leading to conservative amino acid substitutions. Thus, this study demonstrates the power of forward genetics involving the use of a different susceptible strain and bioinformatics tools in finding atherosclerosis susceptibility genes.

  4. Effect of intense THz pulses on expression of genes associated with skin cancer and inflammatory skin conditions

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Purschke, David; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2014-03-01

    The growing experimental evidence suggests that broadband, picosecond-duration THz pulses may influence biological systems and functions. While the mechanisms by which THz pulse-induced biological effects are not yet known, experiments using in vitro cell cultures, tissue models, as well as recent in vivo studies have demonstrated that THz pulses can elicit cellular and molecular changes in exposed cells and tissues in the absence of thermal effects. Recently, we demonstrated that intense, picosecond THz pulses induce phosphorylation of H2AX, indicative of DNA damage, and at the same time activate DNA damage response in human skin tissues. We also find that intense THz pulses have a profound impact on global gene expression in human skin. Many of the affected genes have important functions in epidermal differentiation and have been implicated in skin cancer and inflammatory skin conditions. The observed THzinduced changes in expression of these genes are in many cases opposite to disease-related changes, suggesting possible therapeutic applications of intense THz pulses.

  5. Zinc–gene interaction related to inflammatory/immune response in ageing

    PubMed Central

    Malavolta, Marco

    2008-01-01

    The pivotal role played by zinc–gene interaction in affecting some relevant cytokines (IL-6 and TNF-α) and heat shock proteins (HSP70-2) in ageing, successful ageing (nonagenarians) and the most common age-related diseases, such as atherosclerosis and infections, is now recognized. The polymorphisms of genes codifying proteins related to the inflammation are predictive on one hand in longevity, on the other hand they are associated with atherosclerosis or severe infections. Since the health life-span has a strong genetic component, which in turn also affected by nutritional factors like zinc, the association of these polymorphisms with innate immune response, zinc ion bioavailability and Metallothioneins (MT) homeostasis is an useful tool to unravel the role played by zinc–gene interactions in longevity, especially due to the inability of MT in zinc release in ageing and chronic inflammation. In ageing, this last fact leads to depressed innate immune response for host defence. In contrast, in very old age the inflammation is lower with subsequent more zinc ion bioavailability, less MT gene expression and satisfactory innate immunity. Therefore, the zinc–gene (IL-6, TNF-α, Hsp70-2) interactions, via MT homeostasis, are crucial to achieve successful ageing. PMID:18850188

  6. From Genes to Mechanisms: The Expanding Spectrum of Monogenic Disorders Associated with Inflammatory Bowel Disease.

    PubMed

    Uhlig, Holm H; Schwerd, Tobias

    2016-01-01

    Inborn errors of the intestinal epithelial barrier function as well as the innate and adaptive mucosal immune responses toward the intestinal microbiota are a group of genetic disorders that confer susceptibility to monogenic and syndromal forms of inflammatory bowel disease (IBD). There is a continuous spectrum of genetic susceptibility from monogenic causative variants with complete Mendelian inheritance, over NOD2 variants with moderate penetrance to minute penetrance in most common susceptibility variants predisposing to conventional polygenic IBD. We discuss advances to understand monogenic IBD and review recently identified genetic defects. We describe an integrative model for genetic susceptibility variants of conventional IBD and monogenic IBD-like intestinal inflammation in the context of microbial commensal colonization and infection susceptibility.

  7. Bone Metabolism and the c.-223C > T Polymorphism in the 5'UTR Region of the Osteoprotegerin Gene in Patients with Inflammatory Bowel Disease.

    PubMed

    Krela-Kaźmierczak, Iwona; Kaczmarek-Ryś, Marta; Szymczak, Aleksandra; Michalak, Michał; Skrzypczak-Zielińska, Marzena; Drwęska-Matelska, Natalia; Marcinkowska, Michalina; Eder, Piotr; Łykowska-Szuber, Lilianna; Wysocka, Ewa; Linke, Krzysztof; Słomski, Ryszard

    2016-12-01

    Osteoporosis is more frequent in inflammatory bowel disease (IBD) patients. A reduction in bone mineral mass in these individuals is caused not only by inflammatory processes in the bowel, because osteoporosis occurs already in very young IBD patients and in newly diagnosed individuals who have not yet undergone any pharmacological treatment. One of individual determinants of the bone turnover parameters is osteoprotegerin (OPG) encoded by the TNFRSF11B gene. The c.-223C > T polymorphism in this gene has been extensively studied in post-menopausal osteoporosis patients. However, no such studies exist for osteoporosis related to IBD. The aim of our study was to determine whether the c.-223C > T (rs2073617) polymorphism in the 5'UTR region of the gene encoding osteoprotegerin is a functional polymorphism which may change the gene expression and resulting OPG levels, and so be associated with osteopenia and osteoporosis, and impaired bone metabolism in Crohn's disease and ulcerative colitis patients. Our study included 198 IBD patients and 41 healthy controls. Lumbar spine and femoral neck bone mineral density, T-score, Z-score as well as OPG, RANKL, vitamin D, calcium and interleukin 4 and 10 concentrations were determined for all study subjects. Genotyping of the TNFRSF11B polymorphic site was performed by restriction fragment length polymorphism technique. Statistical analyses were conducted using Statistica software. Odds ratios, 95 % confidence intervals, and P values were calculated using the HWE calculator. Our results did not allow determining an unequivocal association between the polymorphic variants of the TNFRSF11B 5'UTR region and a susceptibility to osteoporosis in IBD patients. We have shown, however, that the c.-223T allele was twice as more frequent in Crohn's disease (CD) patients than among controls (OR = 1.99, P value = 0.009). Interestingly, average osteoprotegerin levels in CD patients did not significantly differ from those in

  8. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer.

    PubMed

    Ryan, Bríd M; Zanetti, Krista A; Robles, Ana I; Schetter, Aaron J; Goodman, Julie; Hayes, Richard B; Huang, Wen-Yi; Gunter, Mark J; Yeager, Meredith; Burdette, Laurie; Berndt, Sonja I; Harris, Curtis C

    2014-03-15

    Chronic inflammation has been implicated in the etiology of colorectal adenoma and cancer; however, few key inflammatory genes mediating this relationship have been identified. In this study, we investigated the association of germline variation in innate immunity genes in relation to the risk of colorectal neoplasia. Our study was based on the analysis of samples collected from the prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial. We investigated the association between 196 tag single nucleotide polymorphisms (SNPs) in 20 key innate immunity genes with risk of advanced colorectal adenoma and cancer in 719 adenoma cases, 481 cancer cases and 719 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). After Bonferroni correction, the AG/GG genotype of rs5995355, which is upstream of NCF4, was associated with an increased risk of colorectal cancer (OR = 2.43, 95% CI = 1.73-3.39; p < 0.0001). NCF4 is part of the NAPDH complex, a key factor in biochemical pathways and the innate immune response. While not definitive, our analyses suggest that the variant allele does not affect expression of NCF4, but rather modulates activity of the NADPH complex. Additional studies on the functional consequences of rs5995355 in NCF4 may help to clarify the mechanistic link between inflammation and colorectal cancer.

  9. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats.

    PubMed

    Lee, Seung-Min; Han, Hye Won; Yim, Seung Yun

    2015-02-01

    We sought to evaluate whether a soy milk and fiber mixture could improve high cholesterol diet-induced changes in gut microbiota and inflammation. Sprague-Dawley rats were administered four different diets: CTRL (AIN76A diet), CHOL (AIN76A with 1% (w/w) cholesterol), SOY (CHOL diet, 20% of which was substituted with freeze-dried soy milk), or S.FIBER (SOY diet with 1.2% (w/w) psyllium, 6.2% (w/w) resistant maltodextrin, and 6.2% (w/w) chicory powder). A lipid profile and gene expression analysis demonstrated that SOY and S.FIBER improved the serum HDL-cholesterol and colonic expression levels of genes in tight junction (ZO-1 and occludin) and inflammation-related (IL-1β, IL-10, and Foxp3) proteins. S.FIBER lowered the serum MCP-1 concentration as well. A gut microbial analysis revealed that CHOL increased the ratio of Firmicutes to Bacteroidetes (F/B ratio). SOY increased the F/B ratio due to an increased proportion of Lactobacillus spp. S.FIBER greatly decreased the F/B ratio. Allobaculum spp. and Parabacteroides spp. exhibited a negative correlation with colonic expression of anti-inflammatory genes such as Foxp3, IL-10, occludin and ZO-1. CHOL increased the relative proportions of Allobaculum spp. and Parabacteroides spp. in the gut, while SOY and S.FIBER decreased these proportions. Diets containing soy milk and fiber mixtures could be beneficial by limiting CHOL-induced colonic inflammation and rescuing CHOL-disturbed gut microbiota.

  10. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation.

    PubMed

    Rialdi, Alex; Campisi, Laura; Zhao, Nan; Lagda, Arvin Cesar; Pietzsch, Colette; Ho, Jessica Sook Yuin; Martinez-Gil, Luis; Fenouil, Romain; Chen, Xiaoting; Edwards, Megan; Metreveli, Giorgi; Jordan, Stefan; Peralta, Zuleyma; Munoz-Fontela, Cesar; Bouvier, Nicole; Merad, Miriam; Jin, Jian; Weirauch, Matthew; Heinz, Sven; Benner, Chris; van Bakel, Harm; Basler, Christopher; García-Sastre, Adolfo; Bukreyev, Alexander; Marazzi, Ivan

    2016-05-27

    The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response.

  11. Endometritis Increases Pro-inflammatory Cytokines in Follicular Fluid and Cervico-vaginal Mucus in the Buffalo Cow.

    PubMed

    Boby, Jones; Kumar, Harendra; Gupta, Harihar Prasad; Jan, Mustapha Hussain; Singh, Sanjay Kumar; Patra, Manas Kumar; Nandi, Sukdeb; Abraham, Asha; Krishnaswamy, Narayanan

    2016-11-17

    Emerging evidence shows that some of the pro-inflammatory cytokines are elevated not only in the endometrium but also in the follicular fluid of cows with endometritis. Developing a cervico-vaginal mucus (CVM) based test has the potential for becoming a pen-side test because of the ease of sample collection. The present study describes the results of two different experiments. The first experiment was conducted to investigate the influence of endometritis on the proinflammatory cytokines of follicular fluid based on the reproductive tracts of buffalo collected at a slaughter house Buffalo genitalia were categorized into purulent endometritis (PE), cytological endometritis (CE), and non-endometritis (NE) based on the white-side test and endometrial cytology, respectively (n = 14/group). Each group was subdivided into follicular and mid-luteal stage (n = 7/stage) and the follicular fluid was collected from the largest follicle. Second experiment was done to study the difference in the levels of proinflammatory cytokines in the CVM of repeat breeders with subclinical endometritis presented to the clinic. CVM was collected from the repeaters (n = 10) and non-repeaters (n = 10) through aseptic trans-vaginal aspiration. The pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNFα were quantitated through bovine specific ELISA kits. Significantly higher concentrations of pro-inflammatory cytokines (IL-1β, IL-8, IL-6, and TNFα) along with low intra-follicular estradiol in buffaloes of PE and CE groups suggest that endometritis impedes the follicular steroidogenesis. Significantly higher concentration of IL-1β and TNF-α in the CVM of repeaters indicate their potential as a pen-side diagnostic test for CE.

  12. PI3K inhibitors LY294002 and IC87114 reduce inflammation in carrageenan-induced paw oedema and down-regulate inflammatory gene expression in activated macrophages.

    PubMed

    Eräsalo, Heikki; Laavola, Mirka; Hämäläinen, Mari; Leppänen, Tiina; Nieminen, Riina; Moilanen, Eeva

    2015-01-01

    PI3K/Akt pathway is a well-characterized pathway controlling cellular processes such as proliferation, migration and survival, and its role in cancer is vastly studied. There is also evidence to suggest the involvement of this pathway in the regulation of inflammatory responses. In this study, an attempt was made to investigate the role of PI3Ks in acute inflammation in vivo using pharmacological inhibitors against PI3Ks in the carrageenan-induced paw oedema model. A non-selective PI3K inhibitor LY294002 and a PI3Kδ-selective inhibitor IC87114 were used. Both of these inhibitors reduced inflammatory oedema upon carrageenan challenge in the mouse paw. To explain this result, the effects of the two inhibitors on inflammatory gene expression were investigated in activated macrophages. LY294002 and IC87114 prevented Akt phosphorylation as expected and down-regulated the expression of inflammatory factors IL-6, MCP-1,TNFα and iNOS. These findings suggest that PI3K inhibitors could be used to attenuate inflammatory responses and that the mechanism of action behind this effect is the down-regulation of inflammatory gene expression.

  13. Anti-Inflammatory Effects of Hyperbaric Oxygenation during DSS-Induced Colitis in BALB/c Mice Include Changes in Gene Expression of HIF-1α, Proinflammatory Cytokines, and Antioxidative Enzymes

    PubMed Central

    2016-01-01

    Reactive oxygen species (ROS) and nitrogen species have an indispensable role in regulating cell signalling pathways, including transcriptional control via hypoxia inducible factor-1α (HIF-1α). Hyperbaric oxygenation treatment (HBO2) increases tissue oxygen content and leads to enhanced ROS production. In the present study DSS-induced colitis has been employed in BALB/c mice as an experimental model of gut mucosa inflammation to investigate the effects of HBO2 on HIF-1α, antioxidative enzyme, and proinflammatory cytokine genes during the colonic inflammation. Here we report that HBO2 significantly reduces severity of DSS-induced colitis, as evidenced by the clinical features, histological assessment, impaired immune cell expansion and mobilization, and reversal of IL-1β, IL-2, and IL-6 gene expression. Gene expression and antioxidative enzyme activity were changed by the HBO2 and the inflammatory microenvironment in the gut mucosa. Strong correlation of HIF-1α mRNA level to GPx1, SOD1, and IL-6 mRNA expression suggests involvement of HIF-1α in transcriptional regulation of these genes during colonic inflammation and HBO2. This is further confirmed by a strong correlation of HIF-1α with known target genes VEGF and PGK1. Results demonstrate that HBO2 has an anti-inflammatory effect in DSS-induced colitis in mice, and this effect is at least partly dependent on expression of HIF-1α and antioxidative genes. PMID:27656047

  14. Wnt11 gene therapy with adeno-associated virus 9 improves the survival of mice with myocarditis induced by coxsackievirus B3 through the suppression of the inflammatory reaction.

    PubMed

    Aoyama, Yutaka; Kobayashi, Koichi; Morishita, Yoshihiro; Maeda, Kengo; Murohara, Toyoaki

    2015-07-01

    The wnt signaling pathway plays important roles in development and in many diseases. Recently several reports suggest that non-canonical Wnt proteins contribute to the inflammatory response in adult animals. However, the effects of Wnt proteins on virus-induced myocarditis have not been explored. Here, we investigated the effect of Wnt11 protein in a model of myocarditis induced by coxsackievirus B3 (CVB3) using recombinant adeno-associated virus 9 (rAAV9). The effect of Wnt11 gene therapy on a CVB3-induced myocarditis model was examined using male BALB/c mice. Mice received a single intravenous injection of either rAAV9-Wnt11 or rAAV9-LacZ 2 weeks before intraperitoneal administration of CVB3. Intravenous injection of the rAAV9 vector resulted in efficient, durable, and relatively cardiac-specific transgene expression. Survival was significantly greater among rAAV9-Wnt11 treated mice than among mice treated with rAAV9-LacZ (87.5% vs. 54.1%, P < 0.05). Wnt11 expression also reduced the infiltration of inflammatory cells, necrosis of the myocardium, and suppressed the mRNA expression of inflammatory cytokines. This is the first report to show that Wnt11 expression improves the survival of mice with CVB3-induced myocarditis. AAV9-mediated Wnt11 gene therapy produces beneficial effects on cardiac function and increases the survival of mice with CVB3-induced myocarditis through the suppression of both infiltration of inflammatory cells and gene expression of inflammatory cytokines.

  15. The effect of allopurinol administration on mitochondrial respiration and gene expression of xanthine oxidoreductase, inducible nitric oxide synthase, and inflammatory cytokines in selected tissues of broiler chickens.

    PubMed

    Settle, T; Falkenstein, E; Klandorf, H

    2015-10-01

    Birds have a remarkable longevity for their body size despite an increased body temperature, higher metabolic rate, and increased blood glucose concentrations compared to most mammals. As the end-product of purine degradation, uric acid (UA) is generated in the xanthine/hypoxanthine reactions catalyzed by xanthine oxidoreductase (XOR). In the first study, Cobb × Cobb broilers (n = 12; 4 weeks old) were separated into 2 treatments (n = 6); control (CON) and allopurinol (AL) 35 mg/kg BW (ALLO). The purpose of this study was to assess mitochondrial function in broiler chickens in response to potential oxidative stress generated from the administration of AL for 1 wk. There was a significant reduction in state 3 respiration (P = 0.01) and state 4 respiration (P = 0.007) in AL-treated birds compared to the controls. The purpose of the second study was to assess the effect of AL on gene expression of inflammatory cytokines interferon-γ (IFN)-γ, IL-1β, IL-6, and IL-12p35, as well as inducible nitric oxide synthase and XOR in liver tissue. Cobb × Cobb broilers were separated into two groups at 4 wk age (n = 10); CON and ALLO. After 1 wk AL treatment, half of the birds in each group (CON 1 and ALLO 1) were euthanized while the remaining birds continued on AL treatment for an additional week (CON 2 and ALLO 2). A significant increase in gene expression of XOR, IFN-γ, IL-1β, and IL-12p35 in ALLO 2 birds as compared to birds in CON 2 was detected. Liver UA content was significantly decreased in both ALLO 1(P = 0.003) and ALLO 2 (P = 0.012) birds when compared to CON 1 and CON 2, respectively. The AL reduced liver UA concentrations and increased expression of inflammatory cytokines. Additional studies are needed to determine if AL causes a direct effect on mitochondria or if mitochondrial dysfunction observed in liver mitochondria was due indirectly through increased oxidative stress or increased inflammation.

  16. Differential Expression of Inflammatory Cytokines and Stress Genes in Male and Female Mice in Response to a Lipopolysaccharide Challenge

    PubMed Central

    Everhardt Queen, Ashleigh; Moerdyk-Schauwecker, Megan; McKee, Leslie M.; Leamy, Larry J.

    2016-01-01

    Background Sex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock. Materials and Methods Interleukin-6 (IL-6), macrophage inflammatory protein-Iβ (MIP-1β), tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) as well as beta-fibrinogen (Fgb) and metallothionein-1 (Mt-1) mRNA expression were measured at four time points (0, 2, 4 and 7 hours) after injection of E. coli LPS in mice from three inbred strains. Results Statistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures. Discussion The higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize. PMID

  17. Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation.

    PubMed

    Lim, Swee-Ling; Mustapha, Noordin M; Goh, Yong-Meng; Bakar, Nurul Ain Abu; Mohamed, Suhaila

    2016-05-01

    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.

  18. Vitamin D Receptor Gene Polymorphisms and Haplotypes in Hungarian Patients with Idiopathic Inflammatory Myopathy

    PubMed Central

    Griger, Zoltán; Dankó, Katalin

    2015-01-01

    Idiopathic inflammatory myopathies are autoimmune diseases characterized by symmetrical proximal muscle weakness. Our aim was to identify a correlation between VDR polymorphisms or haplotypes and myositis. We studied VDR-BsmI, VDR-ApaI, VDR-TaqI, and VDR-FokI polymorphisms and haplotypes in 89 Hungarian poly-/dermatomyositis patients (69 females) and 93 controls (52 females). We did not obtain any significant differences for VDR-FokI, BsmI, ApaI, and TaqI genotypes and allele frequencies between patients with myositis and healthy individuals. There was no association of VDR polymorphisms with clinical manifestations and laboratory profiles in myositis patients. Men with myositis had a significantly different distribution of BB, Bb, and bb genotypes than female patients, control male individuals, and the entire control group. Distribution of TT, Tt, and tt genotypes was significantly different in males than in females in patient group. According to four-marker haplotype prevalence, frequencies of sixteen possible haplotypes showed significant differences between patient and control groups. The three most frequent haplotypes in patients were the fbAt, FBaT, and fbAT. Our findings may reveal that there is a significant association: Bb and Tt genotypes can be associated with myositis in the Hungarian population we studied. We underline the importance of our result in the estimated prevalence of four-marker haplotypes. PMID:25649962

  19. Effects of maternal plane of nutrition and increased dietary selenium in first-parity ewes on inflammatory response in the ovine neonatal gut.

    PubMed

    Wang, H; Zhao, J; Huang, Y; Yan, X; Meyer, A M; Du, M; Vonnahme, K A; Reynolds, L P; Caton, J S; Zhu, M J

    2012-01-01

    Many areas of the western United States have soils that have increased Se content, and ruminants grazing these rangelands may ingest increased quantities of Se. In addition, high-energy diets or increased Se intake may induce gut inflammation. The objective of this study was to evaluate the effects of maternal plane of nutrition and increased dietary Se during gestation on inflammatory responses in neonatal lamb ileal tissue, a major immune organ. Rambouillet ewes (age = 240 ± 17 d; initial BW = 52.1 ± 6.2 kg) were allocated to 4 treatments arranged in a 2 × 2 factorial. Factors included Se [adequate Se (ASe, 11.5 µg/kg of BW) or high Se (HSe, 77.0 µg/kg of BW)] initiated at breeding, and nutritional plane [100% (CON) or 140% (HIH) of requirements] initiated at d 40 of gestation. Ewes were fed individually from d 40, and lambs were removed at parturition and fed artificial colostrum and milk replacer. Lambs were necropsied at 20 d of age, and ileal tissues were sampled for immunoblotting and real-time quantitative reverse-transcription PCR analyses. The ASe-HIH and HSe-CON treatments had no effect (P = 0.179) on inflammatory signaling compared with ASe-CON. However, greater inflammatory signaling was detected in the HSe-HIH group, as shown by increased (P < 0.05) mRNA expression of tumor necrosis factor-α and chemotaxis IL-8. Consistently, phosphorylation of c-Jun N-terminal kinase, a primary inflammatory signaling mediator, was greater (P < 0.05) in the HSe-HIH group compared with other treatments. Consistent with cytokine expression, mast cell density was less in the HSe-CON group than in other treatments. The expression of transforming growth factor β mRNA was greater (P < 0.05) in the HSe-HIH group; consistently, collagen content was increased in the HSe-HIH group compared with the ASe-CON group (P < 0.05). In conclusion, independently, neither HSe nor HIH had major effects on inflammation, but in combination, these maternal treatments induced an

  20. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    PubMed Central

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-01-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data. PMID:27585741

  1. Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use

    NASA Technical Reports Server (NTRS)

    Cheung, E. V.; Tidball, J. G.

    2003-01-01

    OBJECTIVE: To test the hypothesis that ibuprofen administration during modified muscle use reduces muscle necrosis and invasion by select myeloid cell populations. METHODS: Rats were subjected to hindlimb unloading for 10 days, after which they experienced muscle reloading by normal weight-bearing to induce muscle inflammation and necrosis. Some animals received ibuprofen by intraperitoneal injection 8 h prior to the onset of muscle reloading, and then again at 8 and 16 h following the onset of reloading. Other animals received buffer injection at 8 h prior to reloading and then ibuprofen at 8 and 16 h following the onset of reloading. Control animals received buffer only at each time point. Quantitative immunohistochemical analysis was used to assess the presence of necrotic muscle fibers, total inflammatory infiltrate, neutrophils, ED1+ macrophages and ED2+ macrophages at 24 h following the onset of reloading. RESULT: Administration of ibuprofen beginning 8 h prior to reloading caused significant reduction in the concentration of necrotic fibers, but increased the concentration of inflammatory cells in muscle. The increase in inflammatory cells was attributable to a 2.6-fold increase in the concentration of ED2+ macrophages. Animals treated with ibuprofen 8 h following the onset of reloading showed no decrease in muscle necrosis or increase in ED2+ macrophage concentrations. CONCLUSION: Administration of ibuprofen prior to increased muscle loading reduces muscle damage, but increases the concentration of macrophages that express the ED2 antigen. The increase in ED2+ macrophage concentration and decrease in necrosis may be mechanistically related because ED2+ macrophages have been associated with muscle regeneration and repair.

  2. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery.

    PubMed

    Feichtinger, Georg A; Hofmann, Anna T; Slezak, Paul; Schuetzenberger, Sebastian; Kaipel, Martin; Schwartz, Ernst; Neef, Anne; Nomikou, Nikolitsa; Nau, Thomas; van Griensven, Martijn; McHale, Anthony P; Redl, Heinz

    2014-02-01

    An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery.

  3. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  4. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    PubMed

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality.

  5. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes

    PubMed Central

    Lee, Y. H.; Nair, S.; Rousseau, E.; Tataranni, P. A.; Bogardus, C.; Allison, D. B.; Page, G. P.

    2006-01-01

    Aims/hypothesis: Obesity increases the risk of developing major diseases such as diabetes and cardiovascular disease. Adipose tissue, particularly adipocytes, may play a major role in the development of obesity and its comorbidities. The aim of this study was to characterise, in adipocytes from obese people, the most differentially expressed genes that might be relevant to the development of obesity. Methods: We carried out microarray gene profiling of isolated abdominal subcutaneous adipocytes from 20 non-obese (BMI 25±3 kg/m2) and 19 obese (BMI 55± 8 kg/m2) non-diabetic Pima Indians using Affymetrix HG-U95 GeneChip arrays. After data analyses, we measured the transcript levels of selected genes based on their biological functions and chromosomal positions using quantitative real-time PCR. Results: The most differentially expressed genes in adipocytes of obese individuals consisted of 433 upregulated and 244 downregulated genes. Of these, 410 genes could be classified into 20 functional Gene Ontology categories. The analyses indicated that the inflammation/immune response category was over-represented, and that most inflammation-related genes were upregulated in adipocytes of obese subjects. Quantitative real-time PCR confirmed the transcriptional upregulation of representative inflammation-related genes (CCL2 and CCL3) encoding the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein 1α. The differential expression levels of eight positional candidate genes, including inflammation-related THY1 and C1QTNF5, were also confirmed. These genes are located on chromosome 11q22-q24, a region with linkage to obesity in the Pima Indians. Conclusions/interpretation: This study provides evidence supporting the active role of mature adipocytes in obesity-related inflammation. It also provides potential candidate genes for susceptibility to obesity. PMID:16059715

  6. Injection of phosphatidylcholine and deoxycholic acid regulates gene expression of lipolysis-related factors, pro-inflammatory cytokines, and hormones on mouse fat tissue.

    PubMed

    Won, Tae Joon; Nam, Yunsung; Lee, Ho Sung; Chung, Sujin; Lee, Jong Hyuk; Chung, Yoon Hee; Park, Eon Sub; Hwang, Kwang Woo; Jeong, Ji Hoon

    2013-10-01

    Injection of phosphatidylcholine (PC) and deoxycholic acid (DA) preparation is widely used as an alternative to liposuction for the reduction of subcutaneous fat. Nevertheless, its physiological effects and mechanism of action are not yet fully understood. In this report, PC and deoxycholic acid (DA) were respectively injected into adipose tissue. PC decreased tissue mass on day 7, but DA did not. On the other hand, a decrement of DNA mass was observed only in DA-injected tissue on day 7. Both PC and DA reduced the mRNA expression of adipose tissue hormones, such as adiponectin, leptin, and resistin. In lipolysis-related gene expression profiles, PC increased hormone-sensitive lipase (HSL) transcription and decreased the expression other lipases, perilipin, and the lipogenic marker peroxisome proliferator-activated receptor-γ (PPARγ); DA treatment diminished them all, including HSL. Meanwhile, the gene expression of pro-inflammatory cytokines and a chemokine was greatly elevated in both PC-injected and DA-injected adipose tissue. Microscopic observation showed that PC induced lipolysis with mild PMN infiltration on day 7. However, DA treatment did not induce lipolysis but induced much amount of PMN infiltration. In conclusion, PC alone might induce lipolysis in adipose tissue, whereas DC alone might induce tissue damage.

  7. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    PubMed

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  8. CPU86017-RS attenuate hypoxia-induced testicular dysfunction in mice by normalizing androgen biosynthesis genes and pro-inflammatory cytokines

    PubMed Central

    Zhang, Guo-lin; Yu, Feng; Dai, De-zai; Cheng, Yu-si; Zhang, Can; Dai, Yin

    2012-01-01

    Aim: Downregulation of androgen biosynthesis genes StAR (steroidogenic acute regulatory) and 3β-HSD (3β-hydroxysteroid dehydrogenase) contributes to low testosterone levels in hypoxic mice and is possibly related to increased expression of pro-inflammatory cytokines in the testis. The aim of this study is to investigate the effects of CPU86017-RS that block Ca2+ influx on hypoxia-induced testis insult in mice. Methods: Male ICR mice were divided into 5 groups: control group, hypoxia group, hypoxia group treated with nifedipine (10 mg/kg), hypoxia groups treated with CPU86017-RS (60 or 80 mg/kg). Hypoxia was induced by placing the mice in a chamber under 10%±0.5% O2 for 28 d (8 h per day). The mice were orally administered with drug in the last 14 d. At the end of experiment the testes of the mice were harvested. The mRNA and protein levels of StAR, 3β-HSD, connexin 43 (Cx43), matrix metalloprotease 9 (MMP9), endothelin receptor A (ETAR) and leptin receptor (OBRb) were analyzed using RT-PCR and Western blotting, respectively. The malondialdehyde (MDA), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) levels were measured using biochemical kits. Serum testosterone concentration was measured with radioimmunoassay. Results: Hypoxia significantly increased the MDA level, and decreased the LDH, ACP and SDH activities in testes. Meanwhile, hypoxia induced significant downregulation of StAR and 3β-HSD in testes responsible for reduced testosterone biosynthesis. It decreased the expression of Cx43, and increased the expression of MMP9, ETAR and OBRb, leading to abnormal testis function and structure. These changes were effectively diminished by CPU86017-RS (80 mg/kg) or nifedipine (10 mg/kg). Conclusion: Low plasma testosterone level caused by hypoxia was due to downregulation of StAR and 3β-HSD genes, in association with an increased expression of pro-inflammatory cytokines. These changes can be alleviated by CPU86017-RS or

  9. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects

    PubMed Central

    2011-01-01

    Introduction A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease. PMID:21470430

  10. Increased expression of TLR-2, COX-2, and SOD-2 genes in the peripheral blood leukocytes of opisthorchiasis patients induced by Opisthorchis viverrini antigen.

    PubMed

    Yongvanit, Puangrat; Thanan, Raynoo; Pinlaor, Somchai; Sithithaworn, Paiboon; Loilome, Watcharin; Namwat, Nisana; Techasen, Anchalee; Dechakhamphu, Somkid

    2012-05-01

    Re-infection with liver fluke, Opisthorchis viverrini, increases proinflammatory molecules involved in inflammation-mediated disease and carcinogenesis in an animal model. To clarify whether these genes respond to parasite antigen in peripheral blood leukocytes (PBL) of opisthorchiasis patients, we examined the transcriptional level of oxidant-generating (toll-like receptor 2 (TLR-2), nuclear factor-kappa B (NF-KB), and cyclooxygenase 2 (COX-2)), anti-oxidant-generating (manganese superoxide dismutase 2 (SOD-2) and catalase (CAT)), proinflammatory cytokine (interleukin (IL)-1β), and anti-inflammatory cytokine (IL-10), in PBL exposed to parasite antigen in O. viverrini-infected patients compared with healthy individuals in an in vitro experiment. After O. viverrini antigen-treated PBL, quantitative RT-PCR analysis revealed that increased expression of cytokines and oxidant-generating genes in PBL was similar between O. viverrini-infected and healthy groups. Interestingly, compared with healthy subjects, increase of TLR-2, COX-2, and SOD-2 and decreased CAT mRNA expression levels were observed in O. viverrini-infected group. The results indicate that O. viverrini antigen induces upregulation of TLR-2, COX-2, and SOD-2 and downregulation of CAT genes in opisthorchiasis patients, suggesting that imbalance of oxidant/anti-oxidant transcripts during re-infection may be involved in the inflammatory-driven carcinogenesis. These molecules may be used as the chemopreventive target for intervention of opisthorchiasis patients in an endemic area.

  11. The Diamine Oxidase Gene Is Associated with Hypersensitivity Response to Non-Steroidal Anti-Inflammatory Drugs

    PubMed Central

    Agúndez, José A. G.; Ayuso, Pedro; Cornejo-García, José A.; Blanca, Miguel; Torres, María J.; Doña, Inmaculada; Salas, María; Blanca-López, Natalia; Canto, Gabriela; Rondon, Carmen; Campo, Paloma; Laguna, José J.; Fernández, Javier; Martínez, Carmen; García-Martín, Elena

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the drugs most frequently involved in hypersensitivity drug reactions. Histamine is released in the allergic response to NSAIDs and is responsible for some of the clinical symptoms. The aim of this study is to analyze clinical association of functional polymorphisms in the genes coding for enzymes involved in histamine homeostasis with hypersensitivity response to NSAIDs. We studied a cohort of 442 unrelated Caucasian patients with hypersensitivity to NSAIDs. Patients who experienced three or more episodes with two or more different NSAIDs were included. If this requirement was not met diagnosis was established by challenge. A total of 414 healthy unrelated controls ethnically matched with patients and from the same geographic area were recruited. Analyses of the SNPs rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742 and rs1049793 in the HDC, HNMT and DAO genes were carried out by means of TaqMan assays. The detrimental DAO 16 Met allele (rs10156191), which causes decreased metabolic capacity, is overrepresented among patients with crossed-hypersensitivity to NSAIDs with an OR  = 1.7 (95% CI  = 1.3–2.1; Pc  = 0.0003) with a gene-dose effect (P = 0.0001). The association was replicated in two populations from different geographic areas (Pc  = 0.008 and Pc  = 0.004, respectively). Conclusions and implications The DAO polymorphism rs10156191 which causes impaired metabolism of circulating histamine is associated with the clinical response in crossed-hypersensitivity to NSAIDs and could be used as a biomarker of response. PMID:23152756

  12. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    SciTech Connect

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  13. Critical COPD respiratory illness is linked to increased transcriptomic activity of neutrophil proteases genes

    PubMed Central

    2012-01-01

    Background Gene expression profiling (GEP) in cells obtained from peripheral blood has shown that this is a very useful approach for biomarker discovery and for studying molecular pathogenesis of prevalent diseases. While there is limited literature available on gene expression markers associated with Chronic Obstructive Pulmonary Disease (COPD), the transcriptomic picture associated with critical respiratory illness in this disease is not known at the present moment. Findings By using Agilent microarray chips, we have profiled gene expression signatures in the whole blood of 28 COPD patients hospitalized with different degrees of respiratory compromise.12 of them needed of admission to the ICU, whilst 16 were admitted to the Respiratory Medicine Service. GeneSpring GX 11.0 software was used for performing statistical comparisons of transcript levels between ICU and non-ICU patients. Ingenuity pathway analysis 8.5 (IPA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to select, annotate and visualize genes by function and pathway (gene ontology). T-test showed evidence of 1501 genes differentially expressed between ICU and non-ICU patients. IPA and KEGG analysis of the most representative biological functions revealed that ICU patients had increased levels of neutrophil gene transcripts, being [cathepsin G (CTSG)], [elastase, neutrophil expressed (ELANE)], [proteinase 3 (PRTN3)], [myeloperoxidase (MPO)], [cathepsin D (CTSD)], [defensin, alpha 3, neutrophil-specific (DEFA3)], azurocidin 1 (AZU1)], and [bactericidal/permeability-increasing protein (BPI)] the most representative ones. Proteins codified by these genes form part of the azurophilic granules of neutrophils and are involved in both antimicrobial defence and tissue damage. This “neutrophil signature” was paralleled by the necessity of advanced respiratory and vital support, and the presence of bacterial infection. Conclusion Study of transcriptomic signatures in blood suggests an

  14. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).

    PubMed

    Takata, Naoki; Kasuga, Jun; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Xylem parenchyma cells (XPCs) in larch adapt to subfreezing temperatures by deep supercooling, while cortical parenchyma cells (CPCs) undergo extracellular freezing. The temperature limits of supercooling in XPCs changed seasonally from -30 degrees C during summer to -60 degrees C during winter as measured by freezing resistance. Artificial deacclimation of larch twigs collected in winter reduced the supercooling capability from -60 degrees C to -30 degrees C. As an approach to clarify the mechanisms underlying the change in supercooling capability of larch XPCs, genes expressed in association with increased supercooling capability were examined. By differential screening and differential display analysis, 30 genes were found to be expressed in association with increased supercooling capability in XPCs. These 30 genes were categorized into several groups according to their functions: signal transduction factors, metabolic enzymes, late embryogenesis abundant proteins, heat shock proteins, protein synthesis and chromatin constructed proteins, defence response proteins, membrane transporters, metal-binding proteins, and functionally unknown proteins. All of these genes were expressed most abundantly during winter, and their expression was reduced or disappeared during summer. The expression of all of the genes was significantly reduced or disappeared with deacclimation of winter twigs. Interestingly, all but one of the genes were expressed more abundantly in the xylem than in the cortex. Eleven of the 30 genes were thought to be novel cold-induced genes. The results suggest that change in the supercooling capability of XPCs is associated with expression of genes, including genes whose functions have not been identified, and also indicate that gene products that have been thought to play a role in dehydration tolerance by extracellular freezing also have a function by deep supercooling.

  15. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes.

    PubMed

    Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo

    2017-03-01

    Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.

  16. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells.

    PubMed

    Choi, Hye Jin; Kim, Juil; Park, Seong-Hwan; Do, Kee Hun; Yang, Hyun; Moon, Yuseok

    2012-06-20

    The widely used food additive carrageenan (CGN) has been shown to induce intestinal inflammation, ulcerative colitis-like symptoms, or neoplasm in the gut epithelia in animal models, which are also clinical features of human inflammatory bowel disease. In this study, the effects of CGN on pro-inflammatory transcription factors NF-κB and early growth response gene 1 product (EGR-1) were evaluated in terms of human intestinal epithelial barrier integrity. Both pro-inflammatory transcription factors were elevated by CGN and only NF-κB activation was shown to be involved in the induction of pro-inflammatory cytokine interleukin-8. Moreover, the integrity of the in vitro epithelial monolayer under the CGN insult was maintained by both activated pro-inflammatory transcription factors NF-κB and EGR-1. Suppression of NF-κB or EGR-1 aggravated barrier disruption by CGN, which was associated with the reduced gene expression of tight junction component zonula occludens 1 and its irregular localization in the epithelial monolayer.

  17. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion.

    PubMed

    Mitchell, Kendall; Lebovitz, Evan E; Keller, Jason M; Mannes, Andrew J; Nemenov, Michael I; Iadarola, Michael J

    2014-04-01

    TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ Aδ-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration Aδ stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same Aδ stimuli. The qualitative intensity of Aδ responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of Aδ responses with morphine suggest multiple roles for TRPV1+ Aδ fibers in nociceptive processes and their modulation of pathological pain conditions.

  18. Essential Genes Embody Increased Mutational Robustness to Compensate for the Lack of Backup Genetic Redundancy

    PubMed Central

    Cohen, Osher; Oberhardt, Matthew; Yizhak, Keren; Ruppin, Eytan

    2016-01-01

    Genetic robustness is a hallmark of cells, occurring through many mechanisms and at many levels. Essential genes lack the common robustness mechanism of genetic redundancy (i.e., existing alongside other genes with the same function), and thus appear at first glance to leave cells highly vulnerable to genetic or environmental perturbations. Here we explore a hypothesis that cells might protect against essential gene loss through mechanisms that occur at various cellular levels aside from the level of the gene. Using Escherichia coli and Saccharomyces cerevisiae as models, we find that essential genes are enriched over non-essential genes for properties we call “coding efficiency” and “coding robustness”, denoting respectively a gene’s efficiency of translation and robustness to non-synonymous mutations. The coding efficiency levels of essential genes are highly positively correlated with their evolutionary conservation levels, suggesting that this feature plays a key role in protecting conserved, evolutionarily important genes. We then extend our hypothesis into the realm of metabolic networks, showing that essential metabolic reactions are encoded by more “robust” genes than non-essential reactions, and that essential metabolites are produced by more reactions than non-essential metabolites. Taken together, these results testify that robustness at the gene-loss level and at the mutation level (and more generally, at two cellular levels that are usually treated separately) are not decoupled, but rather, that cellular vulnerability exposed due to complete gene loss is compensated by increased mutational robustness. Why some genes are backed up primarily against loss and others against mutations still remains an open question. PMID:27997585

  19. The Insect Peptide CopA3 Increases Colonic Epithelial Cell Proliferation and Mucosal Barrier Function to Prevent Inflammatory Responses in the Gut*

    PubMed Central

    Kim, Dae Hong; Hwang, Jae Sam; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Lu, Li Fang; Lee, Junguee; Seok, Heon; Pothoulakis, Charalabos; Lamont, John Thomas; Kim, Ho

    2016-01-01

    The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21Cip1/Waf1, and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21Cip1/Waf1. Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function. PMID:26655716

  20. The Insect Peptide CopA3 Increases Colonic Epithelial Cell Proliferation and Mucosal Barrier Function to Prevent Inflammatory Responses in the Gut.

    PubMed

    Kim, Dae Hong; Hwang, Jae Sam; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Lu, Li Fang; Lee, Junguee; Seok, Heon; Pothoulakis, Charalabos; Lamont, John Thomas; Kim, Ho

    2016-02-12

    The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21(Cip1/Waf1), and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21(Cip1/Waf1). Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.

  1. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system.

    PubMed

    Ismaiel, Afrah A K; Espinosa-Oliva, Ana M; Santiago, Martiniano; García-Quintanilla, Albert; Oliva-Martín, María J; Herrera, Antonio J; Venero, José L; de Pablos, Rocío M

    2016-05-01

    Metformin is a widely used oral antidiabetic drug with known anti-inflammatory properties due to its action on AMPK protein. This drug has shown a protective effect on various tissues, including cortical neurons. The aim of this study was to determine the effect of metformin on the dopaminergic neurons of the substantia nigra of mice using the animal model of Parkinson's disease based on the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an inhibitor of the mitochondrial complex I. In vivo and in vitro experiments were used to study the activation of microglia and the damage of the dopaminergic neurons. Our results show that metformin reduced microglial activation measured both at cellular and molecular levels. Rather than protecting, metformin exacerbated dopaminergic damage in response to MPTP. Our data suggest that, contrary to other brain structures, metformin treatment could be deleterious for the dopaminergic system. Hence, metformin treatment may be considered as a risk factor for the development of Parkinson's disease.

  2. Cytomegalovirus-Related Hospitalization Is Associated With Adverse Outcomes and Increased Health-Care Resource Utilization in Inflammatory Bowel Disease

    PubMed Central

    Zhang, Cheng; Krishna, Somashekar G; Hinton, Alice; Arsenescu, Razvan; Levine, Edward J; Conwell, Darwin L

    2016-01-01

    Objectives: Impact of cytomegalovirus (CMV)-related hospitalization in inflammatory bowel disease (IBD) patients is unknown. The aim of this study was to determine hospital outcomes of CMV-related hospitalization in IBD patients in a large national in-patient administrative data set. Methods: This was a cross-sectional study using data from the Nationwide In-patient Sample database. IBD- and CMV-related hospitalizations between 2003 and 2011 were identified using appropriate ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) codes. Impact of CMV-related hospitalization on in-hospital mortality, length of stay (LOS), and hospital charges were quantified. Results: CMV-related hospitalization was associated with higher in-hospital mortality (odds ratio (OR) 7.09, 95% confidence interval (CI) 3.38–14.85), prolonged LOS (7.77 days, P<0.0001), and more hospital charge (US$66,495, P<0.0001) in IBD patients. Conclusions: CMV-related hospitalization in IBD is associated with high in-hospital mortality, prolonged LOS, and hospital care costs. PMID:26963000

  3. Inflammatory and Immune Response Genes Polymorphisms are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease in Tatars Population from Russia.

    PubMed

    Korytina, Gulnaz Faritovna; Akhmadishina, L Z; Kochetova, O V; Aznabaeva, Y G; Zagidullin, Sh Z; Victorova, T V

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system affecting primarily distal respiratory pathways and lung parenchyma. This work was designed as a case-control study aimed at investigating the association of COPD with polymorphisms in inflammatory and immune response genes (JAK1, JAK3, STAT1, STAT3, NFKB1, IL17A, ADIPOQ, ADIPOR1, etc.) in Tatar population from Russia. Ten SNPs (rs310216, rs3212780, rs12693591, rs2293152, rs28362491, rs4711998, rs1974226, rs1501299, rs266729, and rs12733285) were genotyped by the real-time polymerase chain reaction (TaqMan assays) in a case-control study (425 COPD patients and 457 in the control group, from Ufa, Russia). Logistic regression was used to detect the association of SNPs in different models. Linear regression analyses were performed to estimate the relationship between SNPs and lung function parameters and pack-years. In Tatar population, significant associations of JAK1 (rs310216) (P = 0.0002, OR 1.70 in additive model), JAK3 (rs3212780) (P = 0.001, OR 1.61 in dominant model), and IL17A (rs1974226) (P = 0.0037, OR 2.31 in recessive model) with COPD were revealed. The disease risk was higher in carriers of insertion allele of NFKB1 (rs28362491) (P = 0.045, OR 1.22). We found a significant gene-by-environment interaction of smoking status and IL17A (rs1974226) (P interact = 0.016), JAK3 (rs3212780) (P interact = 0.031), ADIPOQ (rs266729) (P interact = 0.013), and ADIPOR1 (rs12733285) (P interact = 0.018). The relationship between the rs4711998, rs1974226, rs310216, rs3212780, rs28362491, and smoking pack-years was found (P = 0.045, P = 0.004, P = 0.0005, P = 0.021, and P = 0.042). A significant genotype-dependent variation of forced vital capacity was observed for NFKB1 (rs28362491) (P = 0.017), ADIPOR1 (rs12733285) (P = 0.043), and STAT1 (rs12693591) (P = 0.048). The genotypes of STAT1 (rs12693591) (P = 0.013) and JAK1 (rs

  4. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma.

    PubMed

    Mieczkowski, Jakub; Kocyk, Marta; Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-10-20

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.

  5. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children.

    PubMed

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-08-01

    Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness.A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression.HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P < 0.01). HSP90α was independently related to predicted death rate and severity of illness; positively to HSP72, nCD64, ILs, length of stay, days on ventilator, and fever; negatively to HDL and LDL (P < 0.05). The HSP72 was increased in SS/S and related negatively to HDL and LDL (P < 0.05).Serum HSP90α is markedly elevated in children with severe sepsis and is associated with MOSF. Better than the HSP72, also increased in SS, SIRS, and MOSF, HSP90α is related to the inflammatory stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern.

  6. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children

    PubMed Central

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-01-01

    Abstract Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness. A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression. HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P < 0.01). HSP90α was independently related to predicted death rate and severity of illness; positively to HSP72, nCD64, ILs, length of stay, days on ventilator, and fever; negatively to HDL and LDL (P < 0.05). The HSP72 was increased in SS/S and related negatively to HDL and LDL (P < 0.05). Serum HSP90α is markedly elevated in children with severe sepsis and is associated with MOSF. Better than the HSP72, also increased in SS, SIRS, and MOSF, HSP90α is related to the inflammatory stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern. PMID:27583886

  7. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species.

    PubMed

    Li, Yingke; Zhang, Peng; Wang, Chengcai; Han, Chaofeng; Meng, Jun; Liu, Xingguang; Xu, Sheng; Li, Nan; Wang, Qingqing; Shi, Xueyin; Cao, Xuetao

    2013-06-07

    Sepsis-associated immunosuppression (SAIS) is regarded as one of main causes for the death of septic patients at the late stage because of the decreased innate immunity with a more opportunistic infection. LPS-tolerized macrophages, which are re-challenged by LPS after prior exposure to LPS, are regarded as the common model of hypo-responsiveness for SAIS. However, the molecular mechanisms of endotoxin tolerance and SAIS remain to be fully elucidated. In addition, negative regulation of the Toll-like receptor (TLR)-triggered innate inflammatory response needs further investigation. Here we show that expression of immune responsive gene 1 (IRG1) was highly up-regulated in the peripheral blood mononuclear cells of septic patients and in LPS-tolerized mouse macrophages. IRG1 significantly suppressed TLR-triggered production of proinflammatory cytokines TNF-α, IL-6, and IFN-β in LPS-tolerized macrophages, with the elevated expression of reactive oxygen species (ROS) and A20. Moreover, ROS enhanced A20 expression by increasing the H3K4me3 modification of histone on the A20 promoter domain, and supplement of the ROS abrogated the IRG1 knockdown function in breaking endotoxin tolerance by increasing A20 expression. Our results demonstrate that inducible IRG1 promotes endotoxin tolerance by increasing A20 expression through ROS, indicating a new molecular mechanism regulating hypoinflammation of sepsis and endotoxin tolerance.

  8. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same.

    PubMed

    Subramoniam, Appian; Asha, Velikkakathu V; Nair, Sadasivan Ajikumaran; Sasidharan, Sreejith P; Sureshkumar, Parameswaran K; Rajendran, Krishnan Nair; Karunagaran, Devarajan; Ramalingam, Krishnan

    2012-06-01

    In view of the folklore use of green leaves to treat inflammation, the anti-inflammatory property of chlorophylls and their degradation products were studied. Chlorophyll a and pheophytin a (magnesium-free chlorophyll a) from fresh leaves showed potent anti-inflammatory activity against carrageenan-induced paw edema in mice and formalin-induced paw edema in rats. Chlorophyll a inhibited bacterial lipopolysaccharide-induced TNF-α (a pro-inflammatory cytokine) gene expression in HEK293 cells, but it did not influence the expression of inducible nitric acid synthase and cyclooxygenase-2 genes. Chlorophyll b only marginally inhibited both inflammation and TNF-α gene expression. But both chlorophyll a and chlorophyll b showed the same level of marginal inhibition on 12-O-tetradecanoyl-phorbol-13-acetate-induced NF-κB activation. Chlorophylls and pheophytins showed in vitro anti-oxidant activity. The study shows that chlorophyll a and its degradation products are valuable and abundantly available anti-inflammatory agents and promising for the development of phytomedicine or conventional medicine to treat inflammation and related diseases.

  9. BACE-1, PS-1 and sAPPβ Levels Are Increased in Plasma from Sporadic Inclusion Body Myositis Patients: Surrogate Biomarkers among Inflammatory Myopathies

    PubMed Central

    Catalán-García, Marc; Garrabou, Glòria; Morén, Constanza; Guitart-Mampel, Mariona; Gonzalez-Casacuberta, Ingrid; Hernando, Adriana; Gallego-Escuredo, Jose Miquel; Yubero, Dèlia; Villarroya, Francesc; Montero, Raquel; O-Callaghan, Albert Selva; Cardellach, Francesc; Grau, Josep Maria

    2015-01-01

    Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by β-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at −80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aβ precursor protein [sAPPβ]) were assessed with magnetic bead–based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPβ levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPβ represent a good

  10. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages

    PubMed Central

    Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M.; Sawodny, Oliver; Häussinger, Dieter; Bode, Johannes G.

    2016-01-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342

  11. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  12. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  13. Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice.

    PubMed

    Diz-Chaves, Yolanda; Astiz, Mariana; Bellini, Maria José; Garcia-Segura, Luis M

    2013-02-01

    Early life experiences, such as prenatal stress, may result in permanent alterations in the function of the nervous and immune systems. In this study we have assessed whether prenatal stress affects the inflammatory response of the hippocampal formation of male mice to an inflammatory challenge during adulthood. Pregnant C57BL/6 mice were randomly assigned to stress (n=10) or non-stress (n=10) groups. Animals of the stress group were placed in plastic transparent cylinders and exposed to bright light for 3 sessions of 45min every day from gestational day 12 to parturition. Non-stressed pregnant mice were left undisturbed. At four months of age, non stressed and prenatally stressed male offspring were killed, 24h after the systemic administration of lipopolysaccharide (LPS) or vehicle. Under basal conditions, prenatally stressed animals showed increased expression of interleukin 1β and tumor necrosis factor-α (TNF-α) in the hippocampus and an increased percentage of microglia cells with reactive morphology in CA1 compared to non-stressed males. Furthermore, prenatally stressed mice showed increased TNF-α immunoreactivity in CA1 and increased number of Iba-1 immunoreactive microglia and GFAP-immunoreactive astrocytes in the dentate gyrus after LPS administration. In contrast, LPS did not induce such changes in non-stressed animals. These findings indicate that prenatal stress induces a basal proinflammatory status in the hippocampal formation during adulthood that results in an enhanced activation of microglia and astrocytes in response to a proinflammatory insult.

  14. N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1α by human gastric cancer cells.

    PubMed

    Murakami, Yuichi; Watari, Kosuke; Shibata, Tomohiro; Uba, Manami; Ureshino, Hiroki; Kawahara, Akihiko; Abe, Hideyuki; Izumi, Hiroto; Mukaida, Naofumi; Kuwano, Michihiko; Ono, Mayumi

    2013-08-30

    The expression of N-myc downstream-regulated gene 1 (NDRG1) was significantly correlated with tumor angiogenesis and malignant progression together with poor prognosis in gastric cancer. However, the underlying mechanism for the role of NDRG1 in the malignant progression of gastric cancer remains unknown. Here we examined whether and how NDRG1 could modulate tumor angiogenesis by human gastric cancer cells. We established NU/Cap12 and NU/Cap32 cells overexpressing NDRG1 in NUGC-3 cells, which show lower tumor angiogenesis in vivo. Compared with parental NU/Mock3, NU/Cap12, and NU/Cap32 cells: 1) induced higher tumor angiogenesis than NU/Mock3 cells accompanied by infiltration of tumor-associated macrophages in mouse dorsal air sac assay and Matrigel plug assay; 2) showed much higher expression of CXC chemokines, MMP-1, and the potent angiogenic factor VEGF-A; 3) increased the expression of the representative inflammatory cytokine, IL-1α; 4) augmented JNK phosphorylation and nuclear expression of activator protein 1 (AP-1). Further analysis demonstrated that knockdown of AP-1 (Jun and/or Fos) resulted in down-regulation of the expression of VEGF-A, CXC chemokines, and MMP-1, and also suppressed expression of IL-1α in NDRG1-overexpressing cell lines. Treatment with IL-1 receptor antagonist (IL-1ra) resulted in down-regulation of JNK and c-Jun phosphorylation, and the expression of VEGF-A, CXC chemokines, and MMP-1 in NU/Cap12 and NU/Cap32 cells. Finally, administration of IL-1ra suppressed both tumor angiogenesis and infiltration of macrophages by NU/Cap12 in vivo. Together, activation of JNK/AP-1 thus seems to promote tumor angiogenesis in relationship to NDRG1-induced inflammatory stimuli by gastric cancer cells.

  15. Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury.

    PubMed

    Tzeng, S F; Kahn, M; Liva, S; De Vellis, J

    1999-04-01

    The inhibitors of DNA binding (Id) gene family is highly expressed during embryogenesis and throughout adulthood in the rat central nervous system (CNS). In vitro studies suggest that the Id gene family is involved in the regulation of cell proliferation and differentiation. Recently, Id gene expression was shown to be expressed in immature and mature astrocytes during development and upregulated in reactive astrocytes after spinal cord injury. These results suggest that the Id gene family may play an important role in regulating astrocyte development and reactivity; however, the factors regulating Id expression in astrocytes remain undefined. Tumor necrosis factor-alpha (TNF alpha), a proinflammatory cytokine, is thought to play a crucial role in astrocyte/microglia activation after injury to the CNS. To determine if TNF alpha plays a role in Id gene expression, we exogenously administered TNF alpha into developing postnatal rats. We report that TNF alpha injections resulted in a rapid and transient increase in both cell number and mRNA expression for Id2 and Id3 when compared to levels observed in noninjected or control-injected animals. Id1 mRNA levels were also upregulated after TNF alpha treatment, but to a lesser degree. Significant increases in TNF alpha-induced Id2 and Id3 mRNA were observed in the ventricular/subventricular zone, cingulum and corpus callosum. TNF alpha also increased Id2 mRNA expression in the caudate putamen and hippocampus at the injection site. Id2 and Id3 mRNA+ cells were identified as GFAP+ and S100 alpha + astrocytes as well as ED1+ microglia. This is the first report to show TNF-alpha-induced modulation of the Id gene family and suggests that Id may be involved in the formation of reactive astrocytes and activated microglia in the rodent brain. These results suggest a putative role for the Id family in the molecular mechanisms regulating cellular responsiveness to TNF alpha and CNS inflammation.

  16. Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway

    PubMed Central

    Majumder, Sanjukta; Zappulla, Frank; Silbart, Lawrence K.

    2014-01-01

    Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway. PMID:25401327

  17. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  18. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes.

    PubMed

    Duffy, Brion; Holliger, Eduard; Walsh, Fiona

    2014-01-01

    Streptomycin is used as a first-line defense and tetracycline as a second-line defense, in the fight against fire blight disease in apple and pear orchards. We have performed the first study to quantitatively analyze the influence of streptomycin use in agriculture on the abundance of streptomycin and tetracycline resistance genes in apple orchards. Flowers, leaves, and soil were collected from three orchard sites in 2010, 2011, and 2012. Gene abundance distribution was analyzed using two-way anova and principal component analysis to investigate relationships between gene abundance data over time and treatment. The mobile antibiotic resistance genes, strA, strB, tetB, tetM, tetW, and the insertion sequence IS1133, were detected prior to streptomycin treatment in almost all samples, indicating the natural presence of these resistance genes in nature. Statistically significant increases in the resistance gene abundances were occasional, inconsistent, and not reproducible from one year to the next. We conclude that the application of streptomycin in these orchards was not associated with sustained increases in streptomycin or tetracycline resistance gene abundances.

  19. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain

    PubMed Central

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500–2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  20. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

    PubMed

    Woestmann, L; Kvist, J; Saastamoinen, M

    2017-03-01

    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.

  1. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages.

    PubMed

    Zhu, Xuewei; Lee, Ji-Young; Timmins, Jenelle M; Brown, J Mark; Boudyguina, Elena; Mulya, Anny; Gebre, Abraham K; Willingham, Mark C; Hiltbold, Elizabeth M; Mishra, Nilamadhab; Maeda, Nobuyo; Parks, John S

    2008-08-22

    Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.

  2. Increased Eotaxin and MCP-1 Levels in Serum from Individuals with Periodontitis and in Human Gingival Fibroblasts Exposed to Pro-Inflammatory Cytokines.

    PubMed

    Boström, Elisabeth A; Kindstedt, Elin; Sulniute, Rima; Palmqvist, Py; Majster, Mirjam; Holm, Cecilia Koskinen; Zwicker, Stephanie; Clark, Reuben; Önell, Sebastian; Johansson, Ingegerd; Lerner, Ulf H; Lundberg, Pernilla

    2015-01-01

    Periodontitis is a chronic inflammatory disease of tooth supporting tissues resulting in periodontal tissue destruction, which may ultimately lead to tooth loss. The disease is characterized by continuous leukocyte infiltration, likely mediated by local chemokine production but the pathogenic mechanisms are not fully elucidated. There are no reliable serologic biomarkers for the diagnosis of periodontitis, which is today based solely on the degree of local tissue destruction, and there is no available biological treatment tool. Prompted by the increasing interest in periodontitis and systemic inflammatory mediators we mapped serum cytokine and chemokine levels from periodontitis subjects and healthy controls. We used multivariate partial least squares (PLS) modeling and identified monocyte chemoattractant protein-1 (MCP-1) and eotaxin as clearly associated with periodontitis along with C-reactive protein (CRP), years of smoking and age, whereas the number of remaining teeth was associated with being healthy. Moreover, body mass index correlated significantly with serum MCP-1 and CRP, but not with eotaxin. We detected higher MCP-1 protein levels in inflamed gingival connective tissue compared to healthy but the eotaxin levels were undetectable. Primary human gingival fibroblasts displayed strongly increased expression of MCP-1 and eotaxin mRNA and protein when challenged with tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β), key mediators of periodontal inflammation. We also demonstrated that the upregulated chemokine expression was dependent on the NF-κΒ pathway. In summary, we identify higher levels of CRP, eotaxin and MCP-1 in serum of periodontitis patients. This, together with our finding that both CRP and MCP-1 correlates with BMI points towards an increased systemic inflammatory load in patients with periodontitis and high BMI. Targeting eotaxin and MCP-1 in periodontitis may result in reduced leukocyte infiltration and inflammation in

  3. Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians

    PubMed Central

    Gautam, Amar; Gupta, Stuti; Mehndiratta, Mohit; Sharma, Mohini; Singh, Kalpana; Kalra, Om P; Agarwal, Sunil; Gambhir, Jasvinder K

    2017-01-01

    AIM To investigate the association of NFKB1 gene -94 ATTG insertion/deletion (rs28362491) polymorphism with inflammatory markers and risk of diabetic nephropathy in Asian Indians. METHODS A total of 300 subjects were recruited (100 each), normoglycemic, (NG); type 2 diabetes mellitus (T2DM) without any complications (DM) and T2DM with diabetic nephropathy [DM-chronic renal disease (CRD)]. Analysis was carried out by polymerase chain reaction-restriction fragment length polymorphism and ELISA. Pearson’s correlation, analysis of variance and logistic regression were used for statistical analysis. RESULTS The allelic frequencies of -94 ATTG insertion/deletion were 0.655/0.345 (NG), 0.62/0.38 (DM) and 0.775/0.225 (DM-CRD). The -94 ATTG ins allele was associated with significantly increased levels of urinary monocyte chemoattractant protein-1 (uMCP-1); uMCP-1 (P = 0.026) and plasma tumor necrosis factor-alpha (TNF-α); TNF-α (P = 0.030) and almost doubled the risk of diabetic nephropathy (OR = 1.91, 95%CI: 1.080-3.386, P = 0.025). CONCLUSION -94 ATTG ins/ins polymorphism might be associated with increased risk of developing nephropathy in Asian Indian subjects with diabetes mellitus. PMID:28265344

  4. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity by downregulation of NF-κB and MAP kinase activity in LPS-activated RAW 264.7 cells.

    PubMed

    Badiei, Alireza; Muniraj, Nethaji; Chambers, Stephen; Bhatia, Madhav

    2014-01-01

    Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We found that CSE silencing siRNA could reduce the LPS-induced activation of transcription factor nuclear factor-κB (NF-κB) significantly. Phosphorylation and activation of extra cellular signal-regulated kinase 1/2 (ERK1/2) increased in LPS-induced macrophages. We showed that phosphorylation of ERK in LPS-induced RAW 264.7 cells reached a peak 30 min after activation. Our findings show that silencing CSE gene by siRNA reduces phosphorylation and activation of ERK1/2 in LPS-induced RAW 264.7 cells. These findings suggest that siRNA reduces the inflammatory effects of hydrogen sulfide through the ERK-NF-κB signalling pathway and hydrogen sulfide plays its inflammatory role through ERK-NF-κB pathway in these cells.

  5. Evidence for a major gene influencing 7-year increases in diastolic blood pressure with age

    SciTech Connect

    Li Shu-Chuan Cheng; Carmelli, D.; Hunt, S.C.

    1995-11-01

    The contribution of genetic factors to blood pressure levels is well established. The contribution of genes to the longitudinal change in blood pressure has been less well studied, because of the lack of longitudinal family data. The present study investigated a possible major-gene effect on the observed increase with age in diastolic blood pressure (DBP) levels. Subjects included 965 unmedicated adults (age {ge}18 years) in 73 pedigrees collected in Utah as part of a longitudinal cardiovascular family study. Segregation analysis of DBP change over 7.2 years of follow-up identified a recessive major-gene effect with a gene frequency of p = .23. There was also a significant age effect on the genotypic means, which decreased expression of the major gene at older ages. For those inferred to have the genotype responsible for large DBP increases, DBP increased 32.3%, compared with a 1.5% increase in the nonsusceptible group (P < .0001). The relative risk of developing hypertension between the susceptible and nonsusceptible groups after 7.2 years was 2.4 (P = .006). Baseline DBP reactivities to mental arithmetic (P < .0001) and isometric hand-grip (P < .0001) stress tests were greatest in those assigned to the susceptible genotype. We conclude that age-related changes in DBP are influenced by a major gene. Characteristics of this major-gene effect for greater age-related blood pressure increases include greater reactivity to mental and physical stressors. The present study thus provides evidence for genetic control of changes in blood pressure, in addition to the previously suggested genetic control of absolute blood pressure level. 28 refs., 6 tabs.

  6. Ultrastructural changes, increased oxidative stress, inflammation, and altered cardiac hypertrophic gene expressions in heart tissues of rats exposed to incense smoke.

    PubMed

    Al-Attas, Omar S; Hussain, Tajamul; Ahmed, Mukhtar; Al-Daghri, Nasser; Mohammed, Arif A; De Rosas, Edgard; Gambhir, Dikshit; Sumague, Terrance S

    2015-07-01

    Incense smoke exposure has recently been linked to cardiovascular disease risk, heart rate variability, and endothelial dysfunction. To test the possible underlying mechanisms, oxidative stress, and inflammatory markers, gene expressions of cardiac hypertrophic and xenobiotic-metabolizing enzymes and ultrastructural changes were measured, respectively, using standard, ELISA-based, real-time PCR, and transmission electron microscope procedures in heart tissues of Wistar rats after chronically exposing to Arabian incense. Malondialdehyde, tumor necrosis alpha (TNF)-α, and IL-4 levels were significantly increased, while catalase and glutathione levels were significantly declined in incense smoke-exposed rats. Incense smoke exposure also resulted in a significant increase in atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, CYP1A1 and CYP1A2 messenger RNAs (mRNAs). Rats exposed to incense smoke displayed marked ultrastructural changes in heart muscle with distinct cardiac hypertrophy, which correlated with the augmented hypertrophic gene expression as well as markers of cardiac damage including creatine kinase-myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Increased oxidative stress, inflammation, altered cardiac hypertrophic gene expression, tissue damage, and architectural changes in the heart may collectively contribute to increased cardiovascular disease risk in individuals exposed to incense smoke. Increased gene expressions of CYP1A1 and CYP1A2 may be instrumental in the incense smoke-induced oxidative stress and inflammation. Thus, incense smoke can be considered as a potential environmental pollutant and its long-term exposure may negatively impact human health.

  7. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells.

    PubMed

    Yu, Shaoqing; Chen, Xia; Xiu, Min; He, Feng; Xing, Juanjuan; Min, Dinghong; Guo, Fei

    2017-02-09

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatment recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.

  8. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    SciTech Connect

    Wu, Chia-Chang; Huang, Yung-Kai; Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Lai, Li-An; Lin, Ying-Chin; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.

  9. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS.

    PubMed

    Kangelaris, Kirsten Neudoerffer; Prakash, Arun; Liu, Kathleen D; Aouizerat, Bradley; Woodruff, Prescott G; Erle, David J; Rogers, Angela; Seeley, Eric J; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A; Calfee, Carolyn S

    2015-06-01

    The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS.

  10. Acute exposure to high-fat diets increases hepatic expression of genes related to cell repair and remodeling in female rats.

    PubMed

    Miller, Colette N; Morton, Heidi P; Cooney, Paula T; Winters, Tricia G; Ramseur, Keshia R; Rayalam, Srujana; Della-Fera, Mary Anne; Baile, Clifton A; Brown, Lynda M

    2014-01-01

    High-fat diets (HFD) promote the development of both obesity and fatty liver disease through the up-regulation of hepatic lipogenesis. Insulin resistance, a hallmark of both conditions, causes dysfunctional fuel partitioning and increases in lipogenesis. Recent work has demonstrated that systemic insulin resistance occurs in as little as the first 72 hours of an HFD, suggesting the potential for hepatic disruption with HFD at this time point. The current study sought to determine differences in expression of lipogenic genes between sexes in 3-month-old male and female Long-Evans rats after 72 hours of a 40% HFD or a 17% fat (chow) diet. Owing to the response of estrogen on hepatic signaling, we hypothesized that a sexual dimorphic response would occur in the expression of lipogenic enzymes, inflammatory cytokines, apoptotic, and cell repair and remodeling genes. Both sexes consumed more energy when fed an HFD compared with their low fat-fed controls. However, only the males fed the HFD had a significant increase in body fat. Regardless of sex, HFD caused down-regulation of lipogenic and inflammatory genes. Interestingly, females fed an HFD had up-regulated expression of apoptotic and cell repair-related genes compared with the males. This may suggest that females are more responsive to the acute hepatic injury effects caused by HFDs. In summary, neither male nor female rats displayed disrupted hepatic metabolic pathways after 72 hours of the HFD treatment. In addition, female rats appear to have protection from increases in fat deposition, possibly due to increased caloric expenditure; male rats fed an HFD were less active, as demonstrated by distance traveled in their home cage.

  11. Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene.

    PubMed

    Azadi, Pejman; Otang, Ntui Valentaine; Supaporn, Hasthanasombut; Khan, Raham Sher; Chin, Dong Poh; Nakamura, Ikuo; Mii, Masahiro

    2011-06-01

    Lilium cv Acapulco was transformed with a defective cucumber mosaic virus (CMV) replicase gene (CMV2-GDD) construct using Agrobacterium tumefaciens. Four lines were analyzed for gene expression and resistance to CMV-O strain. Expression of the CMV2-GDD gene in the transgenic plants was confirmed by reverse transcription PCR (RT-PCR). When these four lines were mechanically inoculated with CMV-O, no signal of coat protein (CP) messages using RT-PCR was detected in newly produced leaves of two transgenic lines. Dot-immunobinding assay (DIBA) of CP was performed to examine the presence of the CMV in the newly produced leaves of challenged plants. Results, similar to those obtained with RT-PCR of the CP messages, were observed in DIBA. Therefore, our results imply that the two lines show increased levels of resistance to CMV, and CMV-GDD replicase gene is an effective construct that has protection against CMV in Lilium.

  12. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxamine on the expression of some inflammatory genes like intercellular adhesion molecule (ICAM1), vascular cell adhesion molecule (VCAM1), cyclooxygenases2 (COX2), and inducible nitric oxide synthase (iNOS). Materials and Methods: An in vitro model of LPS stimulated human endothelial cells and U937 macrophages were used. Cells were pretreated with various concentrations of fluvoxamine, from 10-8 M to 10-6 M. For in vivo model, fluvoxamine was administered IP at doses of 25 and 50 mg/kg-1, before injection of carrageenan. At the end of experiment, the expression of mentioned genes were measured by quantitative real time (RT)-PCR in cells and in paw edema in rat. Results: The expression of ICAM1, VCAM1, COX2, and iNOS was significantly decreased by fluvoxamine in endothelial cells, macrophages, and in rat carrageenan-induced paw edema. Our finding also confirmed that IP injection of fluvoxamine inhibits carrageenan-induced inflammation in rat paw edema. Conclusion: The results of present study provide further evidence for the anti-inflammatory effect of fluvoxamine. This effect appears to be mediated by down regulation of inflammatory genes. Further studies are needed to evaluate the complex cellular and molecular mechanisms of immunomodulatory effect of fluvoxamine. PMID:27803785

  13. The anti-inflammatory fungal compound (S)-curvularin reduces proinflammatory gene expression in an in vivo model of rheumatoid arthritis.

    PubMed

    Schmidt, Nadine; Art, Julia; Forsch, Ingrid; Werner, Anke; Erkel, Gerhard; Jung, Mathias; Horke, Sven; Kleinert, Hartmut; Pautz, Andrea

    2012-10-01

    In previous studies, we identified the fungal macrocyclic lactone (S)-curvularin (SC) as an anti-inflammatory agent using a screening system detecting inhibitors of the Janus kinase/signal transducer and activator of transcription pathway. The objective of the present study was to investigate whether SC is able to decrease proinflammatory gene expression in an in vivo model of a chronic inflammatory disease. Therefore, the effects of SC and dexamethasone were compared in the model of collagen-induced arthritis (CIA) in mice. Total genomic microarray analyses were performed to identify SC target genes. In addition, in human C28/I2 chondrocytes and MonoMac6 monocytes, the effect of SC on proinflammatory gene expression was tested at the mRNA and protein level. In the CIA model, SC markedly reduced the expression of a number of proinflammatory cytokines and chemokines involved in the pathogenesis of CIA as well as human rheumatoid arthritis (RA). In almost all cases, the effects of SC were comparable with those of dexamethasone. In microarray analyses, we identified additional new therapeutic targets of SC. Some of them, such as S100A8, myeloperoxidase, or cathelicidin, an antimicrobial peptide, are known to be implicated in pathophysiological processes in RA. Similar anti-inflammatory effects of SC were also observed in human C28/I2 chondrocyte cells, which are resistant to glucocorticoid treatment. These data indicate that SC and glucocorticoid effects are mediated via independent signal transduction pathways. In summary, we demonstrate that SC is a new effective anti-inflammatory compound that may serve as a lead compound for the development of new drugs for the therapy of chronic inflammatory diseases.

  14. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity.

    PubMed

    Venturi, V; Wolfs, K; Leong, J; Weisbeek, P J

    1994-10-17

    Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by subcloning, transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.

  15. Associations between inflammatory and immune response genes and adverse respiratory outcomes following exposure to outdoor air pollution: a HuGE systematic review.

    PubMed

    Vawda, Seema; Mansour, Rafif; Takeda, Andrea; Funnell, Paula; Kerry, Sally; Mudway, Ian; Jamaludin, Jeenath; Shaheen, Seif; Griffiths, Chris; Walton, Robert

    2014-02-15

    Variants of inflammatory and immune response genes have been associated with adverse respiratory outcomes following exposure to air pollution. However, the genes involved and their associations are not well characterized, and there has been no systematic review. Thus, we conducted a review following the guidelines of the Human Genome Epidemiology Network. Six observational studies and 2 intervention studies with 14,903 participants were included (2001-2010). Six studies showed at least 1 significant gene-pollutant interaction. Meta-analysis was not possible due to variations in genes, pollutants, exposure estimates, and reported outcomes. The most commonly studied genes were tumor necrosis factor α (TNFA) (n = 6) and toll-like receptor 4 (TLR4) (n = 3). TNFA -308G>A modified the action of ozone and nitrogen dioxide on lung function, asthma risk, and symptoms; however, the direction of association varied between studies. The TLR4 single-nucleotide polymorphisms rs1927911, rs10759931, and rs6478317 modified the association of particulate matter and nitrogen dioxide with asthma. The transforming growth factor β1 (TGFB1) polymorphism -509C>T also modified the association of pollutants with asthma. This review indicates that genes controlling innate immune recognition of foreign material (TLR4) and the subsequent inflammatory response (TGFB1, TLR4) modify the associations of exposure to air pollution with respiratory function. The associations observed have biological plausibility; however, larger studies with improved reporting are needed to confirm these findings.

  16. Increased Resting Intracellular Calcium Modulates NF-κB-dependent Inducible Nitric-oxide Synthase Gene Expression in Dystrophic mdx Skeletal Myotubes*

    PubMed Central

    Altamirano, Francisco; López, Jose R.; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D.; Jaimovich, Enrique

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782

  17. Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata.

    PubMed

    Montero, D; Mathlouthi, F; Tort, L; Afonso, J M; Torrecillas, S; Fernández-Vaquero, A; Negrin, D; Izquierdo, M S

    2010-12-01

    Commercial gilthead sea bream feeds are highly energetic, fish oil traditionally being the main lipid source. But the decreased fish oil production together with the increased prices of this oil encourages its substitution by vegetable oils, imposing new nutritional habits to aquaculture species. Partial replacement of fish oil by vegetable oils in diets for marine species allows good feed utilization and growth but may affect fish health, since imbalances in dietary fatty acids may alter fish immunological status. The effect of dietary oils on different aspects of fish immune system has been reported for some species, but very little is known about the effect of dietary oils on immune-related genes expression in fish. Thus, the objective of this study was to elucidate the role of dietary oils on the expression of two pro-inflammatory cytokines, Tumor Necrosis Factor-α (TNF-α) and Interleukine 1β (IL-1β) on intestine and head kidney after exposure to the bacterial pathogen Photobacterium damselae sp. piscicida. For that purpose, 5 iso-nitrogenous and iso-lipidic diets (45% crude protein, 22% crude lipid content) were formulated. Anchovy oil was the only lipid source used in the control diet (FO), but in the other diets, fish oil was totally (100%) or partially (70%) substituted by linseed (rich in n-3 fatty acids) or soybean (rich in n-6 fatty acids) (100L, 100S, 70L, 70S). Fish were fed experimental diets during 80 days and after this period were exposed to an experimental intestinal infection with the pathogen. Serum and tissue samples were obtained at pre-infection and after 1, 3 and 7 days of infection. RNA was extracted and cDNA was synthesized by reverse transcription from intestine and head kidney and the level expression of TNF-α and IL-1β were assayed by using quantitative real time PCR. The expression level of genes analysed was represented as relative value, using the comparative Ct method (2(-ΔΔCt)). Serum anti-bacterial activity was measured as

  18. Leptin Administration Downregulates the Increased Expression Levels of Genes Related to Oxidative Stress and Inflammation in the Skeletal Muscle of ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Obese leptin-deficient ob/ob mice exhibit a low-grade chronic inflammation together with a low muscle mass. Our aim was to analyze the changes in muscle expression levels of genes related to oxidative stress and inflammatory responses in leptin deficiency and to identify the effect of in vivo leptin administration. Ob/ob mice were divided in three groups as follows: control ob/ob, leptin-treated ob/ob (1 mg/kg/d) and leptin pair-fed ob/ob mice. Gastrocnemius weight was lower in control ob/ob than in wild type mice (P < .01) exhibiting an increase after leptin treatment compared to control and pair-fed (P < .01) ob/ob animals. Thiobarbituric acid reactive substances, markers of oxidative stress, were higher in serum (P < .01) and gastrocnemius (P = .05) of control ob/ob than in wild type mice and were significantly decreased (P < .01) by leptin treatment. Leptin deficiency altered the expression of 1,546 genes, while leptin treatment modified the regulation of 1,127 genes with 86 of them being involved in oxidative stress, immune defense and inflammatory response. Leptin administration decreased the high expression of Crybb1, Hspb3, Hspb7, Mt4, Cat, Rbm9, Serpinc1 and Serpinb1a observed in control ob/ob mice, indicating that it improves inflammation and muscle loss. PMID:20671928

  19. Healthy working school teachers with high effort-reward-imbalance and overcommitment show increased pro-inflammatory immune activity and a dampened innate immune defence.

    PubMed

    Bellingrath, Silja; Rohleder, Nicolas; Kudielka, Brigitte M

    2010-11-01

    To test whether chronic work stress is accompanied by altered immune functioning, changes in lymphocyte subsets and in lymphocyte production of cytokines were examined in reaction to acute psychosocial stress. Work stress was measured according to Siegrist's effort-reward-imbalance (ERI) model. ERI reflects stress due to a lack of reciprocity between costs and gains at work. Overcommitment (OC) is conceptualized as a dysfunctional coping pattern mainly characterized by the inability to withdraw from work obligations. Fifty-five healthy teachers (34 women, 21 men, mean age 50.0 ± 8.47 years) were exposed to a standardized laboratory stressor (Trier Social Stress Test). Lymphocyte subset counts and lymphocyte production of tumor-necrosis-factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, -4, -6 and -10 were measured before and after challenge. High levels of ERI and OC were associated with lower natural killer (NK) cell (CD16+/56+) numbers whereas high levels of OC were related to a lower increase in T-helper cells (CD4+) after stress. Furthermore, subjects with higher ERI showed an overall increased pro-inflammatory activity, with higher TNF-α production at both time points and elevated pre-stress IL-6 production. IL-10 production decreased with higher ERI after stress. The ratios of TNF-α/IL-10 and IL-6/IL-10 were significantly increased in subjects high on ERI. Finally, OC was associated with higher IL-2 production post-stress. The present findings suggest a dampened innate immune defence, reflected in lower NK cell numbers together with an increased pro-inflammatory activity in teachers high on ERI and OC. Such pathways could partly be responsible for the increased vulnerability for stress-related diseases in individuals suffering from chronic work stress.

  20. Adelmidrol increases the endogenous concentrations of palmitoylethanolamide in canine keratinocytes and down-regulates an inflammatory reaction in an in vitro model of contact allergic dermatitis.

    PubMed

    Petrosino, S; Puigdemont, A; Della Valle, M F; Fusco, M; Verde, R; Allarà, M; Aveta, T; Orlando, P; Di Marzo, V

    2016-01-01

    This study aimed to investigate potential new target(s)/mechanism(s) for the palmitoylethanolamide (PEA) analogue, adelmidrol, and its role in an in vitro model of contact allergic dermatitis. Freshly isolated canine keratinocytes, human keratinocyte (HaCaT) cells and human embryonic kidney (HEK)-293 cells, wild-type or transfected with cDNA encoding for N-acylethanolamine-hydrolysing acid amidase (NAAA), were treated with adelmidrol or azelaic acid, and the concentrations of endocannabinoids (anandamide and 2-arachidonoylglycerol) and related mediators (PEA and oleoylethanolamide) were measured. The mRNA expression of PEA catabolic enzymes (NAAA and fatty acid amide hydrolase, FAAH), and biosynthetic enzymes (N-acyl phosphatidylethanolamine-specific phospholipase D, NAPE-PLD) and glycerophosphodiester phosphodiesterase 1, was also measured. Brain or HEK-293 cell membrane fractions were used to assess the ability of adelmidrol to inhibit FAAH and NAAA activity, respectively. HaCaT cells were stimulated with polyinosinic-polycytidylic acid and the release of the pro-inflammatory chemokine, monocyte chemotactic protein-2 (MCP-2), was measured in the presence of adelmidrol. Adelmidrol increased PEA concentrations in canine keratinocytes and in the other cellular systems studied. It did not inhibit the activity of PEA catabolic enzymes, although it reduced their mRNA expression in some cell types. Adelmidrol modulated the expression of PEA biosynthetic enzyme, NAPE-PLD, in HaCaT cells, and inhibited the release of the pro-inflammatory chemokine MCP-2 from stimulated HaCaT cells. This study demonstrates for the first time an 'entourage effect' of adelmidrol on PEA concentrations in keratinocytes and suggests that this effect might mediate, at least in part, the anti-inflammatory effects of this compound in veterinary practice.

  1. Targeting transcription factor activity as a strategy to inhibit pro-inflammatory genes involved in cystic fibrosis: decoy oligonucleotides and low-molecular weight compounds.

    PubMed

    Cabrini, G; Bezzerri, V; Mancini, I; Nicolis, E; Dechecchi, M C; Tamanini, A; Lampronti, I; Piccagli, L; Bianchi, N; Borgatti, M; Gambari, R

    2010-01-01

    The development of drugs able to inhibit the expression of pro-inflammatory genes is of great interest in the treatment of cystic fibrosis (CF). Chronic pulmonary inflammation in the lungs of patients affected by CF is characterized by massive intra-bronchial infiltrates of neutrophils. This process is initiated upon interaction of pathogens (including Pseudomonas aeruginosa) with surface bronchial cells. Consequently, they release cytokines, the most represented being the potent neutrophilic chemokine Interleukin (IL)-8 and the pro-inflammatory cytokine IL-6. The chronic inflammatory process is crucial, since it leads to progressive tissue damage and severe respiratory insufficiency. In order to reduce the adverse effects of the excessive inflammatory response, one of the approaches leading to inhibition of IL-8 and IL-6 gene expression is the transcription factor (TF) decoy approach, based on intracellular delivery of double stranded oligodeoxynucleotides (ODNs) mimicking the binding sites of TFs and causing inhibition of binding of TF-related proteins to regulatory sequences identified in the promoters of specific genes. Since the promoters of IL-8 and IL-6 contain consensus sequences for NF-κ B and Sp1, double stranded TF "decoy" ODNs targeting NF-κB and Sp1 can be used. Alternatively, screening of drugs targeting relevant TFs can be performed using drug cocktails constituted by extracts from medicinal plants inhibiting TF/DNA interactions. Finally, virtual screening might lead to identification of putative bioactive molecules to be validated using molecular and cellular approaches. By these means, low-molecular drugs targeting NF-κB and inhibiting IL-8 gene expression are available for pre-clinical testing using experimental systems recapitulating chronic pulmonary inflammation of patients affected by CF.

  2. Overexpression of several Arabidopsis histone genes increases Agrobacterium-medicated transformation and transgene expression in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis histone H2A-1 is important for Agrobacterium-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, in the rat5 mutant results in decreased T-(transferred) DNA integration into the plant genome, whereas over-expression of HTA1 increases transformation freq...

  3. Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library– Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene

    PubMed Central

    Kumar, Sandeep; Jang, In-hwan; Kim, Chan Woo; Kang, Dong-Won; Lee, Won Jae; Jo, Hanjoong

    2016-01-01

    Disturbed blood flow (d-flow) induces atherosclerosis by altering the expression of mechanosensitive genes in the arterial endothelium. Previously, we identified >580 mechanosensitive genes in the mouse arterial endothelium, but their role in endothelial inflammation is incompletely understood. From this set, we obtained 84 Drosophila RNAi lines that silences the target gene under the control of upstream activation sequence (UAS) promoter. These lines were crossed with C564-GAL4 flies expressing GFP under the control of drosomycin promoter, an NF-κB target gene and a marker of pathogen-induced inflammation. Silencing of psmd12 or ERN1 decreased infection-induced drosomycin expression, while Bap60 silencing significantly increased the drosomycin expression. Interestingly, knockdown of Bap60 in adult flies using temperature-inducible Bap60 RNAi (C564ts-GAL4-Bap60-RNAi) enhanced drosomycin expression upon Gram-positive bacterial challenge but the basal drosomycin expression remained unchanged compared to the control. In the mammalian system, smarcd3 (mammalian ortholog of Bap60) expression was reduced in the human- and mouse aortic endothelial cells exposed to oscillatory shear in vitro as well as in the d-flow regions of mouse arterial endothelium in vivo. Moreover, siRNA-mediated knockdown of smarcd3 induced endothelial inflammation. In summary, we developed an in vivo Drosophila RNAi screening method to identify flow-sensitive genes that regulate endothelial inflammation. PMID:27819340

  4. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat's insular cortex

    PubMed Central

    2010-01-01

    Background The insular cortex (IC) receives somatosensory afferent input and has been related to nociceptive input. It has dopaminergic terminals and D1 (D1R) -excitatory- and D2 (D2R) -inhibitory- receptors. D2R activation with a selective agonist, as well as D1R blockade with antagonists in the IC, diminish neuropathic nociception in a nerve transection model. An intraplantar injection of carrageenan and acute thermonociception (plantar test) were performed to measure the response to inflammation (paw withdrawal latency, PWL). Simultaneously, a freely moving microdyalisis technique and HPLC were used to measure the release of dopamine and its metabolites in the IC. Plantar test was applied prior, one and three hours after inflammation. Also, mRNA levels of D1 and D2R's were measured in the IC after three hours of inflammation. Results The results showed a gradual decrease in the release of dopamine, Dopac and HVA after inflammation. The decrease correlates with a decrease in PWL. D2R's increased their mRNA expression compared to the controls. In regard of D1R's, there was a decrease in their mRNA levels compared to the controls. Conclusions Our results showed that the decreased extracellular levels of dopamine induced by inflammation correlated with the level of pain-related behaviour. These results also showed the increase in dopaminergic mediated inhibition by an increase in D2R's and a decrease in D1R's mRNA. There is a possible differential mechanism regarding the regulation of excitatory and inhibitory dopaminergic receptors triggered by inflammation. PMID:21050459

  5. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model.

    PubMed

    Schedle, Karl; Pfaffl, Michael W; Plitzner, Christian; Meyer, Heinrich H D; Windisch, Wilhelm

    2008-12-01

    The effects of insoluble dietary fibre differing in lignin content on intestinal morphology and mRNA expression was tested in an animal model of 48 weaned piglets. Engaged fibre sources were wheat bran (rich in cellulose and hemicellulose) and pollen from Chinese Masson pine (Pinus massoniana) (rich in lignin), respectively. The fibre sources were added to a basal diet as follows: no addition (control), 3.0% wheat bran, 1.27% pine pollen, and 2.55% pine pollen. The 12 animals of each feeding group were fed four experimental diets ad libitum for 37 days and were then slaughtered for retrieving tissue samples from stomach, jejunum, ileum, colon and mesenterial lymph nodes. Both fibre sources increased villus height of mucosa in jejunum (+10% on average) and ileum (+16% on average). Results of mRNA expression rates of inflammatory, cell cycle and growth marker genes (NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4, IGF1) were specific to fibre source and tissue: wheat bran induced an up-regulation of NFkappaB in stomach and jejunum, as well as TNFalpha and TGFbeta, and Caspase3 in jejunum. Pine pollen induced down regulation of NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4 and IGF1 in the colon as well as up-regulation of NFkappaB and TGFbeta in mesenterial lymph nodes. Finally, an overall data comparison based on a hierarchical cluster analysis showed a close relation between gene regulation in different gut sections and organs, as well as between small intestine morphology and zootechnical performance.

  6. Increased viability but decreased culturability of Mycobacterium avium subsp. paratuberculosis in macrophages from inflammatory bowel disease patients under Infliximab treatment.

    PubMed

    Nazareth, Nair; Magro, Fernando; Appelberg, Rui; Silva, Jani; Gracio, Daniela; Coelho, Rosa; Cabral, José Miguel; Abreu, Candida; Macedo, Guilherme; Bull, Tim J; Sarmento, Amélia

    2015-12-01

    Mycobacterium avium subsp. paratuberculosis (MAP) has long been implicated as a triggering agent in Crohn's disease (CD). In this study, we investigated the growth/persistence of both M. avium subsp. hominissuis (MAH) and MAP, in macrophages from healthy controls (HC), CD and ulcerative colitis patients. For viability assessment, both CFU counts and a pre16SrRNA RNA/DNA ratio assay (for MAP) were used. Phagolysosome fusion was evaluated by immunofluorescence, through analysis of LAMP-1 colocalization with MAP. IBD macrophages were more permissive to MAP survival than HC macrophages (a finding not evident with MAH), but did not support MAP active growth. The lower MAP CFU counts in macrophage cultures associated with Infliximab treatment were not due to increased killing, but possibly to elevation in the proportion of intracellular dormant non-culturable MAP forms, as MAP showed higher viability in those macrophages. Increased MAP viability was not related to lack of phagolysosome maturation. The predominant induction of MAP dormant forms by Infliximab treatment may explain the lack of MAP reactivation during anti-TNF therapy of CD but does not exclude the possibility of MAP recrudescence after termination of therapy.

  7. Vaccination of cattle with a high dose of BCG vaccine 3 weeks after experimental infection with Mycobacterium bovis increased the inflammatory response, but not tuberculous pathology.

    PubMed

    Buddle, Bryce M; Shu, Dairu; Parlane, Natalie A; Subharat, Supatsak; Heiser, Axel; Hewinson, R Glyn; Vordermeier, H Martin; Wedlock, D Neil

    2016-07-01

    A study was undertaken to determine whether BCG vaccination of cattle post-challenge could have an effect on a very early Mycobacterium bovis infection. Three groups of calves (n = 12/group) were challenged endobronchially with M. bovis and slaughtered 13 weeks later to examine for tuberculous lesions. One group had been vaccinated prophylactically with BCG Danish vaccine 21 weeks prior to challenge; a second group was vaccinated with a 4-fold higher dose of BCG Danish 3 weeks post-challenge and the third group, remained non-vaccinated. Vaccination prior to challenge induced only minimal protection with just a significant reduction in the lymph node lesion scores. Compared to the non-vaccinated group, BCG vaccination post-challenge produced no reduction in gross pathology and histopathology, but did result in significant increases in mRNA expression of pro-inflammatory mediators (IFN-γ, IL-12p40, IL-17A, IRF-5, CXCL9, CXCL10, iNOs, and TNF-α) in the pulmonary lymph nodes. Although there was no significant differences in the gross pathology and histopathology between the post-challenge BCG and non-vaccinated groups, the enhanced pro-inflammatory immune responses observed in the post-challenge BCG group suggest caution in the use of high doses of BCG where there is a possibility that cattle may be infected with M. bovis prior to vaccination.

  8. Lactobacillus acidophilus Increases the Anti-apoptotic Micro RNA-21 and Decreases the Pro-inflammatory Micro RNA-155 in the LPS-Treated Human Endothelial Cells.

    PubMed

    Kalani, Mehdi; Hodjati, Hossein; Sajedi Khanian, Mahdi; Doroudchi, Mehrnoosh

    2016-06-01

    Given the anti-inflammatory and protective role of probiotics in atherosclerosis and the regulatory role of micro RNA (miRNA) in endothelial cell (dys) functions, this study aimed to investigate the effect of Lactobacillus acidophilus (La) on cellular death and the expression of miRNA-21, 92a, 155, and 663 in human umbilical vein endothelial cell (HUVEC) induced by Escherichia coli lipopolysaccharide (Ec-LPS). LPS-treated and untreated HUVECs were cultured in the presence of different La conditions such as La-conditioned media (LaCM), La water extract (LaWE), La culture-filtered (LaFS) and unfiltered supernatants (LaUFS). After 24 h, apoptosis, necrosis and the levels of the mentioned miRNAs were measured using flow cytometry and real-time PCR methods, respectively. LaCM decreased apoptosis, necrosis and inflammatory miR-155 and conversely increased anti-apoptotic miR-21 in Ec-LPS-treated HUVECs. Association analysis revealed negative correlations between necrosis and the levels of miR-21, miR-92a, and miR-155. The beneficial effects of L. acidophilus on the ECs death and expression of atherosclerosis related miRNAs in these cells imply a new aspect of its regulation in cardiovascular diseases rather than previously described ones and suggest this probiotic bacterium as a candidate in the preventative therapy of atherosclerosis.

  9. Ankylosing spondylitis and other inflammatory spondyloarthritis increase the risk of developing type 2 diabetes in an Asian population.

    PubMed

    Chen, Hsin-Hung; Yeh, Su-Yin; Chen, Hue-Yong; Lin, Cheng-Li; Sung, Fung-Chang; Kao, Chia-Hung

    2014-02-01

    This study evaluated whether people with ankylosing spondylitis (AS) and spondyloarthritis are at higher risk of type 2 diabetes mellitus (T2DM). We used a sub-dataset of the National Health Insurance Research Database from 1996 to 2010 to established a AS cohort consisting new patients with AS or spondyloarthritis (N = 7,778) and a non-AS cohort without the diseases (N = 31,112). Incidences of T2DM in the two cohorts, hazard ratios (HRs) of risk of T2DM in association with AS, and cumulative probability of having T2DM were estimated by the end of 2010. The incidence of T2DM was 1.17-fold higher in the AS cohort than in the non-AS cohort (13.5 vs. 11.5, per 1,000 person-years), with an adjusted HR of 1.16 (95 % CI = 1.05-1.29). The T2DM incidence was higher for women than for men; while the Cox model measured sex-specific adjusted HR of T2DM was higher for men than for women. The incidence rate of T2DM increased with age in both cohorts, while the age-specific measures showed that the adjusted HR of T2DM was higher in young AS patients (≤50 years of age) than older ones, compared to their peers of non-AS group. The plot of Kaplan-Meier analysis showed that the overall probability of having T2DM was 2 % higher in the AS cohort than in the non-AS cohort (log-rank test: p < 0.0001). Patients with AS and spondyloarthritis have an increased risk of developing T2DM.

  10. Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient

    NASA Astrophysics Data System (ADS)

    Jeffries, T. C.; Seymour, J. R.; Newton, K.; Smith, R. J.; Seuront, L.; Mitchell, J. G.

    2012-02-01

    Biogeochemical cycles are driven by the metabolic activity of microbial communities, yet the environmental parameters that underpin shifts in the functional potential coded within microbial community genomes are still poorly understood. Salinity is one of the primary determinants of microbial community structure and can vary strongly along gradients within a variety of habitats. To test the hypothesis that shifts in salinity will also alter the bulk biogeochemical potential of aquatic microbial assemblages, we generated four metagenomic DNA sequence libraries from sediment samples taken along a continuous, natural salinity gradient in the Coorong lagoon, Australia, and compared them to physical and chemical parameters. A total of 392483 DNA sequences obtained from four sediment samples were generated and used to compare genomic characteristics along the gradient. The most significant shifts along the salinity gradient were in the genetic potential for halotolerance and photosynthesis, which were more highly represented in hypersaline samples. At these sites, halotolerance was achieved by an increase in genes responsible for the acquisition of compatible solutes - organic chemicals which influence the carbon, nitrogen and methane cycles of sediment. Photosynthesis gene increases were coupled to an increase in genes matching Cyanobacteria, which are responsible for mediating CO2 and nitrogen cycles. These salinity driven shifts in gene abundance will influence nutrient cycles along the gradient, controlling the ecology and biogeochemistry of the entire ecosystem.

  11. Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient

    NASA Astrophysics Data System (ADS)

    Jeffries, T. C.; Seymour, J. R.; Newton, K.; Smith, R. J.; Seuront, L.; Mitchell, J. G.

    2011-07-01

    Biogeochemical cycles are driven by the metabolic activity of microbial communities, yet the environmental parameters that underpin shifts in the functional potential coded within microbial community genomes are still poorly understood. Salinity is one of the primary determinants of microbial community structure and can vary strongly along gradients within a variety of habitats. To test the hypothesis that shifts in salinity will also alter the bulk biogeochemical potential of aquatic microbial assemblages, we generated four metagenomic DNA sequence libraries from sediment samples taken along a continuous, natural salinity gradient in the Coorong lagoon, Australia, and compared them to physical and chemical parameters. A total of 392483 DNA sequences obtained from four sediment samples were generated and used to compare genomic characteristics along the gradient. The most significant shifts along the salinity gradient were in the genetic potential for halotolerance and photosynthesis, which were more highly represented in hypersaline samples. At these sites, halotolerance was achieved by an increase in genes responsible for the acquisition of compatible solutes - organic chemicals which influence the carbon, nitrogen and methane cycles of sediment. Photosynthesis gene increases were coupled to an increase in genes matching Cyanobacteria, which are responsible for mediating CO2 and nitrogen cycles. These salinity driven shifts in gene abundance will influence nutrient cycles along the gradient, controlling the ecology and biogeochemistry of the entire ecosystem.

  12. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    PubMed

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  13. MMP1-1607 polymorphism increases the risk for periapical lesion development through the upregulation MMP-1 expression in association with pro-inflammatory milieu elements

    PubMed Central

    TROMBONE, Ana Paula Favaro; CAVALLA, Franco; SILVEIRA, Elcia Maria Varize; ANDREO, Camile Bermejo; FRANCISCONI, Carolina Favaro; FONSECA, Angélica Cristina; LETRA, Ariadne; SILVA, Renato Menezes; GARLET, Gustavo Pompermaier

    2016-01-01

    ABSTRACT Increased matrix metalloproteinases (MMPs) activity is a hallmark of periapical granulomas. However, the factors underlying the MMPs expression modulation in healthy and diseased periapical tissues remains to be determined. Objective In this study, we evaluated the association between the MMP1-1607 polymorphism (rs1799750) and pro-inflammatory milieu elements with MMP-1 mRNA levels in vivo. Material and Methods MMP1-1607 SNP and the mRNA levels of MMP-1, TNF-a, IFN-g, IL-17A, IL-21, IL-10, IL-4, IL-9, and FOXp3 were determined via RealTimePCR in DNA/RNA samples from patients presenting periapical granulomas (N=111, for both genotyping and expression analysis) and control subjects (N=214 for genotyping and N=26 for expression analysis). The Shapiro-Wilk, Fisher, Pearson, Chi-square ordinal least squares regression tests were used for data analysis (p<0.05 was considered statistically significant). Results The MMP1-1607 1G/2G and 1G/2G+2G/2G genotypes were significantly more prevalent in the patients than in controls, comprising a risk factor for periapical lesions development. MMP-1 mRNA levels were higher in periapical lesions than in healthy periodontal ligament samples, as well as higher in active than in inactive lesions. The polymorphic allele 2G carriers presented a significantly higher MMP-1 mRNA expression when compared with the 1G/1G genotype group. The ordered logistic regression demonstrated a significant correlation between the genetic polymorphism and the expression levels of MMP-1. Additionally, the pro- and anti-inflammatory cytokines IL-17A, IFN-g, TNF-a, IL-21, IL-10, IL-9, and IL-4 were significant as complementary explanatory variables of MMP-1 expression. Conclusion The MMP1-1607 SNP was identified as a risk factor for periapical lesions development, possibly due to its association with increased MMP-1 mRNA levels in periapical lesions. The MMP-1 expression is also under the control of the inflammatory milieu elements, being the

  14. Effect of acute sleep deprivation and recovery on Insulin-like Growth Factor-I responses and inflammatory gene expression in healthy men.

    PubMed

    Chennaoui, Mounir; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle; Scofield, Denis E; Nindl, Bradley C

    2014-01-01

    Acute sleep deprivation in humans has been found to increase inflammatory markers and signaling pathways in the periphery through a possible Toll-like receptor 4 (TLR-4). In addition, short duration sleep has been associated with low circulating total Insulin-like Growth Factor-I (IGF-I) concentrations. We aimed to determine whether a total sleep deprivation (TSD) protocol with recovery altered whole-blood gene expression of the proinflammatory cytokines TNF-α and IL-6, as well as TLR-4 expression, and to examine the relationship with circulating concentrations of the IGF-I system. Twelve healthy men participated in a five-day TSD (two control nights followed by one night of sleep deprivation and one night of recovery). Blood was sampled at 0800, before and after sleep deprivation (D2 and D4), and after recovery (D5). It is shown that 25 h of sleep deprivation (D4) induced significant increases in mRNA levels of TNF-α and its soluble receptor R1 (P<0.01 respectively), as well as TLR-4 (P<0.05), while IL-6 mRNA levels remained unchanged. Circulating concentrations of free IGF-I were decreased at D4 (P<0.001). One night of recovery was sufficient to restore basal expression levels for TNF-α, sTNF-R1, TLR-4 and circulating IGF-I. Changes in TLR-4 mRNA levels during the protocol correlated positively with those of TNF-α and sTNF-R1 (r=0.393 and r=0.490 respectively), and negatively with circulating free IGF-I (r=-0.494). In conclusion, 25 h of sleep deprivation in healthy subjects is sufficient to induce transient and reversible genomic expression of the pro-inflammatory cytokine TNF-α and its R1 receptor, and its mediator TLR-4, with a possible link to IGF-I axis inhibition.

  15. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.

    PubMed

    Thorn, Stephanie R; Sekar, Satya M; Lavezzi, Jinny R; O'Meara, Meghan C; Brown, Laura D; Hay, William W; Rozance, Paul J

    2012-10-15

    Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene activation following sustained hypoglycemia to determine whether hepatic insulin sensitivity is maintained. Control fetuses (CON), hypoglycemic fetuses induced by maternal insulin infusion for 8 wk (HG), and 8 wk HG fetuses that received an isoglycemic insulin infusion for the final 7 days (HG+INS) were studied. Glucose and insulin concentrations were 60% lower in HG compared with CON fetuses. Insulin was 50% higher in HG+INS compared with CON and four-fold higher compared with HG fetuses. Expression of the hepatic gluconeogenic genes, PCK1, G6PC, FBP1, GLUT2, and PGC1A was increased in the HG and reduced in the HG+INS liver. Expression of the insulin-regulated glycolytic and lipogenic genes, PFKL and FAS, was increased in the HG+INS liver. Total FOXO1 protein expression, a gluconeogenic activator, was 60% higher in the HG liver. Despite low glucose, insulin, and IGF1 concentrations, phosphorylation of AKT and ERK was higher in the HG liver. Thus, a physiological increase in fetal insulin is sufficient for suppression of gluconeogenic genes and activation of glycolytic and lipogenic genes in the HG fetal liver. These results demonstrate that fetuses exposed to sustained hypoglycemia have maintained hepatic insulin action in contrast to fetuses exposed to placental insufficiency.

  16. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice

    PubMed Central

    Townsend, Brigitte E.; Johnson, Rodney W.

    2015-01-01

    Increased neuroinflammation and oxidative stress resulting from heightened microglial activation is associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. PMID:26571201

  17. Interaction between cytokine gene polymorphisms and the effect of physical exercise on clinical and inflammatory parameters in older women: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Aging is associated with chronic low-grade inflammatory activity with an elevation of cytokine levels. An association between regular physical activity and reduction of blood levels of anti-inflammatory cytokines is demonstrated in the literature pointing to an anti-inflammatory effect related to exercise. However, there is no consensus regarding which type of exercise and which parameters are the most appropriate to influence inflammatory markers. Evidence indicates that the single nucleotide polymorphism (SNP) can influence the synthesis of those cytokines affecting their production. Methods/Design The design of this study is a randomized controlled trial. The aim of this study is to investigate the interaction between the cytokine genes SNP and the effect of physical activity on older women. The main outcomes are: serum levels of sTNFR-1, sTNFR-2, interleukin (IL)-6, IL-10, measured by the ELISA method; genotyping of tumor necrosis factor- (TNF)-alpha (rs1800629), IL6 (rs1800795), IL10 (rs1800896) by the TaqMan Method (Applied Biosystems, Foster City, CA, USA); and physical performance assessed by Timed Up and Go and 10-Meter Walk Tests. Secondary outcomes include: Geriatric Depression Scale, Perceived Stress Scaleand aerobic capacity, assessed by the six-minute walk; and lower limb muscle strength, using an isokinetic dinamometer (Biodex Medical Systems, Inc., Shirley, NY,USA). Both exercise protocols will be performed three times a week for 10 weeks, 30 sessions in total. Discussion Investigating the interaction between genetic factors and exercise effects of both protocols of exercise on the levels of inflammatory cytokine levels can contribute to guide clinical practice related to treatment and prevention of functional changes due to chronic inflammatory activity in older adults. This approach could develop new perspectives on preventive and treatment proposals in physical therapy and in the management of the older patient. Trial registration

  18. Anti-inflammatory glucocorticoids: changing concepts.

    PubMed

    Newton, Robert

    2014-02-05

    Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of κBα (NFKBIA) inhibits NF-κB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Gαq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by β2-adrenoceptor agonists and may explain the enhanced clinical efficacy of β2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid

  19. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells.

    PubMed

    Badiei, Alireza; Rivers-Auty, Jack; Ang, Abel Damien; Bhatia, Madhav

    2013-09-01

    Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.

  20. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities.

    PubMed

    Gorgoglione, Bartolomeo; Wang, Tiehui; Secombes, Christopher J; Holland, Jason W

    2013-07-16

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate/inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell/antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.

  1. Colostrum whey down-regulates the expression of early and late inflammatory response genes induced by Escherichia coli and Salmonella enterica Typhimurium components in intestinal epithelial cells.

    PubMed

    Blais, M; Fortier, M; Pouliot, Y; Gauthier, S F; Boutin, Y; Asselin, C; Lessard, M

    2015-01-28

    Pathogenic invasion by Escherichia coli and Salmonellae remains a constant threat to the integrity of the intestinal epithelium and can rapidly induce inflammatory responses. At birth, colostrum consumption exerts numerous beneficial effects on the properties of intestinal epithelial cells and protects the gastrointestinal tract of newborns from pathogenic invasion. The present study aimed to investigate the effect of colostrum on the early and late inflammatory responses induced by pathogens. The short-term (2 h) and long-term (24 h) effects of exposure to heat-killed (HK) E. coli and Salmonella enterica Typhimurium on gene expression in the porcine intestinal epithelial cell (IPEC-J2) model were first evaluated by microarray and quantitative PCR analyses. Luciferase assays were performed using a NF-κB-luc reporter construct to investigate the effect of colostrum whey treatment on the activation of NF-κB induced by HK bacteria. Luciferase assays were also performed using NF-κB-luc, IL-8-luc and IL-6-luc reporter constructs in human colon adenocarcinoma Caco-2/15 cells exposed to dose-response stimulations with HK bacteria and colostrum whey. Bovine colostrum whey treatment decreased the expression of early and late inflammatory genes induced by HK bacteria in IPEC-J2, as well as the transcriptional activation of NF-κB-luc induced by HK bacteria. Unlike that with colostrum whey, treatment with other milk fractions failed to decrease the activation of NF-κB-luc induced by HK bacteria. Lastly, the reduction of the HK bacteria-induced activation of NF-κB-luc, IL-8-luc and IL-6-luc by colostrum whey was dose dependent. The results of the present study indicate that bovine colostrum may protect and preserve the integrity of the intestinal mucosal barrier in the host by controlling the expression levels of early and late inflammatory genes following invasion by enteric pathogens.

  2. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities

    PubMed Central

    2013-01-01

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease. PMID:23865616

  3. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  4. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes.

    PubMed

    Wei, Yongjun; Gossing, Michael; Bergenholm, David; Siewers, Verena; Nielsen, Jens

    2017-12-01

    Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0), but CB supply is limited. Therefore, CB-like lipids (CBL, which are composed of POP, POS and SOS) are in great demand. Saccharomyces cerevisiae produces TAGs as storage lipids, which are also mainly composed of C16 and C18 fatty acids. However, POP, POS and SOS are not among the major TAG forms in yeast. TAG synthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT). In order to produce CBL in S. cerevisiae, we selected six cocoa genes encoding GPAT, LPAT and DGAT potentially responsible for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast strains harboring cocoa genes increased 190, 230 and 196% over the control strain, respectively; especially, the potential SOS content of the three yeast strains increased 254, 476 and 354% over the control strain. Moreover, one of the three yeast strains had a 2.25-fold increased TAG content and 6.7-fold higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.

  5. Increased biomass production of industrial bakers' yeasts by overexpression of Hap4 gene.

    PubMed

    Dueñas-Sánchez, Rafael; Codón, Antonio C; Rincón, Ana M; Benítez, Tahía

    2010-10-15

    HAP4 encodes a transcriptional activator of respiration-related genes and so, redirection from fermentation to respiration flux should give rise to an increase in biomass production in Saccharomyces cerevisiae transformants that overexpress HAP4. With this aim, three bakers' yeasts, that is, V1 used for lean doughs, its 2-deoxy-D-glucose resistant derivative DOG21, and V3 employed for sweet doughs, were transformed with integrative cassettes that carried HAP4 gene under the control of constitutive promoter pTEF2; in addition VTH, DTH and 3TH transformants were selected and characterized. Transformants showed increased expression of HAP4 and respiration-related genes such as QCR7 and QCR8 with regard to parental, and similar expression of SUC2 and MAL12; these genes are relevant in bakers' industry. Invertase (Suc2p) and maltase (Mal12p) activities, growth and sugar consumption rates in laboratory (YPD) or industrial media (MAB) were also comparable in bakers' strains and their transformants, but VTH, DTH and 3TH increased their final biomass production by 9.5, 5.0 and 5.0% respectively as compared to their parentals in MAB. Furthermore, V1 and its transformant VTH had comparable capacity to ferment lean doughs (volume increase rate and final volume) while V3 and its transformant 3TH fermented sweet doughs in a similar manner. Therefore transformants possessed increased biomass yield and appropriate characteristics to be employed in bakers' industry because they lacked drug resistant markers and bacterial DNA, and were genetically stable.

  6. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    PubMed Central

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Enquobahrie, Daniel A; Ananth, Cande V; Pacora, Percy N; Salazar, Manuel; Sanchez, Sixto E; Williams, Michelle A

    2016-01-01

    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34-72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genome. PMID:27186326

  7. Cocaine place conditioning increases pro-opiomelanocortin gene expression in rat hypothalamus.

    PubMed

    Zhou, Y; Kruyer, A; Ho, A; Kreek, M J

    2012-11-14

    Recent research suggests an involvement of pro-opiomelanocortin (POMC) gene products in modulating cocaine reward and addiction-like behaviors in rodents. In this study, we investigated whether cocaine-induced conditioned place preference (CPP) alters POMC gene expression in the brain or pituitary of rats. Sprague-Dawley rats were conditioned with 4 injections of 0, 10 or 30 mg/kg cocaine (i.p.) over 8 days and tested 4 days after the last conditioning session. Another group received the same pattern of cocaine injections without conditioning. POMC mRNA levels in the hypothalamus (including arcuate nucleus), amygdala and anterior pituitary, as well as plasma ACTH and corticosterone levels were measured. Cocaine place conditioning at 10 and 30 mg/kg doses increased POMC mRNA levels in a dose-dependent manner in the hypothalamus, with no effect in the amygdala. Cocaine CPP had no effect on POMC mRNA levels in the anterior pituitary or on plasma ACTH or corticosterone levels. In rats that received cocaine at 30 mg/kg without conditioning, there was no such effect on hypothalamic POMC mRNA levels. Alteration of POMC gene expression in the hypothalamus is region-specific after cocaine place conditioning, and dose-dependent. The increased POMC gene expression in the hypothalamus suggests that it is involved in the reward/learning process of cocaine-induced conditioning.

  8. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    PubMed

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  9. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    PubMed Central

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  10. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  11. Extracellular accumulation of potently microbicidal bactericidal/permeability-increasing protein and p15s in an evolving sterile rabbit peritoneal inflammatory exudate.

    PubMed Central

    Weinrauch, Y; Foreman, A; Shu, C; Zarember, K; Levy, O; Elsbach, P; Weiss, J

    1995-01-01

    To what extent the host defense role of granule-associated antibacterial proteins and peptides of PMN includes extracellular action has not been established. To address this question, we have analyzed the antibacterial activity of cell-free (ascitic) fluid (AF) obtained from glycogen-induced sterile inflammatory rabbit peritoneal exudates in which > 95% of the accumulating cells are PMN. AF, but not plasma collected in parallel, exhibits potent activity toward serum-resistant Gram-negative and Gram-positive bacteria. Total and specific antibacterial activity of AF increases during the first 12 h after injection of glycogen in parallel with the influx of PMN. At maximum, > 99% of 10(7) encapsulated Escherichia coli and Staphylococcus aureus are killed in 30 min/ml of AF. Neutralizing antibodies against the bactericidal/permeability-increasing protein (BPI) of PMN abolishes activity of AF toward encapsulated E. coli but has no effect on activity vs staphylococci. However, BPI alone (approximately 1 microgram/ml in AF) can only account for < or = 20% of AF activity toward E. coli. AF also contains 15 kD PMN proteins (p15s) that act in synergy with BPI. Purified BPI and p15s, in amounts present in AF, reconstitute the growth-inhibitory activity of AF toward encapsulated E. coli. These findings show for the first time an extracellular function of endogenous BPI, providing, together with the p15s, a potent microbicidal system toward Gram-negative bacteria resistant to plasma-derived proteins and phagocytes in inflammatory exudates. Images PMID:7706499

  12. Effects of β-d-mannuronic acid, as a novel non-steroidal anti-inflammatory medication within immunosuppressive properties, on IL17, RORγt, IL4 and GATA3 gene expressions in rheumatoid arthritis patients

    PubMed Central

    Barati, Anis; Jamshidi, Ahmad Reza; Ahmadi, Hossein; Aghazadeh, Zahra; Mirshafiey, Abbas

    2017-01-01

    Rheumatoid arthritis (RA) is the most common form of chronic inflammatory arthritis characterized by pain, swelling and destruction of joints, with a resultant disability. Disease-modifying anti-rheumatic drugs (DMARDs) and biological drugs can interfere with the disease process. In this study, the effect of β-d-mannuronic acid (M2000) as a novel non-steroidal anti-inflammatory drug (NSAID) with immunosuppressive and anti-inflammatory effects together with antioxidant effects was evaluated on IL17, RORγt, IL4 and GATA3 gene expression in 12 RA patients. Previously, M2000 driven from sodium alginate (natural product; patented, DEU: 102016113018.4) has shown a notable efficacy in experimental models of multiple sclerosis, RA and nephrotic syndrome. This study was performed on 12 patients with RA who had an inadequate response to conventional treatments. During this trial, patients were permitted to continue the conventional therapy excluding NSAIDs. M2000 was administered orally at a dose of 500 mg twice daily for 12 weeks. The peripheral blood mononuclear cells (PBMCs) were collected before and after treatment to evaluate the expression levels of IL4, GATA3, IL17 and RORγt. The gene expression results showed that M2000 has a potent efficacy, so that it could not only significantly decrease IL17 and RORγt levels but also increase IL4 and GATA3 levels after 12 weeks of treatment. Moreover, the gene expression results were in accordance with the clinical and preclinical assessments. In conclusion, M2000 as a natural novel agent has therapeutic and immunosuppressive properties on RA patients (identifier: IRCT2014011213739N2).

  13. Increased MLL gene rearrangements in amniocytes from fetuses of mothers who smoke.

    PubMed

    de la Chica, Rosa Ana; Mediano, Carmen; Salido, Marta; Espinet, Blanca; Manresa, Josep Maria; Solé, Francesc

    2011-08-01

    We assess the possible genotoxic effect of maternal smoking on amniotic fluid cells, based on the presence of an increasing of structural abnormality of the 11q23 band bearing the MLL gene rearrangements. In this observational and prospective study cultured amniocytes were obtained from 20 control and 20 women who smoke (>10 cigarettes/day for >10 years and during pregnancy). We performed fluorescence in situ hybridization (FISH) analysis in amniocytes. Comparison of FISH data between smoker and control groups showed statistical significance for the MLL gene rearrangements. Epidemiologic studies, including a large series of patients, will be needed to determine whether the offspring of parents who smoke have an increased lifetime risk of leukemia.

  14. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks

    PubMed Central

    Brennan, Gary P.; Dey, Deblina; Chen, Yuncai; Patterson, Katelin P.; Magnetta, Eric J.; Hall, Alicia M.; Dube, Celine M.; Mei, Yu-Tang; Baram, Tallie Z.

    2016-01-01

    Insult-provoked transformation of neuronal networks into epileptic ones involves multiple mechanisms. Intervention studies have identified both dysregulated inflammatory pathways and NRSF-mediated repression of crucial neuronal genes as contributors to epileptogenesis. However, it remains unclear how epilepsy-provoking insults (e.g., prolonged seizures) induce both inflammation and NRSF, and whether common mechanisms exist. We examined miR-124 as a candidate dual regulator of NRSF- and inflammatory-pathways. Status epilepticus (SE) led to reduced miR-124 expression via SIRT1, and in turn MiR-124 repression, via C/EBPα, upregulated NRSF. We tested whether augmenting miR-124 after SE would abort epileptogenesis by preventing inflammation and NRSF upregulation. SE-sustaining animals developed epilepsy but supplementing miR-124 did not modify epileptogenesis. Examining this result further, we found that synthetic miR-124 effectively blocked NRSF upregulation and rescued NRSF target genes, but also augmented microglia activation and inflammatory cytokines. Thus, miR-124 attenuates epileptogenesis via NRSF while promoting epilepsy via inflammation. PMID:26947066

  15. Clostridium difficile-derived membrane vesicles induce the expression of pro-inflammatory cytokine genes and cytotoxicity in colonic epithelial cells in vitro.

    PubMed

    Nicholas, Asiimwe; Jeon, Hyejin; Selasi, Gati Noble; Na, Seok Hyeon; Kwon, Hyo Il; Kim, Yoo Jeong; Choi, Chi Won; Kim, Seung Il; Lee, Je Chul

    2017-03-09

    Clostridium difficile is the most common etiological agent of antibiotic-associated diarrhea in hospitalized and non-hospitalized patients. This study investigated the secretion of membrane vesicles (MVs) from C. difficile and determined the expression of pro-inflammatory cytokine genes and cytotoxicity of C. difficile MVs in epithelial cells in vitro. C. difficile ATCC 43255 and two clinical isolates secreted spherical MVs during in vitro culture. Proteomic analysis revealed that MVs of C. difficile ATCC 43255 contained a total of 262 proteins. Translation-associated proteins were the most commonly identified in C. difficile MVs, whereas TcdA and TcdB toxins were not detected. C. difficile ATCC 43255-derived MVs stimulated the expression of pro-inflammatory cytokine genes, including interleukin (IL)-1β, IL-6, IL-8, and monocyte chemoattractant protein-1 in human colorectal epithelial Caco-2 cells. Moreover, these extracellular vesicles induced cytotoxicity in Caco-2 cells. In conclusion, C. difficile MVs are important nanocomplexes that elicit a pro-inflammatory response and induce cytotoxicity in colonic epithelial cells, which may contribute, along with toxins, to intestinal mucosal injury during C. difficile infection.

  16. A case of Pelizaeus-Merzbacher disease showing increased dosage of the proteolipid protein gene.

    PubMed

    Harding, B; Ellis, D; Malcolm, S

    1995-04-01

    Clinical, neuropathological and molecular genetic studies in a 9 month old boy with Pelizaeus-Merzbacher disease are described. The principal clinical features were developmental delay, nystagmus, stridor and seizures. Both brain and spinal cord showed almost complete absence of stainable central myelin, while cranial and spinal root myelin was preserved. Probes for cDNA in the boy and his asymptomatic mother indicated an increase in the dosage of proteolipid protein gene (of at least twofold) compared with controls.

  17. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  18. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells

    PubMed Central

    Patel, Vishal; Carrion, Katrina; Hollands, Andrew; Hinton, Andrew; Gallegos, Thomas; Dyo, Jeffrey; Sasik, Roman; Leire, Emma; Hardiman, Gary; Mohamed, Salah A.; Nigam, Sanjay; King, Charles C.; Nizet, Victor; Nigam, Vishal

    2015-01-01

    Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.—Patel, V., Carrion, K., Hollands, A., Hinton, A., Gallegos, T., Dyo, J., Sasik, R., Leire, E., Hardiman, G., Mohamed, S. A., Nigam, S., King, C. C., Nizet, V., Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. PMID:25630970

  19. Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection

    PubMed Central

    2014-01-01

    Background There is renewed interest towards understanding the host-pathogen interaction in the light of epigenetic modifications. Although epithelial tissue is the major site for host-pathogen interactions, there is handful of studies to show how epithelial cells respond to pathogens. Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease called mastitis. Globally Staphylococcus aureus is the single largest mastitis pathogen and the infection can ultimately result in either subclinical or chronic and sometimes lifelong infection. Results In the present report we have addressed the differential inflammatory response in mice mammary tissue during intramammary infection and the altered epigenetic context induced by two closely related strains of S. aureus, isolated from field samples. Immunohistochemical and immunoblotting analysis showed strain specific hyperacetylation at histone H3K9 and H3K14 residues. Global gene expression analysis in S. aureus infected mice mammary tissue revealed a selective set of upregulated genes that significantly correlated with the promoter specific, histone H3K14 acetylation. Furthermore, we have identified several differentially expressed known miRNAs and 3 novel miRNAs in S. aureus infected mice mammary tissue by small RNA sequencing. By employing these gene expression data, an attempt has been made to delineate the gene regulatory networks in the strain specific inflammatory response. Apparently, one of the isolates of S. aureus activated the NF-κB signaling leading to drastic inflammatory response and induction of immune surveillance, which could possibly lead to rapid clearance of the pathogen. The other strain repressed most of the inflammatory response, which might help in its sustenance in the host tissue. Conclusion Taken together, our studies shed substantial lights to understand the mechanisms of strain specific differential inflammatory

  20. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD).

    PubMed

    Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong

    2015-01-01

    Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population.

  1. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD)

    PubMed Central

    Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong

    2015-01-01

    Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population. PMID:25755794

  2. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  3. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  4. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  5. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improv