Sample records for increased inflammatory response

  1. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  2. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases

    PubMed Central

    Schenkein, Harvey A.; Loos, Bruno G.

    2015-01-01

    Aims In this paper, inflammatory mechanisms that link periodontal diseases to cardiovascular diseases (CVD) are reviewed. Materials and Methods and Results This paper is a literature review. Studies in the literature implicate a number of possible mechanisms that could be responsible for increased inflammatory responses in atheromatous lesions due to periodontal infections. These include increased systemic levels of inflammatory mediators stimulated by bacteria and their products at sites distant from the oral cavity, elevated thrombotic and hemostatic markers that promote a prothrombotic state and inflammation, cross-reactive systemic antibodies that promote inflammation and interact with the atheroma, promotion of dyslipidemia with consequent increases in proinflammatory lipid classes and subclasses, and common genetic susceptibility factors present in both disease leading to increased inflammatory responses. Conclusions Such mechanisms may be thought to act in concert to increase systemic inflammation in periodontal disease and to promote or exacerbate atherogenesis. However, proof that the increase in systemic inflammation attributable to periodontitis impacts inflammatory responses during atheroma development, thrombotic events, or myocardial infarction or stroke is lacking. PMID:23627334

  3. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    PubMed

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  4. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    PubMed

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response. © 2015 The Author(s).

  5. Growth and Development Symposium: Inflammation: Role in the etiology and pathophysiology of clinical mastitis in dairy cows.

    PubMed

    Ballou, M A

    2012-05-01

    Genetic selection for increased milk production in dairy cattle was not associated with an attenuated inflammatory response. The systemic and local inflammatory responses contribute to altered metabolism, reduced production performance, and increased cull rate of lactating dairy cows with clinical mastitis. More aggressive inflammatory responses were observed during the peripartum period when compared with cows in late lactation after an intramammary challenge with purified lipopolysaccharide. The epidemiology of clinical mastitis indicates that the greatest incidence is observed during the peripartum period; therefore, an enhanced inflammatory response with concomitant suppression in other immune responses may be involved in the etiology and severity of the clinical mastitis observed in peripartum cows. Milk production losses and compositional changes are observed among all mammary quarters from a cow with clinical mastitis, but the responses are more severe and sustained among infected quarters. The infected mammary quarters reflect both the systemic and local reactions, whereas uninfected quarters represent only the systemic response. The systemic effects of the inflammatory response include reduced DMI, hyperthermia, and changes in whole-body nutrient partitioning affecting mammary epithelial substrate availability, whereas local inflammatory effects include energetic requirements of the increased inflammatory leukocyte pool, decreased synthetic capacity of mammary epithelium independent of substrate availability, and paracellular leakage of milk components from the alveolar lumen into the extracellular fluid. Research has focused on improving host immunological defenses, attenuating the inflammatory response, or improving the resolution of the disease state to limit the deleterious effects during clinical mastitis. This paper highlights the role inflammation plays in the etiology and pathophysiology of clinical mastitis as well as potential management strategies to reduce or prevent those losses.

  6. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Olmstead, Richard; Irwin, Michael R; Cole, Steve W

    2007-03-01

    Fatigue is a common problem following cancer treatment and our previous studies suggest that a chronic inflammatory process might contribute to cancer-related fatigue. However, immune responses to challenge have not yet been evaluated among individuals with cancer-related fatigue, and it is not known what mechanisms drive increased levels of inflammatory markers in fatigued cancer survivors. We have previously reported that fatigued breast cancer survivors show a blunted cortisol response to an experimental psychological stressor. In this report, we focus on inflammatory responses to this stressor and their relationship to circulating glucocorticoids and cellular sensitivity to glucocorticoid inhibition. Relative to non-fatigued control survivors, participants experiencing persistent fatigue showed significantly greater increases in LPS-stimulated production of IL-1beta and IL-6 following the stressor (Group x Time interaction: p<.05). Fatigued participants did not show any difference in cellular sensitivity to cortisol inhibition of cytokine production, but they did show significantly less salivary cortisol increase in the aftermath of the stressor. Moreover, blunted cortisol responses were associated with significantly increased production of IL-6 in response to LPS stimulation (p<.05). These data provide further evidence of enhanced inflammatory processes in fatigued breast cancer survivors and suggest that these processes may stem in part from decreased glucocorticoid response to stress.

  7. Extracorporeal membrane oxygenation and cytokine adsorption

    PubMed Central

    Träger, Karl

    2018-01-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions. PMID:29732183

  8. Extracorporeal membrane oxygenation and cytokine adsorption.

    PubMed

    Datzmann, Thomas; Träger, Karl

    2018-03-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions.

  9. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    PubMed

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  10. Leptin does not induce an inflammatory response in the murine placenta.

    PubMed

    Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J

    2014-06-01

    Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms.

    PubMed

    Engler, Harald; Benson, Sven; Wegner, Alexander; Spreitzer, Ingo; Schedlowski, Manfred; Elsenbruch, Sigrid

    2016-02-01

    Impaired mood and increased anxiety represent core symptoms of sickness behavior that are thought to be mediated by pro-inflammatory cytokines. Moreover, excessive inflammation seems to be implicated in the development of mood/affective disorders. Although women are known to mount stronger pro-inflammatory responses during infections and are at higher risk to develop depressive and anxiety disorders compared to men, experimental studies on sex differences in sickness symptoms are scarce. Thus, the present study aimed at comparing physiological and psychological responses to endotoxin administration between men and women. Twenty-eight healthy volunteers (14 men, 14 women) were intravenously injected with a low dose (0.4 ng/kg) of lipopolysaccharide (LPS) and plasma concentrations of cytokines and neuroendocrine factors as well as negative state emotions were measured before and until six hours after LPS administration. Women exhibited a more profound pro-inflammatory response with significantly higher increases in tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, the LPS-induced increase in anti-inflammatory IL-10 was significantly higher in men. The cytokine alterations were accompanied by changes in neuroendocrine factors known to be involved in inflammation regulation. Endotoxin injection induced a significant increase in noradrenaline, without evidence for sex differences. The LPS-induced increase in cortisol was significantly higher in woman, whereas changes in dehydroepiandrosterone were largely comparable. LPS administration also increased secretion of prolactin, but only in women. Despite these profound sex differences in inflammatory and neuroendocrine responses, men and women did not differ in endotoxin-induced alterations in mood and state anxiety or non-specific sickness symptoms. This suggests that compensatory mechanisms exist that counteract the more pronounced inflammatory response in women, preventing an exaggerated sickness response. Disturbance of these compensatory mechanisms by environmental factors such as stress may promote the development of affective disorders in women. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xinchun; Kong, Delian; Wang, Jun

    Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less

  13. Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells.

    PubMed

    Contreras, G A; Raphael, W; Mattmiller, S A; Gandy, J; Sordillo, L M

    2012-09-01

    Intense lipid mobilization during the transition period in dairy cows is associated with increased disease susceptibility. The potential impact of altered plasma nonesterified fatty acids (NEFA) concentrations and composition on host inflammatory responses that may contribute to disease incidence and severity are not known. The objective of this study was to evaluate if increased NEFA concentrations could modify vascular inflammatory responses in vitro by changing the expression of important inflammatory mediators that are important in the pathogenesis of infectious diseases of transition cows such as mastitis and metritis. Bovine aortic endothelial cells (BAEC) were cultured with different concentrations of a NEFA mixture that reflected the plasma NEFA composition during different stages of lactation. The expression of cytokines, adhesion molecules, and eicosanoids were measured to assess changes in BAEC inflammatory phenotype. Addition of NEFA mixtures altered the fatty acid profile of BAEC by increasing the concentration of stearic acid (C18:0) and decreasing the content of arachidonic acid (C20:4n6c) and other long-chain polyunsaturated fatty acids in the phospholipid fraction. A significant increase also occurred in mRNA expression of cytokine and adhesion molecules that are associated with increased inflammatory responses during the transition period. Expression of cyclooxygenase 2, an important enzyme associated with eicosanoid biosynthesis, was increased in a NEFA concentration-dependent manner. The production of linoleic acid-derived eicosanoids 9- and 13-hydroxyoctadecadienoic acids also was increased significantly after treatment with NEFA mixtures. This research described for the first time specific changes in vascular inflammatory response during in vitro exposure to NEFA mixtures that mimic the composition and concentration found in cows during the transition period. These findings could explain, in part, alterations in inflammatory responses observed during intense lipid mobilization stages such as in the transition period of dairy cows. Future studies should analyze specific mechanisms by which high NEFA concentrations induce a vascular proinflammatory phenotype including the effect of 9 and 13-hydroxyoctadecadienoic acids and other lipid mediators. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells

    PubMed Central

    Fraccaroli, Laura; Alfieri, Julio; Larocca, Luciana; Calafat, Mario; Roca, Valeria; Lombardi, Eduardo; Ramhorst, Rosanna; Leirós, Claudia Pérez

    2009-01-01

    Background and purpose Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. Experimental approach We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. Key results Swan 71 cells express VPAC1 receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor β expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. Conclusions and implications Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens. PMID:19133995

  15. Time-of-Day Dictates Transcriptional Inflammatory Responses to Cytotoxic Chemotherapy

    PubMed Central

    Borniger, Jeremy C.; Walker II, William H.; Gaudier-Diaz, Monica M.; Stegman, Curtis J.; Zhang, Ning; Hollyfield, Jennifer L.; Nelson, Randy J.; DeVries, A. Courtney

    2017-01-01

    Many cytotoxic chemotherapeutics elicit a proinflammatory response which is often associated with chemotherapy-induced behavioral alterations. The immune system is under circadian influence; time-of-day may alter inflammatory responses to chemotherapeutics. We tested this hypothesis by administering cyclophosphamide and doxorubicin (Cyclo/Dox), a common treatment for breast cancer, to female BALB/c mice near the beginning of the light or dark phase. Mice were injected intravenously with Cyclo/Dox or the vehicle two hours after lights on (zeitgeber time (ZT2), or two hours after lights off (ZT14). Tissue was collected 1, 3, 9, and 24 hours later. Mice injected with Cyclo/Dox at ZT2 lost more body mass than mice injected at ZT14. Cyclo/Dox injected at ZT2 increased the expression of several pro-inflammatory genes within the spleen; this was not evident among mice treated at ZT14. Transcription of enzymes within the liver responsible for converting Cyclo/Dox into their toxic metabolites increased among mice injected at ZT2; furthermore, transcription of these enzymes correlated with splenic pro-inflammatory gene expression when treatment occurred at ZT2 but not ZT14. The pattern was reversed in the brain; pro-inflammatory gene expression increased among mice injected at ZT14. These data suggest that inflammatory responses to chemotherapy depend on time-of-day and are tissue specific. PMID:28117419

  16. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators.

    PubMed

    Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima

    2015-10-01

    Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.

  17. FBXW7 protein has dual-role as tumor suppressor and inflammatory pathway inhibitor | Center for Cancer Research

    Cancer.gov

    Toll-like receptors (TLRs) are largely responsible for inducing innate immune responses to infection. TLR4 binds lipopolysaccharide (LPS) from Gram-negative bacteria and initiates a signaling pathway to activate inflammatory responses. TLR4 plays a role in diseases such as sepsis and chronic inflammatory disorders. In tumor cells, TLR4 is involved in dampening immune surveillance, and increasing proliferation, inflammatory cytokine production, and invasive migration. Determining how TLR4 expression and signaling is regulated may enable these adverse conditions to be better managed.

  18. Abdominal adiposity is the main determinant of the C-reactive response to injury in subjects undergoing inguinal hernia repair

    PubMed Central

    2013-01-01

    Background Obesity and serum C-reactive protein (CRP) (a sensitive marker of inflammatory activity) are associated with most chronic diseases. Abdominal adiposity along with age is the strongest determinant of baseline CRP levels in healthy subjects. The mechanism of the association of serum CRP with disease is uncertain. We hypothesized that baseline serum CRP is a marker of inflammatory responsiveness to injury and that abdominal adiposity is the main determinant of this responsiveness. We studied the effect of abdominal adiposity, age and other environmental risk factors for chronic disease on the CRP response to a standardised surgical insult, unilateral hernia repair to not only test this hypothesis but to inform the factors which must be taken into account when assessing systemic inflammatory responses to surgery. Methods 102 male subjects aged 24-94 underwent unilateral hernia repair by a single operator. CRP was measured at 0, 6, 24 and 48 hrs. Response was defined as the peak CRP adjusted for baseline CRP. Results Age and waist:hip ratio (WHR) were associated both with basal CRP and CRP response with similar effect sizes after adjustment for a wide-range of covariates. The adjusted proportional difference in CRP response per 10% increase in WHR was 1.50 (1.17-1.91) p = 0.0014 and 1.15(1.00-1.31) p = 0.05 per decade increase in age. There was no evidence of important effects of other environmental cardiovascular risk factors on CRP response. Conclusion Waist:hip ratio and age need to be considered when studying the inflammatory response to surgery. The finding that age and waist:hip ratio influence baseline and post-operative CRP levels to a similar extent suggests that baseline CRP is a measure of inflammatory responsiveness to casual stimuli and that higher age and obesity modulate the generic excitability of the inflammatory system leading to both higher baseline CRP and higher CRP response to surgery. The mechanism for the association of baseline CRP and waist:hip ratio to chronic disease outcomes could be through this increase in inflammatory system excitability. PMID:23391158

  19. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice.

    PubMed

    Penas, Federico Nicolás; Carta, Davide; Dmytrenko, Ganna; Mirkin, Gerado A; Modenutti, Carlos Pablo; Cevey, Ágata Carolina; Rada, Maria Jimena; Ferlin, Maria Grazia; Sales, María Elena; Goren, Nora Beatriz

    2017-01-01

    Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP 24 , using virtual docking. Also, we showed that early treatment with HP 24 , decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi -infected mice. Moreover, HP 24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi -infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

  20. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae.

    PubMed

    Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B

    2018-01-01

    It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  1. Amniotic Fluid Protein Profiles of Intraamniotic Inflammatory Response to Ureaplasma spp. and Other Bacteria

    PubMed Central

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M.; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    Objective This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. Methods A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. Results The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. Conclusions The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria. PMID:23555967

  2. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    PubMed

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  3. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response.

    PubMed

    Thevenot, Paul T; Nair, Ashwin M; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping

    2010-05-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. The Effect of Incorporation of SDF-1α into PLGA Scaffolds on Stem Cell Recruitment and the Inflammatory Response

    PubMed Central

    Thevenot, Paul; Nair, Ashwin; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng Yu; Tang, Liping

    2010-01-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1α through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. PMID:20185171

  5. Postpartum Circulating Markers of Inflammation and the Systemic Acute-Phase Response After Early-Onset Preeclampsia.

    PubMed

    van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie

    2016-02-01

    Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (P<0.05) and IL-8 (P<0.01) responses to T-cell activation. Hierarchical clustering revealed 2 distinct inflammatory clusters associated with previous preeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers. © 2015 American Heart Association, Inc.

  6. Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain

    PubMed Central

    Hwang, Young Sang; Shin, Ji-Hun; Yang, Jung-Pyo; Jung, Bong-Kwang; Lee, Sang Hyung; Shin, Eun-Hee

    2018-01-01

    To examine the immune environment of chronic Toxoplasma gondii infection in the brain, the characteristics of infection-immunity (premunition) in infection with T. gondii strain ME49 were investigated for 12 weeks postinfection (PI). The results showed that neuronal cell death, microglia infiltration and activation, inflammatory and anti-inflammatory cytokine expression, Stat1 phosphorylation, and microglia activation and inflammatory gene transcripts related to M1 polarization in the brain were increased during the acute infection (AI) stage (within 6 weeks PI), suggesting that innate and cellular inflammatory response activation and neurodegeneration contributed to excessive inflammatory responses. However, these immune responses decreased during the chronic infection (CI) stage (over 6 weeks PI) with reductions in phosphorylated STAT1 (pSTAT1) and eosinophilic neurons. Notably, increases were observed in transcripts of T-cell exhaustion markers (TIM3, LAG3, KLRG1, etc.), suppressor of cytokines signaling 1 protein (SOCS1), inhibitory checkpoint molecules (PD-1 and PD-L1), and Arg1 from the AI stage (3 weeks PI), implying active immune intervention under the immune environment of M1 polarization of microglia and increases in inflammatory cytokine levels. However, when BV-2 microglia were stimulated with T. gondii lysate antigens (strain RH or ME49) in vitro, nitrite production increased and urea production decreased. Furthermore, when BV-2 cells were infected by T. gondii tachyzoites (strain RH or ME49) in vitro, nitric oxide synthase and COX-2 levels decreased, whereas Arg1 levels significantly increased. Moreover, Arg1 expression was higher in ME49 infection than in RH infection, whereas nitrite production was lower in ME49 infection than in RH infection. Accordingly, these results strongly suggest that immune triggering of T. gondii antigens induces M1 polarization and activation of microglia as well as increase NO production, whereas T. gondii infection induces the inhibition of harmful inflammatory responses, even with M1 polarization and activation of microglia and Th1 inflammatory responses, suggesting a host–parasite relationship through immune regulation during CI. This is a characteristic of infection immunity in infection with T. gondii in the central nervous system, and SOCS1, a negative regulator of toxoplasmic encephalitis, may play a role in the increase in Arg1 levels to suppress NO production. PMID:29459868

  7. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Increased lung inflammation with oxygen supplementation in tracheotomized spontaneously breathing rabbits: an experimental prospective randomized study.

    PubMed

    Machado, Humberto S; Nunes, Catarina S; Sá, Paula; Couceiro, Antonio; da Silva, Álvaro Moreira; Águas, Artur

    2014-01-01

    Mechanical ventilation is a well-known trigger for lung inflammation. Research focuses on tidal volume reduction to prevent ventilator-induced lung injury. Mechanical ventilation is usually applied with higher than physiological oxygen fractions. The purpose of this study was to investigate the after effect of oxygen supplementation during a spontaneous ventilation set up, in order to avoid the inflammatory response linked to mechanical ventilation. A prospective randomised study using New Zealand rabbits in a university research laboratory was carried out. Rabbits (n = 20) were randomly assigned to 4 groups (n = 5 each group). Groups 1 and 2 were submitted to 0.5 L/min oxygen supplementation, for 20 or 75 minutes, respectively; groups 3 and 4 were left at room air for 20 or 75 minutes. Ketamine/xylazine was administered for induction and maintenance of anaesthesia. Lungs were obtained for histological examination in light microscopy. All animals survived the complete experiment. Procedure duration did not influence the degree of inflammatory response. The hyperoxic environment was confirmed by blood gas analyses in animals that were subjected to oxygen supplementation, and was accompanied with lower mean respiratory rates. The non-oxygen supplemented group had lower mean oxygen arterial partial pressures and higher mean respiratory rates during the procedure. All animals showed some inflammatory lung response. However, rabbits submitted to oxygen supplementation showed significant more lung inflammation (Odds ratio = 16), characterized by more infiltrates and with higher cell counts; the acute inflammatory response cells was mainly constituted by eosinophils and neutrophils, with a relative proportion of 80 to 20% respectively. This cellular observation in lung tissue did not correlate with a similar increase in peripheral blood analysis. Oxygen supplementation in spontaneous breathing is associated with an increased inflammatory response when compared to breathing normal room air. This inflammatory response was mainly constituted with polymorphonuclear cells (eosinophils and neutrophils). As confirmed in all animals by peripheral blood analyses, the eosinophilic inflammatory response was a local organ event.

  9. Inflammatory Bowel Disease in Primary Immunodeficiencies.

    PubMed

    Kelsen, Judith R; Sullivan, Kathleen E

    2017-08-01

    Inflammatory bowel disease is most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. There is, however, increasing recognition of single gene defects that underlie a subset of patients with inflammatory bowel disease, particularly those with early-onset disease, and this review focuses on the primary immunodeficiencies associated with early-onset inflammatory bowel disease. The advent of next-generation sequencing has led to an improved recognition of single gene defects underlying some cases of inflammatory bowel disease. Among single gene defects, immune response genes are the most frequent category identified. This is also true of common genetic variants associated with inflammatory bowel disease, supporting a pivotal role for host responses in the pathogenesis. This review focuses on practical aspects related to diagnosis and management of children with inflammatory bowel disease who have underlying primary immunodeficiencies.

  10. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration.

    PubMed

    Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.

  11. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    PubMed Central

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  12. Neuro-inflammatory response in rats chronically exposed to (137)Cesium.

    PubMed

    Lestaevel, Philippe; Grandcolas, Line; Paquet, François; Voisin, Philippe; Aigueperse, Jocelyne; Gourmelon, Patrick

    2008-03-01

    After the Chernobyl nuclear accident, behavioural disorders and central nervous system diseases were frequently observed in populations living in the areas contaminated by (137)Cs. Until now, these neurological disturbances were not elucidated, but the presence of a neuro-inflammatory response could be one explanation. Rats were exposed for 3 months to drinking water contaminated with (137)Cs at a dose of 400Bqkg(-1), which is similar to that ingested by the population living in contaminated areas in the former USSR countries. Pro-inflammatory and anti-inflammatory cytokine genes were assessed by real-time PCR in the frontal cortex and the hippocampus. At this level of exposure, gene expression of TNF-alpha and IL-6 increased in the hippocampus and gene expression of IL-10 increased in the frontal cortex. Concentration of TNF-alpha, measured by ELISA assays, was also increased in the hippocampus. The central NO-ergic pathway was also studied: iNOS gene expression and cNOS activity were significantly increased in the hippocampus. In conclusion, this study showed for the first time that sub-chronic exposure with post-accidental doses of (137)Cs leads to molecular modifications of pro- and anti-inflammatory cytokines and NO-ergic pathway in the brain. This neuro-inflammatory response could contribute to the electrophysiological and biochemical alterations observed after chronic exposure to (137)Cs.

  13. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality.

    PubMed

    Osuchowski, Marcin F; Welch, Kathy; Siddiqui, Javed; Remick, Daniel G

    2006-08-01

    Mortality in sepsis remains unacceptably high and attempts to modulate the inflammatory response failed to improve survival. Previous reports postulated that the sepsis-triggered immunological cascade is multimodal: initial systemic inflammatory response syndrome (SIRS; excessive pro-, but no/low anti-inflammatory plasma mediators), intermediate homeostasis with a mixed anti-inflammatory response syndrome (MARS; both pro- and anti-inflammatory mediators) and final compensatory anti-inflammatory response syndrome (CARS; excessive anti-, but no/low proinflammatory mediators). To verify this, we examined the evolution of the inflammatory response during the early phase of murine sepsis by repetitive blood sampling of septic animals. Increased plasma concentrations of proinflammatory (IL-6, TNF, IL-1beta, KC, MIP-2, MCP-1, and eotaxin) and anti-inflammatory (TNF soluble receptors, IL-10, IL-1 receptor antagonist) cytokines were observed in early deaths (days 1-5). These elevations occurred simultaneously for both the pro- and anti-inflammatory mediators. Plasma levels of IL-6 (26 ng/ml), TNF-alpha (12 ng/ml), KC (33 ng/ml), MIP-2 (14 ng/ml), IL-1 receptor antagonist (65 ng/ml), TNF soluble receptor I (3 ng/ml), and TNF soluble receptor II (14 ng/ml) accurately predicted mortality within 24 h. In contrast, these parameters were not elevated in either the late-deaths (day 6-28) or survivors. Surprisingly, either pro- or anti-inflammatory cytokines were also reliable in predicting mortality up to 48 h before outcome. These data demonstrate that the initial inflammatory response directly correlates to early but not late sepsis mortality. This multifaceted response questions the use of a simple proinflammatory cytokine measurement for classifying the inflammatory status during sepsis.

  14. High-intensity interval training induces a modest systemic inflammatory response in active, young men

    PubMed Central

    Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew

    2014-01-01

    The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199

  15. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  16. Glycogen synthase kinase-3β (GSK3β) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice

    PubMed Central

    Zhang, Ping; Katz, Jenny; Michalek, Suzanne M.

    2011-01-01

    Francisella tularensis, the causative agent of tularemia, is currently considered a category A bioterrorism agent due to its high virulence. Infection with F. tularensis results in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms regulating this response are poorly understood. Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that has recently emerged as a key regulatory switch in the modulation of the inflammatory response. In this study, we investigated the effect of GSK3β inhibition in regulating F. tularensis LVS-induced inflammatory responses. F. tularensis LVS infection of murine peritoneal macrophages induced a TLR2 dependent phosphorylation of GSK3β. Inhibition of GSK3β resulted in a significant decrease in the production of pro-inflammatory cytokine IL-6, IL-12p40 and TNF-α, as well as a significant increase in the production of the anti-inflammatory cytokine IL-10. GSK3β regulated the F. tularensis LVS-induced cytokine response by differentially affecting the activation of transcription factors NF-κB and CREB. Inhibition of GSK3β by lithium in vivo suppressed the inflammatory response in mice infected with F. tularensis LVS and conferred a survival advantage. In addition, we show that the production of IFN-γ contributed to the development of tularemia and to the fatal outcome of the infected animals, depending on the timing and the relative level of the IFN-γ produced. IFN-γ potentiated F. tularensis LVS-induced cytokine production by increasing GSK3β activity and the nuclear translocation of NF-κB. Taken together, these results demonstrate a regulatory function of GSK3β in modulating inflammatory responses that can be detrimental to the host during an F. tularensis LVS infection, and suggest that inhibition of GSK3β may represent a novel therapeutic approach in the treatment of tularemia. PMID:18929413

  17. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  18. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts.

    PubMed

    Sundar, Isaac K; Javed, Fawad; Romanos, Georgios E; Rahman, Irfan

    2016-11-22

    Electronic-cigarettes (e-cigs) represent a significant and increasing proportion of tobacco product consumption, which may pose an oral health concern. Oxidative/carbonyl stress via protein carbonylation is an important factor in causing inflammation and DNA damage. This results in stress-induced premature senescence (a state of irreversible growth arrest which re-enforces chronic inflammation) in gingival epithelium, which may contribute to the pathogenesis of oral diseases. We show that e-cigs with flavorings cause increased oxidative/carbonyl stress and inflammatory cytokine release in human periodontal ligament fibroblasts, Human Gingival Epithelium Progenitors pooled (HGEPp), and epigingival 3D epithelium. We further show increased levels of prostaglandin-E2 and cycloxygenase-2 are associated with upregulation of the receptor for advanced glycation end products (RAGE) by e-cig exposure-mediated carbonyl stress in gingival epithelium/tissue. Further, e-cigs cause increased oxidative/carbonyl and inflammatory responses, and DNA damage along with histone deacetylase 2 (HDAC2) reduction via RAGE-dependent mechanisms in gingival epithelium. A greater response is elicited by flavored e-cigs. Increased oxidative stress, pro-inflammatory and pro-senescence responses (DNA damage and HDAC2 reduction) can result in dysregulated repair due to proinflammatory and pro-senescence responses in periodontal cells. These data highlight the pathologic role of e-cig aerosol and its flavoring to cells and tissues of the oral cavity in compromised oral health.

  19. Lactobacillus acidophilus alleviates the inflammatory response to enterotoxigenic Escherichia coli K88 via inhibition of the NF-κB and p38 mitogen-activated protein kinase signaling pathways in piglets.

    PubMed

    Li, Haihua; Zhang, Lei; Chen, Longbin; Zhu, Qi; Wang, Wenjie; Qiao, Jiayun

    2016-11-10

    A newly isolated L. acidophilus strain has been reported to have potential anti-inflammatory activities against lipopolysaccharide (LPS) challenge in piglet, while the details of the related inflammatory responses are limited. Here we aimed to analysis the ability of L. acidophilus to regulate inflammatory responses and to elucidate the mechanisms involved in its anti-inflammatory activity. The ETEC (enterotoxigenic Escherichia coli) K88-induced up-regulations of IL-1β, IL-8 and TNF-α were obviously inhibited by L. acidophilus while IL-10 was significantly increased. Moreover, L. acidophilus down-regulated pattern recognition receptors TLR (Toll-like receptor) 2 and TLR4 expression in both spleen and mesenteric lymph nodes of ETEC-challenged piglets, in accompanied with the reduced phosphorylation levels of nuclear factor kappa B (NF-κB) p65 and mitogen-activated protein kinase (MAPK) p38 as well in spleen of ETEC-infected piglets. Furthermore, L.acidophilus significantly increased the expression of the negative regulators of TLRs signaling, including Tollip, IRAK-M, A20 and Bcl-3 in spleen of ETEC-challenged piglets. Our findings suggested that L. acidophilus regulated inflammatory response to ETEC via impairing both NF-κB and MAPK signaling pathways in piglets.

  20. Class II obese and healthy pregnant controls exhibit indistinguishable pro‐ and anti‐inflammatory immune responses to Caesarian section

    PubMed Central

    Graham, Caroline; Thorleifson, Mullein; Stefura, William P.; Funk, Duane J.

    2017-01-01

    Abstract Introduction Obesity during pregnancy is associated with meta‐inflammation and an increased likelihood of clinical complications. Surgery results in intense, acute inflammatory responses in any individual. Because obese individuals exhibit constitutive inflammatory responses and high rates of Caesarian section, it is important to understand the impact of surgery in such populations. Whether more pronounced pro‐inflammatory cytokine responses and/or counterbalancing changes in anti‐inflammatory immune modulators occurs is unknown. Here we investigated innate immune capacity in vivo and in vitro in non‐obese, term‐pregnant controls versus healthy, term‐pregnant obese women (Class II, BMI 35–40). Methods Systemic in vivo induction of eleven pro‐ and anti‐inflammatory biomarkers and acute phase proteins was assessed in plasma immediately prior to and again following Caesarian section surgery. Independently, innate immune capacity was examined by stimulating freshly isolated PBMC in vitro with a panel of defined PRR‐ligands for TLR4, TLR8, TLR3, and RLR 24 h post‐surgery. Results The kinetics and magnitude of the in vivo inflammatory responses examined were indistinguishable in the two populations across the broad range of biomarkers examined, despite the fact that obese women had higher baseline inflammatory status. Deliberate in vitro stimulation with a range of PRR ligands also elicited pro‐ and anti‐inflammatory cytokine responses that were indistinguishable between control and obese mothers. Conclusions Acute in vivo innate immune responses to C‐section, as well as subsequent in vitro stimulation with a panel of microbial mimics, are not detectably altered in Class II obese women. The data argue that while Class II obesity is undesirable, it has minimal impact on the in vivo inflammatory response, or innate immunomodulatory capacity, in women selecting C‐section. PMID:28544689

  1. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    PubMed

    Coudriet, Gina M; He, Jing; Trucco, Massimo; Mars, Wendy M; Piganelli, Jon D

    2010-11-02

    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  2. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases.

    PubMed

    Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva

    2018-01-01

    In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4 + T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4 + T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration.

  3. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases

    PubMed Central

    Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva

    2018-01-01

    In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4+T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4+T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration. PMID:29755324

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less

  5. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.

  6. Differences in pulmonary biochemical and inflammatory responses of rats and guinea pigs resulting from daytime or nighttime, single and repeated exposure to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bree, L.; Marra, M.; Rombout, P.J.

    1992-10-01

    Rats and guinea pigs were exposed to 0.8 mg ozone (O3)/m3 (approximately 0.4 ppm) for 12 hr during the daytime, 12 hr during the nighttime, or continuously to investigate circadian variation in O3-induced pulmonary toxicity during single and repeated O3 exposures. Biomarkers in bronchoalveolar lavage (BAL) fluid and lung tissues were measured as indicators of biochemical and inflammatory responses. Nighttime O3 exposure of rats resulted in larger increases of protein, albumin, and inflammatory cells in BAL fluid compared to those after daytime O3 exposure and this daytime-nighttime difference was statistically significant (p < 0.05). Single daytime or nighttime O3 exposuremore » of guinea pigs resulted in comparable increases of BAL fluid proteins and inflammatory cells without a daytime-nighttime difference. Nighttime and continuous O3 exposure of rats for 3 days resulted in comparable increases in lung antioxidant enzyme activities, both of which differed statistically from effects from daytime O3 exposures (p < 0.05). Continuous O3 exposure of guinea pigs for 3 days caused, in general, statistically larger increases in lung tissue parameters compared to nighttime O3 exposures (p < 0.05). These results suggest that the extent of O3-induced acute pulmonary biochemical and inflammatory responses is directly related to the level of physical and respiratory activity. For rats, effects from continuous O3 exposure appear to be controlled by the nighttime, physically active period. In guinea pigs, the comparable responses following daytime or nighttime O3 exposure seem in accordance with their random behavioral daily activity pattern. This study supports the view that physical activity-related increases in inhaled dose significantly enhance the pulmonary O3 responses.« less

  7. Adverse early life environment increases hippocampal microglia abundance in conjunction with decreased neural stem cells in juvenile mice.

    PubMed

    Cohen, Susan; Ke, Xingrao; Liu, Qiuli; Fu, Qi; Majnik, Amber; Lane, Robert

    2016-12-01

    Adverse maternal lifestyle resulting in adverse early life environment (AELE) increases risks for neuropsychiatric disorders in offspring. Neuropsychiatric disorders are associated with impaired neurogenesis and neuro-inflammation in the hippocampus (HP). Microglia are neuro-inflammatory cells in the brain that regulate neurogenesis via toll-like receptors (TLR). TLR-9 is implicated in neurogenesis inhibition and is responsible for stress-related inflammatory responses. We hypothesized that AELE would increase microglia cell count and increase TLR-9 expression in juvenile mouse HP. These increases in microglia cell count and TLR-9 expression would be associated with decrease neural stem cell count and neuronal cell count. We developed a mouse model of AELE combining Western diet and a stress environment. Stress environment consisted of random change from embryonic day 13 (E13) to E17 as well as static change in maternal environment from E13 to postnatal day 21(P21). At P21, we measured hippocampal cell numbers of microglia, neural stem cell and neuron, as well as hippocampal TLR-9 expression. AELE significantly increased total microglia number and TLR-9 expression in the hippocampus. Concurrently, AELE significantly decreased neural stem cell and neuronal numbers. AELE increased the neuro-inflammatory cellular response in the juvenile HP. We speculate that increased neuro-inflammatory responses may contribute to impaired neurogenesis seen in this model. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Effect of Insulin Therapy using Hyper-insulinemic Normoglycemic Clamp on Inflammatory Response in Brain Dead Organ Donors.

    PubMed

    Aljiffry, M; Hassanain, M; Schricker, T; Shaheen, M; Nouh, T; Lattermann, R; Salman, A; Wykes, L; Metrakos, P

    2016-05-01

    Brain death is a major stress that is associated with a massive inflammatory response and systemic hyperglycemia. Severe inflammation leads to increased graft immunogenicity and risk of graft dysfunction; while acute hyperglycemia aggravates the inflammatory response and increases the risk of morbidity and mortality. Insulin therapy not only controls hyperglycemia but also suppresses inflammation. The present study is to investigate the anti-inflammatory properties and the normoglycemia maintenance of high dose insulin on brain dead organ donors. 15 brain dead organ donors were divided into 2 groups, insulin treated (n=6) and controls (n=9). Insulin was provided for a minimum of 6 h using the hyperinsulinemic normoglycemic clamp technique. The changes of serum cytokines, including IL-6, IL-10, IL-1β, IL-8, TNFα, TGFα and MCP-1, were measured by suspension bead array immunoassay and glucose by a glucose monitor. Compared to controls, insulin treated donors had a significant lower blood glucose 4.8 (4-6.9) vs. 9 (5.6-11.7) mmol/L, p<0.01); the net decreases of pro-inflammatory cytokines, such as IL-6 and MCP-1, and the net increase of anti-inflammatory cytokine, such as IL-10, reached significant level in insulin treated donors compared with those in controls. High dose insulin therapy decreases the concentrations of inflammatory cytokines in brain dead donors and preserves normoglycemia. High dose of insulin may have anti-inflammatory effects in brain dead organ donors and therefore, improve the quality of donor organs and potentially improve outcomes. © Georg Thieme Verlag KG Stuttgart · New York.

  9. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads.

    PubMed

    Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari

    2017-09-15

    Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.

  10. Inflammatory Mechanisms and Oxidative Stress as Key Factors Responsible for Progression of Neurodegeneration: Role of Brain Innate Immune System.

    PubMed

    Leszek, Jerzy; Barreto, George E; Gąsiorowski, Kazimierz; Koutsouraki, Euphrosyni; Ávila-Rodrigues, Marco; Aliev, Gjumrakch

    2016-01-01

    Chronic inflammation is characterized by longstanding microglial activation followed by sustained release of inflammatory mediators, which aid in enhanced nitrosative and oxidative stress. The sustained release of inflammatory mediators propels the inflammatory cycle by increased microglial activation, promoting their proliferation and thus stimulating enhanced release of inflammatory factors. Elevated levels of several cytokines and chronic neuroinflammation have been associated with many neurodegenerative disorders of central nervous system like age-related macular degeneration, Alzheimer disease, multiple sclerosis, Parkinson's disease, Huntington' disease, and tauopathies. This review highlights the basic mechanisms of neuroinflammation, the characteristics of neurodegenerative diseases, and the main immunologic responses in CNS neurodegenerative disorders. A comprehensive outline for the crucial role of microglia in neuroinflammation and neurodegeneration and the role of Toll-like receptor signalling in coexistence of inflammatory mechanisms and oxidative stress as major factors responsible for progression of neurodegeneration have also been presented.

  11. Fatigue and gene expression in human leukocytes: increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Irwin, Michael R; Arevalo, Jesusa M G; Cole, Steve W

    2011-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n=11) and non-fatigued controls (n=10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p<.05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    PubMed

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  13. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions?

    PubMed

    Lira-Junior, Ronaldo; Figueredo, Carlos Marcelo

    2016-09-21

    Periodontal disease and inflammatory bowel disease (IBD) are both chronic inflammatory diseases. Their pathogenesis is mediated by a complex interplay between a dysbiotic microbiota and the host immune-inflammatory response, and both are influenced by genetic and environmental factors. This review aimed to provide an overview of the evidence dealing with a possible pathogenic interaction between periodontal disease and IBD. There seems to be an increased prevalence of periodontal disease in patients with IBD when compared to healthy controls, probably due to changes in the oral microbiota and a higher inflammatory response. Moreover, the induction of periodontitis seems to result in gut dysbiosis and altered gut epithelial cell barrier function, which might contribute to the pathogenesis of IBD. Considering the complexity of both periodontal disease and IBD, it is very challenging to understand the possible pathways involved in their coexistence. In conclusion, this review points to a complex pathogenic interaction between periodontal disease and IBD, in which one disease might alter the composition of the microbiota and increase the inflammatory response related to the other. However, we still need more data derived from human studies to confirm results from murine models. Thus, mechanistic studies are definitely warranted to clarify this possible bidirectional association.

  14. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets.

    PubMed

    Götz, Alexander A; Rozman, Jan; Rödel, Heiko G; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Klingenspor, Martin; Stoeger, Tobias

    2011-09-27

    Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested.In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors in HF mice, clearly show diet-specific effects, pointing towards augmented systemic inflammatory conditions. Our data suggest that extended feeding periods, leading to manifest obesity, are necessary to generate an increased susceptibility to particle-induced lung inflammation; although the diet-challenge already was efficient in driving pro-inflammatory systemic events.

  15. A double blind placebo controlled randomized trial of the effect of acute uric acid changes on inflammatory markers in humans: A pilot study

    PubMed Central

    Milaneschi, Yuri; Zhang, Yongqing; Becker, Kevin G.; Zukley, Linda; Ferrucci, Luigi

    2017-01-01

    Uric acid has been linked with increased risk of chronic disease such as cardiovascular disease and this association has been attributed to a pro-inflammatory effect. Indeed, observational studies have shown that high uric acid is associated with high level of pro-inflammatory cytokines in the blood. However, whether high uric acid directly affects inflammation or rather represents a parallel defensive antioxidant mechanism in response to pathology that causes inflammation is unknown. To determine whether acute increase or decrease uric acid levels affects inflammation in healthy individuals, a randomized, placebo-controlled, double blind clinical study of uric acid or rasburicase with 20 healthy volunteers in each treatment-placebo group was conducted at the National Institute on Aging (NIA) Clinical Research Unit (CRU) at Harbor Hospital in Baltimore, MD. Change in inflammatory response was assessed by administering an oral lipid tolerance before and after the treatment of uric acid, rasburicase and placebo. Following uric acid administration, there was an accentuated increase in IL-6 during the oral lipid tolerance test (P<0.001). No significant differences were observed after lowering of uric acid with rasburicase. No side effects were reported throughout the trial. In health individuals, acute increase in uric acid results in an increased IL-6 response when challenged with lipid load. Such effect of amplification of inflammatory response may explain the higher risk of chronic diseases observed in subclinical hyperuricemia in observational studies. Trial Registration: ClinicalTrials.gov NCT01323335 PMID:28786993

  16. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice.

    PubMed

    Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B

    2015-05-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of surgical castration with or without oral meloxicam on the acute inflammatory response in yearling beef bulls

    USDA-ARS?s Scientific Manuscript database

    Pain management and welfare are increasingly prevalent concerns within animal agriculture and oral analgesics may alleviate the pain associated with castration. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunomodulation and whethe...

  18. Effect of surgical castration with or without oral meloxicam on the acute inflammatory response in yearling beef bulls

    USDA-ARS?s Scientific Manuscript database

    Pain management and welfare are increasingly prevalent concerns within animal agriculture. Analgesics may alleviate pain and inflammation associated with castration of beef cattle. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunom...

  19. Effect of surgical castration with or without meloxicam on the acute inflammatory response in yearling beef bulls

    USDA-ARS?s Scientific Manuscript database

    Pain management and welfare are increasingly prevalent concerns within animal agriculture and oral analgesics may alleviate the pain associated with castration. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunomodulation and whethe...

  20. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  1. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  2. Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction.

    PubMed

    Hofmann, R; Tornvall, P; Witt, N; Alfredsson, J; Svensson, L; Jonasson, L; Nilsson, L

    2018-04-01

    Oxygen therapy has been used routinely in normoxemic patients with suspected acute myocardial infarction (AMI) despite limited evidence supporting a beneficial effect. AMI is associated with a systemic inflammation. Here, we hypothesized that the inflammatory response to AMI is potentiated by oxygen therapy. The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) multicentre trial randomized patients with suspected AMI to receive oxygen at 6 L min -1 for 6-12 h or ambient air. For this prespecified subgroup analysis, we recruited patients with confirmed AMI from two sites for evaluation of inflammatory biomarkers at randomization and 5-7 h later. Ninety-two inflammatory biomarkers were analysed using proximity extension assay technology, to evaluate the effect of oxygen on the systemic inflammatory response to AMI. Plasma from 144 AMI patients was analysed whereof 76 (53%) were randomized to oxygen and 68 (47%) to air. Eight biomarkers showed a significant increase, whereas 13 were decreased 5-7 h after randomization. The inflammatory response did not differ between the two treatment groups neither did plasma troponin T levels. After adjustment for increase in troponin T over time, age and sex, the release of inflammation-related biomarkers was still similar in the groups. In a randomized controlled setting of normoxemic patients with AMI, the use of supplemental oxygen did not have any significant impact on the early release of systemic inflammatory markers. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  3. Current views on the mechanisms of immune responses to trauma and infection

    PubMed Central

    Michalak, Grzegorz; Słotwiński, Robert

    2015-01-01

    According to the World Health Organization, post-traumatic mortality rates are still very high and show an increasing tendency. Disorders of innate immune response that may increase the risk of serious complications play a key role in the immunological system response to trauma and infection. The mechanism of these disorders is multifactorial and is still poorly understood. The changing concepts of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) early inflammatory response, presented in this work, have been extended to genetic studies. Overexpression of genes and increased production of immune response mediators are among the main causes of multiple organ dysfunction syndrome (MODS). Changes in gene expression detected early after injury precede the occurrence of subsequent complications with a typical clinical picture. Rapid depletion of energy resources leads to immunosuppression and persistent inflammation and immune suppression catabolism syndrome (PICS). Early diagnosis of immune disorders and appropriate nutritional therapy can significantly reduce the incidence of complications, length of hospital stay, and mortality. The study presents the development of knowledge and current views explaining the mechanisms of the immune response to trauma and infection. PMID:26557036

  4. Sex Differences in Depressive and Socioemotional Responses to an Inflammatory Challenge: Implications for Sex Differences in Depression

    PubMed Central

    Moieni, Mona; Irwin, Michael R; Jevtic, Ivana; Olmstead, Richard; Breen, Elizabeth C; Eisenberger, Naomi I

    2015-01-01

    Substantial evidence demonstrates that inflammatory processes may underlie depression for a subset of patients, including work showing that healthy subjects exposed to an inflammatory challenge show increases in depressed mood and feelings of social disconnection. However, despite the fact that depression is two times as likely to occur in females than males, the vast majority of this work has been carried out in males. Thus, the objective of this study was to determine whether females (vs males) would show greater increases in proinflammatory cytokines, depressed mood, and social disconnection in response to an inflammatory challenge. One hundred and fifteen healthy participants (69 female) completed this double-blind, placebo-controlled, randomized clinical trial in which participants were randomly assigned to receive either a single infusion of low-dose endotoxin (derived from Escherichia coli; 0.8 ng/kg of body weight) or placebo (same volume of 0.9% saline). Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), depressed mood, and feelings of social disconnection were assessed hourly. Results showed that endotoxin (vs placebo) led to increases in proinflammatory cytokines (TNF-α, IL-6), depressed mood, and feelings of social disconnection. Females exposed to endotoxin showed greater increases in depressed mood and feelings of social disconnection. Furthermore, increases in TNF-α and IL-6 were correlated with increases in social disconnection for females but not for males. These sex differences in the relationships between inflammatory and socioemotional responses to an inflammatory challenge may be particularly important for understanding why females are two times as likely as males to develop depressive disorders. PMID:25598426

  5. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes

    PubMed Central

    Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; García, Andrés J.

    2015-01-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  6. Vegetable oil induced inflammatory response by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea).

    PubMed

    Tan, Peng; Dong, Xiaojing; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-12-01

    High level of vegetable oil (VO) in diets could induce strong inflammatory response, and thus decrease nonspecific immunity and disease resistance in most marine fish species. The present study was conducted to investigate whether dietary VO could exert these anti-immunological effects by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea). Three iso-nitrogenous and iso-lipid diets with 0% (FO, fish oil, the control), 50% (FV, fish oil and vegetable oil mixed) and 100% (VO, vegetable oil) vegetable oil were fed to fish with three replicates for ten weeks. The results showed that activities of respiratory burst (RB) and alternative complement pathway (ACP), as well as disease resistance after immune challenge were significantly decreased in large yellow croaker fed VO diets compared to FO diets. Inflammatory response of experimental fish was markedly elevated by VO reflected by increase of pro-inflammatory cytokines (IL1β and TNFα) and decrease of anti-inflammatory cytokine (arginase I and IL10) genes expression. TLR-related genes expression, nucleus p65 protein, IKKα/β and IκBα phosphorylation were all significantly increased in the AT of large yellow croaker fed VO diets. Moreover, the expression of macrophage infiltration marker proteins (cluster of differentiation 68 [CD68] and colony-stimulating factor 1 receptor [CSF1R]) was significantly increased while the expression of anti-inflammatory M2 macrophage polarization marker proteins (macrophage mannose receptor 1 [MRC1] and cluster of differentiation 209 [CD209]) was significantly decreased in the AT of large yellow croaker fed VO diets. In conclusion, VO could induce inflammatory responses by activating TLR-NF-κB signalling, increasing macrophage infiltration into adipose tissue and polarization of macrophage in large yellow croaker. Copyright © 2016. Published by Elsevier Ltd.

  7. Differential Action between Schisandrin A and Schisandrin B in Eliciting an Anti-Inflammatory Action: The Depletion of Reduced Glutathione and the Induction of an Antioxidant Response

    PubMed Central

    Leong, Pou Kuan; Wong, Hoi Shan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Ko, Kam Ming

    2016-01-01

    Schisandrin A (Sch A) and schisandrin B (Sch B) are active components of Schisandrae Fructus. We compared the biochemical mechanism underlying the anti-inflammatory action of Sch A and Sch B, using cultured lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and concanavalin (ConA)-stimulated mouse splenocytes. Pre-incubation with Sch A or Sch B produced an anti-inflammatory action in LPS-stimulated RAW264.7 cells, as evidenced by the inhibition of the pro-inflammatory c-Jun N-terminal kinases/p38 kinase/nuclear factor-κB signaling pathway as well as the suppression of various pro-inflammatory cytokines and effectors, with the extent of inhibition by Sch A being more pronounced. The greater activity of Sch A in anti-inflammatory response was associated with a greater decrease in cellular reduced glutathione (GSH) level and a greater increase in glutathione S-transferase activity than corresponding changes produced by Sch B. However, upon incubation, only Sch B resulted in the activation of the nuclear factor (erythroid-derived 2)-like factor 2 and the induction of a significant increase in the expression of thioredoxin (TRX) in RAW264.7 cells. The Sch B-induced increase in TRX expression was associated with the suppression of pro-inflammatory cytokines and effectors in LPS-stimulated macrophages. Studies in a mouse model of inflammation (carrageenan-induced paw edema) indicated that while long-term treatment with either Sch A or Sch B suppressed the extent of paw edema, only acute treatment with Sch A produced a significant degree of inhibition on the inflammatory response. Although only Sch A decreased the cellular GSH level and suppressed the release of pro-inflammatory cytokines and cell proliferation in ConA-simulated splenocytes in vitro, both Sch A and Sch B treatments, while not altering cellular GSH levels, suppressed ConA-stimulated splenocyte proliferation ex vivo. These results suggest that Sch A and Sch B may act differentially on activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions. PMID:27195753

  8. Effects of Toxins on Arachidonic Acid Metabolism in Cultured Rat Pulmonary Alveolar Macrophages

    DTIC Science & Technology

    1988-12-28

    response to’toixin exposure, and fluocinolone may protect against .T-2 toxicosis. Some natural toxins are potent a nd powerful inflammtatory agents (1,2...macrophages in the inflammatory response to natural toxins, we examined the effect of T-2, microcystin-LR known inflammatory agents, and also included...effective in inducing the release of arachidonic acid metabolites, probably due to non-inflammatory nature of the toxin. We observed a large increase in

  9. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key source of inflammatory mediators in OSA.« less

  10. Supplementing diet with Manitoba lingonberry juice reduces kidney ischemia-reperfusion injury.

    PubMed

    Isaak, Cara K; Wang, Pengqi; Prashar, Suvira; O, Karmin; Brown, Daniel Cw; Debnath, Samir C; Siow, Yaw L

    2017-07-01

    Lingonberry (Vaccinium vitis-idaea L.) contains high levels of anthocyanins which are bioavailable in the kidney and may be protective against ischemia-reperfusion (IR)-induced acute kidney injury. This study investigated the effect of lingonberry juice on the IR-induced stress-activated signalling pathway and inflammatory response in the kidney. Sprague-Dawley rats subjected to kidney IR had significantly impaired kidney function, with increased activation of the JNK signalling pathway and increased inflammatory response, measured using a multiplex panel containing an extensive array of inflammatory biomarkers. In rats fed 1 mL lingonberry juice daily for 3 weeks prior to IR, kidney function was protected and attenuation of inflammatory response and JNK signalling was reflected in the reduction of the measured biomarkers. In vitro results in cultured HK-2 cells confirmed that lingonberry anthocyanins reduced JNK signalling and inflammatory gene expression after IR. This study shows, for the first time, that daily supplementation with lingonberry juice may protect against loss of kidney function induced by IR injury by modulating JNK signalling and inhibiting the subsequent inflammatory response. © 2017 Her Majesty the Queen in Right of Canada. Journal of the Science of Food and Agriculture © 2017 Society of Chemical Industry. © 2017 Her Majesty the Queen in Right of Canada. Journal of the Science of Food and Agriculture © 2017 Society of Chemical Industry.

  11. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans.

    PubMed

    Wegner, Alexander; Benson, Sven; Rebernik, Laura; Spreitzer, Ingo; Jäger, Marcus; Schedlowski, Manfred; Elsenbruch, Sigrid; Engler, Harald

    2017-07-01

    Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.

  12. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  13. Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses.

    PubMed

    Sadiku, Pranvera; Willson, Joseph A; Dickinson, Rebecca S; Murphy, Fiona; Harris, Alison J; Lewis, Amy; Sammut, David; Mirchandani, Ananda S; Ryan, Eilise; Watts, Emily R; Thompson, A A Roger; Marriott, Helen M; Dockrell, David H; Taylor, Cormac T; Schneider, Martin; Maxwell, Patrick H; Chilvers, Edwin R; Mazzone, Massimilliano; Moral, Veronica; Pugh, Chris W; Ratcliffe, Peter J; Schofield, Christopher J; Ghesquiere, Bart; Carmeliet, Peter; Whyte, Moira Kb; Walmsley, Sarah R

    2017-09-01

    Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.

  14. beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes.

    PubMed

    Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T; Luttrell, Lou M; Tempel, George E; Halushka, Perry V; Cook, James A

    2008-01-01

    Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). beta-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. beta-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of beta-arrestin 2 in LPS-induced cellular activation, we studied homozygous beta-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFalpha and IL-6 production in the beta-arrestin 2 (-/-) compared to both beta-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFalpha production in the beta-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the beta-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the beta-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). beta-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, beta-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the beta-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that beta-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis.

  15. β-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes

    PubMed Central

    Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T.; Luttrell, Lou M.; Tempel, George E.; Halushka, Perry V.; Cook, James A.

    2008-01-01

    Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). β-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. β-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that β-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of β-arrestin 2 in LPS-induced cellular activation, we studied homozygous β-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFα and IL-6 production in the β-arrestin 2 (-/-) compared to both β-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFα production in the β-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the β-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the β-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). β-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, β-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the β-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that β-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis. PMID:19079685

  16. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  17. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  18. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    PubMed

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  19. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse1

    PubMed Central

    Edey, Lydia F.; O'Dea, Kieran P.; Herbert, Bronwen R.; Hua, Renyi; Waddington, Simon N.; MacIntyre, David A.; Bennett, Philip R.; Takata, Masao; Johnson, Mark R.

    2016-01-01

    Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta. PMID:27760748

  20. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis

    PubMed Central

    Ramakrishna, Chandran

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection. PMID:29352287

  1. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473

  2. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    PubMed

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Comparison of inflammatory responses following robotic and open colorectal surgery: a prospective study.

    PubMed

    Zawadzki, Marek; Krzystek-Korpacka, Malgorzata; Gamian, Andrzej; Witkiewicz, Wojciech

    2017-03-01

    Robotic colorectal surgery continues to rise in popularity, but there remains little evidence on the stress response following the procedure. The aim of this study was to evaluate the inflammatory response to robotic colorectal surgery and compare it with the response generated by open colorectal surgery. This was a prospective nonrandomized comparative study involving 61 patients with colorectal cancer. The evaluation of inflammatory response to either robotic or open colorectal surgery was expressed as changes in interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, tumor necrosis factor-α, C-reactive protein, and procalcitonin during the first three postoperative days. Of the 61 patients, 33 underwent robotic colorectal surgery while 28 had open colorectal surgery. Groups were comparable with respect to age, sex, BMI, cancer stage, and type of resection. The relative increase of interleukin-1 receptor antagonist at 8 h postoperative, compared to baseline, was higher in the open group (P = 0.006). The decrease of interleukin-1 receptor antagonist on postoperative days 1 and 3, compared to the maximum at 8 h, was more pronounced in the open group than in the robotic group (P = 0.008, P = 0.006, respectively), and the relative increase of interleukin-6 at 8 h after incision was higher in the open group (P = 0.007). The relative increase of procalcitonin on postoperative days 1 and 3 was higher in the open group than the robotic group (P < 0.001, P = 0.004, respectively). This study shows that when compared with open colorectal surgery, robotic colorectal surgery results in a less pronounced inflammatory response and more pronounced anti-inflammatory action.

  4. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions?

    PubMed Central

    Lira-Junior, Ronaldo; Figueredo, Carlos Marcelo

    2016-01-01

    Periodontal disease and inflammatory bowel disease (IBD) are both chronic inflammatory diseases. Their pathogenesis is mediated by a complex interplay between a dysbiotic microbiota and the host immune-inflammatory response, and both are influenced by genetic and environmental factors. This review aimed to provide an overview of the evidence dealing with a possible pathogenic interaction between periodontal disease and IBD. There seems to be an increased prevalence of periodontal disease in patients with IBD when compared to healthy controls, probably due to changes in the oral microbiota and a higher inflammatory response. Moreover, the induction of periodontitis seems to result in gut dysbiosis and altered gut epithelial cell barrier function, which might contribute to the pathogenesis of IBD. Considering the complexity of both periodontal disease and IBD, it is very challenging to understand the possible pathways involved in their coexistence. In conclusion, this review points to a complex pathogenic interaction between periodontal disease and IBD, in which one disease might alter the composition of the microbiota and increase the inflammatory response related to the other. However, we still need more data derived from human studies to confirm results from murine models. Thus, mechanistic studies are definitely warranted to clarify this possible bidirectional association. PMID:27672291

  5. Fine chalk dust induces inflammatory response via p38 and ERK MAPK pathway in rat lung.

    PubMed

    Zhang, Yuexia; Yang, Zhenhua; Chen, Yunzhu; Li, Ruijin; Geng, Hong; Dong, Wenjuan; Cai, Zongwei; Dong, Chuan

    2018-01-01

    Chalk teaching is widely used in the world due to low cost, especially in some developing countries. During teaching with chalks, a large amount of fine chalk dust is produced. Although exposure to chalk dust is associated with respiratory diseases, the mechanism underlying the correlation between chalk dust exposure and adverse effects has not fully been elucidated. In this study, inflammation and its signal pathway in rat lungs exposed to fine chalk dust were examined through histopathology analyses; pro-inflammatory gene transcription; and protein levels measured by HE staining, RT-PCR, and western blot analysis. The results demonstrated that fine chalk dust increased neutrophils and up-regulated inflammatory gene mRNA levels (TNF-α, IL-6, TGF-β1, iNOS, and ICAM-1), and oxidative stress marker (HO-1) level, leading to the increase of inflammatory cell infiltration and inflammatory injury on the lungs. These inflammation responses were mediated, at least in part, via p38 and extracellular regulated proteinase (ERK) mitogen-activated protein kinase (MAPK) signaling mechanisms. In contrast, N-acetyl-L-cysteine (NAC) supplement significantly ameliorated these changes in inflammatory responses. Our results support the hypothesis that fine chalk dust can damage rat lungs and the NAC supplement may attenuate fine chalk dust-associated lung inflammation.

  6. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    PubMed

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  7. Neuroendocrine Factors in the Regulation of Inflammation: Excessive Adiposity and Calorie Restriction

    PubMed Central

    Fontana, Luigi

    2009-01-01

    Acute inflammation is usually a self-limited life preserving response, triggered by pathogens and/or traumatic injuries. This transient response normally leads to removal of harmful agents and to healing of the damaged tissues. In contrast, unchecked or chronic inflammation can lead to persistent tissue and organ damage by activated leukocytes, cytokines, or collagen deposition. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction without malnutrition exerts a potent anti-inflammatory effect. As individuals accumulate fat and their adipocytes enlarge, adipose tissue undergoes molecular and cellular alterations, macrophages accumulate, and inflammation ensues. Overweight/obese subjects have significantly higher plasma concentrations of C-reactive protein and several cytokines, including IL-6, IL-8, IL-18, and TNF-alpha. Experimental animals on a chronic CR regimen, instead, have low levels of circulating inflammatory cytokines, low blood lymphocyte levels, reduced production of inflammatory cytokines by the white blood cells in response to stimulation, and cortisol levels in the high normal range. Recent data demonstrate that CR exerts a powerful anti-inflammatory effect also in non-human primates and humans. Multiple metabolic and neuroendocrine mechanisms are responsible for the CR-mediated anti-inflammatory effects, including reduced adiposity and secretion of pro-inflammatory adipokines, enhanced glucocorticoid production, reduced plasma glucose and advanced glycation end-product concentrations, increased parasympathetic tone, and increased ghrelin production. Measuring tissue specific effects of CR using genomic, proteomic and metabolomic techniques in humans will foster the understanding of the complex biological processes involved in the anti-inflammatory and anti-aging effects of CR. PMID:18502597

  8. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences. PMID:25658421

  9. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    PubMed

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs.

    PubMed

    Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong

    2018-05-15

    Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Ae; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), amore » key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-{alpha}. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.« less

  12. Inflammatory responses to individual microorganisms in the lungs of children with cystic fibrosis.

    PubMed

    Gangell, Catherine; Gard, Samantha; Douglas, Tonia; Park, Judy; de Klerk, Nicholas; Keil, Tony; Brennan, Siobhain; Ranganathan, Sarath; Robins-Browne, Roy; Sly, Peter D

    2011-09-01

    We hypothesized that the inflammatory response in the lungs of children with cystic fibrosis (CF) would vary with the type of infecting organism, being greatest with Pseudomonas aeruginosa and Staphylococcus aureus. A microbiological surveillance program based on annual bronchoalveolar lavage (BAL) collected fluid for culture and assessment of inflammation was conducted. Primary analyses compared inflammation in samples that grew a single organism with uninfected samples in cross-sectional and longitudinal analyses. Results were available for 653 samples from 215 children with CF aged 24 days to 7 years. A single agent was associated with pulmonary infection (≥10(5) cfu/mL) in 67 BAL samples, with P. aeruginosa (n = 25), S. aureus (n = 17), and Aspergillus species (n = 19) being the most common. These microorganisms were associated with increased levels of inflammation, with P. aeruginosa being the most proinflammatory. Mixed oral flora (MOF) alone was isolated from 165 BAL samples from 112 patients, with 97 of these samples having a bacterial density ≥10(5) cfu/mL, and was associated with increased pulmonary inflammation (P < .001). For patients with current, but not past, infections there was an association with a greater inflammatory response, compared with those who were never infected (P < .05). However, previous infection with S. aureus was associated with a greater inflammatory response in subsequent BAL. Pulmonary infection with P. aeruginosa, S. aureus, or Aspergillus species and growth of MOF was associated with significant inflammatory responses in young children with CF. Our data support the use of specific surveillance and eradication programs for these organisms. The inflammatory response to MOF requires additional investigation.

  13. Is depression an inflammatory condition? A review of available evidence.

    PubMed

    Hashmi, Ali Madeeh; Butt, Zeeshan; Umair, Muhammad

    2013-07-01

    The current review examines the relationship between depression and the inflammatory immune response. Mood disorders are a significant cause of morbidity and the etiology of depression is still not clearly understood. Many studies have shown links between inflammatory cytokines and mood disorders, including elevated level of cytokines like tumour necrosis factor-alpha (TNF alpha), Interleukins (IL-1,IL-6) and others. Raised levels of cytokines have been shown to increase depressive behaviour in animal models, while many anti-depressants reverse this behaviour alongside reducing the Central Nervous System (CNS) inflammatory response and reduction in the amounts of inflammatory cytokines. Cytokines reduce neurogenesis, Brain Derived Neurotrophic Factor (BDNF) and neuronal plasticity in the CNS, while many anti-depressants have been shown to reverse these processes. The considerations of anti-depressants as anti-inflammatory agents, and implication of other anti-inflammatory therapeutics for the treatment of depression are pointed out.

  14. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactivemore » cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs.« less

  15. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  16. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    PubMed Central

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value. PMID:23613998

  17. Inflammatory Bowel Disease.

    PubMed

    2016-01-01

    Inflammation response plays an important role in host survival, and it also leads to acute and chronic inflammatory diseases such as rheumatoid arthritis, bowel diseases, allergic rhinitis, asthma, atopic dermatitis and various neurodegenerative diseases. During the course of inflammation, the ROS level increases. In addition to ROS, several inflammatory mediators produced at the site lead to numerous cell-mediated damages. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic intestinal disorder resulting from a dysfunctional epithelial, innate and adaptive immune response to intestinal microorganisms. The methods involving indomethacin-induced enterocolitis in rats with macroscopic changes of IBD, myeloperoxidase assay, microscopic (histologic) characters and biochemical parameters are discussed.

  18. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets

    PubMed Central

    2011-01-01

    Background Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested. In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Methods Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. Results and discussion The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. Conclusion The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors in HF mice, clearly show diet-specific effects, pointing towards augmented systemic inflammatory conditions. Our data suggest that extended feeding periods, leading to manifest obesity, are necessary to generate an increased susceptibility to particle-induced lung inflammation; although the diet-challenge already was efficient in driving pro-inflammatory systemic events. PMID:21951864

  19. T(reg) cells may regulate interlukin-17 production by modulating TH1 responses in 1,3-β-glucan-induced lung inflammation in mice.

    PubMed

    Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie

    2013-01-01

    1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.

  20. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    PubMed

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na + ,K + -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na + ,K + -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  2. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Utility of the Systemic Inflammatory Respsonse Syndrome Score on Admission in Children With Acute Pancreatitis.

    PubMed

    Grover, Amit S; Kadiyala, Vivek; Banks, Peter A; Grand, Richard J; Conwell, Darwin L; Lightdale, Jenifer R

    2017-01-01

    Pediatric patients with acute pancreatitis (AP) may meet criteria at admission for the systemic inflammatory response syndrome (SIRS). Early SIRS in adults with AP is associated with severe disease. Our aim was to evaluate the importance of SIRS in children presenting with AP on various outcomes. This is a retrospective cohort study of children hospitalized with AP at Boston Children's Hospital in 2010. Increased length of stay (LOS) and/or admission to the intensive care unit (ICU) served as the primary outcomes. Statistical analyses of measures studied included the presence of SIRS, demographic, and clinical information present on admission. Fifty encounters, in which AP was the primary admitting diagnosis, were documented. Patients had a median LOS of 4.5 (interquartile range, 2-9) days. Systemic inflammatory response syndrome was present in 22 (44%) of 50 patients at admission. Systemic inflammatory response syndrome at admission was an independent predictor of increased LOS (odds ratio, 7.99; P = 0.045) as well as admission to the ICU (odds ratio, 12.06; P = 0.027). The presence of SIRS criteria on admission serves as a useful and easy-to-calculate predictor of increased LOS and admission to ICU in children with AP.

  4. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise.

    PubMed

    Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.

  5. Cannabinoids and Viral Infections

    PubMed Central

    Reiss, Carol Shoshkes

    2010-01-01

    Exogenous cannabinoids or receptor antagonists may influence many cellular and systemic host responses. The anti-inflammatory activity of cannabinoids may compromise host inflammatory responses to acute viral infections, but may be beneficial in persistent infections. In neurons, where innate antiviral/pro-resolution responses include the activation of NOS-1, inhibition of Ca2+ activity by cannabinoids, increased viral replication and disease. This review examines the effect(s) of cannabinoids and their antagonists in viral infections. PMID:20634917

  6. Adiponectin attenuates LPS-induced acute lung injury through suppression of endothelial cell activation1

    PubMed Central

    Konter, Jason M; Parker, Jennifer L; Baez, Elizabeth; Li, Stephanie Z; Ranscht, Barbara; Denzel, Martin; Little, Frederic F; Nakamura, Kazuto; Ouchi, Noriyuki; Fine, Alan; Walsh, Kenneth; Summer, Ross S

    2011-01-01

    Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN’s role in the early development of ALI to lipopolysaccharide (LPS) was investigated. Intra-tracheal (i.t.) LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN−/−) mice compared to wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN−/− mice as early as 4 hours after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 hours after LPS administration showed increased pro-inflammatory gene expression (e.g. IL-6) only in endothelial cells of APN−/− mice when compared to wt mice. Direct effects on lung endothelium were demonstrated by APN’s ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient (T-cad−/−) mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after i.t. LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g. obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium. PMID:22156343

  7. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Yin, Long; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Tang, Ling; Wu, Pei; Zhao, Ye

    2015-11-28

    The present study was conducted to investigate the anti-inflammatory effect of vitamin D both in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. In primary enterocytes, exposure to 10 mg lipopolysaccharide (LPS)/l increased lactate dehydrogenase activity in the culture medium (P<0·05) and resulted in a significant loss of cell viability (P<0·05). LPS exposure increased (P<0·05) the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8), which was decreased by pre-treatment with 1,25-dihydroxyvitamin D (1,25D3) in a dose-dependent manner (P<0·05). Further results showed that pre-treatment with 1,25D3 down-regulated Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (Myd88) and NF-κB p65 mRNA expression (P<0·05), suggesting potential mechanisms against LPS-induced inflammatory response. In vivo, intraperitoneal injection of LPS significantly increased TNF-α, IL-1β, IL-6 and IL-8 mRNA expression in the intestine of carp (P<0·05). Pre-treatment of fish with vitamin D3 protected the fish intestine from the LPS-induced increase of TNF-α, IL-1β, IL-6 and IL-8 mainly by downregulating TLR4, Myd88 and NF-κB p65 mRNA expression (P<0·05). These observations suggest that vitamin D could inhibit LPS-induced inflammatory response in juvenile Jian carp in vivo and in enterocytes in vitro. The anti-inflammatory effect of vitamin D is mediated at least in part by TLR4-Myd88 signalling pathways in the intestine and enterocytes of juvenile Jian carp.

  8. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  9. Preterm birth and inflammation-The role of genetic polymorphisms.

    PubMed

    Holst, Daniela; Garnier, Yves

    2008-11-01

    Spontaneous preterm labour and preterm births are still the leading cause of perinatal morbidity and mortality in the developed world. Previous efforts to prevent preterm birth have been hampered by a poor understanding of the underlying pathophysiology, inadequate diagnostic tools and generally ineffective therapies. Clinical, epidemiological and experimental studies indicate that genito-urinary tract infections play a critical role in the pathogenesis of preterm birth. Moreover, intrauterine infection increases perinatal mortality and morbidity, such as cerebral palsy and chronic lung disease, significantly. It has recently been suggested that gene-environment interactions play a significant role in determining the risk of preterm birth. Polymorphisms of certain critical genes may be responsible for a harmful inflammatory response in those who possess them. Accordingly, polymorphisms that increase the magnitude or the duration of the inflammatory response were associated with an increased risk of preterm birth. In contrast polymorphisms that decrease the inflammatory response were associated with a lower risk of preterm birth. This article will review the current understanding of pathogenetic pathways in the aetiology of preterm birth.

  10. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Hyun Sook; Son, Youngsook, E-mail: ysson@khu.ac.kr

    Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel abilitymore » to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.« less

  11. Regulatory effect of dietary intake of chromium propionate on the response of monocyte-derived macrophages from Holstein cows in mid lactation.

    PubMed

    Garcia, M; Qu, Y; Scholte, C M; O'Connor, D; Rounds, W; Moyes, K M

    2017-08-01

    Chromium (Cr) has been reported to enhance immune function and improve insulin sensitivity and performance in beef and dairy cattle. However, its effect on bovine macrophage inflammatory and metabolic response is unknown. The objective of this study was to characterize the effect of dietary Cr on the inflammatory and metabolic response of polarized macrophages ex vivo. Twelve primiparous and 16 multiparous healthy Holstein cows in mid lactation (143 ± 37 d in milk) were enrolled in this study. Cows were fed a common total mixed ration once per day that was top-dressed with 200 g of ground corn containing 1 of 2 dietary treatments: control (CTL, no Cr supplementation) or Cr propionate (CrP, 8 mg of Cr/cow per day) for 35 d. At d 1, 17, and 35 of treatment, blood monocytes were isolated and cultured to obtain 3 monocyte-derived macrophage (MDM) phenotypes: M0 (non-polarized), M1 (pro-inflammatory; IFN-γ polarized) and M2 (anti-inflammatory; IL-4 polarized). The experiment was set in a randomized complete block design. Neither dry matter intake nor milk yield was affected by treatment. Plasma concentrations of metabolites and the metabolic and inflammatory response of MDM in spent media were not affected by treatment. Neither the whole blood cell population nor the specific proportion of leukocytes was affected by the main effect of treatment. However, we did observe a trend for fewer circulating neutrophils in cows fed CrP than in cows fed CTL for 35 d, which may be partly attributable to a greater influx of neutrophils into peripheral tissues, a reduced pro-inflammatory response during disease, or both; this warrants future study. Expression of IGFI was increased in MDM-M0, and expression of CXCL11 tended to increase in MDM-M2 from cows fed CrP compared with cows fed CTL. Expression of SLC2A3 also tended to increase in MDM-M2 from cows fed CrP compared with cows fed CTL at 17 d. Our results suggest that CrP has minimal effect on the inflammatory and metabolic response of MDM for Holstein dairy cows in mid lactation. Future studies are warranted to evaluate the differential regulation of Cr on the inflammatory and metabolic response of leukocytes from dairy cows at different stages of lactation and parity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response.

    PubMed

    Jain, Arjun; Schneider, Henning; Aliyev, Eldar; Soydemir, Fatimah; Baumann, Marc; Surbek, Daniel; Hediger, Matthias; Brownbill, Paul; Albrecht, Christiane

    2014-08-01

    Preeclampsia is a human pregnancy-specific disorder characterized by a placental pro-inflammatory response in combination with an imbalance of angiogenic factors and clinical symptoms, including hypertension and proteinuria. Insufficient uteroplacental oxygenation in preeclampsia due to impaired trophoblast invasion during placentation is believed to be responsible for many of the molecular events leading to the clinical manifestations of this disease. We investigated the use of hypoxic treatment of the dual placental perfusion system as a model for preeclampsia. A modified perfusion technique allowed us to achieve a mean soluble oxygen tension within the intervillous space (IVS) of 5-7% for normoxia and <3% for hypoxia (as a model for preeclampsia). We assayed for the levels of different inflammatory cytokines, oxidative stress markers, as well as other factors, such as endothelin (ET)-1 that are known to be implicated as part of the inflammatory response in preeclampsia. Our results show a significant increase under hypoxia in the levels of different inflammatory cytokines, including IL-6 (P=0.002), IL-8 (P<0.0001), TNF-α (P=0.032) and IFN-γ (P=0.009) at 360 min in maternal venous samples (n=6). There was also a significant increase in ET-1 levels under hypoxia both on the maternal side at 30 min (P=0.003) and fetal side at 360 min (P=0.036) (n=6). Other markers of oxidative stress, including malondialdehyde and 8-iso-protaglandin F2α (P=0.009) also show increased levels. Overall, these findings indicate that exposure of ex vivo dually perfused placental tissue to hypoxia provides a useful model for mimicking the inflammatory response characteristic of preeclampsia. This would therefore provide a powerful tool for studying and further delineating the molecular mechanisms involved in the underlying pathophysiology of preeclampsia.

  13. In vitro and in vivo protective effect of arginine against lipopolysaccharide induced inflammatory response in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Hu, Yi; Feng, Lin; Liu, Yang; Jiang, Wei-Dan; Zhao, Ye

    2015-02-01

    The present study was designed to assess the possible protective effects of arginine (Arg) against lipopolysaccharide (LPS) induced inflammatory response in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. Firstly, inflammatory response was established by exposing enterocytes to different concentrations of LPS for 24 h. Secondly, the protective effects of Arg against subsequent LPS exposure were studied in enterocytes. Finally, we investigated whether dietary Arg supplementation could attenuate immune challenge induced by LPS in vivo. The result indicated that 10 mg/L LPS could induced inflammatory response in enterocytes. Cells exposed to LPS (10-30 mg/L) alone for 24 h resulted in a significant increase in lactate dehydrogenase release (LDH) (P < 0.05). The cell viability, protein content, alkaline phosphatase activity were decreased by LPS (P < 0.05). Moreover, LPS exposure significantly increased TNF-α, IL-1β, and IL-6 mRNA expression in vitro (P < 0.05). However, pre-treatment with Arg remarkably prevented the increase of TNF-α, IL-1β, and IL-6 by inhibiting the excessive activation of TLR4-Myd88 signaling pathway through down-regulating TLR4, Myd88, NFκB p65, and MAPK p38 mRNA expression (P < 0.05). Interestingly, the experiment in vivo showed that Arg pre-supplementation could attenuate immune challenge induced by LPS via TLR4-Myd88 signaling pathway, and thus protect fish against LPS-induced inflammatory response. In conclusion, all of these results indicated pre-supplementation with Arg decreased LPS induced immune damage and regulated TLR4-Myd88 signaling pathway in juvenile Jian carp in vivo and in enterocytes in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    PubMed

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  15. Enhanced HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women correlates with increased inflammatory responses.

    PubMed

    Rollenhagen, C; Asin, S N

    2011-11-01

    Knowledge about early innate immune responses at the mucosal surfaces of the female genital tract is important in understanding the pathogenesis of heterosexual transmission of human immunodeficiency virus type-1 (HIV-1). As estradiol decreases inflammatory responses, we postulated that an estradiol-deficient state such as post-menopause could enhance expression of inflammatory factors that stimulate HIV-1 replication. We compare HIV-1 integration, transcription, and viral p24 release levels among ectocervical tissues obtained from pre- and post-menopausal donors. We detected enhanced HIV-1 p24 release levels in post- compared with pre-menopausal tissues (P<0.0001), but saw no difference in HIV-1 integration. Overall, 100% of post-menopausal tissues exhibited levels of HIV-1 transcription above background compared with only 60% of pre-menopausal tissues. Increased HIV-1 transcription was associated with enhanced interleukin (IL)-1β, IL-6, monocyte chemotactic protein-1, growth-regulated oncogene-α, and interferon-γ-inducible protein-10 expression. Neutralization and nuclear factor-κB-targeting small-interfering RNA experiments both decreased HIV-1 transcription, suggesting that the early inflammatory response may facilitate HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women.

  16. Bone marrow-derived macrophages from aged rats are more responsive to inflammatory stimuli.

    PubMed

    Barrett, James P; Costello, Derek A; O'Sullivan, Joan; Cowley, Thelma R; Lynch, Marina A

    2015-04-09

    Lipopolysaccharide (LPS) and interferon-γ (IFNγ) increase expression of tumour necrosis factor-α (TNFα) that characterizes the M1 activation state of macrophages. Whereas it is accepted that the immune system undergoes changes with age, there is inconsistency in the literature with respect to the impact of age on the response of macrophages to inflammatory stimuli. Here, we investigate the effect of age on the responsiveness of bone marrow-derived macrophages (BMDMs) to LPS and IFNγ. The context for addressing this question is that macrophages, which infiltrate the brain of aged animals, will encounter the neuroinflammatory environment that has been described with age. Brain tissue, prepared from young and aged rats, was assessed for expression of inflammatory markers by PCR and for evidence of infiltration of macrophages by flow cytometry. BMDMs were prepared from the long bones of young and aged rats, maintained in culture for 8 days and incubated in the presence or absence of LPS (100 ng/ml) or IFNγ (50 ng/ml). Cells were harvested and assessed for mRNA expression of markers of M1 activation including TNFα and NOS2, or for expression of IFNγR1 and TLR4 by western immunoblotting. To assess whether BMDMs induced glial activation, mixed glial cultures were incubated in the presence of conditioned media obtained from unstimulated BMDMs of young and aged rats and evaluated for expression of inflammatory markers. Markers associated with M1 activation were expressed to a greater extent in BMDMs from aged rats in response to LPS and IFNγ, compared with cells from young rats. The increased responsiveness was associated with increases in IFNγ receptor (IFNγR) and Toll-like receptor 4 (TLR4). The data show that conditioned media from BMDMs of aged rats increased the expression of pro-inflammatory mediators in glial cells. Significantly, there was an age-related increase in macrophage infiltration into the brain, and this was combined with increased expression of IFNγ and the Toll-like receptor 4 agonist, high-mobility group protein B1 (HMGB1). Exposure of infiltrating macrophages to the inflammatory microenvironment that develops in the brain with age is likely to contribute to a damaging cascade that negatively impacts neuronal function.

  17. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  18. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes.

    PubMed

    Grecco, Ana Carolina P; Paula, Rosemeire F O; Mizutani, Erica; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Peterlevitz, Alfredo C; Farias, Alessandro S; Ceragioli, Helder J; Santos, Leonilda M B; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  19. Immunologic alterations and the pathogenesis of organ failure in the ICU.

    PubMed

    Opal, Steven M

    2011-10-01

    Rapid and marked alterations of innate and adaptive immunity typify the host response to systemic infection and acute inflammatory states. Immune dysfunction contributes to the development of organ failure in most patients with critical illness. The molecular mechanisms by which microbial pathogens and tissue injury activate myeloid cells and prime cellular and humoral immunity are increasingly understood. An early and effective immune response to microbial invasion is essential to mount an effective antimicrobial response. However, unchecked and nonresolving inflammation can induce diffuse vasodilation, increased capillary permeability, microvascular damage, coagulation activation, and organ dysfunction. Control of the inflammatory response to limit tissue damage, yet retain the antimicrobial responses in critically ill patients with severe infection, has been sought for decades. Anti-inflammatory approaches might be beneficial in some patients but detrimental in others. It is now clear that a state of sepsis-induced immune suppression can follow the immune activation phase of sepsis. In carefully selected patients, a better therapeutic strategy might be to provide immunoadjuvants to reconstitute immune function in intensive care unit (ICU) patients. Proresolving agents are also in development to terminate acute inflammatory reactions without immune suppression. This brief review summarizes the current understanding of the fundamental immune alterations in critical illness that lead to organ failure in critical illness. © Thieme Medical Publishers.

  20. Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models.

    PubMed

    López-González, Irene; Viana, Rosa; Sanz, Pascual; Ferrer, Isidre

    2017-07-01

    Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a -/- (laforin knock-out) and Epm2b -/- (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a -/- mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b -/- at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b -/- mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b -/- mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.

  1. Inflammatory response and extracorporeal circulation.

    PubMed

    Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander

    2015-06-01

    Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes.

    PubMed

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10(-13) M cortisol, whereas 1 × 10(-5) M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.

    PubMed

    Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis

    2016-07-01

    Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Nutritional modulators of ulcerative colitis: Clinical efficacies and mechanistic view

    PubMed Central

    Sung, Mi-Kyung; Park, Mi-Young

    2013-01-01

    Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses. PMID:23467687

  5. Nutritional modulators of ulcerative colitis: clinical efficacies and mechanistic view.

    PubMed

    Sung, Mi-Kyung; Park, Mi-Young

    2013-02-21

    Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses.

  6. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.

  7. Inverse Relationship of the CMKLR1 Relative Expression and Chemerin Serum Levels in Obesity with Dysmetabolic Phenotype and Insulin Resistance

    PubMed Central

    Corona-Meraz, Fernanda-Isadora; Navarro-Hernández, Rosa-Elena; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Chavarría-Ávila, Efraín; Guzmán-Ornelas, Milton-Omar; Gómez-Bañuelos, Eduardo; Petri, Marcelo-Herón; Ramírez-Cedano, Joel-Isidro; Aguilar-Aldrete, María-Elena; Ríos-Ibarra, Clara; Vázquez-Del Mercado, Mónica

    2016-01-01

    Background. In obesity there is a subclinical chronic low-grade inflammatory response where insulin resistance (IR) may develop. Chemerin is secreted in white adipose tissue and promotes low-grade inflammatory process, where it expressed CMKLR1 receptor. The role of chemerin and CMKLR1 in inflammatory process secondary to obesity is not defined yet. Methods. Cross-sectional study with 134 individuals classified as with and without obesity by body mass index (BMI) and IR. Body fat storage measurements and metabolic and inflammatory markers were measured by routine methods. Soluble chemerin and basal levels of insulin by ELISA and relative expression of CMKLR1 were evaluated with qPCR and 2−ΔΔCT method. Results. Differences (P < 0.05) were observed between obesity and lean individuals in body fat storage measurements and metabolic-inflammatory markers. Both CMKLR1 expression and chemerin levels were increased in obesity without IR. Soluble chemerin levels correlate with adiposity and metabolic markers (r = 8.8% to 38.5%), P < 0.05. Conclusion. The increment of CMKLR1 expression was associated with insulin production. Increased serum levels of chemerin in obesity were observed, favoring a dysmetabolic response. The results observed in this study suggest that both chemerin and CMKLR1 have opposite expression in the context of low-grade inflammatory response manifested in the development of IR. PMID:27239101

  8. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Dinischiotu, Anca

    2015-01-01

    Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells. PMID:26307981

  9. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis by possible reduction of NLRP3 activation and up-regulation of NET expression.

    PubMed

    Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin

    2018-01-22

    Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultraviolet A photosensitivity profile of dexchlorpheniramine maleate and promethazine-based creams: Anti-inflammatory, antihistaminic, and skin barrier protection properties.

    PubMed

    Facchini, Gustavo; Eberlin, Samara; Clerici, Stefano Piatto; Alves Pinheiro, Ana Lucia Tabarini; Costa, Adilson

    2017-12-01

    Unwanted side effects such as dryness, hypersensitivity, and cutaneous photosensitivity are challenge for adherence and therapeutical success for patients using treatments for inflammatory and allergic skin response. In this study, we compared the effects of two dermatological formulations, which are used in inflammatory and/or allergic skin conditions: dexchlorpheniramine maleate (DCP; 10 mg/g) and promethazine (PTZ; 20 mg/g). We evaluated both formulations for phototoxicity potential, skin irritation, anti-inflammatory and antihistaminic abilities, and skin barrier repair in vitro and ex vivo using the standard OECD test guideline n° 432, the ECVAM protocol n° 78, and cultured skin explants from a healthy patient. Ultraviolet A was chosen as exogenous agent to induce allergic and inflammatory response. Both PTZ and DCP promoted increases in interleukin-1 (IL-1) synthesis in response to ultraviolet A (UVA) radiation compared to control. However, the increase observed with PTZ was significantly greater than the DCP, indicating that the latter has a lower irritant potential. DCP also demonstrated a protective effect on UVA-induced leukotriene B4 and nuclear factor kappa B (NF-κB) synthesis. Conversely, PTZ demonstrates more robust UVA antihistaminic activity. Likewise, PTZ promoted a significantly greater increase in the production of involucrin and keratin 14, both associated with protective skin barrier property. In conclusion, these data suggest possible diverging UVA response mechanisms of DCP and PTZ, which gives greater insight into the contrasting photosensitizing potential between DCP and PTZ observed in the patients. © 2017 Wiley Periodicals, Inc.

  12. Hyperoxic exposure of immature mice increases the inflammatory response to subsequent rhinovirus infection: Association with danger signals

    PubMed Central

    Cui, Tracy X.; Maheshwer, Bhargavi; Hong, Jun Y.; Goldsmith, Adam M.; Bentley, J. Kelley; Popova, Antonia P.

    2016-01-01

    Infants with a history of prematurity and bronchopulmonary dysplasia (BPD) have a high risk of asthma and viral-induced exacerbations later in life. We hypothesized that hyperoxic exposure, a predisposing factor to BPD, modulates the innate immune response, producing an exaggerated pro-inflammatory reaction to viral infection. Two-to-3 day-old C57BL/6J mice were exposed to air or 75% oxygen for 14 days. Mice were infected intranasally with rhinovirus (RV) immediately after O2 exposure. Lung mRNA and protein expression, histology, dendritic cells (DCs) and airways responsiveness were assessed 1-12 days after infection. Tracheal aspirates from premature human infants were collected for mRNA detection. Hyperoxia increased lung IL-12 expression which persisted up to 12 days post-exposure. Hyperoxia-exposed RV-infected mice showed further increases in IL-12 and increased expression of IFN-γ, TNF-α, CCL2, CCL3 and CCL4, as well as increased airway inflammation and responsiveness. In RV-infected, air-exposed mice the response was not significant. Induced IL-12 expression in hyperoxia-exposed, RV-infected mice was associated with increased IL-12-producing CD103+ lung DCs. Hyperoxia also increased expression of Clec9a, a CD103+ DC-specific damaged cell-recognition molecule. Hyperoxia increased levels of ATP metabolites and expression of adenosine receptor A1, further evidence of cell damage and related signaling. In human preterm infants, tracheal aspirate Clec9a expression positively correlated with the level of prematurity. Hyperoxic exposure increases the activation of CD103+, Clec9a+ DCs, leading to increased inflammation and airway hyperresponsiveness upon RV infection. In premature infants, danger signal-induced DC activation may promote pro-inflammatory airway responses, thereby increasing respiratory morbidity. PMID:27183577

  13. Managing Sjögren's Syndrome and non-Sjögren Syndrome dry eye with anti-inflammatory therapy.

    PubMed

    Coursey, Terry G; de Paiva, Cintia S

    2014-01-01

    Dry eye from Sjögren's syndrome is a multifactorial disease that results in dysfunction of the lacrimal functional unit. Studies have shown changes in tear composition, including inflammatory cytokines, chemokines, and metalloproteinase. T-lymphocytes have been shown to increase in the conjunctiva and lacrimal glands in patient and animal models. This inflammation is in part responsible for the pathogenesis of the disease, which results in symptoms of eye irritation, ocular surface epithelial disease, and loss of corneal barrier function. There are a number of anti-inflammatory approaches for treating this disease. The current study reviews details of immune response and anti-inflammatory therapies used to control this disease.

  14. Obesity and inflammatory arthritis: impact on occurrence, disease characteristics and therapeutic response

    PubMed Central

    Daïen, Claire I; Sellam, Jérémie

    2015-01-01

    Overweight and obesity are increasing worldwide and now reach about one-third of the world's population. Obesity also involves patients with inflammatory arthritis. Knowing the impact of obesity on rheumatic diseases (rheumatoid arthritis, ankylosing spondylitis and psoriatic arthritis) is thus an important issue. This article first reviews the epidemiological and clinical data available on obesity in inflammatory rheumatic diseases, that is, its impact on incident disease, disease characteristics and the therapeutic response. The second part of this review gives an overview of the factors potentially involved in the specifics of inflammatory arthritis in patients with obesity, such as limitations in the clinical assessment, diet, microbiota and adipokines. PMID:26509048

  15. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    PubMed

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Cytokine expression profile over time in burned mice.

    PubMed

    Finnerty, Celeste C; Przkora, Rene; Herndon, David N; Jeschke, Marc G

    2009-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here, we present the temporal serum cytokine expression profiles in burned mice in comparison to sham mice and human burn patients. Male C57BL/6 mice were randomized to control (n=47) or subjected to a 35% TBSA scald burn (n=89). Mice were sacrificed 3, 6, 9, 12, 24, and 48 h and 7, 10, and 14 days post-burn; cytokines were measured by multi-plex array. Following the burn injury, IL-6, IL-1beta, KC, G-CSF, TNF, IL-17, MIP-1alpha, RANTES, and GM-CSF were increased, p<0.05. IL-2, IL-3, and IL-5 were decreased, p<0.05. IL-10, IFN-gamma, and IL-12p70 were expressed in a biphasic manner, p<0.05. This temporal cytokine expression pattern elucidates the pathogenesis of the inflammatory response in burned mice. Expression of 11 cytokines were similar in mice and children, returning to lowest levels by post-burn day 14, confirming the utility of the burned mouse model for development of therapeutic interventions to attenuate the post-burn inflammatory response.

  17. A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.

    PubMed

    Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P

    2018-05-23

    In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.

  18. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease

    PubMed Central

    Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.

    2010-01-01

    Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550

  19. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    PubMed

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks.

    PubMed

    Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J

    2016-05-01

    Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    PubMed

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  2. Sex Differences in the Association between Stressor-Evoked Interleukin-6 Reactivity and C-Reactive Protein

    PubMed Central

    Lockwood, Kimberly G.; Marsland, Anna L.; Cohen, Sheldon; Gianaros, Peter J.

    2016-01-01

    Individuals differ consistently in the magnitude of their inflammatory responses to acute stressors, with females often showing larger responses than males. While the clinical significance of these individual differences remains unclear, it may be that greater inflammatory responses relate to increased systemic inflammation and thereby risk for chronic inflammatory disease. Here, we examined whether acute stressor-evoked interleukin (IL)-6 responses associate with resting levels of C-reactive protein (CRP), a marker of systemic inflammation, and whether this association differs by sex. Subjects were 57 healthy midlife adults (30–51 years; 33% female; 68% white). Blood was drawn before and 30-min after two mental stress tasks: a multisource interference task and a Stroop color word task. Hierarchical regressions controlling for age, sex, race, and BMI tested whether stressor-evoked IL-6 responses were associated with resting CRP and whether this association differed by sex. Results indicated that sex and stressor-evoked IL-6 responses interacted to predict CRP (ΔR2 = .08, B = −1.33, β = −.39, p = .02). In males, larger stressor-evoked IL-6 responses associated with higher CRP, whereas in females, stressor-evoked IL-6 responses showed a non-significant negative association with CRP. These findings indicate that inflammatory responses to acute stressors associate with resting levels of CRP; however, this association differs by sex. Previous literature suggests that there are sex differences in stressor-evoked IL-6 responses, but this is the first study to show sex differences in the relationship between acute inflammatory responses and systemic inflammation. The contribution of these sex differences to inflammatory disease risk warrants further investigation. PMID:27377561

  3. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit

    PubMed Central

    Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De

    2018-01-01

    Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674

  4. Inflammation-induced proteolytic processing of the SIRPα cytoplasmic ITIM in neutrophils propagates a proinflammatory state

    PubMed Central

    Zen, Ke; Guo, Yalan; Bian, Zhen; Lv, Zhiyuan; Zhu, Dihan; Ohnishi, Hiroshi; Matozaki, Takashi; Liu, Yuan

    2018-01-01

    Signal regulatory protein α (SIRPα), an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor, is an essential negative regulator of leukocyte inflammatory responses. Here we report that SIRPα cytoplasmic signalling ITIMs in neutrophils are cleaved during active inflammation and that the loss of SIRPα ITIMs enhances the polymorphonuclear leukocyte (PMN) inflammatory response. Using human leukocytes and two inflammatory models in mice, we show that the cleavage of SIRPα ITIMs in PMNs but not monocytes occurs at the post-acute stage of inflammation and correlates with increased PMN recruitment to inflammatory loci. Enhanced transmigration of PMNs and PMN-associated tissue damage are confirmed in mutant mice expressing SIRPα but lacking the ITIMs. Moreover, the loss of SIRPα ITIMs in PMNs during colitis is blocked by an anti-interleukin-17 (IL-17) antibody. These results demonstrate a SIRPα-based mechanism that dynamically regulates PMN inflammatory responses by generating a CD47-binding but non-signalling SIRPα ‘decoy’. PMID:24026300

  5. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  6. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds.

    PubMed

    Hortensius, Rebecca A; Ebens, Jill H; Harley, Brendan A C

    2016-06-01

    Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016. © 2016 Wiley Periodicals, Inc.

  7. Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines.

    PubMed

    Pedersen, B K

    2000-10-01

    Strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines, naturally occurring cytokine inhibitors and chemokines. Thus, increased plasma levels of TNF-alpha, IL-1, IL-6, IL-1 receptor antagonist, TNF receptors, IL-10, IL-8 and macrophage inflammatory protein-1 are found after strenuous exercise. The concentration of IL-6 increases up to 100-fold after a marathon race. The increase in IL-6 is tightly related to the duration of the exercise and there appears to be a logarithmic relationship. Furthermore, the increase in IL-6 is related to the intensity of exercise. Given the facts that IL-6, more than any other cytokine, is produced in large amounts in response to exercise, that IL-6 is produced locally in the skeletal muscle in response to exercise and that IL-6 is known to have growth factor abilities, it is likely that IL-6 plays a beneficial role and may be involved in mediating exercise-related metabolic changes.

  8. The role of NF-κB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells.

    PubMed

    Kim, Ha Ryong; Shin, Da Young; Chung, Kyu Hyuck

    2015-03-04

    Polyhexamethylene guanidine (PHMG) phosphate is a competitive disinfectant with strong antibacterial activity. However, epidemiologists revealed that inhaled PHMG-phosphate may increase the risk of pulmonary fibrosis associated with inflammation, resulting in the deaths of many people, including infants and pregnant women. In addition, in vitro and in vivo studies reported the inflammatory effects of PHMG-phosphate. Therefore, the aim of the present study was to clarify the inflammatory effects and its mechanism induced by PHMG-phosphate in murine RAW264.7 macrophages. Cell viability, inflammatory cytokine secretion, nuclear factor kappa B (NF-κB) activation, and reactive oxygen species (ROS) generation were investigated in macrophages exposed to PHMG-phosphate. PHMG-phosphate induced dose-dependent cytotoxicity, with LC50 values of 11.15-0.99mg/ml at 6 and 24h, respectively. PHMG-phosphate induced pro-inflammatory cytokines including IL-1β, IL-6, and IL-8. In particular, IL-8 expression was completely inhibited by the NF-κB inhibitor BAY11-7082. In addition, PHMG-phosphate decreased IκB-α protein expression and increased NF-κB-mediated luciferase activity, which was diminished by N-acetyl-l-cystein. However, abundant amounts of ROS were generated in the presence of PHMG-phosphate at high concentrations with a cytotoxic effect. Our results demonstrated that PHMG-phosphate triggered the activation of NF-κB signaling pathway by modulating the degradation of IκB-α. Furthermore, the NF-κB signaling pathway plays a critical role in the inflammatory responses induced by PHMG-phosphate. We assumed that ROS generated by PHMG-phosphate were associated with inflammatory responses as secondary mechanism. In conclusion, we suggest that PHMG-phosphate induces inflammatory responses via NF-κB signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Neutrophil Response to Dental Plaque by Gender and Race

    PubMed Central

    Wahaidi, V.Y.; Dowsett, S.A.; Eckert, G.J.; Kowolik, M.J.

    2009-01-01

    The inflammatory response, which has both genetic and environmental components, is a central mechanism linking oral and systemic diseases. We hypothesized that dental plaque accumulation over 21 days in the experimental gingivitis model would elicit systemic inflammatory responses [change in white blood cell (WBC) count and neutrophil activity], and that these responses would differ by gender/race. We recruited 156 healthy young adults, including black and white males and females. Plaque Index (PI), Gingival Index (GI), systemic WBC counts, and peripheral neutrophil oxidative activity were recorded. Overall, 128 participants completed the study. During the experimental phase, the correlation between PI and GI was 0.79. Total WBC and neutrophil counts did not change. Neutrophil activity increased in blacks but not whites, suggesting that there may be racial differences in the inflammatory response to dental plaque accumulation. PMID:19734456

  10. COX-2 regulation and TUNEL-positive cell death differ between genders in the secondary inflammatory response following experimental penetrating focal brain injury in rats.

    PubMed

    Günther, Mattias; Plantman, Stefan; Davidsson, Johan; Angéria, Maria; Mathiesen, Tiit; Risling, Mårten

    2015-04-01

    Traumatic brain injury is followed by secondary neuronal degeneration, largely dependent on an inflammatory response. This response is probably gender specific, since females are better protected than males in experimental models. The reasons are not fully known. We examined aspects of the inflammatory response following experimental TBI in male and female rats to explore possible gender differences at 24 h and 72 h after trauma, times of peak histological inflammation and neuronal degeneration. A penetrating brain injury model was used to produce penetrating focal TBI in 20 Sprague-Dawley rats, 5 males and 5 females for each time point. After 24 and 72 h the brains were removed and subjected to in situ hybridization and immunohistochemical analyses for COX-2, iNOS, osteopontin, glial fibrillary acidic protein, 3-nitrotyrosine, TUNEL and Fluoro-Jade. COX-2 mRNA and protein levels were increased in the perilesional area compared to the uninjured contralateral side and significantly higher in males at 24 h and 72 h (p < 0.05). iNOS mRNA was significantly increased in females at 24 h (p < 0.05) although protein was not. TUNEL was increased in male rats after 24 h (p < 0.05). Glial fibrillary acidic protein, osteopontin, 3-nitrotyrosine and Fluoro-Jade stained degenerating neurons were increased in the perilesional area, showing no difference between genders. COX-2 regulation differed between genders after TBI. The increased COX-2 expression in male rats correlated with increased apoptotic cell death detected by increased TUNEL staining at 24 h, but not with neuronal necrosis measured by Flouro-Jade. Astrogliosis and microgliosis did not differ, confirming a comparable level of trauma. The gender-specific trait of the secondary inflammatory response may be connected to prostaglandin regulation, which may partially explain gender variances in outcome after TBI.

  11. Endogenous hydrogen sulfide regulates histone demethylase JMJD3-mediated inflammatory response in LPS-stimulated macrophages and in a mouse model of LPS-induced septic shock.

    PubMed

    Liu, Siyu; Wang, Xiling; Pan, Lilong; Wu, Weijun; Yang, Di; Qin, Ming; Jia, Wanwan; Xiao, Chenxi; Long, Fen; Ge, Junbo; Liu, Xinhua; Zhu, YiZhun

    2018-03-01

    Overproduction of inflammatory mediators contributes to uncontrolled inflammation during endotoxin shock. Cystathionine-γ-lyase (CSE), an enzyme involved in hydrogen sulfide (H 2 S) biosynthesis, has potential anti-inflammatory activity in a variety of inflammatory diseases. Jumonji domain-containing protein 3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in macrophage activation, but its function in CSE-mediated anti-inflammatory activities remains unknown. In the present study CSE was found to be upregulated in macrophages and mouse lipopolysaccharide (LPS) challenge models. LPS stimulation also enhanced the activation of JMJD3 and decreased H3K27me3 levels. JMJD3 knockdown upregulated H3K27me3 levels and attenuated the LPS-mediated inflammatory response. CSE knockout amplified the inflammatory cascade by increasing JMJD3 expression in septic mice. Similarly, enhanced production of inflammatory mediators by macrophages was mitigated by CSE overexpression via inhibition of JMJD3 expression. This is the first report indicating that inflammation enhanced CSE/H 2 S system biosynthesis, that in turn attenuated the LPS-triggered inflammatory response by regulating JMJD3 expression. Thus, the CSE/H 2 S system represents an epigenetic-based modification mechanism to prevent uncontrolled inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration into the irradiated lung.

  13. Characterization of the Phospholipid Platelet-Activating Factor As a Mediator of Inflammation in Chickens

    PubMed Central

    Garrido, Damien; Chanteloup, Nathalie K.; Trotereau, Angélina; Lion, Adrien; Bailleul, Geoffrey; Esnault, Evelyne; Trapp, Sascha; Quéré, Pascale; Schouler, Catherine; Guabiraba, Rodrigo

    2017-01-01

    Lipid mediators are known to play important roles in the onset and resolution phases of the inflammatory response in mammals. The phospholipid platelet-activating factor (PAF) is a pro-inflammatory lipid mediator which participates in vascular- and innate immunity-associated processes by increasing vascular permeability, by facilitating leukocyte adhesion to the endothelium, and by contributing to phagocyte activation. PAF exerts its function upon binding to its specific receptor, PAF receptor (PAFR), which is abundantly expressed in leukocytes and endothelial cells (ECs). In chickens, lipid mediators and their functions are still poorly characterized, and the role of PAF as an inflammatory mediator has not yet been investigated. In the present study we demonstrate that primary chicken macrophages express PAFR and lysophosphatidylcholine acyltransferase 2 (LPCAT2), the latter being essential to PAF biosynthesis during inflammation. Also, exogenous PAF treatment induces intracellular calcium increase, reactive oxygen species release, and increased phagocytosis by primary chicken macrophages in a PAFR-dependent manner. We also show that PAF contributes to the Escherichia coli lipopolysaccharide (LPS)-induced pro-inflammatory response and boosts the macrophage response to E. coli LPS via phosphatidylinositol 3-kinase/Akt- and calmodulin kinase II-mediated intracellular signaling pathways. Exogenous PAF treatment also increases avian pathogenic E. coli intracellular killing by chicken macrophages, and PAFR and LPCAT2 are upregulated in chicken lungs and liver during experimental pulmonary colibacillosis. Finally, exogenous PAF treatment increases cell permeability and upregulates the expression of genes coding for proteins involved in leukocyte adhesion to the endothelium in primary chicken endothelial cells (chAEC). In addition to these vascular phenomena, PAF boosts the chAEC inflammatory response to bacteria-associated molecular patterns in a PAFR-dependent manner. In conclusion, we identified PAF as an inflammation amplifier in chicken macrophages and ECs, which suggests that PAF could play important roles in the endothelium-innate immunity interface in birds during major bacterial infectious diseases such as colibacillosis. PMID:29326957

  14. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ying; Li, Shu-Jun; Yang, Jian

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less

  15. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines.

    PubMed

    Chang, Tammy T; Spurlock, Sandra M; Candelario, Tara Lynne T; Grenon, S Marlene; Hughes-Fulford, Millie

    2015-10-01

    The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-γ and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses. © FASEB.

  16. DUSP5 functions as a feedback regulator of TNFα-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes.

    PubMed

    Habibian, Justine S; Jefic, Mitra; Bagchi, Rushita A; Lane, Robert H; McKnight, Robert A; McKinsey, Timothy A; Morrison, Ron F; Ferguson, Bradley S

    2017-10-10

    Adipose tissue inflammation is a central pathological element that regulates obesity-mediated insulin resistance and type II diabetes. Evidence demonstrates that extracellular signal-regulated kinase (ERK 1/2) activation (i.e. phosphorylation) links tumor necrosis factor α (TNFα) to pro-inflammatory gene expression in the nucleus. Dual specificity phosphatases (DUSPs) inactivate ERK 1/2 through dephosphorylation and can thus inhibit inflammatory gene expression. We report that DUSP5, an ERK1/2 phosphatase, was induced in epididymal white adipose tissue (WAT) in response to diet-induced obesity. Moreover, DUSP5 mRNA expression increased during obesity development concomitant to increases in TNFα expression. Consistent with in vivo findings, DUSP5 mRNA expression increased in adipocytes in response to TNFα, parallel with ERK1/2 dephosphorylation. Genetic loss of DUSP5 exacerbated TNFα-mediated ERK 1/2 signaling in 3T3-L1 adipocytes and in adipose tissue of mice. Furthermore, inhibition of ERK 1/2 and c-Jun N terminal kinase (JNK) signaling attenuated TNFα-induced DUSP5 expression. These data suggest that DUSP5 functions in the feedback inhibition of ERK1/2 signaling in response to TNFα, which resulted in increased inflammatory gene expression. Thus, DUSP5 potentially acts as an endogenous regulator of adipose tissue inflammation; although its role in obesity-mediated inflammation and insulin signaling remains unclear.

  17. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.

    PubMed

    Cherry, Anne D; Piantadosi, Claude A

    2015-04-20

    Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.

  18. Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs.

    PubMed

    Yang, Li-Ling; Wang, Guo-Quan; Yang, Li-Mei; Huang, Zhi-Bing; Zhang, Wen-Qing; Yu, Lin-Zhong

    2014-02-21

    Lipopolysaccharide (LPS), an endotoxin molecule, has been used to induce inflammatory responses. In this study, LPS was used to establish an in vivo inflammation model in zebrafish for drug screening. We present an experimental method that conveniently and rapidly assesses the anti-inflammatory properties of drugs. The yolks of 3-day post-fertilization (dpf) larvae were injected with 0.5 mg/mL LPS to induce fatal inflammation. After LPS stimulation, macrophages were tracked by NR and SB staining and neutrophil migration was observed using the MPO:GFP line. Larval mortality was used as the primary end-point. Expression levels of key cytokines involved in the inflammatory response including IL-1β, IL-6, and TNF-α, were measured using quantitative reverse transcription polymerase chain reaction (RT-PCR). Macrophages and neutrophils were both recruited to the LPS-injected site during the inflammatory response. Mortality was increased by LPS in a dose-dependent manner within 48 h. Analyses of IL-1β, IL-6, and TNF-α expression levels revealed the upregulation of the inflammatory response in the LPS-injected larvae. Further, the anti-inflammatory activity of chlorogenic acid (CA) was evaluated in this zebrafish model to screen for anti-inflammatory drugs. A preliminary result showed that CA revealed a similar effect as the corticosteroid dexamethasone (DEX), which was used as a positive control, by inhibiting macrophage and neutrophil recruitment to the LPS site and improving survival. Our results suggest that this zebrafish screening model could be applied to study inflammation-mediated diseases. Moreover, the Traditional Chinese Medicine CA displays potential anti-inflammatory activity.

  19. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  20. Inflammatory markers following acute fuel oil exposure or bacterial lipopolysaccharide in mallard ducks (Anas platyrhynchos).

    PubMed

    Lee, Kelly A; Tell, Lisa A; Mohr, F Charles

    2012-12-01

    Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.

  1. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging.

    PubMed

    Luo, Cheng; Urgard, Egon; Vooder, Tõnu; Metspalu, Andres

    2011-08-01

    Oxidative stress and inflammation are constant features of many chronic diseases and complications, and have been linked to carcinogenesis. Cyclooxygenase 2 (COX-2), a rate-limiting enzyme for the synthesis of prostaglandins, plays important roles in physiology and pathology, but has been a source of controversy within the scientific and clinical community. However, recent work has shown that nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against oxidative stress. Furthermore, COX-2-dependent electrophile oxo-derivative (EFOX) molecules have been shown to act as anti-inflammatory mediators via activation of the Nrf2-dependent antioxidant response element (ARE). These studies have provided more insight into COX-2-mediated events. The function of all tissues, especially epithelial and endothelial tissues, declines with age, leading to the production of reactive oxygen species (ROS). COX-2 expression increases with aging in most tissues, due in part to ROS, chemical reactions, physical shearing, and dietary molecules. Here we discuss new findings related to COX-2 inflammatory and anti-inflammatory responses. Taken together, we hypothesize that COX-2 levels increase during the aging process because increasing levels of ROSs necessitate the involvement of COX-2-dependent EFOXs for anti-inflammation and Nrf2/ARE signaling for antioxidation. We also propose that COX-2 may act as an intrinsic biological aging clock due to its role in balancing inflammatory and anti-inflammatory responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    PubMed Central

    Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi

    2015-01-01

    Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432

  3. Mathematical modeling of postcoinfection with influenza A virus and Streptococcus pneumoniae, with implications for pneumonia and COPD-risk assessment.

    PubMed

    Cheng, Yi-Hsien; You, Shu-Han; Lin, Yi-Jun; Chen, Szu-Chieh; Chen, Wei-Yu; Chou, Wei-Chun; Hsieh, Nan-Hung; Liao, Chung-Min

    2017-01-01

    The interaction between influenza and pneumococcus is important for understanding how coinfection may exacerbate pneumonia. Secondary pneumococcal pneumonia associated with influenza infection is more likely to increase respiratory morbidity and mortality. This study aimed to assess exacerbated inflammatory effects posed by secondary pneumococcal pneumonia, given prior influenza infection. A well-derived mathematical within-host dynamic model of coinfection with influenza A virus and Streptococcus pneumoniae (SP) integrated with dose-response relationships composed of previously published mouse experimental data and clinical studies was implemented to study potentially exacerbated inflammatory responses in pneumonia based on a probabilistic approach. We found that TNFα is likely to be the most sensitive biomarker reflecting inflammatory response during coinfection among three explored cytokines. We showed that the worst inflammatory effects would occur at day 7 SP coinfection, with risk probability of 50% (likely) to develop severe inflammatory responses. Our model also showed that the day of secondary SP infection had much more impact on the severity of inflammatory responses in pneumonia compared to the effects caused by initial virus titers and bacteria loads. People and health care workers should be wary of secondary SP infection on day 7 post-influenza infection for prompt and proper control-measure implementation. Our quantitative risk-assessment framework can provide new insights into improvements in respiratory health especially, predominantly due to chronic obstructive pulmonary disease (COPD).

  4. Characterization of lung inflammation and its impact on macrophage function in aging

    PubMed Central

    Canan, Cynthia H.; Gokhale, Nandan S.; Carruthers, Bridget; Lafuse, William P.; Schlesinger, Larry S.; Torrelles, Jordi B.; Turner, Joanne

    2014-01-01

    Systemic inflammation that occurs with increasing age (inflammaging) is thought to contribute to the increased susceptibility of the elderly to several disease states. The elderly are at significant risk for developing pulmonary disorders and infectious diseases, but the contribution of inflammation in the pulmonary environment has received little attention. In this study, we demonstrate that the lungs of old mice have elevated levels of proinflammatory cytokines and a resident population of highly activated pulmonary macrophages that are refractory to further activation by IFN-γ. The impact of this inflammatory state on macrophage function was determined in vitro in response to infection with M.tb. Macrophages from the lungs of old mice secreted more proinflammatory cytokines in response to M.tb infection than similar cells from young mice and also demonstrated enhanced M.tb uptake and P-L fusion. Supplementation of mouse chow with the NSAID ibuprofen led to a reversal of lung and macrophage inflammatory signatures. These data indicate that the pulmonary environment becomes inflammatory with increasing age and that this inflammatory environment can be reversed with ibuprofen. PMID:24935957

  5. Local Inflammation in Fracture Hematoma: Results from a Combined Trauma Model in Pigs

    PubMed Central

    Horst, K.; Eschbach, D.; Pfeifer, R.; Hübenthal, S.; Sassen, M.; Steinfeldt, T.; Wulf, H.; Ruchholtz, S.; Pape, H. C.; Hildebrand, F.

    2015-01-01

    Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model. PMID:25694748

  6. Affective and inflammatory responses among orchestra musicians in performance situation.

    PubMed

    Pilger, Alexander; Haslacher, Helmuth; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Böhm, Karl; Budinsky, Alexandra; Girard, Angelika; Klien, Katharina; Jordakieva, Galateja; Pezawas, Lukas; Wagner, Oswald; Godnic-Cvar, Jasminka; Winker, Robert

    2014-03-01

    A number of studies have shown that mental challenge under controlled experimental conditions is associated with elevations in inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). However, relatively little work has been done on the effects of 'naturalistic' stressors on acute changes in inflammatory markers. The present study examined whether perceived arousal, valence and dominance in musicians are associated with pro-inflammatory and oxidative responses to a concert situation. Blood and salivary samples obtained from 48 members of a symphony orchestra on the day of rehearsal (i.e., control situation) and on the following day of premiere concert (i.e., test situation) were used to determine changes in salivary cortisol, pro-inflammatory markers (plasma myeloperoxidase, serum CRP, plasma IL-6), oxidative stress markers (paraoxonase1 activity and malondialdehyde), and homocysteine, a risk factor for vascular disease. Results of regression analyses showed a significant trend to increased myeloperoxidase (MPO) response in individuals with low valence score. Both affective states, valence and arousal, were identified as significant predictors of cortisol response during concert. In addition, control levels of plasma malondialdehyde were positively correlated with differences in IL-6 levels between premiere and rehearsal (r=.38, p=.012), pointing to higher oxidative stress in individuals with pronounced IL-6 response. Our results indicate that stress of public performance leads to increased concentrations of plasma MPO (20%), IL-6 (27%) and salivary cortisol (44%) in musicians. The decreasing effect of pleasantness on the MPO response was highly pronounced in non-smokers (r=-.60, p<.001), suggesting a significant role of emotional valence in stress-induced secretion of MPO. Additional studies are needed to assess the generalizability of these findings to other 'naturalistic' stress situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Role of inflammation and its mediators in acute ischemic stroke

    PubMed Central

    Jin, Rong; Liu, Lin; Zhang, Shihao; Nanda, Anil; Li, Guohong

    2013-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies. PMID:24006091

  8. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage.

    PubMed

    Yuan, Raorao; Fan, Hengyi; Cheng, Shiqi; Gao, WeiWei; Xu, Xin; Lv, Shigang; Ye, Minhua; Wu, Miaojing; Zhu, Xingen; Zhang, Yan

    2017-09-01

    Inflammatory response mediates secondary injury during intracerebral hemorrhage (ICH). In the present study, we determined oxidative stress and involvement of NLRP3 in ICH injury and analyzed whether silymarin might offer protective effect against ICH injury. Post 24h after ICH injury there was increased oxidative stress markers (reactive oxygen species (ROS) and lipid peroxides) compared to sham group. Silymarin (200mg/kg) treatment 30 mins post ICH injury prevented increase in oxidative stress markers and up-regulated antioxidant status. Further, there was significant increase in nuclear levels of NF-κB-p65 and pro-inflammatory cytokine expressions post ICH injury. NLRP3 inflammasome activation and downstream targets such as caspase-1 and IL-1β expressions were significantly up regulated in ICH injury. Silymarin treatment significantly down regulated the inflammatory responses by suppressing NF-κB-p65 levels and inflammasome-mediated caspase-1/IL-1β expressions. Further, treatment with silymarin post ICH injury increased Nrf-2/HO-1 and thereby improved overall cytoprotection. These findings together show that silymarin acts as neuroprotective compound by preventing inflammatory activation and up regulating Nrf-2/HO-1 signaling post ICH injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Managing Sjögren’s Syndrome and non-Sjögren Syndrome dry eye with anti-inflammatory therapy

    PubMed Central

    Coursey, Terry G; de Paiva, Cintia S

    2014-01-01

    Dry eye from Sjögren’s syndrome is a multifactorial disease that results in dysfunction of the lacrimal functional unit. Studies have shown changes in tear composition, including inflammatory cytokines, chemokines, and metalloproteinase. T-lymphocytes have been shown to increase in the conjunctiva and lacrimal glands in patient and animal models. This inflammation is in part responsible for the pathogenesis of the disease, which results in symptoms of eye irritation, ocular surface epithelial disease, and loss of corneal barrier function. There are a number of anti-inflammatory approaches for treating this disease. The current study reviews details of immune response and anti–inflammatory therapies used to control this disease. PMID:25120351

  10. Role of inflammation in the aging bones.

    PubMed

    Abdelmagid, Samir M; Barbe, Mary F; Safadi, Fayez F

    2015-02-15

    Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty.

    PubMed

    Conway, F J S; Talwar, D; McMillan, D C

    2015-08-01

    Vitamin C (ascorbic acid, AA) is a water soluble vitamin with many functions including antioxidative properties, haemostasis, hormone synthesis, collagen synthesis, carnitine synthesis, bile salt production and enhancing iron absorption. There is some evidence that there is a negative inverse relationship between plasma vitamin C concentration and the systemic inflammatory response as measured by C-reactive protein (CRP). The aim of the present study was to examine, in the context of a longitudinal study, the change in plasma concentrations of ascorbic acid (AA) and Vitamin E (α-tocopherol, AT) and their relationship to free radical damage during the evolution of the systemic inflammatory response. Venous blood samples were obtained pre-operatively and at 1, 2, 3 and 90 days post-operatively from 11 patients undergoing elective hip arthroplasty at Glasgow Royal Infirmary. AA, AT, cholesterol, MDA (marker of free radical damage), CRP and albumin were measured in plasma. Plasma AA fell significantly by 74% (P < 0.01), AT fell by 36% (P < 0.01), cholesterol by 40% (P < 0.01), MDA by 38% (P < 0.01), albumin by 29% (P < 0.01) and CRP increased significantly by 160 fold (P < 0.01) during the systemic inflammatory response. The fall in plasma AA remained significant when adjusted for albumin (P < 0.01). Plasma AT adjusted for cholesterol did not change significantly during the study period. The fall in plasma MDA remained significant when adjusted for albumin (P 0.01). At 3 months post-operatively, all measurements (including AA) except albumin had returned to baseline values. Plasma AA levels are unlikely to be a reliable measurement of Vitamin C where there is evidence of a systemic inflammatory response. The decrease in plasma AA concentration is likely to be secondary to increased consumption, increased usage neutralising free radicals, increased utilisation in supporting AT regeneration and increased urinary excretion. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats.

    PubMed

    da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle

    2016-12-01

    Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  13. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis.

    PubMed

    Saferding, Victoria; Puchner, Antonia; Goncalves-Alves, Eliana; Hofmann, Melanie; Bonelli, Michael; Brunner, Julia S; Sahin, Emine; Niederreiter, Birgit; Hayer, Silvia; Kiener, Hans P; Einwallner, Elisa; Nehmar, Ramzi; Carapito, Raphael; Georgel, Philippe; Koenders, Marije I; Boldin, Mark; Schabbauer, Gernot; Kurowska-Stolarska, Mariola; Steiner, Günter; Smolen, Josef S; Redlich, Kurt; Blüml, Stephan

    2017-08-01

    Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

    PubMed Central

    Podbregar, Matej; Lainscak, Mitja; Prelovsek, Oja; Mars, Tomaz

    2013-01-01

    Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells. PMID:23509435

  15. Alpha-Lipoic Acid Alleviates Acute Inflammation and Promotes Lipid Mobilization During the Inflammatory Response in White Adipose Tissue of Mice.

    PubMed

    Guo, Jun; Gao, Shixing; Liu, Zhiqing; Zhao, Ruqian; Yang, Xiaojing

    2016-10-01

    Recently, white adipose tissue has been shown to exhibit immunological activity, and may play an important role in host defense and protection against bacterial infection. Αlpha-lipoic acid (α-LA) has been demonstrated to function as an anti-inflammatory and anti-oxidant agent. However, its influence on the inflammatory response and metabolic changes in white adipose tissue remains unknown. We used male C57BL/6 mice as models to study the effect of α-LA on the inflammatory response and metabolic changes in white adipose tissue after stimulation with lipopolysaccharide (LPS). The non-esterified fatty acid content was measured by an automatic biochemical analyzer. The expression of inflammation-, lipid- and energy metabolism-related genes and proteins was determined by quantitative real-time polymerase chain reaction and western blotting. The results indicated that α-LA significantly decreased the epididymis fat weight index and the non-esterified fatty acid content in plasma compared with the control group. LPS significantly increased the expression of inflammation genes and α-LA reduced their expression. The LPS-induced expression of nuclear factor-κB protein was decreased by α-LA. Regarding lipid metabolism, α-LA significantly counteracted the inhibitory effects of LPS on the expression of hormone-sensitive lipase gene and protein. α-LA evidently increased the gene expression of fatty acid transport protein 1 and cluster of differentiation 36. Regarding energy metabolism, α-LA significantly increased the expression of most of mitochondrial DNA-encoded genes compared with the control and LPS group. Accordingly, α-LA can alleviate acute inflammatory response and this action may be related with the promotion of lipid mobilization in white adipose tissue.

  16. Systemic inflammatory responses in progressing periodontitis during pregnancy in a baboon model

    PubMed Central

    Ebersole, J L; Steffen, M J; Holt, S C; Kesavalu, L; Chu, L; Cappelli, D

    2010-01-01

    This study tested the hypothesis that pregnant female baboons exhibit increased levels of various inflammatory mediators in serum resulting from ligature-induced periodontitis, and that these profiles would relate to periodontal disease severity/extent in the animals. The animals were sampled at baseline (B), mid-pregnancy (MP; two quadrants ligated) and at delivery (D; four quadrants ligated). All baboons developed increased plaque, gingival inflammation and bleeding, pocket depths and attachment loss following placement of the ligatures. By MP, both prostaglandin E2 (PGE2) and bactericidal permeability inducing factor (BPI) were greater than baseline, while increased levels of interleukin (IL)-6 occurred in the experimental animals by the time of delivery. IL-8, MCP-1 and LBP all decreased from baseline through the ligation phase of the study. Stratification of the animals by baseline clinical presentation demonstrated that PGE2, LBP, IL-8 and MCP-1 levels were altered throughout the ligation interval, irrespective of baseline clinical values. IL-6, IL-8 and LBP were significantly lower in the subset of animals that demonstrated the least clinical response to ligation, indicative of progressing periodontal disease. PGE2, macrophage chemotactic protein (MCP)-1, regulated upon activation, normal T cell expressed and secreted (RANTES) and LBP were decreased in the most diseased subset of animals at delivery. Systemic antibody responses to Fusobacterium nucleatum, Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Campylobacter rectus were associated most frequently with variations in inflammatory mediator levels. These results provide a profile of systemic inflammatory mediators during ligature-induced periodontitis in pregnant baboons. The relationship of the oral clinical parameters to systemic inflammatory responses is consistent with a contribution to adverse pregnancy outcomes in a subset of the animals. PMID:21070210

  17. Evolutionary Conservation of Divergent Pro-Inflammatory and Homeostatic Responses in Lamprey Phagocytes

    PubMed Central

    Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens. PMID:24465992

  18. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    PubMed

    Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens.

  19. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    PubMed

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or "double-hit" injury.

    PubMed

    Weckbach, Sebastian; Hohmann, Christoph; Braumueller, Sonja; Denk, Stephanie; Klohs, Bettina; Stahel, Philip F; Gebhard, Florian; Huber-Lang, Markus S; Perl, Mario

    2013-02-01

    The exact alterations of the immune system after polytrauma leading to sepsis and multiple-organ failure are poorly understood. Thus, the early local and systemic inflammatory and apoptotic response was characterized in a new polytrauma model and compared with the alterations seen after single or combined injuries. Anesthetized C57BL/6 mice were subjected to either blunt bilateral chest trauma (Tx), closed head injury, right femur fracture including contralateral soft tissue injury, or a combination of injuries (PTx). After 2 hours or 6 hours, animals were sacrificed, and the systemic as well as the local pulmonary immune response (bronchoalveolar lavage [BAL]/plasma cytokines, lung myeloperoxidase [MPO] activity, and alveolocapillary barrier dysfunction) were evaluated along with lung/brain apoptosis (lung caspase 3 Western blotting, immunohistochemistry, and polymorphonuclear leukocytes [PMN] Annexin V). Hemoglobin, PO2 saturation, and pH did not differ between the experimental groups. Local BAL cytokines/chemokines were significantly increased in almost all groups, which included Tx. There was no further enhancement of this local inflammatory response in the lungs in case of PTx. At 2 hours, all groups except sham and closed head injury alone revealed an increased activity of lung MPO. However, 6 hours after injury, lung MPO remained increased only in the PTx group. Increased BAL protein levels were found, reflecting enhanced lung leakage in all groups with Tx 6 hours after trauma. Only after PTx was neutrophil apoptosis significantly decreased, whereas lung caspase 3 and plasma interleukin 6/keratinocyte chemoattractant (KC) were substantially increased. The combination of different injuries leads to an earlier systemic inflammatory response when compared with the single insults. Interestingly, only after PTx but not after single or double hits was lung apoptosis increased, and PMN apoptosis was decreased along with a prolonged presence of neutrophils in the lungs, which may therefore represent a possible pathomechanism for lung injury after polytrauma.

  1. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease

    PubMed Central

    Watson, Emma L.; Viana, Joao L.; Wimbury, David; Martin, Naomi; Greening, Neil J.; Barratt, Jonathan; Smith, Alice C.

    2017-01-01

    Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle. PMID:28804461

  2. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  3. Effect of immune stress on body weight regulation is altered by ovariectomy in female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Kinouchi, Riyo; Gereltsetseg, Ganbat; Murakami, Masahiro; Nakazawa, Hiroshi; Fujisawa, Shinobu; Yamamoto, Satoshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2011-09-01

    It has been suggested that obesity and loss of ovarian function alter the inflammatory response to immune stress. Ovariectomized (OVX) rats, which are used as a model of human menopause, exhibit both hyperphagia-induced obesity and gonadal steroid deficiency. To evaluate the effects of ovariectomy on inflammatory responses, we compared the anorectic response to LPS in OVX rats and gonad intact female rats. As leptin and hypothalamic interleukin-1β (IL1β) play pivotal roles in the anorectic response to immune stress, these factors were also measured. It was found that the OVX rats exhibited an increased anorectic response to LPS compared with the sham-operated rats. The OVX rats showed higher serum leptin concentrations and a greater increase in hypothalamic IL1β mRNA expression after LPS injection. In addition, in order to determine whether gonadal steroid deficiency contributes to the changes in the inflammatory responses of OVX rats, we compared responses between OVX rats treated with gonadal steroids and untreated OVX rats. There were no differences in appetite, the serum leptin level, and hypothalamic IL1β mRNA expression between the two groups after LPS injection. These findings suggest that the loss of ovarian function increases the induction of leptin and hypothalamic IL1β synthesis and consequently increases the anorectic response under immune stress conditions. It is possible that these alterations are caused by OVX-induced obesity rather than the direct effects of gonadal steroid deficiency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young, E-mail: chanyshin@kku.ac.kr

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury,more » yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.« less

  5. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children.

    PubMed

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-08-01

    Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness.A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression.HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P < 0.01). HSP90α was independently related to predicted death rate and severity of illness; positively to HSP72, nCD64, ILs, length of stay, days on ventilator, and fever; negatively to HDL and LDL (P < 0.05). The HSP72 was increased in SS/S and related negatively to HDL and LDL (P < 0.05).Serum HSP90α is markedly elevated in children with severe sepsis and is associated with MOSF. Better than the HSP72, also increased in SS, SIRS, and MOSF, HSP90α is related to the inflammatory stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern.

  6. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children

    PubMed Central

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-01-01

    Abstract Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness. A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression. HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P < 0.01). HSP90α was independently related to predicted death rate and severity of illness; positively to HSP72, nCD64, ILs, length of stay, days on ventilator, and fever; negatively to HDL and LDL (P < 0.05). The HSP72 was increased in SS/S and related negatively to HDL and LDL (P < 0.05). Serum HSP90α is markedly elevated in children with severe sepsis and is associated with MOSF. Better than the HSP72, also increased in SS, SIRS, and MOSF, HSP90α is related to the inflammatory stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern. PMID:27583886

  7. Matrix metalloproteinase-14 triggers an anti-inflammatory proteolytic cascade in endotoxemia.

    PubMed

    Aguirre, Alina; Blázquez-Prieto, Jorge; Amado-Rodriguez, Laura; López-Alonso, Inés; Batalla-Solís, Estefanía; González-López, Adrián; Sánchez-Pérez, Moisés; Mayoral-Garcia, Carlos; Gutiérrez-Fernández, Ana; Albaiceta, Guillermo M

    2017-05-01

    ᅟ: Matrix metalloproteinases can modulate the inflammatory response through processing of cyto- and chemokines. Among them, MMP-14 is a non-dispensable collagenase responsible for the activation of other enzymes, triggering a proteolytic cascade. To identify the role of MMP-14 during the pro-inflammatory response, wildtype and Mmp14 -/- mice were challenged with lipopolysaccharide. MMP-14 levels decreased after endotoxemia. Mutant animals showed 100% mortality, compared to 50% in wildtype mice. The increased mortality was related to a more severe lung injury, an impaired lung MMP-2 activation, and increased levels of the alarmin S100A9. There were no differences in the expression of other mediators including Il6, Cxcl2, Tgfb, Il10, or S100a8. A similar result was observed in lung explants of both genotypes cultured in presence of lipopolysaccharide. In this ex vivo model, exogenous activated MMP-2 ameliorated the observed increase in alarmins. Samples from septic patients showed a decrease in serum MMP-14 and activated MMP-2 compared to non-septic critically ill patients. These results demonstrate that the MMP-14-MMP-2 axis is downregulated during sepsis, leading to a proinflammatory response involving S100A9 and a more severe lung injury. This anti-inflammatory role of MMP-14 could have a therapeutic value in sepsis. • MMP-14 levels decrease in lungs from endotoxemic mice and serum from septic patients. • Mmp14 -/- mice show increased lung injury and mortality following endotoxemia. • Absence of Mmp14 decreases activated MMP-2 and increases S100A9 levels in lung tissue. • MMP-14 ameliorates inflammation by promoting S100A9 cleavage by activated MMP-2.

  8. Pulmonary and systemic inflammatory responses to intra-amniotic IL-1α in fetal sheep

    PubMed Central

    Kramer, Boris W.; Nitsos, Ilias; Pillow, J. Jane; Collins, Jennifer J. P.; Polglase, Graeme R.; Newnham, John P.; Jobe, Alan H.

    2011-01-01

    Clinical and epidemiological studies implicate IL-1 as an important mediator of perinatal inflammation. We tested the hypothesis that intra-amniotic IL-1α would induce pulmonary and systemic fetal inflammatory responses. Sheep with singleton fetuses were given an intra-amniotic injection of recombinant sheep IL-1α (100 μg) and were delivered 1, 3, or 7 days later, at 124 ± 1 days gestation (n=5–8/group). A separate group of sheep were given two intra-amniotic IL-1α injections (100 μg dose each): 7 days and again 1 day prior to delivery. IL-1α induced a robust increase in monocytes, neutrophils, lymphocytes, and IL-8 protein in bronchoalveolar lavage fluid. H2O2 secretion was increased in inflammatory cells isolated from lungs of IL-1α-exposed lambs upon LPS challenge in vitro compared with control monocytes. T lymphocytes were recruited to the lung. IL-1β, cyclooxygenase-1, and cyclooxygenase-2 mRNA expression increased in the lung 1 day after intra-amniotic IL-1α exposure. Lung volumes increased 7 days after intra-amniotic IL-1α exposure, with minimal anatomic changes in air space morphology. The weight of the posterior mediastinal lymph node draining the lung and the gastrointestinal tract doubled, inducible nitric oxide synthase (NOSII)-positive cells increased, and Foxp3-positive T-regulatory lymphocytes decreased in the lymph node after IL-1α exposure. In the blood, neutrophil counts and plasma haptoglobin increased after IL-1α exposure. Compared with a single exposure, exposure to intra-amniotic IL-1α 7 days and again 1 day before delivery had a variable effect (increases in some inflammatory markers, but not pulmonary cytokines). IL-1α is a potent mediator of the fetal inflammatory response syndrome. PMID:21665964

  9. Tamarixetin Exhibits Anti-inflammatory Activity and Prevents Bacterial Sepsis by Increasing IL-10 Production.

    PubMed

    Park, Hee Jo; Lee, Seung Jun; Cho, Joon; Gharbi, Amal; Han, Hee Dong; Kang, Tae Heung; Kim, Yangmee; Lee, Yeongjoon; Park, Won Sun; Jung, In Duk; Park, Yeong-Min

    2018-06-22

    Sepsis is a systemic inflammatory response to pathogenic infection that currently has no specific pharmaceutical interventions. Instead, antibiotics administration is considered the best available option, despite increasing drug resistance. Alternative strategies are therefore urgently required to prevent sepsis and strengthen the host immune system. One such option is tamarixetin (4'- O-methylquercetin), a naturally occurring flavonoid derivative of quercetin that protects against inflammation. The purpose of this study was to determine whether the anti-inflammatory effects of tamarixetin protect against the specific inflammatory conditions induced in lipopolysaccharide (LPS) or Escherichia coli K1 models of sepsis. Our study showed that tamarixetin reduced the secretion of various inflammatory cytokines by dendritic cells after activation with LPS. It also promoted the secretion of the anti-inflammatory cytokine interleukin (IL)-10 and specifically increased the population of IL-10-secreting immune cells in LPS-activated splenocytes. Tamarixetin showed general anti-inflammatory effects in mouse models of bacterial sepsis and decreased bacteria abundance and endotoxin levels. We therefore conclude that tamarixetin has superior anti-inflammatory properties than quercetin during bacterial sepsis. This effect is associated with an increased population of IL-10-secreting immune cells and suggests that tamarixetin could serve as a specific pharmaceutical option to prevent bacterial sepsis.

  10. Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer's disease pathophysiology.

    PubMed

    Cornejo, Francisca; Vruwink, Marianne; Metz, Claudia; Muñoz, Paola; Salgado, Nicole; Poblete, Joaquín; Andrés, María Estela; Eugenín, Jaime; von Bernhardi, Rommy

    2018-03-01

    Late onset Alzheimer disease's (LOAD) main risk factor is aging. Although it is not well known which age-related factors are involved in its development, evidence points out to the involvement of an impaired amyloid-β (Aβ) clearance in the aged brain among possible causes. Glial cells are the main scavengers of the brain, where Scavenger Receptor class A (SR-A) emerges as a relevant player in AD because of its participation in Aβ uptake and in the modulation of glial cell inflammatory response. Here, we show that SR-A expression is reduced in the hippocampus of aged animals and APP/PS1 mice. Given that Aβ deposition increases in the aging brain, we generated a triple transgenic mouse, which accumulates Aβ and is knockout for SR-A (APP/PS1/SR-A -/- ) to evaluate Aβ accumulation and the inflammatory outcome of SR-A depletion in the aged brain. The lifespan of APP/PS1/SR-A -/- mice was greatly reduced, accompanied by a 3-fold increase in plasmatic pro-inflammatory cytokines, and reduced performance in a working memory behavioral assessment. Microglia and astrocytes lacking SR-A displayed impaired oxidative response and nitric oxide production, produced up to 7-fold more pro-inflammatory cytokines and showed a 12-fold reduction in anti-inflammatory cytokines release, with conspicuous changes in lipopolysaccharide-induced glial activation. Isolated microglia from young and adult mice lacking SR-A showed a 50% reduction in phagocytic activity. Our results indicate that reduced expression of SR-A can deregulate glial inflammatory response and potentiate Aβ accumulation, two mechanisms that could contribute to AD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    PubMed Central

    Song, Sunmi; Graham-Engeland, Jennifer E.; Corwin, Elizabeth J.; Ceballos, Rachel M.; Taylor, Shelley E.; Seeman, Teresa

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood. PMID:26056615

  12. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor.

    PubMed

    Song, Sunmi; Graham-Engeland, Jennifer E; Corwin, Elizabeth J; Ceballos, Rachel M; Taylor, Shelley E; Seeman, Teresa; Klein, Laura Cousino

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  13. Comparative inhalation toxicology of selected materials. Phase 2. Final report, January-July 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, M.B.; Bice, D.E.; Burt, D.G.

    1988-05-01

    Male and female F344/N rats were exposed nose-only to a respirable powder of copper-zinc alloy. No rats died as a result of the exposures. Body weights were reduced relative to sham-exposed rats for rats exposed to 240 and 480 mg. hr Cu-Zn/cu.m week. All of the additional observed biological responses to inhaled Cu-Zn were restricted to the respiratory tract. Lung weights were increased due to an inflammatory response for rats exposed to 120 mg. hr Cu-Zn/cu.m or more per week. Exposure to 240 mg. hr Cu-zn/cu.m per week caused restrictive pulmonary functional disorder, as evidenced by a reduced lung capacity,more » reduced quasi-static compliance, reduced carbon monoxide diffusing capacity, and increased percent forced vital capacity exhaled in 0.1 second. Exposure-related responses in lavage-fluid indicators of lung damage included increased beta-glucuronidase, increased lactate dehydrogenase, and increases in inflammatory cells, total protein, and collagen. Histological lesions produced by Cu-Zn were atrophy of the nasal olfactory epithelium and hyperplasia of goblet cells in the respiratory epithelium, focal necrotizing alveolitis, alveolar macrophage hyperplasia, and goblet cell hyperplasia of bronchial and bronchiolar epithelium. The inhaled Cu-Zn alloy caused exposure-related inflammatory and cytotoxic responses in the respiratory tract, but the inhaled Cu-Zn cleared rapidly and the responses largely resolved after cessation of exposures.« less

  14. Inflammatory response in multiple organs in a mouse model of acute alcohol intoxication and burn injury*

    PubMed Central

    Li, Xiaoling; Akhtar, Suhail; Kovacs, Elizabeth J.; Gamelli, Richard L.; Choudhry, Mashkoor A.

    2011-01-01

    The present study characterized the inflammatory response following burn injury and determined whether ethanol (EtOH) intoxication at the time of burn injury influences this response. To accomplish this, male mice were gavaged with EtOH (2.9 g/Kg) 4 hours prior to 12–15% total body surface area sham or burn injury. Mice were sacrificed on day one after injury; blood, small intestine, lung and liver were collected to measure IL-6, IL-10, IL-18 and MCP-1 levels. In addition, neutrophil infiltration, MPO activity and edema formation were also measured in the small intestine, lung and liver. There was no difference in the inflammatory markers in the small intestine, lung and liver in mice receiving either sham or burn injury alone except IL-6 which was increased in all 4 tissue compartments following burn injury alone. However, as compared to EtOH or burn injury alone, EtOH combined with burn injury resulted in a significant increase in cytokines, neutrophil infiltration, MPO activity and edema in the small intestine, liver and lung tissue. Furthermore, a significant increase in IL-6 and MCP-1 was observed in circulation following EtOH and burn injury compared to either EtOH intoxication or burn injury alone, no other cytokines were detected in circulation. These findings suggest that acute EtOH intoxication exacerbates the inflammatory response following burn injury. PMID:21593683

  15. Inflammation and fertility in the mare.

    PubMed

    Christoffersen, M; Troedsson, Mht

    2017-08-01

    A transient uterine inflammation post-breeding is a normal physiological reaction in the mare, and it is believed that the inflammatory response is necessary to eliminate bacteria and excess spermatozoa introduced into the uterine lumen. A tight balance between multiple pro- and anti-inflammatory factors is required for resolving the breeding-induced inflammation within 24-36 hr in the reproductively healthy mare, whereas a subpopulation of mares is susceptible to development of a persistent infection that can interfere with fertility. The aetiology of persistent endometritis can be either bacterial or semen-induced and both scenarios can threaten the establishment of pregnancy. Several factors associated with susceptibility to persistent endometritis have been identified including altered innate immune response in the early inflammatory process, reduced myometrial contractions and impaired opsonization; however, the pathogenesis to susceptibility has not been fully elucidated. Current research focuses on the initial hours of uterine inflammatory responses to semen and bacteria, and potential treatments to modify this altered innate immune response. An increased understanding of the mechanisms involved in the disease progression is necessary to improve the treatment and management of these mares. This review attempts to summarize the current knowledge of the uterine inflammatory and immunological responses to breeding-induced endometritis, persistent breeding-induced endometritis (PBIE) and bacterial endometritis in the mare. © 2017 Blackwell Verlag GmbH.

  16. Vinpocetine alleviate cerebral ischemia/reperfusion injury by down-regulating TLR4/MyD88/NF-κB signaling

    PubMed Central

    Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu

    2017-01-01

    Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases. PMID:29113305

  17. Vinpocetine alleviate cerebral ischemia/reperfusion injury by down-regulating TLR4/MyD88/NF-κB signaling.

    PubMed

    Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu

    2017-10-06

    Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases.

  18. Effect of cytokine antibodies in the immunomodulation of inflammatory response and metabolic disorders induced by scorpion venom.

    PubMed

    Taibi-Djennah, Zahida; Laraba-Djebari, Fatima

    2015-07-01

    Androctonus australis hector (Aah) venom and its neurotoxins may affect the neuro-endocrine immunological axis due to their binding to ionic channels of axonal membranes. This binding leads to the release of neurotransmitters and immunological mediators accompanied by pathophysiological effects. Although the hyperglycemia induced by scorpion venom is clearly established, the involved mediators in these deregulations are unknown. The strong relationship between inflammation and the wide variety of physiological processes can suggest that the activation of the inflammatory response and the massive release of IL-6 and TNF-α release induced by the venom may induce hyperglycemia and various biological disorders. We therefore investigated in this study the contribution of IL-6 and TNF-α in the modulation of inflammatory response and metabolic disorder induced by Aah venom. Obtained results revealed that Aah venom induced inflammatory response characterized by significant increase of inflammatory cells in sera and tissues homogenates accompanied by hyperglycemia and hyperinsulinemia, suggesting that the venom induced insulin resistance. It also induced severe alterations in hepatic parenchyma associated to metabolic disorders and imbalanced redox status. Cytokine antagonists injected 30 min prior to Aah venom allowed a significant reduction of inflammatory biomarker and plasma glucose levels, they also prevented metabolic disorders, oxidative stress and hepatic tissue damage induced by Aah venom. In conclusion, IL-6 and TNF-α appear to play a crucial role in the inflammatory response, hyperglycemia and associated complications to glucose metabolism disorders (carbohydrate and fat metabolism disorders, oxidative stress and hepatic damage) observed following scorpion envenoming. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.

  20. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin.

    PubMed

    Buret, André G

    2010-01-01

    Exaggerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects.

  1. Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin

    PubMed Central

    Buret, André G.

    2010-01-01

    Exagerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects. PMID:20357951

  2. Yoga, Meditation and Mind-Body Health: Increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat.

    PubMed

    Cahn, B Rael; Goodman, Matthew S; Peterson, Christine T; Maturi, Raj; Mills, Paul J

    2017-01-01

    Thirty-eight individuals (mean age: 34.8 years old) participating in a 3-month yoga and meditation retreat were assessed before and after the intervention for psychometric measures, brain derived neurotrophic factor (BDNF), circadian salivary cortisol levels, and pro- and anti-inflammatory cytokines. Participation in the retreat was found to be associated with decreases in self-reported anxiety and depression as well as increases in mindfulness. As hypothesized, increases in the plasma levels of BDNF and increases in the magnitude of the cortisol awakening response (CAR) were also observed. The normalized change in BDNF levels was inversely correlated with BSI-18 anxiety scores at both the pre-retreat ( r = 0.40, p < 0.05) and post-retreat ( r = 0.52, p < 0.005) such that those with greater anxiety scores tended to exhibit smaller pre- to post-retreat increases in plasma BDNF levels. In line with a hypothesized decrease in inflammatory processes resulting from the yoga and meditation practices, we found that the plasma level of the anti-inflammatory cytokine Interleukin-10 was increased and the pro-inflammatory cytokine Interleukin-12 was reduced after the retreat. Contrary to our initial hypotheses, plasma levels of other pro-inflammatory cytokines, including Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) were increased after the retreat. Given evidence from previous studies of the positive effects of meditative practices on mental fitness, autonomic homeostasis and inflammatory status, we hypothesize that these findings are related to the meditative practices throughout the retreat; however, some of the observed changes may also be related to other aspects of the retreat such as physical exercise-related components of the yoga practice and diet. We hypothesize that the patterns of change observed here reflect mind-body integration and well-being. The increased BDNF levels observed is a potential mediator between meditative practices and brain health, the increased CAR is likely a reflection of increased dynamic physiological arousal, and the relationship of the dual enhancement of pro- and anti-inflammatory cytokine changes to healthy immunologic functioning is discussed.

  3. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy

    PubMed Central

    Kopschina Feltes, Paula; Doorduin, Janine; Klein, Hans C; Juárez-Orozco, Luis Eduardo; Dierckx, Rudi AJO; Moriguchi-Jeckel, Cristina M; de Vries, Erik FJ

    2017-01-01

    Major depressive disorder (MDD) is a prevalent and disabling psychiatric disease with rates of non-responsiveness to antidepressants ranging from 30–50%. Historically, the monoamine depletion hypothesis has dominated the view on the pathophysiology of depression. However, the lack of responsiveness to antidepressants and treatment resistance suggests that additional mechanisms might play a role. Evidence has shown that a subgroup of depressive patients may have an underlying immune deregulation that could explain the lack of therapeutic benefit from antidepressants. Stimuli like inflammation and infection can trigger the activation of microglia to release pro-inflammatory cytokines, acting on two main pathways: (1) activation of the hypothalamic–pituitary adrenal axis, generating an imbalance in the serotonergic and noradrenergic circuits; (2) increased activity of the enzyme indoleamine-2,3-dioxygenase, resulting in depletion of serotonin levels and the production of quinolinic acid. If this hypothesis is proven true, the subgroup of MDD patients with increased levels of pro-inflammatory cytokines, mainly IL-6, TNF-α and IL-1β, might benefit from an anti-inflammatory intervention. Here, we discuss the pre-clinical and clinical studies that have provided support for treatment with non-steroidal anti-inflammatory drugs in depressed patients with inflammatory comorbidities or an elevated immune profile, as well as evidences for anti-inflammatory properties of standard antidepressants. PMID:28653857

  4. [Understanding the pathophysiology of malnutrition for better treatment].

    PubMed

    De Bandt, J-P

    2015-09-01

    Malnutrition results from an imbalance between intake and protein-energy requirements resulting in tissue losses with adverse functional consequences. However, it would be better to speak of "states of malnutrition" rather than "malnutrition". Indeed, the mechanisms involved associate, with varying degrees, intake deficiency and increased needs with different clinical consequences. Adaptation to nutrient deficiency aims at establishing lasting saving conditions by promoting optimization of energy reserve utilization while preserving protein pool. This is achieved by reducing basal metabolism (low T3), by decreasing the secretion of anabolic factors and moderately increasing catabolic hormones. Unlike the previous process, the metabolic response to injury or stress, which will sometime induce major increase in requirements, will have as immediate purpose the defense of the organism. The body will draw sometime substantially in its protein pool to produce the glucose required for example by the immune cells. Stress response stems from both an endocrine response, and an immuno-inflammatory one with the important role of pro-inflammatory cytokines released in response to pathogens and more recently alarmins in response to endogenous stress in the inflammatory phenomena of the stress response and in the resulting malnutrition state. Treatment of these malnutrition conditions will thus differ: promoting anabolism in one case and fighting resistance to anabolism and hypercatabolism in the other. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Effects of caffeine on the inflammatory response induced by a 15-km run competition.

    PubMed

    Tauler, Pedro; Martínez, Sonia; Moreno, Carlos; Monjo, Marta; Martínez, Pau; Aguiló, Antoni

    2013-07-01

    The objective of this study is as follows: 1) to determine the effects of caffeine supplementation on the inflammatory response (IL-6 and IL-10 levels and leukocyte numbers) induced by a 15-km run competition and 2) to examine the effect of caffeine supplementation on the energetic metabolites as well as on the exercise-induced oxidative stress. A double-blinded study of supplementation with caffeine was performed. Athletes participating in the study (n = 33) completed a 15-km run competition. Before competition, athletes took 6 mg · kg(-1) body weight of caffeine (caffeine group, n = 17) or a placebo (placebo group, n = 16). Blood samples were taken before and after competition (immediately and after 2-h recovery). Leukocyte numbers were determined in blood. Concentrations of oxidative stress markers, antioxidants, interleukins (IL-6 and IL-10), caffeine, adrenaline, and energetic metabolites were measured in plasma or serum. Caffeine supplementation induced higher increases in circulating total leukocytes and neutrophils, with significant differences between groups after recovery. Adrenaline, glucose, and lactate levels increased after exercise, with higher increases in the caffeine group. Exercise induced significant increases in IL-6 and IL-10 plasma levels, with higher increases in the caffeine group. Caffeine supplementation induced higher increases in oxidative stress markers after the competition. Caffeine supplementation induced higher levels of IL-6 and IL-10 in response to exercise, enhancing the anti-inflammatory response. The caffeine-induced increase in adrenaline could be responsible for the higher increase in IL-6 levels, as well as for the increased lactate levels. Furthermore, caffeine seems to enhance oxidative stress induced by exercise.

  6. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory responses in microglia in vitro. To extend our in vitro findings in vivo, we investigated whether administration of the peroxisomal proliferator-activated receptor (PPAR)ä agonist, GW0742, prevented radiation-induced brain injury in C57Bl/6 WT mice. Our data demonstrate that GW0742 prevented the radiation-induced increase in the number of activated microglia (CD68+ cells) in wild-type (WT) mice 1 week following 10 Gy WBI. Furthermore, GW0742 inhibited the WBI-induced increase in IL-1β message levels and ERK phosphorylation observed 3 h post-irradiation. In contrast, GW0742 administration failed to modulate the radiation-induced decrease in hippocampal neurogenesis (NeuN+/BrdU+ cells) determined 2 months after irradiation, or mitigate hippocampal-dependent spatial memory impairment observed 3 months post-irradiation using the Barnes Maze task. We used PPARō knockout (KO) mice to examine if the effects of GW0742 are PPARō-dependent. Unexpectedly, PPARō KO mice exhibited a differential response following WBI compared to WT mice; therefore, we were unable to make mechanistic conclusions about GW0742. KO mice do not exhibit a WBI-induced increase in activated microglia; however, they appeared to display a pronounced astrocytic response. In particular, PPARō KO but not WT mice displayed increased GFAP message levels 2 months after WBI. Additionally, the number of GFAP+ cells was reduced significantly in the WT mice 2 months after WBI, but it was not in the PPARō KO mice. These results demonstrate that: i) GW0742 prevents the radiation-induced increase in microglial activation and inflammatory markers, and ii) WT and PPARō KO mice have a differential response to WBI.

  7. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    NASA Technical Reports Server (NTRS)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  8. Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human

    PubMed Central

    Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren

    2013-01-01

    Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384

  9. Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation

    PubMed Central

    Norden, Diana M.; Godbout, Jonathan P.

    2012-01-01

    Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the coordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioral response following peripheral infection. With normal aging, however, microglia develop a more inflammatory phenotype. For instance, in several models of aging there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with aging is referred to as primed, reactive, or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in aging has behavioral and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared to adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behavior, depressive-like behavior and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits. PMID:23039106

  10. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells.

    PubMed

    Krasnow, Stephanie M; Knoll, J Gabriel; Verghese, Santhosh Chakkaramakkil; Levasseur, Peter R; Marks, Daniel L

    2017-07-01

    During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.

  11. Inflammatory protein response in CDKL5-Rett syndrome: evidence of a subclinical smouldering inflammation.

    PubMed

    Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef

    2017-03-01

    Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.

  12. Clopidogrel, a P2Y12 Receptor Antagonist, Potentiates the Inflammatory Response in a Rat Model of Peptidoglycan Polysaccharide-Induced Arthritis

    PubMed Central

    Rico, Mario C.; Dela Cadena, Raul A.; Kunapuli, Satya P.

    2011-01-01

    The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation. PMID:22028806

  13. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells.

    PubMed

    Harizi, H; Gualde, N

    2005-06-01

    The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.

  14. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming, E-mail: zhengm@bjmu.edu.cn

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatmentmore » with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.« less

  15. Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties

    PubMed Central

    Diotallevi, Marina; Checconi, Paola; Palamara, Anna Teresa; Celestino, Ignacio; Coppo, Lucia; Holmgren, Arne; Abbas, Kahina; Peyrot, Fabienne; Mengozzi, Manuela; Ghezzi, Pietro

    2017-01-01

    Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection. PMID:29033950

  16. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature.

    PubMed

    Zhang, Linjie; Yang, Li

    2014-12-26

    Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines-this represents the first step in the inflammatory response to atherosclerosis. Blocking blood flow in the brain leads to ischemic stroke, and deprives neurons of oxygen and energy. Damaged neurons release danger-associated molecular patterns, which promote the activation of innate immune cells and the release of inflammatory cytokines. The nuclear factor κ-light-chain-enhancer of activated B cells κB (NF-κB) pathway plays a key role in the pathogenesis of atherosclerosis and ischemic stroke. Vinpocetine is believed to be a potent anti-inflammatory agent and has been used to treat cerebrovascular disorders. Vinpocetine improves neuronal plasticity and reduces the release of inflammatory cytokines and chemokines from endothelial cells, vascular smooth muscle cells, macrophages, and microglia, by inhibiting the inhibitor of the NF-κB pathway. This review clarifies the anti-inflammatory role of vinpocetine in atherosclerosis and ischemic stroke.

  17. Modulation of obesity-induced inflammation by dietary fats: mechanisms and clinical evidence

    PubMed Central

    2014-01-01

    Obesity plays a pivotal role in the development of low-grade inflammation. Dietary fatty acids are important modulators of inflammatory responses. Saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) have been reported to exert pro-inflammatory effects. n-3 PUFA in particular, possess anti-inflammatory properties. Numerous clinical studies have been conducted over decades to investigate the impact of dietary fatty acids on inflammatory response in obese individuals, however the findings remained uncertain. High fat meals have been reported to increase pro-inflammatory responses, however there is limited evidence to support the role of individual dietary fatty acids in a postprandial state. Evidence in chronic studies is contradictory, the effects of individual dietary fatty acids deserves further attention. Weight loss rather than n-3 PUFA supplementation may play a more prominent role in alleviating low grade inflammation. In this context, the present review provides an update on the mechanistic insight and the influence of dietary fats on low grade inflammation, based on clinical evidence from acute and chronic clinical studies in obese and overweight individuals. PMID:24476102

  18. Choline Supplementation During Pregnancy Protects Against Gestational Lipopolysaccharide-Induced Inflammatory Responses.

    PubMed

    Zhang, Min; Han, Xinjia; Bao, Juejie; Yang, Jinying; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2018-01-01

    To estimate the effects and mechanisms of choline, an essential nutrient and a selective α7 nicotinic acetylcholine receptor (α7nAChR) agonist, on the prevention of symptoms and the effects on the cholinergic anti-inflammatory pathways (CAP) in a lipopolysaccharide (LPS)-induced inflammatory response in a rat model. Inflammation was induced by LPS treatment (1.0 μg LPS/kg body weight) on gestational day (GD) 14. Nonpregnant and pregnant Sprague Dawley rats were placed on a normal choline diet (1.1 g/kg) or supplemented choline diet (5.0 g/kg) from GDs 1 to 20. Systolic blood pressure (SBP), urinary albumin, and pregnancy outcomes were recorded. On GD 20, serum and placentas were assayed for cytokines. Western blots were used to determine the expression of placenta α7nAChR and components of the α7nAChR-CAP, including nuclear factor-κB (NF-κB) and protein kinase B (AKT). Immunohistochemistry was used to localize placental sites for the p65 subunit of NF-κB. Lipopolysaccharide significantly increased SBP and urinary albumin and decreased pregnancy outcomes, and these effects were partially reversed by higher choline treatment. Choline supplementation also significantly attenuated the LPS-induced increase in serum and placental inflammatory cytokines, decreased the expression of placental α7nAChR, lowered the activation of NF-κB signaling in placenta mononuclear cells, and inhibited placental AKT phosphorylation. This study confirms that LPS induces inflammatory conditions in pregnant rats and shows that choline supplementation protects against the inflammatory symptoms through its action on α7nAChR and CAP. These observations have important implications for the prevention and treatment of inflammatory responses associated with pregnancy.

  19. Evidence for Anti-Inflammatory Effects of Exercise in CKD

    PubMed Central

    Kosmadakis, George C.; Watson, Emma L.; Bevington, Alan; Feehally, John; Bishop, Nicolette C.; Smith, Alice C.

    2014-01-01

    CKD is associated with a complex state of immune dysfunction characterized by immune depression, predisposing patients to infections, and immune activation, resulting in inflammation that associates with higher risk of cardiovascular disease. Physical exercise may enhance immune function and exert anti-inflammatory effects, but such effects are unclear in CKD. We investigated the separate effects of acute and regular moderate-intensity aerobic exercise on neutrophil degranulation (elastase release), activation of T lymphocytes (CD69 expression) and monocytes (CD86 and HLA-DR expression), and plasma inflammatory markers (IL-6, IL-10, soluble TNF-receptors, and C-reactive protein) in patients with predialysis CKD. A single 30-minute (acute) bout of walking induced a normal pattern of leukocyte mobilization and had no effect on T-lymphocyte and monocyte activation but improved neutrophil responsiveness to a bacterial challenge in the postexercise period. Furthermore, acute exercise induced a systemic anti-inflammatory environment, evidenced by a marked increase in plasma IL-10 levels (peaked at 1 hour postexercise), that was most likely mediated by increased plasma IL-6 levels (peaked immediately postexercise). Six months of regular walking exercise (30 min/d for 5 times/wk) exerted anti-inflammatory effects (reduction in the ratio of plasma IL-6 to IL-10 levels) and a downregulation of T-lymphocyte and monocyte activation, but it had no effect on circulating immune cell numbers or neutrophil degranulation responses. Renal function, proteinuria, and BP were also unaffected. These findings provide compelling evidence that walking exercise is safe with regard to immune and inflammatory responses and has the potential to be an effective anti-inflammatory therapy in predialysis CKD. PMID:24700875

  20. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis

    PubMed Central

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular surface caused by conjunctival allergic reactions, and further increases the inflammatory response in IL-1α-pretreated conjunctival epithelial cells. PMID:28046113

  1. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  2. Extremely low-frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells.

    PubMed

    Kim, Soo Jeong; Jang, Ye Won; Hyung, Kyung Eun; Lee, Da Kyoung; Hyun, Kee Hyeob; Jeong, Seung Hwarn; Min, Kyung Hoon; Kang, Wonku; Jeong, Ji Hoon; Park, So-Young; Hwang, Kwang Woo

    2017-07-01

    In recent years, there has been a dramatic increase in the number and variety of electronic devices that emit electromagnetic waves. Because people live and work in close proximity to these pieces of electrical equipment, there is growing concern surrounding the destruction of homeostasis by electromagnetic field exposure. In the present study, the effects of 60 Hz 0.8 mT extremely low-frequency electromagnetic fields (ELF-EMF) on a macrophage cell line (RAW 264.7) were examined. Under defined ELF-EMF exposure conditions, the production of nitric oxide and pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were increased in RAW 264.7 cells and the expression of those genes was also upregulated. However, cell proliferation was not altered. Translocation of NF-κB (nuclear factor kappa B), molecules that act downstream of the pro-inflammatory cytokines, were increased to the nucleus under ELF-EMF exposure conditions. In addition, we found that ELF-EMF exposure elevated activation of nuclear factor of activated T cells (NFAT) 2, as well as positively affected the influx of calcium. Furthermore, with both the presence of a potent antioxidant (Resveratrol) and downregulation of the antioxidant-related gene Prx-1 (Peroxiredoxin-1), ELF-EMF was associated with higher inflammatory responses of macrophages. These results suggest that an ELF-EMF amplifies inflammatory responses through enhanced macrophage activation and can decrease the effectiveness of antioxidants. Bioelectromagnetics. 38:374-385, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    PubMed

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  4. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    PubMed Central

    Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre

    2015-01-01

    ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens. PMID:25673700

  5. An altered peripheral IL6 response in major depressive disorder.

    PubMed

    Money, Kelli M; Olah, Zita; Korade, Zeljka; Garbett, Krassimira A; Shelton, Richard C; Mirnics, Karoly

    2016-05-01

    Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise

    PubMed Central

    Roberts, Llion A.; Figueiredo, Vandre C.; Egner, Ingrid; Krog, Simone; Aas, Sigve N.; Suzuki, Katsuhiko; Markworth, James F.; Coombes, Jeff S.; Cameron‐Smith, David; Raastad, Truls

    2016-01-01

    Key points Cold water immersion and active recovery are common post‐exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion.We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise‐trained men 2, 24 and 48 h during recovery after acute resistance exercise.Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro‐inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery.Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Abstract Cold water immersion and active recovery are common post‐exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro‐inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower‐body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB‐crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB‐crystallin and the percentage of type II fibres stained for αB‐crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. PMID:27704555

  7. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise.

    PubMed

    Peake, Jonathan M; Roberts, Llion A; Figueiredo, Vandre C; Egner, Ingrid; Krog, Simone; Aas, Sigve N; Suzuki, Katsuhiko; Markworth, James F; Coombes, Jeff S; Cameron-Smith, David; Raastad, Truls

    2017-02-01

    Cold water immersion and active recovery are common post-exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion. We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise-trained men 2, 24 and 48 h during recovery after acute resistance exercise. Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery. Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Cold water immersion and active recovery are common post-exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower-body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB-crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB-crystallin and the percentage of type II fibres stained for αB-crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis.

    PubMed

    Trigo, Gabriela; Dinis, Márcia; França, Angela; Bonifácio Andrade, Elva; Gil da Costa, Rui M; Ferreira, Paula; Tavares, Delfina

    2009-07-01

    Streptococcus agalactiae is a contagious, mastitis-causing pathogen that is highly adapted to survive in the bovine mammary gland. This study used a BALB/c mouse model of Streptococcus agalactiae mastitis to evaluate leukocyte populations in regional lymph nodes and cytokine expression in the mammary gland involved in the immune response against Streptococcus agalactiae. It was found that the bacteria replicated efficiently in the mammary gland, peaking after 24 h and increasing by 100-fold. Dissemination of bacteria to systemic organs was observed 6 h after infection. At the same time, a massive infiltration of polymorphonuclear cells and an increase in the inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha were detected in mammary glands, indicating an early inflammatory response. A decrease in the levels of inflammatory cytokines in mammary glands was observed 72 h after infection, accompanied by an increase in the levels of IL-12 and IL-10, which were related to a gradual decrease in bacterial load. An increase in the number of macrophages and B220(+) lymphocytes and similar increases in both CD4(+) and CD8(+) T cells in regional lymph nodes were observed, being most pronounced 5 days after infection. Moreover, increased levels of anti-Streptococcus agalactiae antibodies in the mammary gland were observed 10 days after infection. Overall, these data suggest that the host exhibits both innate and acquired immune responses in response to Streptococcus agalactiae mastitis.

  9. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    PubMed Central

    Terra, Jill K.; France, Bryan; Cote, Christopher K.; Jenkins, Amy; Bozue, Joel A.; Welkos, Susan L.; Bhargava, Ragini; Ho, Chi-Lee; Mehrabian, Margarete; Pan, Calvin; Lusis, Aldons J.; Davis, Richard C.; LeVine, Steven M.; Bradley, Kenneth A.

    2011-01-01

    Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. PMID:22241984

  10. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  11. A Metabolomic Approach (1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers.

    PubMed

    Vivot, Kevin; Benahmed, Malika A; Seyfritz, Elodie; Bietiger, William; Elbayed, Karim; Ruhland, Elisa; Langlois, Allan; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Gies, Jean-Pierre; Namer, Izzie-Jacques; Sigrist, Séverine; Reix, Nathalie

    2016-01-01

    Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1 H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1 H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation.

  12. A Metabolomic Approach (1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers

    PubMed Central

    Vivot, Kevin; Benahmed, Malika A.; Seyfritz, Elodie; Bietiger, William; Elbayed, Karim; Ruhland, Elisa; Langlois, Allan; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Gies, Jean-Pierre; Namer, Izzie-Jacques; Sigrist, Séverine; Reix, Nathalie

    2016-01-01

    Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation. PMID:27766032

  13. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Olszak, I. T.; Poznansky, M. C.; Evans, R. H.; Olson, D.; Kos, C.; Pollak, M. R.; Brown, E. M.; Scadden, D. T.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1alpha reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca(2+) with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca(2+), MCP-1, or (more potently) the combination of Ca(2+) and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.

  14. An anti-inflammatory chalcone derivative prevents heart and kidney from hyperlipidemia-induced injuries by attenuating inflammation.

    PubMed

    Chen, Xiong; Yu, Weihui; Li, Weixin; Zhang, Hailing; Huang, Weijian; Wang, Jingying; Zhu, Weiwei; Fang, Qilu; Chen, Chao; Li, Xiaokun; Liang, Guang

    2018-01-01

    Obesity is a growing pandemic in both developed and developing countries. Lipid overload in obesity generates a chronic, low-grade inflammation state. Increased inflammation in heart and renal tissues has been shown to promote the progression of heart and renal damage in obesity. Previously, we found that a novel chalcone derivative, L6H21, inhibited lipopolysaccharide-induced inflammatory response. In the present study, we investigated the effects of L6H21 on inflammatory responses in culture and in animal models of lipid overload. We utilized palmitic acid (PA) challenging in mouse peritoneal macrophages and apolipoprotein E knockout (ApoE -/- ) mice fed a high fat diet (HFD) to study whether L6H21 mitigates the inflammatory response. Our studies show that L6H21 significantly reduced PA-induced expression of inflammatory cytokines in macrophages by inhibiting mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NFκB) signaling pathways. L6H21 also reduced fibrosis in the kidney and heart tissues, and indices of inflammatory response in the ApoE -/- mice fed a HFD. These effects in vivo were also associated with inhibition of MAPK and NFκB signaling by L6H21. These findings strongly suggest that L6H21 may be a potential agent for high fat diet-induced injuries in heart and kidney. Copyright © 2017. Published by Elsevier Inc.

  15. INSTILLATION OF COARSE ASH PARTICULATE MATTER AND LIPOPOLYSACCHARIDE PRODUCES A SYSTEMIC INFLAMMATORY RESPONSE IN MICE

    EPA Science Inventory

    Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...

  16. Pro-inflammatory AGE-RAGE signaling is activated during arousal from hibernation in ground squirrel adipose.

    PubMed

    Logan, Samantha M; Storey, Kenneth B

    2018-01-01

    Inflammation is generally suppressed during hibernation, but select tissues (e.g. lung) have been shown to activate both antioxidant and pro-inflammatory pathways, particularly during arousal from torpor when breathing rates increase and oxidative metabolism fueling the rewarming process produces more reactive oxygen species. Brown and white adipose tissues are now understood to be major hubs for the regulation of immune and inflammatory responses, yet how these potentially damaging processes are regulated by fat tissues during hibernation has hardly been studied. The advanced glycation end-product receptor (RAGE) can induce pro-inflammatory responses when bound by AGEs (which are glycated and oxidized proteins, lipids, or nucleic acids) or damage associated molecular pattern molecules (DAMPs, which are released from dying cells). Since gene expression and protein synthesis are largely suppressed during torpor, increases in AGE-RAGE pathway proteins relative to a euthermic control could suggest some role for these pro-inflammatory mediators during hibernation. This study determined how the pro-inflammatory AGE-RAGE signaling pathway is regulated at six major time points of the torpor-arousal cycle in brown and white adipose from a model hibernator, Ictidomys tridecemlineatus . Immunoblotting, RT-qPCR, and a competitive ELISA were used to assess the relative gene expression and protein levels of key regulators of the AGE-RAGE pathway during a hibernation bout. The results of this study revealed that RAGE is upregulated as animals arouse from torpor in both types of fat, but AGE and DAMP levels either remain unchanged or decrease. Downstream of the AGE-RAGE cascade, nfat5 was more highly expressed during arousal in brown adipose. An increase in RAGE protein levels and elevated mRNA levels of the downstream transcription factor nfat5 during arousal suggest the pro-inflammatory response is upregulated in adipose tissue of the hibernating ground squirrel. It is unlikely that this cascade is activated by AGEs or DAMPs. This research sheds light on how a fat-but-fit organism with highly regulated metabolism may control the pro-inflammatory AGE-RAGE pathway, a signaling cascade that is often dysregulated in other obese organisms.

  17. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism.

    PubMed

    Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun; Yancey, Patricia G; Zhong, Jianyong; Tao, Huan; Bian, Aihua; Fogo, Agnes B; Linton, Mac Rae F; Fazio, Sergio; Ikizler, Talat Alp; Kon, Valentina

    2018-01-27

    Our aim was to evaluate lipid trafficking and inflammatory response of macrophages exposed to lipoproteins from subjects with moderate to severe chronic kidney disease (CKD), and to investigate the potential benefits of activating cellular cholesterol transporters via liver X receptor (LXR) agonism. LDL and HDL were isolated by sequential density gradient ultracentrifugation of plasma from patients with stage 3-4 CKD and individuals without kidney disease (HDL CKD and HDL Cont , respectively). Uptake of LDL, cholesterol efflux to HDL, and cellular inflammatory responses were assessed in human THP-1 cells. HDL effects on inflammatory markers (MCP-1, TNF-α, IL-1β), Toll-like receptors-2 (TLR-2) and - 4 (TLR-4), ATP-binding cassette class A transporter (ABCA1), NF-κB, extracellular signal regulated protein kinases 1/2 (ERK1/2) were assessed by RT-PCR and western blot before and after in vitro treatment with an LXR agonist. There was no difference in macrophage uptake of LDL isolated from CKD versus controls. By contrast, HD CKD was significantly less effective than HDL Cont in accepting cholesterol from cholesterol-enriched macrophages (median 20.8% [IQR 16.1-23.7] vs control (26.5% [IQR 19.6-28.5]; p = 0.008). LXR agonist upregulated ABCA1 expression and increased cholesterol efflux to HDL of both normal and CKD subjects, although the latter continued to show lower efflux capacity. HDL CKD increased macrophage cytokine response (TNF-α, MCP-1, IL-1β, and NF-κB) versus HDL Cont . The heightened cytokine response to HDL CKD was further amplified in cells treated with LXR agonist. The LXR-augmentation of inflammation was associated with increased TLR-2 and TLR-4 and ERK1/2. Moderate to severe impairment in kidney function promotes foam cell formation that reflects impairment in cholesterol acceptor function of HDL CKD . Activation of cellular cholesterol transporters by LXR agonism improves but does not normalize efflux to HDL CKD . However, LXR agonism actually increases the pro-inflammatory effects of HDL CKD through activation of TLRs and ERK1/2 pathways.

  18. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability

    PubMed Central

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre

    2015-01-01

    Key points Transient reduction in renal blood flow results in inflammation and is a primary cause of acute kidney injury, thereby representing a major clinical problem.It is not known whether the inflammatory reaction is local only or part of a systemic response.We accessed the renal microenvironment through isolation of lymph and were in this way able to investigate whether the inflammatory reaction is local or systemic.Transient ischaemia followed by reperfusion resulted in a rapid production of inflammatory mediators locally in the renal interstitium.We moreover showed that the injury response affected the glomerular as well as the non‐glomerular barrier and resulted in a reduced size and charge selectivity of the glomerular capillaries. Abstract A better understanding of the inflammatory process associated with renal ischaemia–reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin‐1β, monocyte chemoattractant protein‐1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor‐α  was the only mediator showing elevated lymph‐to‐plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR‐induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14‐ to 166‐fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph. PMID:26584508

  19. Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study.

    PubMed

    Jongman, Rianne M; Zijlstra, Jan G; Kok, Wendelinde F; van Harten, Annemarie E; Mariani, Massimo A; Moser, Jill; Struys, Michel M R F; Absalom, Anthony R; Molema, Grietje; Scheeren, Thomas W L; van Meurs, Matijs

    2014-08-01

    Coronary artery bypass graft (CABG) surgery can result in severe postoperative organ failure. During CABG surgery, cardiopulmonary bypass (CPB) with cardiac arrest is often used (on-pump CABG), which often results in a systemic inflammatory response. To reduce this inflammatory response, off-pump CABG was reintroduced, thereby avoiding CPB. There is increasing evidence that the endothelium plays an important role in the pathophysiology of organ failure after CABG surgery. In this study, 60 patients who were scheduled for elective CABG surgery were randomized to have surgery for on-pump or off-pump CABG. Blood was collected at four time points: start, end, 6 h, and 24 h postoperatively. Levels of inflammatory cytokines, soluble adhesion molecules, and angiogenic factors and their receptors were measured in the plasma. No differences were found in preoperative characteristics between the patient groups. The levels of tumor necrosis factor-α, interleukin 10, and myeloperoxidase, but not interleukin 6, were increased to a greater extent in the on-pump CABG compared with off-pump CABG after sternum closure. The soluble endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 were not elevated in the plasma during and after CABG surgery in both on-pump and off-pump CABG. Angiopoietin 2 was only increased 24 h after surgery in both on-pump and off-pump CABG. Higher levels of sFlt-1 were found after sternum closure in off-pump CABG compared with on-pump CABG. Avoiding CPB and aortic cross clamping in CABG surgery reduces the systemic inflammatory response. On-pump CABG does not lead to an increased release of soluble endothelial adhesion molecules in the circulation compared with off-pump CABG.

  20. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in cardiac surgery patients even though the clinical significance remains unknown. This clinical trial was approved by the European Medicines Agency (EudraCT-number: 2010-023942-63) and at ClinicalTrials.gov ( NCT01285271 ; first received: January 24, 2011).

  1. A Descriptive Survey of Inflammatory Bowel Disease within the Active Army Population (1971-1982).

    DTIC Science & Technology

    1985-06-01

    psychological response to stress has an impact on the disease once it is established. This includes the recurrence of the disease as well as its severity. An...underlying question that remains is: Which is the causal agent, the disease or the psychological response to the disease? The inflammatory process of the... psychological factor. Only with increased knowledge of their epidemiologic factors will researchers begin to understand the basis for these devastating

  2. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    PubMed

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  3. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1{beta} effect and increase in the transepithelial passage of commensal bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator ofmore » intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1{beta}), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1{beta} on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects.« less

  4. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats.

    PubMed

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  5. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    PubMed Central

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  6. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination

    PubMed Central

    Fourati, Slim; Cristescu, Razvan; Loboda, Andrey; Talla, Aarthi; Filali, Ali; Railkar, Radha; Schaeffer, Andrea K.; Favre, David; Gagnon, Dominic; Peretz, Yoav; Wang, I-Ming; Beals, Chan R.; Casimiro, Danilo R.; Carayannopoulos, Leonidas N.; Sékaly, Rafick-Pierre

    2016-01-01

    Aging is associated with hyporesponse to vaccination, whose mechanisms remain unclear. In this study hepatitis B virus (HBV)-naive older adults received three vaccines, including one against HBV. Here we show, using transcriptional and cytometric profiling of whole blood collected before vaccination, that heightened expression of genes that augment B-cell responses and higher memory B-cell frequencies correlate with stronger responses to HBV vaccine. In contrast, higher levels of inflammatory response transcripts and increased frequencies of pro-inflammatory innate cells correlate with weaker responses to this vaccine. Increased numbers of erythrocytes and the haem-induced response also correlate with poor response to the HBV vaccine. A transcriptomics-based pre-vaccination predictor of response to HBV vaccine is built and validated in distinct sets of older adults. This moderately accurate (area under the curve≈65%) but robust signature is supported by flow cytometry and cytokine profiling. This study is the first that identifies baseline predictors and mechanisms of response to the HBV vaccine. PMID:26742691

  7. A Detailed Characterization of the Dysfunctional Immunity and Abnormal Myelopoiesis Induced by Severe Shock and Trauma in the Aged

    PubMed Central

    Nacionales, Dina C.; Szpila, Benjamin; Ungaro, Ricardo; Lopez, M. Cecilia; Zhang, Jianyi; Gentile, Lori F.; Cuenca, Angela L.; Vanzant, Erin; Mathias, Brittany; Jyot, Jeevan; Westerveld, Donevan; Bihorac, Azra; Joseph, Anna; Mohr, Alicia; Duckworth, Lizette V.; Moore, Frederick A.; Baker, Henry V.; Leeuwenburgh, Christiaan; Moldawer, Lyle L.; Brakenridge, Scott; Efron, Philip A.

    2015-01-01

    The elderly are particularly susceptible to trauma, and their outcomes are frequently dismal. Such patients often have complicated clinical courses and ultimately die from infection and sepsis. Recent research has revealed that although elderly subjects have increased baseline inflammation as compared to their younger counterparts, the elderly do not respond to severe infection/injury with an exaggerated inflammatory response. Initial retrospective analysis of clinical data from the Glue Grant trauma database demonstrated that despite a similar frequency, elderly trauma patients have worse outcomes to pneumonia than younger subjects. Subsequent analysis with a murine trauma model also demonstrated that elderly mice had increased mortality after post-trauma Pseudomonas pneumonia. Blood, bone marrow, and bronchoalveolar lavage sample analyses from juvenile and 20–24 month old mice showed that increased mortality to trauma combined with secondary infection in the aged are not due to an exaggerated inflammatory response. Rather, they are due to a failure of bone marrow progenitors, blood neutrophils, and bronchoalveolar lavage cells to initiate and complete an ‘emergency myelopoietic’ response, engendering myeloid cells that fail to clear secondary infection. In addition, the elderly appeared unable to effectively resolve their inflammatory response to severe injury. PMID:26246141

  8. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  9. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice

    PubMed Central

    Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu

    2016-01-01

    Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8+CD44+IFN-γ+ T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses. PMID:27545302

  10. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    PubMed Central

    Smith, Judith A.

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis. PMID:29556237

  11. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    PubMed Central

    Castro, Juciane Maria de Andrade; Resende, Rodrigo R.; Florsheim, Esther; Albuquerque, Layra Lucy; Lino-dos-Santos-Franco, Adriana; Gomes, Eliane; Tavares de Lima, Wothan; de Franco, Marcelo; Ribeiro, Orlando Garcia

    2013-01-01

    Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation. PMID:23691511

  12. Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.

    PubMed

    Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2016-06-01

    The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.

  13. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  14. Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα.

    PubMed

    Bao, Yan; Wu, Xuewei; Chen, Jinjing; Hu, Xiangming; Zeng, Fuxing; Cheng, Jianjun; Jin, Hong; Lin, Xin; Chen, Lin-Feng

    2017-05-16

    Bromodomain-containing factor Brd4 has emerged as an important transcriptional regulator of NF-κB-dependent inflammatory gene expression. However, the in vivo physiological function of Brd4 in the inflammatory response remains poorly defined. We now demonstrate that mice deficient for Brd4 in myeloid-lineage cells are resistant to LPS-induced sepsis but are more susceptible to bacterial infection. Gene-expression microarray analysis of bone marrow-derived macrophages (BMDMs) reveals that deletion of Brd4 decreases the expression of a significant amount of LPS-induced inflammatory genes while reversing the expression of a small subset of LPS-suppressed genes, including MAP kinase-interacting serine/threonine-protein kinase 2 ( Mknk2 ). Brd4 -deficient BMDMs display enhanced Mnk2 expression and the corresponding eukaryotic translation initiation factor 4E (eIF4E) activation after LPS stimulation, leading to an increased translation of IκBα mRNA in polysomes. The enhanced newly synthesized IκBα reduced the binding of NF-κB to the promoters of inflammatory genes, resulting in reduced inflammatory gene expression and cytokine production. By modulating the translation of IκBα via the Mnk2-eIF4E pathway, Brd4 provides an additional layer of control for NF-κB-dependent inflammatory gene expression and inflammatory response.

  15. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.

    PubMed

    Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching

    2011-03-01

    The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Maternal Diet, Metabolic State, and Inflammatory Response Exert Unique and Long-Lasting Influences on Offspring Behavior in Non-Human Primates

    PubMed Central

    Thompson, Jacqueline R.; Gustafsson, Hanna C.; DeCapo, Madison; Takahashi, Diana L.; Bagley, Jennifer L.; Dean, Tyler A.; Kievit, Paul; Fair, Damien A.; Sullivan, Elinor L.

    2018-01-01

    Nutritional status influences brain health and gestational exposure to metabolic disorders (e.g. obesity and diabetes) increases the risk of neuropsychiatric disorders. The aim of the present study was to further investigate the role of maternal Western-style diet (WSD), metabolic state, and inflammatory factors in the programming of Japanese macaque offspring behavior. Utilizing structural equation modeling, we investigated the relationships between maternal diet, prepregnancy adiposity, third trimester insulin response, and plasma cytokine levels on 11-month-old offspring behavior. Maternal WSD was associated with greater reactive and ritualized anxiety in offspring. Maternal adiposity and third trimester macrophage-derived chemokine (MDC) exerted opposing effects on offspring high-energy outbursts. Elevated levels of this behavior were associated with low maternal MDC and increased prepregnancy adiposity. This is the first study to show that maternal MDC levels influence offspring behavior. We found no evidence suggesting maternal peripheral inflammatory response mediated the effect of maternal diet and metabolic state on aberrant offspring behavior. Additionally, the extent of maternal metabolic impairment differentially influenced chemokine response. Elevated prepregnancy adiposity suppressed third trimester chemokines, while obesity-induced insulin resistance augmented peripheral chemokine levels. WSD also directly increased maternal interleukin-12. This is the first non-human primate study to delineate the effects of maternal diet and metabolic state on gestational inflammatory environment and subsequent offspring behavior. Our findings give insight to the complex mechanisms by which diet, metabolic state, and inflammation during pregnancy exert unique influences on offspring behavioral regulation. PMID:29740395

  17. Aβ25-35 injection into the temporal cortex induces chronic inflammation that contributes to neurodegeneration and spatial memory impairment in rats.

    PubMed

    Diaz, Alfonso; Limon, Daniel; Chávez, Raúl; Zenteno, Edgar; Guevara, Jorge

    2012-01-01

    Amyloid-β (Aβ)25-35 is able to cause memory impairment and neurodegenerative events. Recent evidence has shown that the injection of Aβ25-35 into the temporal cortex (TCx) of rats increases the inflammatory response; however, it is unclear how the inflammatory process could be involved in the progression of Aβ25-35 toxicity. In this study we investigated the role of inflammation in the neuronal damage and spatial memory impairment generated by Aβ25-35 in rat TCx using immunohistochemistry, ELISA, and a behavioral test in the radial maze. Our findings show that Aβ25-35 -injection into the TCx induced a reactive gliosis (GFAP and CD11b-reactivity) and an increase of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) in the TCx and the hippocampus at 5, 15, and 30 days after injection. Thirty days after Aβ25-35 injection, we observed that the inflammatory reaction probably contributed to increase the immunoreactivity of inducible nitric oxide synthase and nitrite levels, as well as to the loss of neurons in TCx and hippocampus. Behavioral performance showed that the neurodegeneration evoked by Aβ25-35 delayed acquisition of learning and impaired spatial memory, because the Aβ25-35-treated animals showed a greater number of errors during the task than the control group. Previous administration of an interleukin receptor antagonist (IL-1ra) (10 and 20 μg/μL, into TCx), an anti-inflammatory agent, suppressed the Aβ25-35-induced inflammatory response and neurodegeneration, as well as memory dysfunction. This study suggests that the chronic inflammatory reaction could contribute to the progression of Aβ25-35 toxicity and cause cognitive impairment.

  18. Anti-Inflammatory Effects of Vitamin D on Human Immune Cells in the Context of Bacterial Infection.

    PubMed

    Hoe, Edwin; Nathanielsz, Jordan; Toh, Zheng Quan; Spry, Leena; Marimla, Rachel; Balloch, Anne; Mulholland, Kim; Licciardi, Paul V

    2016-12-12

    Vitamin D induces a diverse range of biological effects, including important functions in bone health, calcium homeostasis and, more recently, on immune function. The role of vitamin D during infection is of particular interest given data from epidemiological studies suggesting that vitamin D deficiency is associated with an increased risk of infection. Vitamin D has diverse immunomodulatory functions, although its role during bacterial infection remains unclear. In this study, we examined the effects of 1,25(OH)₂D₃, the active metabolite of vitamin D, on peripheral blood mononuclear cells (PBMCs) and purified immune cell subsets isolated from healthy adults following stimulation with the bacterial ligands heat-killed pneumococcal serotype 19F (HK19F) and lipopolysaccharide (LPS). We found that 1,25(OH)₂D₃ significantly reduced pro-inflammatory cytokines TNF-α, IFN-γ, and IL-1β as well as the chemokine IL-8 for both ligands (three- to 53-fold), while anti-inflammatory IL-10 was increased (two-fold, p = 0.016) in HK19F-stimulated monocytes. Levels of HK19F-specific IFN-γ were significantly higher (11.7-fold, p = 0.038) in vitamin D-insufficient adults (<50 nmol/L) compared to sufficient adults (>50 nmol/L). Vitamin D also shifted the pro-inflammatory/anti-inflammatory balance towards an anti-inflammatory phenotype and increased the CD14 expression on monocytes ( p = 0.008) in response to LPS but not HK19F stimulation. These results suggest that 1,25(OH)₂D₃ may be an important regulator of the inflammatory response and supports further in vivo and clinical studies to confirm the potential benefits of vitamin D in this context.

  19. Immune and inflammatory responses of Australian firefighters after repeated exposures to the heat.

    PubMed

    Walker, Anthony; Keene, Toby; Argus, Christos; Driller, Matthew; Guy, Joshua H; Rattray, Ben

    2015-01-01

    When firefighters work in hot conditions, altered immune and inflammatory responses may increase the risk of a cardiac event. The present study aimed to establish the time course of such responses. Forty-two urban firefighters completed a repeat work protocol in a heat chamber (100 ± 5°C). Changes to leukocytes, platelets, TNFα, IL-6, IL-10, LPS and CRP were evaluated immediately post-work and also after 1 and 24 h of rest. Increases in core temperatures were associated with significant increases in leukocytes, platelets and TNFα directly following work. Further, platelets continued to increase at 1 h (+31.2 ± 31.3 × 10(9) l, p < 0.01) and remained elevated at 24 h (+15.9 ± 19.6 × 10(9) l, p < 0.01). Sustained increases in leukocytes and platelets may increase the risk of cardiac events in firefighters when performing repeat work tasks in the heat. This is particularly relevant during multi-day deployments following natural disasters. Practitioner Summary: Firefighters regularly re-enter fire affected buildings or are redeployed to further operational tasks. Should work in the heat lead to sustained immune and inflammatory changes following extended rest periods, incident controllers should plan appropriate work/rest cycles to minimise these changes and any subsequent risks of cardiac events.

  20. Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration.

    PubMed

    Pan, Hung-Chuan; Chin, Chun-Shih; Yang, Dar-Yu; Ho, Shu-Peng; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-07-01

    Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.

  1. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    PubMed

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  2. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis.

    PubMed

    Mirshafiey, Abbas; Jadidi-Niaragh, Farhad

    2010-06-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that involves central nervous system, and is generally associated with demyelination and axonal lesion. The effective factors for initiation of the inflammatory responses have not been known precisely so far. Leukotrienes (LTs) are inflammatory mediators with increased levels in the cerebrospinal fluid of MS patients and in experimental models of multiple sclerosis. Inhibition of LT receptors with specific antagonists can decrease inflammatory responses. In this review article we try to clarify the role of LT receptor antagonists and also inhibitors of enzymes which are involved in LTs generating pathway for treating multiple sclerosis as new targets for MS therapy. Moreover, we suggest that blockage of LT receptors by potent specific antagonists and/or agonists can be as a novel useful method in treatment of MS.

  3. Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency.

    PubMed

    Weglicki, William B; Chmielinska, Joanna J; Kramer, Jay H; Mak, I Tong

    2011-08-01

    In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.

  4. A review of the application of inflammatory biomarkers in epidemiologic cancer research

    PubMed Central

    Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.

    2014-01-01

    Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838

  5. Oxidative Stress in the Local and Systemic Events of Apical Periodontitis

    PubMed Central

    Hernández-Ríos, Patricia; Pussinen, Pirkko J.; Vernal, Rolando; Hernández, Marcela

    2017-01-01

    Oxidative stress is involved in the pathogenesis of a variety of inflammatory disorders. Apical periodontitis (AP) usually results in the formation of an osteolytic apical lesion (AL) caused by the immune response to endodontic infection. Reactive oxygen species (ROS) produced by phagocytic cells in response to bacterial challenge represent an important host defense mechanism, but disturbed redox balance results in tissue injury. This mini review focuses on the role of oxidative stress in the local and associated systemic events in chronic apical periodontitis. During endodontic infection, ligation of Toll-like receptors (TLRs) on phagocytes' surface triggers activation, phagocytosis, synthesis of ROS, activation of humoral and cellular responses, and production of inflammatory mediators, such as, cytokines and matrix metalloproteinases (MMPs). The increment in ROS perturbs the normal redox balance and shifts cells into a state of oxidative stress. ROS induce molecular damage and disturbed redox signaling, that result in the loss of bone homeostasis, increased pro-inflammatory mediators, and MMP overexpression and activation, leading to apical tissue breakdown. On the other hand, oxidative stress has been strongly involved in the pathogenesis of atherosclerosis, where a chronic inflammatory process develops in the arterial wall. Chronic AP is associated with an increased risk of cardiovascular diseases (CVD) and especially atherogenesis. The potential mechanisms linking these diseases are also discussed. PMID:29163211

  6. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis.

    PubMed

    Rao, Rajesh R; Long, Jonathan Z; White, James P; Svensson, Katrin J; Lou, Jesse; Lokurkar, Isha; Jedrychowski, Mark P; Ruas, Jorge L; Wrann, Christiane D; Lo, James C; Camera, Donny M; Lachey, Jenn; Gygi, Steven; Seehra, Jasbir; Hawley, John A; Spiegelman, Bruce M

    2014-06-05

    Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-08-03

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.

  8. Surgical inflammatory stress: the embryo takes hold of the reins again

    PubMed Central

    2013-01-01

    The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient’s injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process. PMID:23374964

  9. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  10. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential.

    PubMed

    Spitz, Charlotte; Winkels, Holger; Bürger, Christina; Weber, Christian; Lutgens, Esther; Hansson, Göran K; Gerdes, Norbert

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.

  11. Cytokines as biomarkers of inflammatory response after open versus endovascular repair of abdominal aortic aneurysms: a systematic review.

    PubMed

    Tsilimigras, Diamantis I; Sigala, Fragiska; Karaolanis, Georgios; Ntanasis-Stathopoulos, Ioannis; Spartalis, Eleftherios; Spartalis, Michael; Patelis, Nikolaos; Papalampros, Alexandros; Long, Chandler; Moris, Demetrios

    2018-05-17

    The repair of an abdominal aortic aneurysm (AAA) is a high-risk surgical procedure related to hormonal and metabolic stress-related response with an ensuing activation of the inflammatory cascade. In contrast to open repair (OR), endovascular aortic aneurysm repair (EVAR) seems to decrease the postoperative stress by offering less extensive incisions, dissection, and tissue manipulation. However, these beneficial effects may be offset by the release of cytokines and arachidonic acid metabolites during intra-luminal manipulation of the thrombus using catheters in endovascular repair, resulting in systemic inflammatory response (SIR), which is clinically called post-implantation syndrome. In this systematic review we compared OR with EVAR in terms of the post-interventional inflammatory response resulting from alterations in the circulating cytokine levels. We sought to summarize all the latest evidence regarding post-implantation syndrome after EVAR. We searched Medline (PubMed), ClinicalTrials.gov and the Cochrane library for clinical studies reporting on the release of cytokines as part of the inflammatory response after both open/conventional and endovascular repair of the AAA. We identified 17 studies examining the cytokine levels after OR versus EVAR. OR seemed to be associated with a greater SIR than EVAR, as evidenced by the increased cytokine levels, particularly IL-6 and IL-8, whereas IL-1β, IL-10 and TNF-α showed conflicting results or no difference between the two groups. Polyester endografts appear to be positively correlated with the incidence of post-implantation syndrome after EVAR. Future large prospective studies are warranted to delineate the underlying mechanisms of the cytokine interaction in the post-surgical inflammatory response setting.

  12. Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L Attenuates the Inflammatory Response and Infarct Size in Acute Myocardial Infarction.

    PubMed

    Nishikido, Toshiyuki; Oyama, Jun-ichi; Shiraki, Aya; Komoda, Hiroshi; Node, Koichi

    2016-04-04

    An excessive inflammatory response after myocardial infarction (MI) increases myocardial injury. The toll-like receptor (TLR)-4 is activated by the recognition of endogenous ligands and is proinflammatory when there is myocardial tissue injury. The apoptosis inhibitor of the macrophage (AIM) is known to provoke an efflux of saturated free fatty acids (FFA) due to lipolysis, which causes inflammation via the TLR-4 pathway. Therefore, this study investigated the hypothesis that AIM causes a proinflammatory response after MI. The left anterior descending coronary artery was ligated to induce MI in both AIM-knockout (AIM(-/-)) and wild-type (WT) mice. After 3 days, the inflammatory response from activation of the TLR-4/NFκB pathway was assessed, and infarct size was measured by staining with triphenyltetrazolium chloride. In addition, left ventricular remodeling was examined after 28 days. Although the area at risk was similar between AIM(-/-) and WT mice, the infarct size was significantly smaller in AIM(-/-) mice (P=0.02). The heart weight-to-body weight ratio and myocardial fibrosis were also decreased in the AIM(-/-) mice, and the 28-day survival rate was improved (P<0.01). With the reduction of plasma FFA in AIM(-/-) mice, myocardial IRAK4 and NFκB activity were decreased (all P<0.05). Moreover, there was a reduction in myeloperoxidase activity and inducible nitric oxide synthase as part of the inflammatory response (P<0.01, P=0.03, respectively). Furthermore, NFκB DNA-binding activation via TLR-4, neutrophil infiltration, and inflammatory mediators were decreased in AIM(-/-) mice. The deletion of AIM reduced the inflammatory response and infarct size and improved survival after myocardial infarction. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Effect of Wild-Type Shigella Species and Attenuated Shigella Vaccine Candidates on Small Intestinal Barrier Function, Antigen Trafficking, and Cytokine Release

    PubMed Central

    Fiorentino, Maria; Levine, Myron M.

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363

  14. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  15. A Lack of Ovarian Function Increases Neuroinflammation in Aged Mice

    PubMed Central

    Benedusi, Valeria; Meda, Clara; Della Torre, Sara; Monteleone, Giuseppina; Vegeto, Elisabetta

    2012-01-01

    Although several lines of evidence have indicated that menopause is associated with increased susceptibility to neurological disorders, the mechanisms involved in this phenomenon remain to be elucidated. Because neuroinflammation is a common feature of a number of brain diseases, we hypothesized that the cessation of ovarian functions and the consequent decrease in estrogen receptor (ER)-mediated antiinflammatory activity may represent a trigger for postmenopausal brain dysfunctions. The aim of the present study was to investigate the effects of aging and surgical menopause on the activity of ER in neuroinflammation. The present study shows that ER genes are expressed in the hippocampus, but ER transcriptional activity decreases significantly beginning at 12 months of age in intact and ovariectomized mice. With ovariectomy, we observe an age-dependent accumulation of mRNA encoding inflammatory mediators (e.g. TNFα, IL1β, and macrophage inflammatory protein-2) and changes in the morphology of astroglia and microglia. In addition, we show that aging itself is coupled with an exaggerated response to acute inflammatory stimuli with a major accumulation of TNFα, IL1β, macrophage inflammatory protein-2, and macrophage chemoattractant protein-1 mRNA in response to lipopolysaccharide administration. The response to acute inflammatory stimuli appears to be differentially modulated by the duration of hormone deprivation in 12-month-old mice. Taken together, the present results show that aging is associated with decreased ER activity, despite continuous ER synthesis, and that age-dependent neuroinflammation is strongly influenced by hormone deprivation. PMID:22492304

  16. Formula milk feeding does not increase the release of the inflammatory marker calprotectin, compared to human milk.

    PubMed

    Rosti, L; Braga, M; Fulcieri, C; Sammarco, G; Manenti, B; Costa, E

    2011-01-01

    Calprotectin is a protein released into stools, used as a marker of inflammation in inflammatory bowel diseases. We tested the hypothesis that cow's milk protein in formula milk may increase the intestinal release of calprotectin, as a consequence of a subclinical inflammatory reaction. At 12 weeks of age, we measured fecal calprotectin by an immunoenzyme assay (Calprest, Eurospital, Trieste, Italy), in 38 exclusively breastfed and in 32 exclusively formula-fed infants. Fecal calprotectin levels were not different in the two groups (p = 0.09), although a trend to higher values in infants with colic, or with family history of allergies was noted. This suggest that, in general, formula milk does not promote activation of an intestinal inflammatory reaction, compared to human milk, although a subclinical activation of the inflammatory response in infants at risk for allergic diseases may be present.

  17. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo

    PubMed Central

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases. PMID:27390516

  18. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo.

    PubMed

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.

  19. SREBP-1c overactivates ROS-mediated hepatic NF-κB inflammatory pathway in dairy cows with fatty liver.

    PubMed

    Li, Xinwei; Huang, Weikun; Gu, Jingmin; Du, Xiliang; Lei, Lin; Yuan, Xue; Sun, Guoquan; Wang, Zhe; Li, Xiaobing; Liu, Guowen

    2015-10-01

    Dairy cows with fatty liver are characterized by hepatic lipid accumulation and a severe inflammatory response. Sterol receptor element binding protein-1c (SREBP-1c) and nuclear factor κB (NF-κB) are components of the main pathways for controlling triglyceride (TG) accumulation and inflammatory levels, respectively. A previous study demonstrated that hepatic inflammatory levels are positively correlated with hepatic TG content. We therefore speculated that SREBP-1c might play an important role in the overactivation of the hepatic NF-κB inflammatory pathway in cows with fatty liver. Compared with healthy cows, cows with fatty liver exhibited severe hepatic injury and high blood concentrations of the inflammatory cytokines TNF-α, IL-6 and IL-1β. Hepatic SREBP-1c-mediated lipid synthesis and the NF-κB inflammatory pathway were both overinduced in cows with fatty liver. In vitro, treatment with non-esterified fatty acids (NEFA) further increased SREBP-1c expression and NF-κB pathway activation, which then promoted TG and inflammatory cytokine synthesis. SREBP-1c overexpression overactivated the NF-κB inflammatory pathway in hepatocytes by increasing ROS content and not through TLR4. Furthermore, SREBP-1c silencing decreased ROS content and further attenuated the activation of the NEFA-induced NF-κB pathway, thereby decreasing TNF-α, IL-6 and IL-1β synthesis. SREBP-1c-overexpressing mice exhibited hepatic steatosis and an overinduced hepatic NF-κB pathway. Taken together, these results indicate that SREBP-1c enhances the NEFA-induced overactivation of the NF-κB inflammatory pathway by increasing ROS in cow hepatocytes, thereby further increasing hepatic inflammatory injury in cows with fatty liver. Copyright © 2015. Published by Elsevier Inc.

  20. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice.

    PubMed

    Gui, Boxiang; Chen, Qin; Hu, Chuanxia; Zhu, Caihui; He, Guimei

    2017-01-23

    H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-β in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-β was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study will provide some novel insights into the use of calcitriol to modulate the inflammatory response elicited by influenza virus infection in humans.

  1. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    PubMed

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  2. Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

    PubMed Central

    Rodrigues, Claudiney Melquíades; Valadares, Helder Magno Silva; Francisco, Amanda Fortes; Arantes, Jerusa Marilda; Campos, Camila França; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Araujo, Márcio Sobreira Silva; Arantes, Rosa Maria Esteves; Chiari, Egler; Franco, Glória Regina; Machado, Carlos Renato; Pena, Sérgio Danilo Junho; Faria, Ana Maria Caetano; Macedo, Andréa Mara

    2010-01-01

    A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice. PMID:20967289

  3. Exaggerated Increases in Microglia Proliferation, Brain Inflammatory Response and Sickness Behaviour upon Lipopolysaccharide Stimulation in Non-Obese Diabetic Mice.

    PubMed

    McGuiness, Barry; Gibney, Sinead M; Beumer, Wouter; Versnel, Marjan A; Sillaber, Inge; Harkin, Andrew; Drexhage, Hemmo A

    2016-01-01

    The non-obese diabetic (NOD) mouse, an established model for autoimmune diabetes, shows an exaggerated reaction of pancreas macrophages to inflammatory stimuli. NOD mice also display anxiety when immune-stimulated. Chronic mild brain inflammation and a pro-inflammatory microglial activation is critical in psychiatric behaviour. To explore brain/microglial activation and behaviour in NOD mice at steady state and after systemic lipopolysaccharide (LPS) injection. Affymetrix analysis on purified microglia of pre-diabetic NOD mice (8-10 weeks) and control mice (C57BL/6 and CD1 mice, the parental non-autoimmune strain) at steady state and after systemic LPS (100 μg/kg) administration. Quantitative PCR was performed on the hypothalamus for immune activation markers (IL-1β, IFNγ and TNFα) and growth factors (BDNF and PDGF). Behavioural profiling of NOD, CD1, BALB/c and C57BL/6 mice at steady state was conducted and sickness behaviour/anxiety in NOD and CD1 mice was monitored before and after LPS injection. Genome analysis revealed cell cycle/cell death and survival aberrancies of NOD microglia, substantiated as higher proliferation on BrdU staining. Inflammation signs were absent. NOD mice had a hyper-reactive response to novel environments with some signs of anxiety. LPS injection induced a higher expression of microglial activation markers, a higher brain pro-inflammatory set point (IFNγ, IDO) and a reduced expression of BDNF and PDGF after immune stimulation in NOD mice. NOD mice displayed exaggerated and prolonged sickness behaviour after LPS administration. After stimulation with LPS, NOD mice display an increased microglial proliferation and an exaggerated inflammatory brain response with reduced BDNF and PDGF expression and increased sickness behaviour as compared to controls. © 2016 S. Karger AG, Basel.

  4. Temporal-logic analysis of microglial phenotypic conversion with exposure to amyloid-β.

    PubMed

    Anastasio, Thomas J

    2015-02-01

    Alzheimer Disease (AD) remains a leading killer with no adequate treatment. Ongoing research increasingly implicates the brain's immune system as a critical contributor to AD pathogenesis, but the complexity of the immune contribution poses a barrier to understanding. Here I use temporal logic to analyze a computational specification of the immune component of AD. Temporal logic is an extension of logic to propositions expressed in terms of time. It has traditionally been used to analyze computational specifications of complex engineered systems but applications to complex biological systems are now appearing. The inflammatory component of AD involves the responses of microglia to the peptide amyloid-β (Aβ), which is an inflammatory stimulus and a likely causative AD agent. Temporal-logic analysis of the model provides explanations for the puzzling findings that Aβ induces an anti-inflammatory and well as a pro-inflammatory response, and that Aβ is phagocytized by microglia in young but not in old animals. To potentially explain the first puzzle, the model suggests that interferon-γ acts as an "autocrine bridge" over which an Aβ-induced increase in pro-inflammatory cytokines leads to an increase in anti-inflammatory mediators also. To potentially explain the second puzzle, the model identifies a potential instability in signaling via insulin-like growth factor 1 that could explain the failure of old microglia to phagocytize Aβ. The model predicts that augmentation of insulin-like growth factor 1 signaling, and activation of protein kinase C in particular, could move old microglia from a neurotoxic back toward a more neuroprotective and phagocytic phenotype.

  5. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  6. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. High glucose-boosted inflammatory responses to lipopolysaccharide are suppressed by statin.

    PubMed

    Nareika, A; Maldonado, A; He, L; Game, B A; Slate, E H; Sanders, J J; London, S D; Lopes-Virella, M F; Huang, Y

    2007-02-01

    It has been established that periodontal diseases are more prevalent and of greater severity in diabetic patients than in nondiabetic patients. Recent studies have underscored the role of monocytes and macrophages in periodontal tissue inflammation and destruction in diabetic patients. Although it has been shown that monocytes isolated from diabetic patients produce more inflammatory cytokines and that gingival crevicular fluid collected from diabetic patients contains higher levels of inflammatory cytokines than that obtained from nondiabetic patients, the underlying mechanisms are not well understood. U937 histiocytes cultured in medium containing either normal (5 mM) or high (25 mM) glucose were treated with 100 ng/ml of lipopolysaccharide for 24h. After the treatment, cytokines in the medium and cytokine mRNA in the cells were quantified using enzyme-linked immunosorbet assay and real-time polymerase chain reaction, respectively. In this study, we demonstrated that the pre-exposure of U937 histiocytes to high glucose concentrations markedly increased the lipopolysaccharide-induced secretion of pro-inflammatory cytokines and chemokines and the cellular inducible nitric oxide level compared with pre-exposure to normal glucose. Our data also showed that the increased secretion of cytokines was a result of increased mRNA expression. Furthermore, the effects of statin and peroxisome proliferators-activated receptor agonists on high glucose-enhanced secretion of cytokines were determined. The results showed that simvastatin, but not fenofibrate or pioglitazone, inhibited high glucose-enhanced cytokine release. This study has shown that high glucose concentrations and lipopolysaccharide act synergistically to stimulate the secretion of inflammatory mediators, and that statin is capable of suppressing the high glucose-boosted proinflammatory response. This study therefore delineates a novel mechanism by which hyperglycemia enhances the inflammatory responses of macrophages and suggests that statin may be useful in the treatment of periodontal disease in diabetic patients.

  8. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    PubMed

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Relaxin augments the inflammatory IL6 response in the choriodecidua

    PubMed Central

    JS, Horton; SY, Yamamoto; GD, Bryant-Greenwood

    2012-01-01

    Intrauterine infection frequently leads to preterm birth (PTB), with the pathophysiology involving activation of the innate immune system and its associated inflammatory response. The choriodecidua produces relaxin (RLN) and elevated levels are associated with preterm premature rupture of the fetal membranes. However, it is not increased in bacterially-mediated PTB, but may act as an endogenous sterile inflammatory mediator. Elevated systemic RLN levels from the corpus luteum are also associated with PTB, but the mechanism is unknown. In clinical obstetrics, intrauterine inflammation or infection can coexist with elevated RLN. Therefore, in this study, we further characterized the effects of RLN alone or together with an inflammatory mediator on the production of IL1B, CSF2 (GM-CSF), IL6, IL8 and TNF, from chorionic cytotrophoblasts (CyT), decidual fibroblasts (DF) and stromal cells (DSC), using interleukin-1 beta (IL1B) to mimic sterile inflammation or lipopolysaccharide (LPS) for bacterial infection. Endogenous differences between the cells showed that the CyT expressed more and the RXFP1, its receptor RXFP1 splice variant D. CyT also showed the most robust cAMP response to RLN with increased IL6 secreted after 4 h, preceded by increased transcription at 1 h, likely due to activation of RXFP1 and cAMP. When all cell types were treated with IL1B and RLN, RLN augmented secretion of IL6 and IL8 from CyT and DF, but not DSC. Similarly, RLN augmented LPS-induced IL6 secretion from CyT and DF. Despite the structural similarity between TLR4 and RXFP1, blocking TLR4 in CyT had no effect on RLN-induced IL6 secretion, suggesting specific activation of RXFP1. Thus, we have shown that in the presence of a low level of intrauterine inflammation/infection, elevated RLN could act on the CyT and DF to augment the inflammatory response, contributing to the pathophysiology of PTB. PMID:22386961

  10. Diabetic Retinopathy: Vascular and Inflammatory Disease

    PubMed Central

    Semeraro, F.; Cancarini, A.; dell'Omo, R.; Rezzola, S.; Romano, M. R.; Costagliola, C.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted. PMID:26137497

  11. Minocycline Has Anti-inflammatory Effects and Reduces Cytotoxicity in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection.

    PubMed

    Quick, Eamon D; Seitz, Scott; Clarke, Penny; Tyler, Kenneth L

    2017-11-15

    West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. Copyright © 2017 American Society for Microbiology.

  12. Minocycline Has Anti-inflammatory Effects and Reduces Cytotoxicity in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection

    PubMed Central

    Quick, Eamon D.; Seitz, Scott; Tyler, Kenneth L.

    2017-01-01

    ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. PMID:28878079

  13. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  14. Violet/blue light activates Nrf2 signaling and modulates the inflammatory response of THP-1 monocytes.

    PubMed

    Trotter, L A; Patel, D; Dubin, S; Guerra, C; McCloud, V; Lockwood, P; Messer, R; Wataha, J C; Lewis, J B

    2017-06-14

    Several studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory and antioxidative. These effects have been attributed to Nrf2-mediated upregulation of "phase 2" genes such as heme oxygenase-1 (HO-1) that neutralize oxidative stress and metabolize electrophiles. Proteomics analysis previously had shown that small doses of blue light (400-500 nm) increased levels of peroxiredoxin phase 2 proteins in THP-1 monocytes, which led to our hypothesis that blue light activates Nrf2 signaling and thus may serve as an anti-inflammatory agent. THP-1 monocytes were treated with doses of blue light with and without lipopolysaccharide (LPS) inflammatory challenge. Cell lysates were tested for Nrf2 activation and HO-1 production. Treated cells were assessed for viability/mitochondrial activity via trypan blue exclusion and MTT assay, and secretion of two major pro-inflammatory cytokines, interleukin 8 (IL8) and tumor necrosis factor alpha (TNFα) was measured using ELISA. Blue light activated the phase 2 response in cultured THP-1 cells and was protective against LPS-induced cytotoxicity. Light pre-treatment also significantly reduced cytokine secretion in response to 0.1 μg ml -1 LPS, but had no anti-inflammatory effect at high LPS levels. This study is the first to report these effects using a light source that is approved for routine use on dental patients. Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation.

  15. Role of Cytokines as a Double-edged Sword in Sepsis

    PubMed Central

    CHAUDHRY, HINA; ZHOU, JUHUA; ZHONG, YIN; ALI, MIR MUSTAFA; MCGUIRE, FRANKLIN; NAGARKATTI, PRAKASH S.; NAGARKATTI, MITZI

    2014-01-01

    Background Sepsis is a deadly immunological disorder and its pathophysiology is still poorly understood. We aimed to determine if specific pro-inflammatory and anti-inflammatory cytokines can be used as diagnostic and therapeutic targets for sepsis. Materials and Methods Recent publications in the MEDLINE database were searched for articles regarding the clinical significance of inflammatory cytokines in sepsis. Results In response to pathogen infection, pro-inflammatory cytokines [interleukin-6 (IL-6), IL-8, IL-18 and tumor necrosis factor-α (TNF-α)] and anti-inflammatory cytokine (IL-10) increased in patients with sepsis. Importantly, a decrease in IL-6 was associated with a better prognosis and overproduction of IL-10 was found to be the main predictor of severity and fatal outcome. Conclusion Both pro-inflammatory and anti-inflammatory cytokines constitute a double-edged sword in sepsis; on one hand they are critical to eliminate the infection while on the other, excessive production can cause tissue and organ damage. Increase in cytokines such as IL-6, Il-8, IL-10, IL-18 and TNF-α may have implications in diagnosis and treatment of sepsis. PMID:24292568

  16. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways

    PubMed Central

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  17. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression.

    PubMed

    Escudero-Lourdes, C; Uresti-Rivera, E E; Oliva-González, C; Torres-Ramos, M A; Aguirre-Bañuelos, P; Gandolfi, A J

    2016-10-01

    Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMA III ), which accumulates in glial cells without compromising cell viability. MMA III LD 50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMA III concentrations (50-1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMA III concentrations that also induced TNF-α over-expression. Other effects of MMA III on cortical astrocytes included increased proliferative and metabolic activity. All tested MMA III concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMA III induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

  18. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age

    PubMed Central

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Riera, Joan; Drobnic, Franchek; Tur, Josep Antoni; Pons, Antoni

    2016-01-01

    n-3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs). Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα) levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs), soluble Intercellular adhesion molecule 3 (sICAM3) and soluble L-selectin (sL-Selectin), and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group. PMID:27735833

  19. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Riera, Joan; Drobnic, Franchek; Tur, Josep Antoni; Pons, Antoni

    2016-10-09

    n -3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs). Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα) levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs), soluble Intercellular adhesion molecule 3 (sICAM3) and soluble L-selectin (sL-Selectin), and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group.

  20. Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: innate vs. adaptive immune response.

    PubMed

    Belknap, J K; Giguère, S; Pettigrew, A; Cochran, A M; Van Eps, A W; Pollitt, C C

    2007-01-01

    Recent research has indicated that inflammation plays a role in the early stages of laminitis and that, similar to organ failure in human sepsis, early inflammatory mechanisms may lead to downstream events resulting in lamellar failure. Characterisation of the type of immune response (i.e. innate vs. adaptive) is essential in order to develop therapeutic strategies to counteract these deleterious events. To quantitate gene expression of pro-inflammatory cytokines known to be important in the innate and adaptive immune response during the early stages of laminitis, using both the black walnut extract (BWE) and oligofructose (OF) models of laminitis. Real-time qPCR was used to assess lamellar mRNA expression of interleukins-1beta, 2, 4, 6, 8, 10, 12 and 18, and tumour necrosis factor alpha and interferon gamma at the developmental stage and at the onset of lameness. Significantly increased lamellar mRNA expression of cytokines important in the innate immune response were present at the developmental stage of the BWE model, and at the onset of acute lameness in both the BWE model and OF model. Of the cytokines characteristic of the Th1 and Th2 arms of the adaptive immune response, a mixed response was noted at the onset of acute lameness in the BWE model, whereas the response was skewed towards a Th1 response at the onset of lameness in the OF model. Lamellar inflammation is characterised by strong innate immune response in the developmental stages of laminitis; and a mixture of innate and adaptive immune responses at the onset of lameness. These results indicate that anti-inflammatory treatment of early stage laminitis (and the horse at risk of laminitis) should include not only therapeutic drugs that address prostanoid activity, but should also address the marked increases in lamellar cytokine expression.

  1. Regulation of human intestinal T-cell responses by type 1 interferon-STAT1 signaling is disrupted in inflammatory bowel disease.

    PubMed

    Giles, E M; Sanders, T J; McCarthy, N E; Lung, J; Pathak, M; MacDonald, T T; Lindsay, J O; Stagg, A J

    2017-01-01

    Type 1 interferon (IFN-1) promotes regulatory T-cell function to suppress inflammation in the mouse intestine, but little is known about IFN-1 in the human gut. We therefore assessed the influence of IFN-1 on CD4+ T-cells isolated from human colon tissue obtained from healthy controls or patients with inflammatory bowel disease (IBD). Immunofluorescent imaging revealed constitutive expression of IFNβ in human intestinal tissue, and colonic T-cells were responsive to exogenous IFN-1 as assessed by phosphorylation of signal transduction and activator of transcription 1 (pSTAT1) and induction of interferon stimulated genes (ISGs). Unlike their blood counterparts, intestinal T-cells from non-inflamed regions of IBD colon displayed enhanced responsiveness to IFN-1, increased frequency of pSTAT1+ cells, and greater induction of ISGs upon IFN-1 exposure in vitro. In healthy tissue, antibody neutralization of IFNβ selectively reduced T-cell production of the pro-regulatory cytokine interleukin-10 (IL-10) and increased IFNγ synthesis. In contrast, neutralization of IFNβ in IBD tissue cultures increased the frequency of T-cells producing inflammatory cytokines but did not alter IL-10 expression. These data support a role for endogenous IFN-1 as a context-dependent modulator of T-cell function that promotes regulatory activity in healthy human intestine, but indicate that the IFN-1/STAT1 pathway is dysregulated in inflammatory bowel disease.

  2. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  3. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses

    PubMed Central

    Singh, Udai P; Murphy, Angela E; Enos, Reilly T; Shamran, Haidar A; Singh, Narendra P; Guan, Honbing; Hegde, Venkatesh L; Fan, Daping; Price, Robert L; Taub, Dennis D; Mishra, Manoj K; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. PMID:24891206

  4. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice

    PubMed Central

    Chukkapalli, Sasanka S.; Velsko, Irina M.; Rivera-Kweh, Mercedes F.; Zheng, Donghang; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model. PMID:26619277

  5. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice.

    PubMed

    Chukkapalli, Sasanka S; Velsko, Irina M; Rivera-Kweh, Mercedes F; Zheng, Donghang; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.

  6. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine.

    PubMed

    Banerjee, Sharmistha; Sinha, Krishnendu; Chowdhury, Sayantani; Sil, Parames C

    2018-01-05

    cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury.

    PubMed

    Swiderski, Kristy; Thakur, Savant S; Naim, Timur; Trieu, Jennifer; Chee, Annabel; Stapleton, David I; Koopman, René; Lynch, Gordon S

    2016-01-01

    Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 μg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α , and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7 , MyoD , and Myogenin indicated SOCS3 deletion had no effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.

  8. Acute Immune-Inflammatory Responses to a Single Bout of Aerobic Exercise in Smokers; The Effect of Smoking History and Status

    PubMed Central

    Kastelein, Tegan Emma; Duffield, Rob; Marino, Frank E.

    2015-01-01

    This study examined the acute immune and inflammatory responses to exercise in smokers compared to non-smokers, and further, the effect of smoking history on these immune-inflammatory responses. Fifty-four recreationally active males who were either smokers (SM; n = 27) or non-smokers (NS; n = 27) were allocated into either young (YSM, YNS) or middle-aged groups (MSM, MNS) based on smoking status. Participants were matched for fitness and smoking habits and following familiarization and baseline testing, undertook an exercise protocol that involved 40 min of cycle ergometry at 50% of VO2peak. Venous blood was obtained pre- and post- (0 min, 1, and 4 h) exercise to measure circulating leukocytes and inflammatory markers interleukin (IL)-6, IL-1β, IL-1ra, and monocyte chemoattractant protein-1 (MCP-1). Compared to MNS, MSM showed elevated basal concentrations of MCP-1, which were increased with a longer smoking history (P < 0.05). In response to exercise, YSM demonstrated an amplified IL-6 response from immediately- to 1 h-post compared to YNS. Furthermore, IL-1ra in YSM was elevated above that of YNS across all time points (P < 0.05). The MSM group had higher IL-1β at baseline when compared to YSM, although IL-1ra was greater for YSM at baseline (P < 0.05). Finally, the post-exercise leukocyte response was greater in MSM compared to YSM and non-smokers (P < 0.05). In conclusion, smoker’s exhibit elevated MCP-1 and IL-1β that seem to be evident with a longer smoking history (~15 years). Furthermore, the differences in exercise-induced inflammatory responses noted in YSM may be indicative tobacco smoke exposure priming circulating leukocytes to amplify inflammatory responses. PMID:26779179

  9. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie

    2016-01-01

    Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316

  10. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    PubMed

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration

    PubMed Central

    Noailles, Agustina; Maneu, Victoria; Campello, Laura; Gómez-Vicente, Violeta; Lax, Pedro; Cuenca, Nicolás

    2016-01-01

    Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II+ cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat’s life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies. PMID:27624537

  13. The Protective Effects of Extra Virgin Olive Oil on Immune-mediated Inflammatory Responses.

    PubMed

    Casas, Rosa; Estruch, Ramon; Sacanella, Emilio

    2018-01-01

    The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A role for intestinal TLR4-driven inflammatory response during activity-based anorexia

    PubMed Central

    Belmonte, Liliana; Achamrah, Najate; Nobis, Séverine; Guérin, Charlène; Riou, Gaëtan; Bôle-Feysot, Christine; Boyer, Olivier; Richard, Vincent; Rego, Jean Claude Do; Déchelotte, Pierre; Goichon, Alexis; Coëffier, Moïse

    2016-01-01

    Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss. PMID:27779218

  15. A role for intestinal TLR4-driven inflammatory response during activity-based anorexia.

    PubMed

    Belmonte, Liliana; Achamrah, Najate; Nobis, Séverine; Guérin, Charlène; Riou, Gaëtan; Bôle-Feysot, Christine; Boyer, Olivier; Richard, Vincent; Rego, Jean Claude Do; Déchelotte, Pierre; Goichon, Alexis; Coëffier, Moïse

    2016-10-25

    Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss.

  16. Sirt1 restrains lung inflammasome activation in a murine model of sepsis.

    PubMed

    Gao, Rong; Ma, Zhongsen; Hu, Yuxin; Chen, Jiao; Shetty, Sreerama; Fu, Jian

    2015-04-15

    Excessive inflammation is a major cause of organ damage during sepsis. The elderly are highly susceptible to sepsis-induced organ injury. Sirt1 expression is reduced during aging. In the present study, we investigated the role of Sirt1, a histone deacetylase, in controlling inflammatory responses in a murine sepsis model induced by cecal ligation and puncture (CLP). We examined lung inflammatory signaling in inducible Sirt1 knockout (Sirt1(-/-)) mice and wild-type littermates (Sirt1(+/+)) after CLP. Our results demonstrated that Sirt1 deficiency led to severe lung inflammatory injury. To further investigate molecular mechanisms of Sirt1 regulation of lung inflammatory responses in sepsis, we conducted a series of experiments to assess lung inflammasome activation after CLP. We detected increased lung inflammatory signaling including NF-κB, signal transducer and activator of transcription 3, and ERK1/2 activation in Sirt1(-/-) mice after CLP. Furthermore, inflammasome activity was increased in Sirt1(-/-) mice after CLP, as demonstrated by increased IL-1β and caspase-7 cleavage and activation. Aggravated inflammasome activation in Sirt1(-/-) mice was associated with the increased production of lung proinflammatory mediators, including ICAM-1 and high-mobility group box 1, and further disruption of tight junctions and adherens junctions, as demonstrated by dramatic reduction of lung claudin-1 and vascular endothelial-cadherin expression, which was associated with the upregulation of matrix metallopeptidase 9 expression. In summary, our results suggest that Sirt1 suppresses acute lung inflammation during sepsis by controlling inflammasome activation pathway. Copyright © 2015 the American Physiological Society.

  17. Uninephrectomy in Rats on a Fixed Food Intake Potentiates Both Anorexia and Circulating Cytokine Subsets in Response to LPS.

    PubMed

    Arsenijevic, Denis; Montani, Jean-Pierre

    2015-01-01

    Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. In comparison to Sham, uninephrectomy (UniNX) potentiated LPS-induced anorexia by 2.1-fold. The circulating anorexigenic cytokines granulocyte-macrophage colony stimulating factor, interferon-γ, tumor necrosis factor-α, and complement-derived acylation-stimulating protein were elevated after LPS in UniNX animals compared to Sham animals. Interleukin(IL)1β and IL6 pro-inflammatory cytokines were transiently increased. Anti-inflammatory cytokines IL4 and IL10 did not differ or had a tendency to be lower in UniNX group compared to Sham animals. LPS-induced anorexia was associated with increased anorexigenic neuropeptides mRNA for pro-opiomelanocortin, corticotrophin-releasing factor, and cocaine-amphetamine-regulated transcript in the hypothalamus of both Sham and UniNX groups, but at higher levels in the UniNX group. Melanocortin-4-receptor mRNA was markedly increased in the UniNX group, which may have contributed to the enhanced anorexic response to LPS of the UniNX group. In summary, UniNX potentiates pro-inflammatory cytokine production, anorexia, and selected hypothalamic anorexigenic neuropeptides in response to LPS.

  18. Retinoic acid receptor-related orphan receptor α stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress.

    PubMed

    Liu, Yin; Chen, Yulong; Zhang, Jinlong; Liu, Yulan; Zhang, Yanjie; Su, Zhiguang

    2017-08-25

    Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Bee venom stimulation into lung meridian acupoint reduces inflammation in a mouse model of carrageenan-induced pleurisy: an alternative therapeutic approach for the respiratory inflammatory disease.

    PubMed

    Choi, Hoon-Seong; Kang, Suk-Yun; Roh, Dae-Hyun; Choi, Sheu-Ran; Ryu, Yeonhee; Lee, Jang-Hern

    2018-06-21

    Respiratory inflammation is frequent and fatal pathologic state encountered in veterinary medicine. Although diluted bee venom (dBV) has potent anti-inflammatory effects, the clinical use of dBV is limited to several chronic inflammatory diseases. The present study was designed to propose the acupoint treatment of dBV as a novel therapeutic strategy for respiratory inflammatory disease. Experimental pleurisy was induced by injection of carrageenan into left pleural space in mouse. dBV was injected into a specific lung meridian acupoint (LU-5) or into arbitrary non-acupoint located near the midline of the back in mouse. The inflammatory responses were evaluated by analysis the inflammatory indicators in pleural exudate. dBV injection into LU-5 acupoint significantly suppressed the increase of pleural exudate volume, leukocyte accumulation, MPO activity. Moreover, dBV acupoint treatment effectively inhibited the production of IL-1β, but not TNF-α in pleural exudate. On the other hand, dBV treatment on non-acupoint did not inhibit the inflammatory responses in carrageenan-induced pleurisy. The present results demonstrate that dBV stimulation into the LU-5 lung meridian acupoint produces significant anti-inflammatory effects on carrageenan-induced pleurisy suggesting that dBV acupuncture as a promising alternative medicine therapy for respiratory inflammatory diseases.

  20. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    PubMed

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  1. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.

    PubMed

    Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei

    2017-06-05

    The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As 2 O 3 )-treated (7.5 mg/kg) group, a middle As 2 O 3 -treated (15 mg/kg) group, and a high As 2 O 3 -treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As 2 O 3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P < 0.05). Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.

  3. Therapeutic action of ghrelin in a mouse model of colitis.

    PubMed

    Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario

    2006-05-01

    Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.

  4. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice.

    PubMed

    Deslauriers, Jessica; van Wijngaarde, Myrthe; Geyer, Mark A; Powell, Susan; Risbrough, Victoria B

    2017-04-14

    The prevalence of posttraumatic stress disorder (PTSD) is high in the armed services, with a rate up to 20%. Multiple studies have associated markers of inflammatory signaling prior to trauma with increased risk of PTSD, suggesting a potential role of the immune system in the development of this psychiatric disorder. One question that arises is if "priming" the immune system before acute trauma alters the stress response and increases enduring effects of trauma. We investigated the time course of inflammatory response to predator stress, a robust stressor that induces enduring PTSD-like behaviors, and the modulation of these effects via prior immune activation with the bacterial endotoxin, lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist. Mice exposed to predator stress exhibited decreased pro-/anti-inflammatory balance in the brain 6h after stress, suggesting that predator exposure acutely suppressed the immune system by increasing anti-inflammatory cytokines levels. Acute immune activation with LPS before a single predator stress did not alter the enduring avoidance behavior in stressed mice. Our findings suggest that acute inflammation, at least via TLR4 activation, is not sufficient to increase susceptibility for PTSD-like behaviors in this model. Future studies will examine if chronic inflammation is required to induce similar immune changes to those observed in PTSD patients in this model. Published by Elsevier B.V.

  5. Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.

    PubMed

    Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan

    2018-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense exacerbation of pre-existing allergic airway inflammation by facilitating cysLT biosynthesis. These findings suggest that exposure to airborne MWCNT is likely to have adverse inflammatory effects in individuals suffering from atopic asthma and, in this context, further investigation of the therapeutic effects of pharmacological agents that block leukotriene synthesis is warranted.

  6. Immunostimulation in the era of the metagenome

    PubMed Central

    Proal, Amy D; Albert, Paul J; Blaney, Greg P; Lindseth, Inge A; Benediktsson, Chris; Marshall, Trevor G

    2011-01-01

    Microbes are increasingly being implicated in autoimmune disease. This calls for a re-evaluation of how these chronic inflammatory illnesses are routinely treated. The standard of care for autoimmune disease remains the use of medications that slow the immune response, while treatments aimed at eradicating microbes seek the exact opposite—stimulation of the innate immune response. Immunostimulation is complicated by a cascade of sequelae, including exacerbated inflammation, which occurs in response to microbial death. Over the past 8 years, we have collaborated with American and international clinical professionals to research a model-based treatment for inflammatory disease. This intervention, designed to stimulate the innate immune response, has required a reevaluation of disease progression and amelioration. Paramount is the inherent conflict between palliation and microbicidal efficacy. Increased microbicidal activity was experienced as immunopathology—a temporary worsening of symptoms. Further studies are needed, but they will require careful planning to manage this immunopathology. PMID:21278764

  7. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress.

    PubMed

    Kwak-Kim, Joanne; Bao, Shihua; Lee, Sung Ki; Kim, Joon Woo; Gilman-Sachs, Alice

    2014-08-01

    Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Bifidobacterium breve prevents necrotising enterocolitis by suppressing inflammatory responses in a preterm rat model.

    PubMed

    Satoh, T; Izumi, H; Iwabuchi, N; Odamaki, T; Namba, K; Abe, F; Xiao, J Z

    2016-02-01

    Necrotising enterocolitis (NEC) is associated with inflammatory responses and barrier dysfunction in the gut. In this study, we investigated the effect of Bifidobacterium breve M-16V on factors related to NEC development using an experimental rat model. Caesarean-sectioned rats were given formula milk with or without B. breve M-16V by oral gavage thrice daily, and experimental NEC was induced by exposing the rats to hypoxic conditions. Naturally delivered rats that were reared by their mother were used as healthy controls. The pathological score of NEC and the expression of molecules related to inflammatory responses and the barrier function were assessed in the ileum. B. breve M-16V reduced the pathological scores of NEC and resulted in some improvement in survivability. B. breve M-16V suppressed the increased expression of molecules related to inflammation and barrier function that resulted from NEC induction. B. breve M-16V normalised Toll-like receptor (TRL)4 expression and enhanced TLR2 expression. Our data suggest that B. breve M-16V prevents NEC development by modulating TLR expressions and suppressing inflammatory responses in a rat model.

  9. Inflammatory and Metabolic Dysregulation and the 2-Year Course of Depressive Disorders in Antidepressant Users

    PubMed Central

    Vogelzangs, Nicole; Beekman, Aartjan TF; van Reedt Dortland, Arianne KB; Schoevers, Robert A; Giltay, Erik J; de Jonge, Peter; Penninx, Brenda WJH

    2014-01-01

    Scarce evidence suggests that inflammatory and metabolic dysregulation predicts poor response to antidepressants, which could result in worse depression outcome. This study prospectively examined whether inflammatory and metabolic dysregulation predicted the 2-year course of depressive disorders among antidepressant users. Data were from the Netherlands Study of Depression and Anxiety, including 315 persons (18–65 years) with a current depressive disorder (major depressive disorder, dysthymia) at baseline according to the DSM-IV criteria and using antidepressants. Inflammatory (C-reactive protein, interleukin-6 (IL-6), tumor-necrosis factor-α) and metabolic (waist circumference, triglycerides, high-density lipoprotein (HDL) cholesterol, blood pressure, fasting glucose) factors were measured at baseline. Primary outcome for course of depression was indicated by whether or not a DSM-IV depressive disorder diagnosis was still/again present at 2-year follow-up, indicating chronicity of depression. Elevated IL-6, low HDL cholesterol, hypertriglyceridemia, and hyperglycemia were associated with chronicity of depression in antidepressant users. Persons showing ⩾4 inflammatory or metabolic dysregulations had a 1.90 increased odds of depression chronicity (95% CI=1.12–3.23). Among persons who recently (ie, at most 3 months) started antidepressant medication (N=103), having ⩾4 dysregulations was associated with a 6.85 increased odds of depression chronicity (95% CI=1.95–24.06). In conclusion, inflammatory and metabolic dysregulations were found to predict a more chronic course of depressive disorders among patients using antidepressants. This could suggest that inflammatory and metabolic dysregulation worsens depression course owing to reduced antidepressant treatment response and that alternative intervention treatments may be needed for depressed persons with inflammatory and metabolic dysregulation. PMID:24442097

  10. Effects of equine metabolic syndrome on inflammatory responses of horses to intravenous lipopolysaccharide infusion.

    PubMed

    Tadros, Elizabeth M; Frank, Nicholas; Donnell, Robert L

    2013-07-01

    To test the hypothesis that inflammatory responses to endotoxemia differ between healthy horses and horses with equine metabolic syndrome (EMS). Animals-6 healthy horses and 6 horses with EMS. Each horse randomly received an IV infusion of lipopolysaccharide (20 ng/kg [in 60 mL of sterile saline {0.9% NaCl} solution]) or saline solution, followed by the other treatment after a 7-day washout period. Baseline data were obtained 30 minutes before each infusion. After infusion, a physical examination was performed hourly for 9 hours and at 15 and 21 hours; a whole blood sample was collected at 30, 60, 90, 120, 180, and 240 minutes for assessment of inflammatory cytokine gene expression. Liver biopsy was performed between 240 and 360 minutes after infusion. Results-Following lipopolysaccharide infusion in healthy horses and horses with EMS, mean rectal temperature, heart rate, and respiratory rate increased, compared with baseline findings, as did whole blood gene expression of interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α. The magnitude of blood cytokine responses did not differ between groups, but increased expression of IL-6, IL-8, IL-10, and tumor necrosis factor-α persisted for longer periods in EMS-affected horses. Lipopolysaccharide infusion increased liver tissue gene expressions of IL-6 in healthy horses and IL-8 in both healthy and EMS-affected horses, but these gene expressions did not differ between groups. Results supported the hypothesis that EMS affects horses' inflammatory responses to endotoxin by prolonging cytokine expression in circulating leukocytes. These findings are relevant to the association between obesity and laminitis in horses with EMS.

  11. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  12. Effects of an Antisense Oligonucleotide Inhibitor of C‐Reactive Protein Synthesis on the Endotoxin Challenge Response in Healthy Human Male Volunteers

    PubMed Central

    Noveck, Robert; Stroes, Erik S. G.; Flaim, JoAnn D.; Baker, Brenda F.; Hughes, Steve; Graham, Mark J.; Crooke, Rosanne M.; Ridker, Paul M

    2014-01-01

    Background C‐reactive protein (CRP) binds to damaged cells, activates the classical complement pathway, is elevated in multiple inflammatory conditions, and provides prognostic information on risk of future atherosclerotic events. It is controversial, however, as to whether inhibiting CRP synthesis would have any direct anti‐inflammatory effects in humans. Methods and Results A placebo‐controlled study was used to evaluate the effects of ISIS 329993 (ISIS‐CRPRx) on the acute‐phase response after endotoxin challenge in 30 evaluable subjects. Healthy adult males were randomly allocated to receive 6 injections over a 22‐day period of placebo or active therapy with ISIS 329993 at 400‐ or 600‐mg doses. Eligible subjects were subsequently challenged with a bolus of endotoxin (2 ng/kg). Inflammatory and hematological biomarkers were measured before and serially after the challenge. ISIS‐CRPRx was well tolerated with no serious adverse events. Median CRP levels increased more than 50‐fold from baseline 24 hours after endotoxin challenge in the placebo group. In contrast, the median increase in CRP levels was attenuated by 37% (400 mg) and 69% (600 mg) in subjects pretreated with ISIS‐CRPRx (P<0.05 vs. placebo). All other aspects of the acute inflammatory response were similar between treatment groups. Conclusion Pretreatment of subjects with ISIS‐CRPRx selectively reduced the endotoxin‐induced increase in CRP levels in a dose‐dependent manner, without affecting other components of the acute‐phase response. These data demonstrate the specificity of antisense oligonucleotides and provide an investigative tool to further define the role of CRP in human pathological conditions. PMID:25012289

  13. Intestinal Epithelial Cell Response to Clostridium difficile Flagella.

    PubMed

    Batah, Jameel; Kansau, Imad

    2016-01-01

    Clostridium difficile is the bacterium responsible for most antibiotic-associated diarrhea in North America and Europe. This bacterium, which colonizes the gut of humans and animals, produces toxins that are known to contribute directly to damage of the gut. It is known that bacterial flagella are involved in intestinal lesions through the inflammatory host response. The C. difficile flagellin recognizes TLR5 and consequently activates the NF-κB and the MAPK signaling pathways which elicit the synthesis of pro-inflammatory cytokines. Increasing interest on the role of C. difficile flagella in eliciting this cell response was recently developed and the development of tools to study cell response triggered by C. difficile flagella will improve our understanding of the pathogenesis of C. difficile.

  14. LUNG INJURY, INFLAMMATION AND AKT SIGNALING FOLLOWING INHALATION OF PARTICULATE HEXAVALENT CHROMIUM

    PubMed Central

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.; Ceryak, Susan M.; Patierno, Steven R.

    2013-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0–24 hours) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis. PMID:19109987

  15. Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD

    PubMed Central

    Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan

    2015-01-01

    Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474

  16. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  18. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields.

    PubMed

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.

  19. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages

    PubMed Central

    Sawle, Philip; Foresti, Roberta; Mann, Brian E; Johnson, Tony R; Green, Colin J; Motterlini, Roberto

    2005-01-01

    The enzyme heme oxygenase-1 (HO-1) is a cytoprotective and anti-inflammatory protein that degrades heme to produce biliverdin/bilirubin, ferrous iron and carbon monoxide (CO). The anti-inflammatory properties of HO-1 are related to inhibition of adhesion molecule expression and reduction of oxidative stress, while exogenous CO gas treatment decreases the production of inflammatory mediators such as cytokines and nitric oxide (NO). CO-releasing molecules (CO-RMs) are a novel group of substances identified by our group that are capable of modulating physiological functions via the liberation of CO. We aimed in this study to examine the potential anti-inflammatory characteristics of CORM-2 and CORM-3 in an in vitro model of lipopolysaccharide (LPS)-stimulated murine macrophages. Stimulation of RAW264.7 macrophages with LPS resulted in increased expression of inducible NO synthase (iNOS) and production of nitrite. CORM-2 or CORM-3 (10–100 μM) reduced nitrite generation in a concentration-dependent manner but did not affect the protein levels of iNOS. CORM-3 also decreased nitrite levels when added 3 or 6 h after LPS exposure. CORM-2 or CORM-3 did not cause any evident cytotoxicity and produced an increase in HO-1 expression and heme oxygenase activity; this effect was completely prevented by the thiol donor N-acetylcysteine. CORM-3 also considerably reduced the levels of tumor necrosis factor-α, another mediator of the inflammatory response. The inhibitory effects of CORM-2 and CORM-3 were not observed when the inactive compounds, which do not release CO, were coincubated with LPS. These results indicate that CO liberated by CORM-2 and CORM-3 significantly suppresses the inflammatory response elicited by LPS in cultured macrophages and suggest that CO carriers can be used as an effective strategy to modulate inflammation. PMID:15880142

  20. Time Courses of Inflammatory Markers after Aneurysmal Subarachnoid Hemorrhage and Their Possible Relevance for Future Studies.

    PubMed

    Höllig, Anke; Stoffel-Wagner, Birgit; Clusmann, Hans; Veldeman, Michael; Schubert, Gerrit A; Coburn, Mark

    2017-01-01

    Aneurysmal subarachnoid hemorrhage triggers an intense inflammatory response, which is suspected to increase the risk for secondary complications such as delayed cerebral ischemia (DCI). However, to date, the monitoring of the inflammatory response to detect secondary complications such as DCI has not become part of the clinical routine diagnostic. Here, we aim to illustrate the time courses of inflammatory parameters after aneurysmal subarachnoid hemorrhage (aSAH) and discuss the problems of inflammatory parameters as biomarkers but also their possible relevance for deeper understanding of the pathophysiology after aSAH and sophisticated planning of future studies. In this prospective cohort study, 109 patients with aSAH were initially included, n  = 28 patients had to be excluded. Serum and-if possible-cerebral spinal fluid samples ( n  = 48) were retrieved at days 1, 4, 7, 10, and 14 after aSAH. Samples were analyzed for leukocyte count and C-reactive protein (CRP) (serum samples only) as well as matrix metallopeptidase 9 (MMP9), intercellular adhesion molecule 1 (ICAM1), and leukemia inhibitory factor (LIF) [both serum and cerebrospinal fluid (CSF) samples]. Time courses of the inflammatory parameters were displayed and related to the occurrence of DCI. We illustrate the time courses of leukocyte count, CRP, MMP9, ICAM1, and LIF in patients' serum samples from the first until the 14th day after aSAH. Time courses of MMP9, ICAM1, and LIF in CSF samples are demonstrated. Furthermore, no significant difference was shown relating the time courses to the occurrence of DCI. We estimate that the wide range of the measured values hampers their interpretation and usage as a biomarker. However, understanding the inflammatory response after aSAH and generating a multicenter database may facilitate further studies: realistic sample size calculations on the basis of a multicenter database will increase the quality and clinical relevance of the acquired results.

  1. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model

    PubMed Central

    Fujiwara, Norio; Som, Angel T.; Pham, Loc-Duyen D.; Lee, Brian J.; Mandeville, Emiri T.; Lo, Eng H.; Arai, Ken

    2017-01-01

    A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-hour after ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-hour after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy. PMID:27589890

  2. Decoy Receptor 3 Improves Survival in Experimental Sepsis by Suppressing the Inflammatory Response and Lymphocyte Apoptosis.

    PubMed

    Liang, DongYu; Hou, YanQiang; Lou, XiaoLi; Chen, HongWei

    2015-01-01

    Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP)-induced sepsis in mice. C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation. Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05). Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis. Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.

  3. Role of semen in altering the balance between inflammation and tolerance in the female genital tract: does it contribute to HIV risk?

    PubMed

    Rametse, Cosnet L; Olivier, Abraham J; Masson, Lindi; Barnabas, Shaun; McKinnon, Lyle R; Ngcapu, Sinaye; Liebenberg, Lenine J; Jaumdally, Shameem Z; Gray, Clive M; Jaspan, Heather B; Passmore, Jo-Ann S

    2014-06-01

    While the main reproduction aim of semen is the transport of spermatozoa to the female genital tract, seminal plasma is a complex fluid that also carries a broad array of immunologically active molecules. Seminal plasma has been shown to contain a diverse array of anti-inflammatory and pro-inflammatory soluble mediators that regulate immune responses within the female reproductive tract than can facilitate fertilization. Since the natural inflammatory response to semen deposition in the female genital tract may result in recruitment of activated HIV target cells into the female genital mucosa, we discuss the constituents of semen that may increase the risk for HIV infection in women.

  4. Low-Dose Epinephrine Plus Tranexamic Acid Reduces Early Postoperative Blood Loss and Inflammatory Response: A Randomized Controlled Trial.

    PubMed

    Zeng, Wei-Nan; Liu, Jun-Li; Wang, Fu-You; Chen, Cheng; Zhou, Qiang; Yang, Liu

    2018-02-21

    The reductions of perioperative blood loss and inflammatory response are important in total knee arthroplasty. Tranexamic acid reduced blood loss and the inflammatory response in several studies. However, the effect of epinephrine administration plus tranexamic acid has not been intensively investigated, to our knowledge. In this study, we evaluated whether the combined administration of low-dose epinephrine plus tranexamic acid reduced perioperative blood loss or inflammatory response further compared with tranexamic acid alone. This randomized placebo-controlled trial consisted of 179 consecutive patients who underwent primary total knee arthroplasty. Patients were randomized into 3 interventions: Group IV received intravenous low-dose epinephrine plus tranexamic acid, Group TP received topical diluted epinephrine plus tranexamic acid, and Group CT received tranexamic acid alone. The primary outcome was perioperative blood loss on postoperative day 1. Secondary outcomes included perioperative blood loss on postoperative day 3, coagulation and fibrinolysis parameters (measured by thromboelastography), inflammatory cytokine levels, transfusion values (rate and volume), thromboembolic complications, length of hospital stay, wound score, range of motion, and Hospital for Special Surgery (HSS) score. The mean calculated total blood loss (and standard deviation) in Group IV was 348.1 ± 158.2 mL on postoperative day 1 and 458.0 ± 183.4 mL on postoperative day 3, which were significantly reduced (p < 0.05) compared with Group TP at 420.5 ± 188.4 mL on postoperative day 1 and 531.1 ± 231.4 mL on postoperative day 3 and Group CT at 520.4 ± 228.4 mL on postoperative day 1 and 633.7 ± 237.3 mL on postoperative day 3. Intravenous low-dose epinephrine exhibited a net anti-inflammatory activity in total knee arthroplasty and did not induce an obvious hypercoagulable status. Transfusion values were significantly reduced (p < 0.05) in Group IV, but no significant differences were observed in the incidence of thromboembolic complications, wound score, range of motion, and HSS score among the 3 groups (p > 0.05). The combined administration of low-dose epinephrine and tranexamic acid demonstrated an increased effect in reducing perioperative blood loss and the inflammatory response compared with tranexamic acid alone, with no apparent increased incidence of thromboembolic and other complications. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  5. The systemic inflammatory response syndrome.

    PubMed

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  6. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide.

    PubMed

    Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao

    2017-11-01

    Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.

  7. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure tomore » particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.« less

  8. Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK.

    PubMed

    Wang, Jiansheng; Su, Baishan; Zhu, Hongbin; Chen, Chao; Zhao, Gang

    2016-12-01

    Geraniol is a type of monoterpenoid with a rose scent and a slightly sweet flavor. It is found in the volatile oil of various plants, and has anti-inflammatory and anti-oxidant effects. The present study aimed to investigate the protective effect of geraniol in inhibiting the inflammatory response, oxidative stress and apoptosis in traumatic spinal cord injury (SCI), as well as to analyze the mechanism underlying its effect. Adult male Sprague-Dawley rats were induced to traumatic SCI through a surgical procedure and were defined as the SCI model group. SCI or normal rats were then administered 250 mg/kg/day geraniol for 4 weeks. The Basso, Beattie and Bresnahan (BBB) test and the spinal cord water content were used to analyze the effect of geraniol against traumatic SCI in rats. The inflammatory response, oxidative stress, and caspase-9 and -3 activities were measured using commercial ELISA kits. In addition, the associated mechanism was analyzed, using western blot analysis to determine the protein expression levels of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). The results of the present study demonstrated that BBB scores were significantly increased and the spinal cord water content was significantly inhibited in SCI rats after 3 weeks of geraniol treatment. Furthermore, the inflammatory response, oxidative stress, and the caspase-9 and -3 activities were significantly suppressed upon treatment with geraniol. Finally, the mechanism of geraniol against traumatic SCI downregulated the NF-κB and p38 MAPK pathways in SCI rats. Therefore, the protective effect of geraniol is suggested to inhibit the inflammatory response, oxidative stress and apoptosis in traumatic SCI through the modulation of NF-κB and p38 MAPK.

  9. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    PubMed

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be construed to represent any Agency determination or policy. Published by Elsevier Ltd.

  10. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov; Waters, Katrina M.; Karin, Norman J.

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts,more » but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung. ► Toxicant-specific biomarkers predict exposure independent of systemic inflammation.« less

  11. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide.

    PubMed

    Flores-Martinez, Yazmin M; Fernandez-Parrilla, Manuel A; Ayala-Davila, Jose; Reyes-Corona, David; Blanco-Alvarez, Victor M; Soto-Rojas, Luis O; Luna-Herrera, Claudia; Gonzalez-Barrios, Juan A; Leon-Chavez, Bertha A; Gutierrez-Castillo, Maria E; Martínez-Dávila, Irma A; Martinez-Fong, Daniel

    2018-01-01

    Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF- α , IL-1 β , IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH + cells, as well as apparent phagocytosis of TH + cells by OX42 + cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.

  12. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide

    PubMed Central

    Gonzalez-Barrios, Juan A.; Gutierrez-Castillo, Maria E.

    2018-01-01

    Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration. PMID:29854828

  13. Circulating levels of FAS/APO-1 in patients with the systemic inflammatory response syndrome.

    PubMed

    Torre, Donato; Tambini, Roberto; Manfredi, Mariangela; Mangani, Valerio; Livi, Paola; Maldifassi, Viviana; Campi, Paolo; Speranza, Filippo

    2003-04-01

    Resolution of inflammation/infection involves removal of neutrophils and other inflammatory cells by the induction of apoptosis. Fas/Apo-1 is a widely occurring apoptotic signal receptor molecule expressed by almost any type of cell, which is also released in a soluble circulating form. In this study we investigated the role of circulating Fas/Apo-1 in patients with systemic inflammatory response syndrome (SIRS). We evaluated 57 critically ill patients, 34 with infectious SIRS (sepsis and septic shock), and 23 patients with noninfectious SIRS. Circulating Fas/Apo-1 was determined by a commercially available immunoassay. Our results clearly show that levels of Fas/Apo-1 were significantly elevated in patients with infectious and noninfectious SIRS (10.4 +/- 8.1 pg/mL, controls: 5.0 +/- 0.7 pg/mL; p < 0.0001). In addition, Fas/Apo-1 levels were not able in predicting in predicting poor outcome of patients with SIRS. In conclusion, these results show that increased levels of Fas/Apo-1 from patients with SIRS is a mechanism which contribute to inflammatory response through accumulation of neutrophils at sites of inflammation/infection.

  14. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    PubMed

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  15. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma

    PubMed Central

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-01-01

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mϕ) direct trauma-induced inflammation, and Mϕ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mϕ and the subsequent regulation of Mϕ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)–TLR4–MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mϕ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mϕ. However, autophagy activation also suppressed Mϕ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mϕ homeostasis in response to trauma. PMID:28492546

  16. Acute phase protein haptoglobin as inflammatory marker in serum and synovial fluid in an equine model of arthritis.

    PubMed

    Barrachina, Laura; Remacha, Ana Rosa; Soler, Lourdes; García, Natalia; Romero, Antonio; Vázquez, Francisco José; Vitoria, Arantza; Álava, María Ángeles; Lamprave, Fermín; Rodellar, Clementina

    2016-12-01

    Acute phase proteins are useful inflammatory markers in horses. Haptoglobin (Hp) serum level is increased in horses undergoing different inflammatory processes, including arthritis. However, Hp concentration has not been assessed in inflammatory synovial fluid (SF). The aim of the present study was to investigate the Hp response in serum and SF in horses undergoing experimentally induced arthritis. For this purpose, serum and SF samples were collected from 12 animals before amphotericin B-induced arthritis was created (T0, healthy) and 15days after the lesion induction (T1, joint inflammation) and Hp was determined by single radial immunodiffusion. The Hp increase between T0 and T1 was significant in both serum and SF, and serum Hp concentration at T0 was significantly higher than in SF, but significant differences were not found at T1, indicating a higher Hp increase in SF. A significant positive correlation for Hp concentration between serum and SF samples was found. These results highlight the potential usefulness of Hp as inflammatory marker in horses, showing for the first time the increase of Hp in SF from joint inflammation in the horse. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia.

    PubMed

    Johansson, Jenny U; Pradhan, Suraj; Lokteva, Ludmila A; Woodling, Nathaniel S; Ko, Novie; Brown, Holden D; Wang, Qian; Loh, Christina; Cekanaviciute, Egle; Buckwalter, Marion; Manning-Bog, Amy B; Andreasson, Katrin I

    2013-10-02

    Prostaglandin E2 (PGE2), a potent lipid signaling molecule, modulates inflammatory responses through activation of downstream G-protein coupled EP(1-4) receptors. Here, we investigated the cell-specific in vivo function of PGE2 signaling through its E-prostanoid 2 (EP2) receptor in murine innate immune responses systemically and in the CNS. In vivo, systemic administration of lipopolysaccharide (LPS) resulted in a broad induction of cytokines and chemokines in plasma that was significantly attenuated in EP2-deficient mice. Ex vivo stimulation of peritoneal macrophages with LPS elicited proinflammatory responses that were dependent on EP2 signaling and that overlapped with in vivo plasma findings, suggesting that myeloid-lineage EP2 signaling is a major effector of innate immune responses. Conditional deletion of the EP2 receptor in myeloid lineage cells in Cd11bCre;EP2(lox/lox) mice attenuated plasma inflammatory responses and transmission of systemic inflammation to the brain was inhibited, with decreased hippocampal inflammatory gene expression and cerebral cortical levels of IL-6. Conditional deletion of EP2 significantly blunted microglial and astrocytic inflammatory responses to the neurotoxin MPTP and reduced striatal dopamine turnover. Suppression of microglial EP2 signaling also increased numbers of dopaminergic (DA) neurons in the substantia nigra independent of MPTP treatment, suggesting that microglial EP2 may influence development or survival of DA neurons. Unbiased microarray analysis of microglia isolated from adult Cd11bCre;EP2(lox/lox) and control mice demonstrated a broad downregulation of inflammatory pathways with ablation of microglial EP2 receptor. Together, these data identify a cell-specific proinflammatory role for macrophage/microglial EP2 signaling in innate immune responses systemically and in brain.

  18. Suppression of Inflammation with Conditional Deletion of the Prostaglandin E2 EP2 Receptor in Macrophages and Brain Microglia

    PubMed Central

    Johansson, Jenny U.; Pradhan, Suraj; Lokteva, Ludmila A.; Woodling, Nathaniel S.; Ko, Novie; Brown, Holden D.; Wang, Qian; Loh, Christina; Cekanaviciute, Egle; Buckwalter, Marion; Manning-Boğ, Amy B.

    2013-01-01

    Prostaglandin E2 (PGE2), a potent lipid signaling molecule, modulates inflammatory responses through activation of downstream G-protein coupled EP1–4 receptors. Here, we investigated the cell-specific in vivo function of PGE2 signaling through its E-prostanoid 2 (EP2) receptor in murine innate immune responses systemically and in the CNS. In vivo, systemic administration of lipopolysaccharide (LPS) resulted in a broad induction of cytokines and chemokines in plasma that was significantly attenuated in EP2-deficient mice. Ex vivo stimulation of peritoneal macrophages with LPS elicited proinflammatory responses that were dependent on EP2 signaling and that overlapped with in vivo plasma findings, suggesting that myeloid-lineage EP2 signaling is a major effector of innate immune responses. Conditional deletion of the EP2 receptor in myeloid lineage cells in Cd11bCre;EP2lox/lox mice attenuated plasma inflammatory responses and transmission of systemic inflammation to the brain was inhibited, with decreased hippocampal inflammatory gene expression and cerebral cortical levels of IL-6. Conditional deletion of EP2 significantly blunted microglial and astrocytic inflammatory responses to the neurotoxin MPTP and reduced striatal dopamine turnover. Suppression of microglial EP2 signaling also increased numbers of dopaminergic (DA) neurons in the substantia nigra independent of MPTP treatment, suggesting that microglial EP2 may influence development or survival of DA neurons. Unbiased microarray analysis of microglia isolated from adult Cd11bCre;EP2lox/lox and control mice demonstrated a broad downregulation of inflammatory pathways with ablation of microglial EP2 receptor. Together, these data identify a cell-specific proinflammatory role for macrophage/microglial EP2 signaling in innate immune responses systemically and in brain. PMID:24089506

  19. Anti-inflammatory and bronchodilatory constituents of leaf extracts of Anacardium occidentale L. in animal models.

    PubMed

    Awakan, Oluwakemi Josephine; Malomo, Sylvia Omonirume; Adejare, Abdullahi Adeyinka; Igunnu, Adedoyin; Atolani, Olubunmi; Adebayo, Abiodun Humphrey; Owoyele, Bamidele Victor

    2018-01-01

    Anacardium occidentale L. leaf is useful in the treatment of inflammation and asthma, but the bioactive constituents responsible for these activities have not been characterized. Therefore, this study was aimed at identifying the bioactive constituent(s) of A. occidentale ethanolic leaf extract (AOEL) and its solvent-soluble portions, and evaluating their effects on histamine-induced paw edema and bronchoconstriction. The bronchodilatory effect was determined by measuring the percentage protection provided by plant extracts in the histamine-induced bronchoconstriction model in guinea pigs. The anti-inflammatory effect of the extracts on histamine-induced paw edema in rats was determined by measuring the increase in paw diameter, after which the percent edema inhibition was calculated. The extracts were analyzed using gas chromatography-mass spectrometry to identify the bioactive constituents. Column chromatography and Fourier transform infrared spectroscopy were used respectively to isolate and characterize the constituents. The bronchodilatory and anti-inflammatory activities of the isolated bioactive constituent were evaluated. Histamine induced bronchoconstriction in the guinea pigs and edema in the rat paw. AOEL, hexane-soluble portion of AOEL, ethyl acetate-soluble portion of AOEL, and chloroform-soluble portion of AOEL significantly increased bronchodilatory and anti-inflammatory activities (P < 0.05). Oleamide (9-octadecenamide) was identified as the most abundant compound in the extracts and was isolated. Oleamide significantly increased bronchodilatory and anti-inflammatory activities by 32.97% and 98.41%, respectively (P < 0.05). These results indicate that oleamide is one of the bioactive constituents responsible for the bronchodilatory and anti-inflammatory activity of A. occidentale leaf, and can therefore be employed in the management of bronchoconstriction and inflammation. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  20. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  1. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo.

    PubMed

    Woodward, Nicholas C; Levine, Morgan C; Haghani, Amin; Shirmohammadi, Farimah; Saffari, Arian; Sioutas, Constantinos; Morgan, Todd E; Finch, Caleb E

    2017-04-14

    Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003-1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

  2. Modulation of neurological related allergic reaction in mice exposed to low-level toluene.

    PubMed

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-07-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG(1) antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk.

  3. Pleural mesothelial cells express both BLT2 and PPARalpha and mount an integrated response to pleural leukotriene B4.

    PubMed

    Pace, Elisabetta; Ferraro, Maria; Mody, Christopher H; Melis, Mario R; Scafidi, Valeria; Bonanno, Anna; Profita, Mirella; Giarratano, Antonino; Gjomarkaj, Mark

    2008-11-15

    Leukotriene B(4) (LTB(4)) plays a crucial role in the recruitment of neutrophils into the pleural space. We identified for the first time the mechanisms by which LTB(4) interacts with mesothelial cells and recruits neutrophils in the pleural compartment. Primary pleural mesothelial cells express both the proinflammatory receptor for LTB(4) BLT2, and the anti-inflammatory receptor for LTB(4), PPARalpha. Parapneumonic pleural effusions highly increase BLT2 expression and, via BLT2 activation, increase the adhesion between mesothelial cells and neutrophils and the expression of ICAM-1 on mesothelial cells. The block of PPARalpha further increases both cell adhesion and ICAM-1 expression. BLT2 activation promotes the activation, on mesothelial cells, of STAT-1 but not the activation of NF-kappaB transcription factor. The increase of ICAM-1 expression is achieved via increased tyrosine phosphorylation activity since herbimycin, a tyrosine kinase inhibitor, reduces and since Na orthovanadate, a tyrosine phosphatase inhibitor, further increases ICAM-1 expression. This study demonstrates that pleural mesothelial cells, expressing both proinflammatory and anti-inflammatory LTB(4) receptors, are able to mount an integrated response to LTB(4) with a prevalence of BLT2 activities in the presence of an inflammatory milieu within the pleura.

  4. Vitamin D Prevents Sunburn: Tips for the Summer?

    PubMed

    Bikle, Daniel D

    2017-10-01

    In the article by Scott et al, a high dose of vitamin D attenuated the inflammatory response to UV radiation in a small group of normal volunteers. The best results were in those subjects who had the greatest increase in circulating 25hydroxyvitamin D. Using microarray analyses these subjects showed a reduction in the expression of inflammatory markers with an increase in markers of skin barrier repair. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  5. Middle Ear Fluid Cytokine and Inflammatory Cell Kinetics in the Chinchilla Otitis Media Model

    PubMed Central

    Sato, Katsuro; Liebeler, Carol L.; Quartey, Moses K.; Le, Chap T.; Giebink, G. Scott

    1999-01-01

    Streptococcus pneumoniae is the most frequent microbe causing middle ear infection. The pathophysiology of pneumococcal otitis media has been characterized by measurement of local inflammatory mediators such as inflammatory cells, lysozyme, oxidative metabolic products, and inflammatory cytokines. The role of cytokines in bacterial infection has been elucidated with animal models, and interleukin (IL)-1β, IL-6, and IL-8 and tumor necrosis factor alpha (TNF-α) are recognized as being important local mediators in acute inflammation. We characterized middle ear inflammatory responses in the chinchilla otitis media model after injecting a very small number of viable pneumococci into the middle ear, similar to the natural course of infection. Middle ear fluid (MEF) concentrations of IL-1β, IL-6, IL-8, and TNF-α were measured by using anti-human cytokine enzyme-linked immunosorbent assay reagents. IL-1β showed the earliest peak, at 6 h after inoculation, whereas IL-6, IL-8, and TNF-α concentrations were increasing 72 h after pneumococcal inoculation. IL-6, IL-8, and TNF-α but not IL-1β concentrations correlated significantly with total inflammatory cell numbers in MEF, and all four cytokines correlated significantly with MEF neutrophil concentration. Several intercytokine correlations were significant. Cytokines, therefore, participate in the early middle ear inflammatory response to S. pneumoniae. PMID:10085040

  6. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    PubMed

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  7. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    PubMed Central

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  8. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle

    PubMed Central

    Chen, Ting; Moore, Timothy M.; Ebbert, Mark T. W.; McVey, Natalie L.; Madsen, Steven R.; Hallowell, David M.; Harris, Alexander M.; Char, Robin E.; Mackay, Ryan P.; Hancock, Chad R.; Hansen, Jason M.; Kauwe, John S.

    2016-01-01

    Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response. PMID:26796753

  9. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  10. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin.

    PubMed

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-09-25

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.

  11. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin

    PubMed Central

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-01-01

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging. PMID:28946661

  12. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not repress macrophage proinflammatory responses and enhanced some cytokine responses. Our results define a new function of the antiapoptotic, adenoviral protein E1B 19K, which we have termed “apoptotic mimicry.” Our studies suggest the possibility that the presence or absence of this E1B 19K function could alter the immunological outcome of both natural and therapeutic adenoviral infections. For example, emerging, highly immunopathogenic adenovirus serotypes might induce increased host inflammatory responses as a result of altered E1B 19K function or expression. It is also possible that engineered variations in E1B 19K expression/function could be created during adenovirus vector design that would increase the therapeutic efficacy of replicating adenovirus vectors for vaccines or oncolytic viral targeting of neoplastic cells. PMID:24352454

  13. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John

    2007-12-01

    Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less

  14. Post-treatment Vascular Leakage and Inflammatory Responses around Brain Cysts in Porcine Neurocysticercosis

    PubMed Central

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E.; Guerra-Giraldez, Cristina; García, Hector H.; Nash, Theodore E.

    2015-01-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to investigate mechanisms involved in host damaging inflammatory responses and agents or modalities that may control damaging post treatment inflammation. PMID:25774662

  15. A genomic storm in critically injured humans

    PubMed Central

    Xiao, Wenzhong; Mindrinos, Michael N.; Seok, Junhee; Cuschieri, Joseph; Cuenca, Alex G.; Gao, Hong; Hayden, Douglas L.; Hennessy, Laura; Moore, Ernest E.; Minei, Joseph P.; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Brownstein, Bernard H.; Mason, Philip H.; Baker, Henry V.; Finnerty, Celeste C.; Jeschke, Marc G.; López, M. Cecilia; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Arnoldo, Brett; Xu, Weihong; Zhang, Yuping; Calvano, Steven E.; McDonald-Smith, Grace P.; Schoenfeld, David A.; Storey, John D.; Cobb, J. Perren; Warren, H. Shaw; Moldawer, Lyle L.; Herndon, David N.; Lowry, Stephen F.; Maier, Ronald V.; Davis, Ronald W.

    2011-01-01

    Human survival from injury requires an appropriate inflammatory and immune response. We describe the circulating leukocyte transcriptome after severe trauma and burn injury, as well as in healthy subjects receiving low-dose bacterial endotoxin, and show that these severe stresses produce a global reprioritization affecting >80% of the cellular functions and pathways, a truly unexpected “genomic storm.” In severe blunt trauma, the early leukocyte genomic response is consistent with simultaneously increased expression of genes involved in the systemic inflammatory, innate immune, and compensatory antiinflammatory responses, as well as in the suppression of genes involved in adaptive immunity. Furthermore, complications like nosocomial infections and organ failure are not associated with any genomic evidence of a second hit and differ only in the magnitude and duration of this genomic reprioritization. The similarities in gene expression patterns between different injuries reveal an apparently fundamental human response to severe inflammatory stress, with genomic signatures that are surprisingly far more common than different. Based on these transcriptional data, we propose a new paradigm for the human immunological response to severe injury. PMID:22110166

  16. Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease.

    PubMed

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2016-01-21

    Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and adaptive immune responses. In particular, PTPN2 is involved in the regulation of inflammatory signalling cascades, and critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses, and finally for maintaining intestinal homeostasis. On one hand, dysfunction of PTPN2 has drastic effects on innate host defence mechanisms, including increased secretion of pro-inflammatory cytokines, limited autophagosome formation in response to invading pathogens, and disruption of the intestinal epithelial barrier. On the other hand, PTPN2 function is crucial for controlling adaptive immune functions, by regulating T cell proliferation and differentiation as well as maintaining T cell tolerance. In this way, dysfunction of PTPN2 contributes to the manifestation of IBD. The aim of this review is to present an overview of recent findings on the role of PTPN2 in intestinal homeostasis and the impact of dysfunctional PTPN2 on intestinal inflammation.

  17. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice.

    PubMed

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-10-01

    There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  18. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    PubMed

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  19. Effect of ancestry on interleukin-10 haplotypes in chronic periodontitis.

    PubMed

    Lopes, Camile de Barros; Barroso, Regina Fatima Feio; Burbano, Rommel Mario Rodrigues; Garcia, Patricia Aleixo; Pinto, Pablo Diego do Carmo; Santos, Ney Pereira Carneiro Dos; Santos, Sidney Emanuel Batista; Ribeiro-Dos-Santos, Andrea Kely Campos

    2017-06-01

    Chronic periodontitis is caused by an inflammatory reaction of the periodontal tissues and alveolar bone. This inflammation is caused by periodontopathic bacteria located in the subgingival biofilm, resulting in inflammatory reactions that may lead to loss of attachment. This tissue destruction is a consequence of host immune and inflammatory responses to specific periodontal pathogens and their metabolic products. Cytokines modulate the immune response, altering its efficiency in the competition against pathogens and increasing periodontal susceptibility. This study investigated genetic polymorphisms in Interleukin 10 (A-1082G, C-819T and C-592A) in 205 individuals from an admixed Brazilian population. A significantly increased risk of developing chronic periodontitis was observed in individuals with low IL-10 production and Amerindian ancestry. These results suggest that the polymorphisms A-1082G, C-819T, and C-592A, which are associated with ancestry, are involved in the susceptibility to the development of chronic periodontitis in an admixed northern Brazilian population.

  20. Attachment avoidance predicts inflammatory responses to marital conflict

    PubMed Central

    Gouin, Jean-Philippe; Glaser, Ronald; Loving, Timothy J.; Malarkey, William B.; Stowell, Jeffrey; Houts, Carrie; Kiecolt-Glaser, Janice K.

    2009-01-01

    Marital stress has been associated with immune dysregulation, including increased production of interleukin-6 (IL-6). Attachment style, one’s expectations about the availability and responsiveness of others in intimate relationships, appears to influence physiological stress reactivity and thus could influence inflammatory responses to marital conflict. Thirty-five couples were invited for two 24-hour admissions to a hospital research unit. The first visit included a structured social support interaction, while the second visit comprised the discussion of a marital disagreement. A mixed effect within-subject repeated measure model indicated that attachment avoidance significantly influenced IL-6 production during the conflict visit but not during the social support visit. Individuals with higher attachment avoidance had on average an 11% increase in total IL-6 production during the conflict visit as compared to the social support visit, while individuals with lower attachment avoidance had, on average, a 6% decrease in IL-6 production during the conflict visit as compared to the social support visit. Furthermore, greater attachment avoidance was associated with a higher frequency of negative behaviors and a lower frequency of positive behaviors during the marital interaction, providing a mechanism by which attachment avoidance may influence inflammatory responses to marital conflict. In sum, these results suggest that attachment avoidance modulates marital behavior and stress-induced immune dysregulation. PMID:18952163

  1. GCN2-Dependent Metabolic Stress Is Essential for Endotoxemic Cytokine Induction and Pathology

    PubMed Central

    Liu, Haiyun; Huang, Lei; Bradley, Jillian; Liu, Kebin; Bardhan, Kankana; Ron, David; Mellor, Andrew L.; Munn, David H.

    2014-01-01

    Activated inflammatory macrophages can express indoleamine 2,3-dioxygenase (IDO) and thus actively deplete their own tryptophan supply; however, it is not clear how amino acid depletion influences macrophage behavior in inflammatory environments. In this report, we demonstrate that the stress response kinase GCN2 promotes macrophage inflammation and mortality in a mouse model of septicemia. In vitro, enzymatic amino acid consumption enhanced sensitivity of macrophages to the Toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) with significantly increased interleukin 6 (IL-6) production. Tryptophan withdrawal induced the stress response proteins ATF4 and CHOP/GADD153; however, LPS stimulation rapidly enhanced expression of both proteins. Moreover, LPS-driven cytokine production under amino acid-deficient conditions was dependent on GCN2, as GCN2 knockout (GCN2KO) macrophages had a significant reduction of cytokine gene expression after LPS stimulation. To test the in vivo relevance of these findings, monocytic-lineage-specific GCN2KO mice were challenged with a lethal dose of LPS intraperitoneally (i.p.). The GCN2KO mice showed reduced inflammatory responses, with decreased IL-6 and IL-12 expression correlating with significant reduction in animal mortality. Thus, the data show that amino acid depletion stress signals (via GCN2) synergize with proinflammatory signals to potently increase innate immune responsiveness. PMID:24248597

  2. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Mili, E-mail: milimandal@gmail.com

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressingmore » high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in splenectomized mice.« less

  3. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    PubMed

    Igarashi, Yoko; Ohnishi, Kohta; Irie, Kazuhiro; Murakami, Akira

    2016-01-01

    Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  4. MicroRNA-149 contributes to scarless wound healing by attenuating inflammatory response.

    PubMed

    Lang, Hongxin; Zhao, Feng; Zhang, Tao; Liu, Xiaoyu; Wang, Zhe; Wang, Rui; Shi, Ping; Pang, Xining

    2017-08-01

    A fibrotic or pathological scar is an undesired consequence of skin wound healing and may trigger a series of problems. An attenuated inflammatory response is a significant characteristic of fetal skin wound healing, which can contribute to the scarless healing of fetal skin. According to deep sequencing data, microRNA‑149 (miR‑149) expression was increased in mid-gestational compared with that in late‑gestational fetal skin keratinocytes. It was demonstrated that overexpression of miR‑149 in HaCaT cells can downregulate the expression of pro‑inflammatory cytokines interleukin (IL)‑1α, IL‑1β, and IL‑6 at basal levels and in inflammatory conditions. Furthermore, miR‑149 was revealed to indirectly accelerate transforming growth factor‑β3 and collagen type III expression in fibroblasts, which are essential cells in extracellular matrix remodeling. In a rat skin wound model, miR‑149 improved the quality of the arrangement of collagen bundles and reduced inflammatory cell infiltration during skin wound healing. These results indicate that miR‑149 may be a potential regulator in improving the quality of skin wound healing.

  5. Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment.

    PubMed

    Alboni, Silvia; Poggini, Silvia; Garofalo, Stefano; Milior, Giampaolo; El Hajj, Hassan; Lecours, Cynthia; Girard, Isabelle; Gagnon, Steven; Boisjoly-Villeneuve, Samuel; Brunello, Nicoletta; Wolfer, David P; Limatola, Cristina; Tremblay, Marie-Ève; Maggi, Laura; Branchi, Igor

    2016-11-01

    It has been hypothesized that selective serotonin reuptake inhibitors (SSRIs), the most common treatment for major depression, affect mood through changes in immune function. However, the effects of SSRIs on inflammatory response are contradictory since these act either as anti- or pro-inflammatory drugs. Previous experimental and clinical studies showed that the quality of the living environment moderates the outcome of antidepressant treatment. Therefore, we hypothesized that the interplay between SSRIs and the environment may, at least partially, explain the apparent incongruence regarding the effects of SSRI treatment on the inflammatory response. In order to investigate such interplay, we exposed C57BL/6 mice to chronic stress to induce a depression-like phenotype and, subsequently, to fluoxetine treatment or vehicle (21days) while being exposed to either an enriched or a stressful condition. At the end of treatment, we measured the expression levels of several anti- and pro-inflammatory cytokines and inflammatory mediators in the whole hippocampus and in isolated microglia. We also determined microglial density, distribution, and morphology to investigate their surveillance state. Results show that the effects of fluoxetine treatment on inflammation and microglial function, as compared to vehicle, were dependent on the quality of the living environment. In particular, fluoxetine administered in the enriched condition increased the expression of pro-inflammatory markers compared to vehicle, while treatment in a stressful condition produced anti-inflammatory effects. These findings provide new insights regarding the effects of SSRIs on inflammation, which may be crucial to devise pharmacological strategies aimed at enhancing antidepressant efficacy by means of controlling environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Human β‐defensin 3 increases the TLR9‐dependent response to bacterial DNA

    PubMed Central

    McGlasson, Sarah L.; Semple, Fiona; MacPherson, Heather; Gray, Mohini; Davidson, Donald J.

    2017-01-01

    Human β‐defensin 3 (hBD3) is a cationic antimicrobial peptide with potent bactericidal activity in vitro. HBD3 is produced in response to pathogen challenge and can modulate immune responses. The amplified recognition of self‐DNA by human plasmacytoid dendritic cells has been previously reported, but we show here that hBD3 preferentially enhances the response to bacterial DNA in mouse Flt‐3 induced dendritic cells (FLDCs) and in human peripheral blood mononuclear cells. We show the effect is mediated through TLR9 and although hBD3 significantly increases the cellular uptake of both E. coli and self‐DNA in mouse FLDCs, only the response to bacterial DNA is enhanced. Liposome transfection also increases uptake of bacterial DNA and amplifies the TLR9‐dependent response. In contrast to hBD3, lipofection of self‐DNA enhances inflammatory signaling, but the response is predominantly TLR9‐independent. Together, these data show that hBD3 has a role in the innate immune‐mediated response to pathogen DNA, increasing inflammatory signaling and promoting activation of the adaptive immune system via antigen presenting cells including dendritic cells. Therefore, our data identify an additional immunomodulatory role for this copy‐number variable defensin, of relevance to host defence against infection and indicate a potential for the inclusion of HBD3 in pathogen DNA‐based vaccines. PMID:28102569

  7. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice

    PubMed Central

    Wang, Xianfeng; Buechler, Nancy L.; Martin, Ayana; Wells, Jonathan; Yoza, Barbara; McCall, Charles E.; Vachharajani, Vidula

    2016-01-01

    Objective Obesity increases morbidity and resource utilization in sepsis patients. Sepsis transitions from early/hyper-inflammatory to late/hypo-inflammatory phase. Majority of sepsis-mortality occurs during the late sepsis; no therapies exist to treat late sepsis. In lean mice, we have shown that sirtuins (SIRTs) modulate this transition. Here, we investigated the role of sirtuins, especially the adipose-tissue abundant SIRT-2 on transition from early to late sepsis in obese with sepsis. Methods Sepsis was induced using cecal ligation and puncture (CLP) in ob/ob mice. We measured microvascular inflammation in response to lipopolysaccharide/normal saline re-stimulation as a “second-hit” (marker of immune function) at different time points to track phases of sepsis in ob/ob mice. We determined SIRT-2 expression during different phases of sepsis. We studied the effect of SIRT-2 inhibition during the hypo-inflammatory phase on immune function and 7-day survival. We used a RAW264.7 (RAW) cell model of sepsis for mechanistic studies. We confirmed key findings in diet induced obese (DIO) mice with sepsis. Results We observed that the ob/ob-septic mice showed an enhanced early inflammation and a persistent and prolonged hypo-inflammatory phase when compared to WT mice. Unlike WT mice that showed increased SIRT1 expression, we found that SIRT2 levels were increased in ob/ob mice during hypo-inflammation. SIRT-2 inhibition in ob/ob mice during the hypo-inflammatory phase of sepsis reversed the repressed microvascular inflammation in vivo via activation of endothelial cells and circulating leukocytes and significantly improved survival. We confirmed the key finding of the role of SIRT2 during hypo-inflammatory phase of sepsis in this project in DIO-sepsis mice. Mechanistically, in the sepsis cell model, SIRT-2 expression modulated inflammatory response by deacetylation of NFκBp65. Conclusion SIRT-2 regulates microvascular inflammation in obese mice with sepsis and may provide a novel treatment target for obesity with sepsis. PMID:27500833

  8. Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the Sprague Dawley rat.

    PubMed

    Hueston, Cara M; Barnum, Christopher J; Eberle, Jaime A; Ferraioli, Frank J; Buck, Hollin M; Deak, Terrence

    2011-08-03

    Exposure to acute stress has been shown to increase the expression of pro-inflammatory cytokines in brain, blood and peripheral organs. However, the nature of the inflammatory response evoked by acute stress varies depending on the stressor used and species examined. The goal of the following series of studies was to characterize the consequences of social defeat in the Sprague Dawley (SD) rat using three different social defeat paradigms. In Experiments 1 and 2, adult male SD rats were exposed to a typical acute resident-intruder paradigm of social defeat (60 min) by placement into the home cage of a larger, aggressive Long Evans rat and brain tissue was collected at multiple time points for analysis of IL-1β protein and gene expression changes in the PVN, BNST and adrenal glands. In subsequent experiments, rats were exposed to once daily social defeat for 7 or 21 days (Experiment 3) or housed continuously with an aggressive partner (separated by a partition) for 7 days (Experiment 4) to assess the impact of chronic social stress on inflammatory measures. Despite the fact that social defeat produced a comparable corticosterone response as other stressors (restraint, forced swim and footshock; Experiment 5), acute social defeat did not affect inflammatory measures. A small but reliable increase in IL-1 gene expression was observed immediately after the 7th exposure to social defeat, while other inflammatory measures were unaffected. In contrast, restraint, forced swim and footshock all significantly increased IL-1 gene expression in the PVN; other inflammatory factors (IL-6, cox-2) were unaffected in this structure. These findings provide a comprehensive evaluation of stress-dependent inflammatory changes in the SD rat, raising intriguing questions regarding the features of the stress challenge that may be predictive of stress-dependent neuroinflammation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Homeobox a5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice.

    PubMed

    Cao, Weina; Huang, Hongtao; Xia, Tianyu; Liu, Chenlong; Muhammad, Saeed; Sun, Chao

    2018-01-01

    Lipopolysaccharide (LPS) induces rapid increase in systemic inflammatory factors. As adipose tissue is a key contributor to the inflammatory response to numerous metabolic stimuli, it is important to understand the mechanism behind the LPS-induced inflammation in white adipose tissue (WAT). Homeobox a5 (Hoxa5) is an important transcription factor, which is highly expressed in adipose tissue, and its mRNA expression is increased at cold exposure in mice. So far, the function of Hoxa5 in adipose tissue browning has been poorly understood. So, the objective of this study was conducted to determine the role of Hoxa5 in adipose inflammatory response and white adipose browning in mice. LPS-induced inflammatory and cold-induced browning model were conducted. We compared the coordinated role of Hoxa5 in inflammation and thermogenesis of mice adipose. Transcriptional and methylation regulation was determined by luciferase assay, electrophoretic mobility shift assay, and bisulfite conversion experiment. Hoxa5 and tenascin C (TNC) were involved in WAT inflammation and browning in mice with LPS injection. Furthermore, Hoxa5 inhibited the TNC-involved activation of Toll-like receptor (TLR) 4/nuclear factor kappa B (NF-κB) signal pathway and promoted WAT browning. Moreover, we found that a BMP4/Smad1 signal, closely related to browning, was activated by Hoxa5. Hoxa5 relieved adipocyte inflammation by decreasing TNC-mediated TLR4 transducer and activator of the NF-κB pathway. Interestingly, descended methylation level increased Hoxa5 expression in cold exposure. Our findings demonstrated that Hoxa5 alleviated inflammation and enhanced browning of adipose tissue via negative control of TNC/TLR4/NF-κB inflammatory signaling and activating BMP4/Smad1 pathway. These findings indicated a novel potential means for the regulation of inflammation in adipocytes to prevent obesity and other inflammatory diseases.

  10. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by inflammation triggered by monocyte adhesion and increased endothelial cell proliferation. These events are manifest in inflammatory diseases, such as atherosclerosis. Therefore, our results suggest that DBMSCs could be usefully employed as a therapeutic strategy for atherosclerosis.

  11. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    PubMed Central

    Botelho, Danielle; Leo, Bey F.; Massa, Christopher; Sarkar, Srijata; Tetley, Terry; Chung, Kian F.; Chen, Shu; Ryan, Mary P.; Porter, Alexandra; Atochina-Vasserman, Elena N.; Zhang, Junfeng; Schwander, Stephan; Gow, Andrew J.

    2018-01-01

    Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 μg/g) or high (0.5 μg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function. PMID:29632485

  12. [An experimental study of the anti-inflammatory action of noopept and its effect on the level of cytokines].

    PubMed

    Alekseeva, S V; Kovalenko, L P; Tallerova, A V; Gudasheva, T A; Durnev, A D

    2012-01-01

    The anti-inflammatory effects of noopept (dipeptide analog of piracetam) upon a single intraperitoneal (i.p.) administration at doses of 1, 5, and 10 mg/kg in comparison to the reference drug diclofenac (10 mg/kg, i.p.) have been studied on a model of acute exudative inflammation induced by carrageenan in outbred rats and concanavalin A (Con A) in CBA mice. The level of cytokines was studied on the lipopolysaccharide (LPS) model (single administration, 100 mg/kg, i.p.) with 5-day administration of noopept at a dose of 5 mg/kg (i.p., before endotoxin injection) in C57BL/6 mice. The administration of noopept led to a significant suppression of the inflammatory response to both carrageenan and Con A. The administration of Con A caused a 16-fold increase in the level of IL-6 interleukin in the blood serum of mice as compared to control. Noopept (5 mg/kg) reduced the level of IL-6 by a factor of 1.8 in the inflammatory response to Con A. The administration of LPS led to pronounced increase in the levels ofpro-inflammatory IL-6 and TNF-alpha in the blood serum of test mice as compared to intact animals. The course administration of noopept (5 mg/kg) significantly decreased the level of IL-6 and reduced by half the level of TNF-alpha.

  13. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    PubMed

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  14. Polysaccharide peptides from COV-1 strain of Coriolus versicolor induce hyperalgesia via inflammatory mediator release in the mouse.

    PubMed

    Chan, Siu-Lung; Yeung, John H K

    2006-04-18

    Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been widely used as an adjunct to cancer chemotherapy and as an immuno-stimulator in China. In this study, the anti-nociceptive effects of PSP were investigated in two different pain models in the mouse. In the acetic acid-induced writhing model, initial studies showed that PSP decreased the number of acetic acid-induced writhing by 92.9%, which, by definition, would constitute an analgesic effect. However, further studies showed that PSP itself induced a dose-dependent writhing response. Studies on inflammatory mediator release showed that PSP increased the release of prostaglandin E2, tumor necrosis factor-alpha, interleukin-1beta, and histamine in mouse peritoneal macrophages and mast cells both in vitro and in vivo. The role of inflammatory mediator release in PSP-induced writhing was confirmed when diclofenac and dexamethasone decreased the number of writhing responses by 54% and 58.5%, respectively. Diphenhydramine totally inhibited the PSP-induced writhing. In the hot-plate test, PSP dose-dependently shortened the hind paw withdrawal latency, indicative of a hyperalgesic effect. The hyperalgesic effect was reduced by pretreatment with the anti-inflammatory drugs. In conclusion, the PSP-induced hyperalgesia was related to activation of peritoneal resident cells and an increase in the release of inflammatory mediators.

  15. A flame burning within.

    PubMed

    Ferrucci, Luigi; Ble, Alessandro; Bandinelli, Stefania; Lauretani, Fulvio; Suthers, Kristen; Guralnik, Jack M

    2004-06-01

    Inflammation is a human being's primary defense against threats to homeostasis that are encountered every day. Especially in old age, when regulatory mechanisms responsible for inflammatory responses may be ineffective or damaged, the result can be adverse pathological conditions, and an increased risk of morbidity and mortality. The inflammation response is a plastic network composed of redundant signaling among several different mediators. These mediators have a reciprocal relationship with other biological sub-systems, including hormone regulation, the autonomic nervous system, and oxidative/anti-oxidant balance. Studying this complex architecture requires parallel and multiple research strategies from epidemiological to biochemical level, from observational studies to innovative intervention approaches. Given that the inflammatory response is a critical age-related process, understanding its regulatory action is essential in avoiding hazardous consequences in old age.

  16. Dietary supplementation with rutin has pro-/anti-inflammatory effects in the liver of juvenile GIFT tilapia, Oreochromis niloticus.

    PubMed

    Zheng, Yao; Zhao, Zhixiang; Fan, Limin; Meng, Shunlong; Song, Chao; Qiu, Liping; Xu, Pao; Chen, Jiazhang

    2017-05-01

    Dietary supplementation with rutin may have some pharmacological qualities including anti-inflammatory effects. Kupffer cell activation resulted in increased transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities in juvenile freshwater tilapia, Oreochromis niloticus, in response to 0.1 or 0.3 g/kg dietary supplementation of rutin. Results showed that hepatic IgM, anti-inflammatory-cytokines, and pro-inflammatory cytokines were significantly decreased in groups treated with high doses of rutin. Hepatic IgM and anti-inflammatory cytokines (IL-10 and IFN-γ) transcripts were significantly decreased, whereas the transcripts of the pro-inflammatory cytokines, TNFα and IL-1β were significantly decreased, whereas IL-8 was significantly increased. The number of Kupffer cells in rutin-treated groups was significantly decreased, and scanning electron micrographs showed that rutin enriched the number of gut microvilli and secretion pits. With the phenomena of cell apoptosis occurred in the rutin groups, the present study demonstrated that optimum levels of rutin may be beneficial but excessive level may cause liver impairment, which may be absorbed by the gut and then transported to the liver. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation

    NASA Astrophysics Data System (ADS)

    Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.

    1999-12-01

    Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

  18. Targeting inflammatory pathways in myocardial infarction

    PubMed Central

    Christia, Panagiota; Frangogiannis, Nikolaos G

    2013-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates Damage-Associated Molecular Patterns (DAMPs), activating complement and Toll-Like Receptor (TLR)/Interleukin (IL)-1 signaling, and triggering an intense inflammatory reaction. Infiltrating leukocytes clear the infarct from dead cells, while activating reparative pathways that lead to formation of a scar. As the infarct heals the ventricle remodels; the geometric, functional and molecular alterations associated with post-infarction remodeling are driven by the inflammatory cascade and are involved in the development of heart failure. Because unrestrained inflammation in the infarcted heart induces matrix degradation and cardiomyocyte apoptosis, timely suppression of the post-infarction inflammatory reaction may be crucial to protect the myocardium from dilative remodeling and progressive dysfunction. Inhibition and resolution of post-infarction inflammation involves mobilization of inhibitory mononuclear cell subsets and requires activation of endogenous STOP signals. Our manuscript discusses the basic cellular and molecular events involved in initiation, activation and resolution of the post-infarction inflammatory response, focusing on identification of therapeutic targets. The failure of anti-integrin approaches in patients with myocardial infarction and a growing body of experimental evidence suggest that inflammation may not increase ischemic cardiomyocyte death, but accentuates matrix degradation causing dilative remodeling. Given the pathophysiologic complexity of post-infarction remodeling, personalized biomarker-based approaches are needed to target patient subpopulations with dysregulated inflammatory and reparative responses. Inhibition of pro-inflammatory signals (such as IL-1 and Monocyte Chemoattractant Protein-1) may be effective in patients with defective resolution of post-infarction inflammation who exhibit progressive dilative remodeling. In contrast, patients with predominant hypertrophic/fibrotic responses may benefit from anti-TGF strategies. PMID:23772948

  19. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    PubMed

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  20. Growth hormone-insulin-like growth factor-1 and inflammatory response to a single exercise bout in children and adolescents.

    PubMed

    Nemet, Dan; Eliakim, Alon

    2010-01-01

    Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.

  1. Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats.

    PubMed

    Garcia, J J; Martin-Cordero, L; Hinchado, M D; Bote, M E; Ortega, E

    2013-06-01

    Regular exercise is a good non-pharmacological treatment of metabolic syndrome in that it improves obesity, diabetes, and inflammation. The 72 kDa extracellular heat shock protein (eHsp72) is released during exercise, thus stimulating the inflammatory responses. The aim of the present work was to evaluate the effect of regular exercise on the eHsp72-induced release of IL-1β, IL-6, and TNFα by macrophages from genetically obese Zucker rats (fa/fa) (ObZ), using lean Zucker (LZ) rats (Fa/fa) to provide reference values. ObZ presented a higher plasma concentration of eHsp72 than LZ, and exercise increased that concentration. In response to eHsp72, the macrophages from ObZ released less IL-1β and TNFα, but more IL-6, than macrophages from LZ. While eHsp72 stimulated the release of IL-1β, TNFα, and IL-6 in the macrophages from healthy LZ (with respect to the constitutive release), it inhibited the release of IL-1β and IL-6 in macrophages from ObZ. The habitual exercise improved the release of inflammatory cytokines by macrophages from ObZ in response to eHsp72 (it increased IL-1β and TNFα, and decreased IL-6), tending to values closer to those determined in healthy LZ. A deregulated macrophage inflammatory and stress response induced by eHsp72 underlies MS, and this is improved by habitual exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements.

    PubMed

    Duncan, Andrew; Talwar, Dinesh; McMillan, Donald C; Stefanowicz, Fiona; O'Reilly, Denis St J

    2012-01-01

    Plasma concentrations of several trace elements and vitamins decrease because of the systemic inflammatory response. Thus, low values do not necessarily indicate deficiency. The magnitude of this effect on plasma micronutrient concentrations was investigated to provide guidance on the interpretation of routine clinical results. Between 2001 and 2011, the results (2217 blood samples from 1303 patients) of routine micronutrient screens (plasma zinc, copper, selenium, and vitamins A, B-6, C, and E) and all vitamin D results (4327 blood samples from 3677 patients) were extracted from the laboratory database. C-reactive protein concentrations were measured as a marker of the severity of inflammation and categorized into 6 groups; for each group, plasma micronutrient concentrations and percentage changes were calculated. Except for copper and vitamin E, all plasma micronutrient concentrations decreased with increasing severities of the acute inflammatory response. For selenium and vitamins B-6 and C, this occurred with only slightly increased C-reactive protein concentrations of 5 to 10 mg/L. For each micronutrient, the change in plasma concentrations varied markedly from patient to patient. The magnitude of the effect was greatest for selenium and vitamins A, B-6, C, and D, for which the median plasma concentrations decreased by >40%. The clinical interpretation of plasma micronutrients can be made only with knowledge of the degree of inflammatory response. A reliable clinical interpretation can be made only if the C-reactive protein is <20 mg/L (plasma zinc), <10 mg/L (plasma selenium and vitamins A and D), or <5 mg/L (vitamins B-6 and C).

  3. The Addition of Medium-Chain Triglycerides to a Purified Fish Oil Based Diet Alters Inflammatory Profiles in Mice

    PubMed Central

    Carlson, SJ; Nandivada, P; Chang, MI; Mitchell, PD; O’Loughlin, A; Cowan, E; Gura, KM; Nose, V; Bistrian, B; Puder, M

    2014-01-01

    Objective Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Materials/Methods Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. Results All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. Conclusion These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. PMID:25458829

  4. The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice.

    PubMed

    Carlson, Sarah J; Nandivada, Prathima; Chang, Melissa I; Mitchell, Paul D; O'Loughlin, Alison; Cowan, Eileen; Gura, Kathleen M; Nose, Vania; Bistrian, Bruce R; Puder, Mark

    2015-02-01

    Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sex differences in the expression of lung inflammatory mediators in response to ozone

    PubMed Central

    Cabello, Noe; Mishra, Vikas; Sinha, Utkarshna; DiAngelo, Susan L.; Chroneos, Zissis C.; Ekpa, Ndifreke A.; Cooper, Timothy K.; Caruso, Carla R.

    2015-01-01

    Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men. PMID:26342085

  6. [Effects of several inhibitors of intracellular signaling on production of cytokines and signal proteins in RAW 264.7 cells cultivated with low dose ammonium].

    PubMed

    Novoselova, E G; Parfeniuk, S B; Glushkova, O V; Khrenov, M O; Novoselova, T V; Lunin, S M; Fesenko, E E

    2012-01-01

    Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.

  7. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV).

    PubMed

    Martinez-Rubio, Laura; Evensen, Øystein; Krasnov, Aleksei; Jørgensen, Sven Martin; Wadsworth, Simon; Ruohonen, Kari; Vecino, Jose L G; Tocher, Douglas R

    2014-06-11

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV. Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions. Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

  8. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response.

    PubMed

    Liu, Tie Fu; Vachharajani, Vidula T; Yoza, Barbara K; McCall, Charles E

    2012-07-27

    The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.

  9. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    PubMed Central

    Graham, Caroline; Chooniedass, Rishma; Stefura, William P.; Becker, Allan B.; Sears, Malcolm R.; Turvey, Stuart E.; Mandhane, Piush J.; Subbarao, Padmaja

    2017-01-01

    Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense) or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus) is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD) cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20–57%, p<0.0001). Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra) were elevated by ~50–100% (p<0.0001). Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2, CXCL10, IL-18, and TNFα) was constant, anti-inflammatory expression increased progressively with increasing gestational age (p<0.0001). We conclude that healthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy. PMID:28636613

  10. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    PubMed

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of aerosol particles would induce an airway barrier injury via ROS, release fibrotic inflammatory cytokines, and trigger a wound-healing response, leading to pulmonary fibrosis. A simultaneous state of tissue destruction and inflammation caused by PHMG-phosphate had whipped up a "perfect storm" in the respiratory tract.

  11. Chronic Interpersonal Stress Predicts Activation of Pro- and Anti- Inflammatory Signaling Pathways Six Months Later

    PubMed Central

    Miller, Gregory; Rohleder, Nicolas; Cole, Steve W.

    2009-01-01

    OBJECTIVE Chronic interpersonal difficulties have a detrimental influence on mental and physical health, but little is known about the mechanisms underlying this phenomenon. METHODS 103 healthy young women (mean age = 17) were administered a structured interview to assess the degree of chronic interpersonal stress in their lives. At the same time blood was drawn to measure systemic inflammation, the expression of signaling molecules that regulate immune activation, and leukocyte production of the cytokine interleukin-6 following ex vivo stimulation with lipopolysaccharide. All of the immunologic assessments were repeated six months later. RESULTS To the extent subjects were high in chronic interpersonal stress at baseline, their leukocytes displayed greater increases in mRNA for the pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) over the next six months. They also showed larger increases in mRNA for inhibitor of kappaB, a molecule that sequesters NF-κB in the cytoplasm and minimizes its pro-inflammatory activities. Chronic interpersonal stress at baseline was unrelated to changes in biomarkers of systemic inflammation, but was associated with increasingly pronounced interleukin-6 responses to lipopolysaccharide. These associations were independent of demographics, lifestyle variables, and depressive symptoms. CONCLUSIONS These findings suggest that chronic interpersonal difficulties accentuate expression of pro- and anti-inflammatory signaling molecules. While this process does not result in systemic inflammation under quiescent conditions, it does accentuate leukocytes’ inflammatory response to microbial challenge. These dynamics may underlie the excess morbidity associated with social stress, particularly in inflammation-sensitive diseases like depression and atherosclerosis. PMID:19073750

  12. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  13. Experimental evidence of obesity as a risk factor for severe acute pancreatitis.

    PubMed

    Frossard, Jean-Louis; Lescuyer, Pierre; Pastor, Catherine M

    2009-11-14

    The incidence of acute pancreatitis, an inflammation of the pancreas, is increasing worldwide. Pancreatic injury is mild in 80%-90% of patients who recover without complications. The remaining patients may develop a severe disease with local complications such as acinar cell necrosis, abscess and remote organ injury including lung injury. The early prediction of the severity of the disease is an important goal for physicians in management of patients with acute pancreatitis in order to optimize the therapy and to prevent organ dysfunction and local complications. For that purpose, multiple clinical scale scores have been applied to patients with acute pancreatitis. Recently, a new problem has emerged: the increased severity of the disease in obese patients. However, the mechanisms by which obesity increases the severity of acute pancreatitis are unclear. Several hypotheses have been suggested: (1) obese patients have an increased inflammation within the pancreas; (2) obese patients have an increased accumulation of fat within and around the pancreas where necrosis is often located; (3) increase in both peri- and intra-pancreatic fat and inflammatory cells explain the high incidence of pancreatic inflammation and necrosis in obese patients; (4) hepatic dysfunction associated with obesity might enhance the systemic inflammatory response by altering the detoxification of inflammatory mediators; and (5) ventilation/perfusion mismatch leading to hypoxia associated with a low pancreatic flow might reduce the pancreatic oxygenation and further enhance pancreatic injury. Recent experimental investigations also show an increased mortality and morbidity in obese rodents with acute pancreatitis and the implication of the adipokines leptin and adiponectin. Such models are important to investigate whether the inflammatory response of the disease is enhanced by obesity. It is exciting to speculate that manipulation of the adipokine milieu has the potential to influence the severity of acute pancreatitis.

  14. Depot-Specific Response of Adipose Tissue to Diet-Induced Inflammation: The Retinoid-Related Orphan Receptor α (RORα) Involved?

    PubMed

    Kadiri, Sarah; Auclair, Martine; Capeau, Jacqueline; Antoine, Bénédicte

    2017-11-01

    Epididymal adipose tissue (EAT), a visceral fat depot, is more closely associated with metabolic dysfunction than inguinal adipose tissue (IAT), a subcutaneous depot. This study evaluated whether the nuclear receptor RORα, which controls inflammatory processes, could be implicated. EAT and IAT were compared in a RORα loss-of-function mouse (sg/sg) and in wild-type (WT) littermates, fed a standard diet (SD) or a Western diet (WD), to evaluate the impact of RORα expression on inflammatory status and on insulin sensitivity (IS) of each fat depot according to the diet. Sg/sg mice fed the SD exhibited a decreased inflammatory status and a higher IS in their fat depots than WT mice. WD-induced obesity had distinct effects on the two fat depots. In WT mice, EAT exhibited increased inflammation and insulin resistance while IAT showed reduced inflammation and improved IS, together with a depot-specific increase of RORα, and its target gene IκBα, in the stroma vascular fraction (SVF). Conversely, in sg/sg mice, WD increased inflammation and lowered IS of IAT but not of EAT. These findings suggest an anti-inflammatory role for RORα in response to WD, which occurs at the level of SVF of IAT, thus possibly contributing to the "healthy" expansion of IAT. © 2017 The Obesity Society.

  15. Maternal separation increases later immobility during forced swim in guinea pig pups: evidence for sensitization of a depressive-like state.

    PubMed

    Hennessy, Michael B; Schreibeis, Amanda D; Schiml, Patricia A; Deak, Terrence

    2017-01-01

    Early-life stress is thought to increase later vulnerability for developing depressive illness by sensitizing underlying stress-responsive systems. Guinea pig pups separated from their mother and isolated in a novel cage for 3 hr exhibit a sensitized depressive-like behavioral response when separated again the following day as well as weeks later. The behavioral response and its sensitization appear to be mediated by inflammatory factors. To determine if this sensitization is specific to the separation response or if it reflects a broader underlying depressive-like state, guinea pig pups that had either been separated for 3 hr or remained with their mothers were observed in the forced swim test the following 3 days. Earlier separation was found to increase the duration of immobility, a measure sensitive to antidepressant treatment. These results support the use of the guinea pig as a model for examining mechanisms of inflammatory-mediated sensitization of depression following stress in early life. © 2016 Wiley Periodicals, Inc.

  16. Innate immune responses following Kawasaki disease and toxic shock syndrome

    PubMed Central

    Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R.; Levin, Michael; Burgner, David; Curtis, Nigel

    2018-01-01

    The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory. PMID:29447181

  17. Innate immune responses following Kawasaki disease and toxic shock syndrome.

    PubMed

    Chen, Katherine Y H; Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R; Levin, Michael; Burgner, David; Curtis, Nigel

    2018-01-01

    The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory.

  18. Pathophysiology of viral-induced exacerbations of COPD

    PubMed Central

    Alfredo, Potena; Gaetano, Caramori; Paolo, Casolari; Marco, Contoli; Johnston, Sebastian L; Alberto, Papi

    2007-01-01

    Inflammation of the lower airways is a central feature of chronic obstructive pulmonary disease (COPD). Inflammatory responses are associated with an increased expression of a cascade of proteins including cytokines, chemokines, growth factors, enzymes, adhesion molecules and receptors. In most cases the increased expression of these proteins is the result of enhanced gene transcription: many of these genes are not expressed in normal cells under resting conditions but they are induced in the inflammatory process in a cell-specific manner. Transcription factors regulate the expression of many pro-inflammatory genes and play a key role in the pathogenesis of airway inflammation. Many studies have suggested a role for viral infections as a causative agent of COPD exacerbations. In this review we will focus our attention on the relationship between common respiratory viral infections and the molecular and inflammatory mechanisms that lead to COPD exacerbation. PMID:18268922

  19. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model.

    PubMed

    Fujiwara, Norio; Som, Angel T; Pham, Loc-Duyen D; Lee, Brian J; Mandeville, Emiri T; Lo, Eng H; Arai, Ken

    2016-10-28

    A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-h after an ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-h after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially-targeted antioxidants

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Bėla; Zsengellėr, Zsuzsanna; Bátkai, Sándor; Cao, Zongxian; Kechrid, Malek; Holovac, Eileen; Erdėlyi, Katalin; Tanchian, Galin; Liaudet, Lucas; Stillman, Isaac E.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2012-01-01

    Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury, however its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explored the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 hours of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute pro-inflammatory response (TNF-α, MIP-1αCCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 hours of reperfusion and peaking at 24 hours). Mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage. PMID:22683818

  1. Effect of the systemic inflammatory response, as provoked by elective orthopaedic surgery, on HbA1c.

    PubMed

    Chadburn, Andrew J; Garman, Elizabeth; Abbas, Raad; Modupe, Anu; Ford, Clare; Thomas, Osmond L; Chugh, Sanjiv; Deshpande, Shreeram; Gama, Rousseau

    2017-07-01

    Background In acutely ill patients with new onset hyperglycaemia, plasma glucose cannot reliably distinguish between stress hyperglycaemia and undiagnosed diabetes mellitus. We, therefore, investigated the diagnostic reliability of glycated haemoglobin (HbA1c) in acute illness by prospectively evaluating the effect of the systemic inflammatory response, as provoked by elective orthopaedic surgery, on HbA 1c . Methods HbA 1c and serum C-reactive protein concentrations were compared before and two days after elective knee or hip surgery in 30 patients without diabetes. C-reactive protein was used to assess the systemic inflammatory response. Results The mean (standard deviation) serum C-reactive protein increased following surgery (4.8 [7.5] vs. 179.7 [61.9] mg/L; P<0.0001). HbA 1c was similar before and after surgery (39.2 [5.4] vs. 38.1 [5.1] mmol/moL, respectively; P = 0.4363). Conclusions HbA 1c is unaffected within two days of a systemic inflammatory response as provoked by elective orthopaedic surgery. This suggests that HbA 1c may be able to differentiate newly presenting type 2 diabetes mellitus from stress hyperglycaemia in acutely ill patients with new onset hyperglycaemia.

  2. Exogenous administration of lipids to steers alters aspects of the innate immune response to endotoxin challenge

    USDA-ARS?s Scientific Manuscript database

    Limitations in energy availability are known to impede the efficiency of the immune response to endotoxemia. Therefore, this study examined the effects of increasing energy availability on the pro-inflammatory response to LPS in Holstein steers. Steers were randomly assigned to 1 of 3 groups (n = 7 ...

  3. Anesthesiologists at work: an increase in pro-inflammatory and Th2 cytokine production, and alterations in proliferative immune responses.

    PubMed

    Beilin, B; Greenfeld, K; Abiri, N; Yardeni, I Z; Bessler, H; Ben-Eliyahu, S

    2006-11-01

    Anesthesiologists are a population at high risk of alcohol and drug abuse, depression, suicide, and psychiatric hospitalization. The impact of their working milieu on specific immune indices has scarcely been studied, and it is assumed that immune perturbations may contribute to some of the above risks. This study took advantage of an unplanned, 3-month long strike of anesthesiologists, and explored its relations to specific immune measures. We assessed induced cytokine production and lymphocytes proliferative responses in blood samples taken from 10 anesthesiologists just before the strike and at its end, after a long period of markedly reduced workload. The results indicated that the proliferative responses to phytohemagglutinin (PHA) and concanavalin A (Con A) were significantly lower at the end of the strike. At this time point, we observed a significant decrease in the production of interleukin-6 (IL-6), IL-10 and IL1ra levels, and a significant increase in IL-2 production. A strong trend towards a decline in tumor necrosis factor-alpha (TNF-alpha) levels was evident, while levels of IL-1beta were unchanged. These findings suggest that the working conditions of anesthesiologists are associated with specific immune alterations, including a shift towards a Th2 cytokines' dominance, and an elevated pro-inflammatory cytokine response. A reduced Th1 profile has been related to increased susceptibility to infections, and high pro-inflammatory cytokine levels were recently proposed as etiological factors in cardiovascular diseases and in depression.

  4. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice

    PubMed Central

    Hasegawa, Tadashi; Ito, Yoshiya; Wijeweera, Jayanthika; Liu, Jie; Malle, Ernst; Farhood, Anwar; McCuskey, Robert S.; Jaeschke, Hartmut

    2016-01-01

    Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12–24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 ± 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 ± 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers. PMID:17307725

  5. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Kehrle, Bettina; Aird, William C; Frank, Rolf D; Guha, Mausumee; Mackman, Nigel

    2003-05-15

    In septic shock, tissue factor (TF) activates blood coagulation, and cytokines and chemokines orchestrate an inflammatory response. In this study, the role of Egr-1 in lipopolysaccharide (LPS) induction of TF and inflammatory mediators in vivo was evaluated using Egr-1(+/+) and Egr-1(-/-) mice. Administration of LPS transiently increased the steady-state levels of Egr-1 mRNA in the kidneys and lungs of Egr-1(+/+) mice with maximal induction at one hour. Egr-1 was expressed in epithelial cells in the kidneys and lungs in untreated and LPS-treated mice. LPS induction of monocyte chemoattractant protein mRNA in the kidneys and lungs of Egr-1(-/-) mice was not affected at 3 hours, but its expression was significantly reduced at 8 hours compared with the expression observed in Egr-1(+/+) mice. Similarly, LPS induction of TF mRNA expression in the kidneys and lungs at 8 hours was reduced in Egr-1(-/-) mice. However, Egr-1 deficiency did not affect plasma levels of tumor necrosis factor alpha in endotoxemic mice. Moreover, Egr-1(+/+) and Egr-1(-/-) mice exhibited similar survival times in a model of acute endotoxemia. These data indicate that Egr-1 does not contribute to the early inflammatory response in the kidneys and lungs or the early systemic inflammatory response in endotoxemic mice. However, Egr-1 does contribute to the sustained expression of inflammatory mediators and to the maximal expression of TF at 8 hours in the kidneys and lungs.

  6. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T

    2015-08-01

    Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation.

    PubMed

    Maes, Michael; Ringel, Karl; Kubera, Marta; Anderson, George; Morris, Gerwyn; Galecki, Piotr; Geffard, Michel

    2013-09-05

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation. We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale). The incidence of positive autoimmune activity against 5-HT was significantly higher (p<0.001) in ME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise. The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Penile Anaerobic Dysbiosis as a Risk Factor for HIV Infection

    PubMed Central

    Prodger, Jessica L.; Tobian, Aaron A. R.; Abraham, Alison G.; Kigozi, Godfrey; Aziz, Maliha; Nalugoda, Fred; Sariya, Sanjeev; Serwadda, David; Kaul, Rupert; Gray, Ronald H.; Price, Lance B.

    2017-01-01

    ABSTRACT Sexual transmission of HIV requires exposure to the virus and infection of activated mucosal immune cells, specifically CD4+ T cells or dendritic cells. The foreskin is a major site of viral entry in heterosexual transmission of HIV. Although the probability of acquiring HIV from a sexual encounter is low, the risk varies even after adjusting for known HIV risk factors. The genital microbiome may account for some of the variability in risk by interacting with the host immune system to trigger inflammatory responses that mediate the infection of mucosal immune cells. We conducted a case-control study of uncircumcised participants nested within a randomized-controlled trial of male circumcision in Rakai, Uganda. Using penile (coronal sulcus) swabs collected by study personnel at trial enrollment, we characterized the penile microbiome by sequencing and real-time PCR and cytokine levels by electrochemiluminescence assays. The absolute abundances of penile anaerobes at enrollment were associated with later risk of HIV seroconversion, with a 10-fold increase in Prevotella, Dialister, Finegoldia, and Peptoniphilus increasing the odds of HIV acquisition by 54 to 63%, after controlling for other known HIV risk factors. Increased abundances of anaerobic bacteria were also correlated with increased cytokines, including interleukin-8, which can trigger an inflammatory response that recruits susceptible immune cells, suggesting a mechanism underlying the increased risk. These same anaerobic genera can be shared between heterosexual partners and are associated with increased HIV acquisition in women, pointing to anaerobic dysbiosis in the genital microbiome and an accompanying inflammatory response as a novel, independent, and transmissible risk factor for HIV infection. PMID:28743816

  9. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161

    PubMed Central

    Honda, Jennifer R; Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L; Henao-Tamayo, Marcela; Chan, Edward D; Basaraba, Randall J; Orme, Ian M; Ordway, Diane J; Flores, Sonia C

    2011-01-01

    Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis. PMID:22046211

  10. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    PubMed

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  11. Tiotropium effects on airway inflammatory events in the cat as an animal model for acute cigarette smoke-induced lung inflammation.

    PubMed

    Kolahian, Saeed; Shahbazfar, Amir Ali; Tayefi-Nasrabadi, Hossein; Keyhanmanesh, Rana; Ansarin, Khalil; Ghasemi, Hamid; Rashidi, Amir Hossein; Gosens, Reinoud; Hanifeh, Mohsen

    2014-08-01

    Chronic obstructive pulmonary disease is an inflammatory lung disease mainly caused by tobacco smoke inhalation. Fifteen healthy adult male cats were categorized into 3 groups: (1) control group, (2) exposed to cigarette smoke (CS), and (3) exposed to CS treated with tiotropium. Increases in clinical signs and airway responsiveness in CS cats were found compared to control animals. The airway hyperresponsiveness and clinical signs were significantly attenuated by treatment with tiotropium. The CS-induced pulmonary release of interleukin-6, interleukin-8, monocyte chemotactic protein-1, and tumor necrosis factor alpha was reduced in the tiotropium group. Exposure to CS significantly increased total inflammatory cells number in bronchoalveolar lavage fluid, which was significantly attenuated by treatment with tiotropium. The number of macrophages, eosinophils and neutrophils and lymphocytes was increased after exposure to CS. Tiotropium significantly reduced the number of all these cells. Perivascular, peribronchiolar infiltration of inflammatory cells and Reid index increased in the CS group. Treatment with tiotropium significantly reduced these parameters to control level. Enhanced lipid peroxidation with concomitant reduction of antioxidants status was observed in the CS group. Tiotropium significantly reduced the serum, lung lavage, lung, and tracheal tissue lipid peroxides to near control levels. Tiotropium also decreased lung and tracheal protein leakage, and prevented the reduction of total antioxidant status in serum, lung lavage, lung and tracheal tissue of the CS group. Cigarette smoke increases airway responsiveness and inflammation in a cat model of CS induced lung inflammation. It can effectively be reduced by treatment with tiotropium.

  12. Endocrine regulation of the immune response to influenza virus infection with a metabolite of DHEA-androstenediol.

    PubMed

    Padgett, D A; Loria, R M; Sheridan, J F

    1997-09-01

    In these studies the influence of androstenediol on the course of an experimental virus infection was examined. Pretreatment with 320 mg/kg AED protected male mice from lethal influenza virus infection. In addition, AED enhanced antigen-induced trafficking of mononuclear cells into the draining lymph node and augmented antigen-specific activation of helper-T cells, which are important for control of viral pathogenesis. Furthermore, AED prevented the characteristic increase in serum corticosterone noted during influenza A virus infection. Although steroid hormones, at least corticosteroids, typically suppress host immune and inflammatory responses in vivo, these data suggest that AED may function to augment host immune and inflammatory responses in contrast to corticosteroids.

  13. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: in-vitro and in-vivo studies

    PubMed Central

    2012-01-01

    Background Exposure to ultrafine particles exerts diverse harmful effects including aggravation of pulmonary diseases like asthma. Recently we demonstrated in a mouse model for allergic airway inflammation that particle-derived oxidative stress plays a crucial role during augmentation of allergen-induced lung inflammation by ultrafine carbon particle (UfCP) inhalation. The mechanisms how particle inhalation might change the inflammatory balance in the lungs, leading to accelerated inflammatory reactions, remain unclear. Lipid mediators, known to be immediately generated in response to tissue injury, might be strong candidates for priming this particle-triggered change of the inflammatory balance. Methods We hypothesize that inhalation of UfCP may disturb the balance of pro- and anti-inflammatory lipid mediators in: i) a model for acute allergic pulmonary inflammation, exposing mice for 24 h before allergen challenge to UfCP inhalation (51.7 nm, 507 μg/m3), and ii) an in-vitro model with primary rat alveolar macrophages (AM) incubated with UfCP (10 μg/1 x 106 cells/ml) for 1 h. Lungs and AM were analysed for pro- and anti-inflammatory lipid mediators, namely leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 15(S)-hydroxy-eicosatetraenoic acid (15(S)-HETE), lipoxin A4 (LXA4) and oxidative stress marker 8-isoprostane by enzyme immunoassays and immunohistochemistry. Results In non-sensitized mice UfCP exposure induced a light non-significant increase of all lipid mediators. Similarly but significantly in rat AM all lipid mediators were induced already within 1 h of UfCP stimulation. Also sensitized and challenge mice exposed to filtered air showed a partially significant increase in all lipid mediators. In sensitized and challenged mice UfCP exposure induced highest significant levels of all lipid mediators in the lungs together with the peak of allergic airway inflammation on day 7 after UfCP inhalation. The levels of LTB4, 8-isoprostane and PGE2 were significantly increased also one day after UfCP exposure. Immunohistochemistry localized highest concentrations of PGE2 especially in AM one day after UfCP exposure. Conclusion Our results suggest that UfCP exposure affects the balance between pro- and anti-inflammatory lipid mediators. In allergic mice, where the endogenous balance of pro- and anti-inflammatory mediators is already altered, UfCP exposure aggravates the inflammation and the increase in anti-inflammatory, pro-resolving lipid mediators is insufficient to counterbalance the extensive inflammatory response. This may be a contributing mechanism that explains the increased susceptibility of asthmatic patients towards particle exposure. PMID:22809365

  14. Effects of a novel cytokine haemoadsorbtion system on inflammatory response in septic shock after cephalic pancreatectomy – a case report

    PubMed Central

    Tomescu, Dana; Dima, Simona O.; Tănăsescu, Sabina; Tănase, Cristiana Pistol; Năstase, Anca; Popescu, Mihai

    2014-01-01

    Severe sepsis and septic shock are associated with an inflammatory cascade that is primarily responsible for multiple organ dysfunction. To date, there are no specific treatments designed to modulate and rebalance inflammatory cytokines levels. We present a case of a 50 years old man with postoperative septic shock after undergoing cephalic pancreatectomy for a pancreatic cystic tumor. The use of a haemoadsorbtion device (CytoSorb®) in combination with continuous veno-venous haemofiltration was associated with a decrease in TNFα, IL-1β and IFNγ and an increase in IL-10 levels measured before and after two consecutive procedures. The effect of CytoSorb® on inflammatory cytokines translated into a more stable haemodynamic profile with a stable cardiac output and normalization of systemic vascular resistance index and decreased vasopressor requirements. Further prospective large clinical trials are required in order to determine the indications for CytoSorb® and to evaluate the overall outcome. PMID:28913446

  15. Effects of a novel cytokine haemoadsorbtion system on inflammatory response in septic shock after cephalic pancreatectomy - a case report.

    PubMed

    Tomescu, Dana; Dima, Simona O; Tănăsescu, Sabina; Tănase, Cristiana Pistol; Năstase, Anca; Popescu, Mihai

    2014-10-01

    Severe sepsis and septic shock are associated with an inflammatory cascade that is primarily responsible for multiple organ dysfunction. To date, there are no specific treatments designed to modulate and rebalance inflammatory cytokines levels. We present a case of a 50 years old man with postoperative septic shock after undergoing cephalic pancreatectomy for a pancreatic cystic tumor. The use of a haemoadsorbtion device (CytoSorb ® ) in combination with continuous veno-venous haemofiltration was associated with a decrease in TNFα, IL-1β and IFNγ and an increase in IL-10 levels measured before and after two consecutive procedures. The effect of CytoSorb ® on inflammatory cytokines translated into a more stable haemodynamic profile with a stable cardiac output and normalization of systemic vascular resistance index and decreased vasopressor requirements. Further prospective large clinical trials are required in order to determine the indications for CytoSorb ® and to evaluate the overall outcome.

  16. Antinociceptive effects of radon inhalation on formalin-induced inflammatory pain in mice.

    PubMed

    Yamato, Keiko; Kataoka, Takahiro; Nishiyama, Yuichi; Taguchi, Takehito; Yamaoka, Kiyonori

    2013-04-01

    Radon therapy is clinically useful for the treatment of inflammatory diseases. The mechanisms of pain relief remain to be fully elucidated. In this study, we investigated the antinociceptive effects of radon inhalation in a mouse model of formalin-induced inflammatory pain. Immediately, after radon inhalation at a concentration of background level (ca. 19 Bq/m(3)), 1,000 or 2,000 Bq/m(3) for 24 h, 1.35 % formalin (0.5 % formaldehyde in saline, 20 μl) was subcutaneously injected into the hind paw of mice, and we measured licking response time. Radon inhalation inhibited the second phase of response in formalin test. Formalin administration induced nociception and increased tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) levels in serum and leukocyte migration in paws. Concurrently, formalin injection decreased antioxidative functions. Radon inhalation produced antinociceptive effects, i.e., lowered serum TNF-α and NO levels, and restored antioxidative functions. The results showed that radon inhalation inhibited formalin-induced inflammatory pain.

  17. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases

    PubMed Central

    Boyapati, Ray K.; Tamborska, Arina; Dorward, David A.; Ho, Gwo-Tzer

    2017-01-01

    Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities. PMID:28299196

  18. Pain, sensory function, and neurogenic inflammatory response in young women with low mood.

    PubMed

    Lehoux, Cory P; Abbott, Frances V

    2011-03-01

    To determine the relationship of mood status to pain complaints, sensory function, neurogenic inflammatory response, and general health in young women. Ninety-three women aged 18-29 participated in the study and were categorized by SCL-90-R depression score into low-mood (n=21) and normal-mood (n=72) groups. All subjects were below the threshold for possible clinical depression. Low mood was associated with decreased tactile sensitivity, reduced response to topical capsaicin, and increased complaints of back, joint, muscle, and visceral pain, but not headache, when compared to normal mood controls. Low mood was also associated with reported poorer health and physical functioning, increased psychopathology, and family history of mood problems. These data show that even subclinical low mood is associated with marked alterations in health and psychophysiological function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Involvement of heat shock protein a4/apg-2 in refractory inflammatory bowel disease.

    PubMed

    Adachi, Teppei; Sakurai, Toshiharu; Kashida, Hiroshi; Mine, Hiromasa; Hagiwara, Satoru; Matsui, Shigenaga; Yoshida, Koji; Nishida, Naoshi; Watanabe, Tomohiro; Itoh, Katsuhiko; Fujita, Jun; Kudo, Masatoshi

    2015-01-01

    Expression of heat shock protein A4 (HSPA4, also called Apg-2), a member of the HSP110 family, is induced by several forms of stress. The physiological and pathological functions of HSPA4 in the intestine remain to be elucidated. We assessed HSPA4 expression and function by generating HSPA4-deficient mice and using 214 human intestinal mucosa samples from patients with inflammatory bowel disease (IBD). In the colonic mucosa of patients with IBD, a significant correlation was observed between the expression of HSPA4 and antiapoptotic protein Bcl-2, a T-cell-derived cytokine IL-17 or stem cell markers, such as Sox2. In refractory ulcerative colitis, a condition associated with increased cancer risk, expression of HSPA4 and Bcl-2 was increased in inflammatory cells of colonic mucosae. HSPA4 was overexpressed both in cancer cells and immune cells of human colorectal cancers. Patients with high expression of HSPA4 or Bmi1 showed significantly lower response rates upon subsequent steroid therapy as compared with patients with low expression of each gene. HSPA4-deficient mice exhibit more apoptosis and less expression of IL-17/IL-23 in inflammatory cells and less number of Sox2 cells after administration of dextran sodium sulfate than control mice. Transduction of HspaA4 bone marrow into wild-type mice reduced the immune response. Upregulation of Bcl-2 and IL-17 by HSPA4 would control apoptosis of inflammatory cells and immune response in the gut, which might develop treatment resistance in IBD. HSPA4 and Bmi1 would be a useful biomarker for refractory clinical course and a promising approach for a therapeutic strategy in patients with IBD.

  20. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Luqing

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigmentmore » epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.« less

  1. WNT/β-catenin pathway is modulated in asthma patients and LPS-stimulated RAW264.7 macrophage cell line.

    PubMed

    Lee, Haeyong; Bae, Sungmin; Choi, Byoung Whui; Yoon, Yoosik

    2012-02-01

    In the present study, we investigated the possibility that the WNT/β-catenin pathway plays a role in inflammatory responses both in an human inflammatory condition and in an in vitro inflammation model. First, we analyzed gene expression patterns of the peripheral blood cells from asthma patients compared with those from normal subjects using microarray analyses. We found that intracellular signaling molecules of the WNT/β-catenin pathway were significantly changed in asthma patients compared with the levels in the controls. Next, we determined whether major components of the WNT/β-catenin pathway were involved in the lipopolysaccharide (LPS)-induced inflammatory response of the RAW264.7 macrophage cell line. Among the members of WNT/β-catenin pathway, the protein levels of low-density lipoprotein receptor-related protein (LRP) 6, dishevelled (DVL) 2, and AXIN1, which were measured using western blotting, did not significantly change in the presence of LPS. In contrast, the LPS induced a rapid phosphorylation of glycogen synthase kinase (GSK) 3β and accumulation of β-catenin protein. It was found that β-catenin plays a significant role in the LPS-induced inflammatory response through the performance of small interfering RNA (siRNA) transfection experiments. The mRNA level of IL-6 was significantly elevated in β-catenin siRNA-transfected cells compared with that in control siRNA-transfected cells after LPS treatment. Furthermore, nuclear factor-κB (NF-κB) activity was also significantly increased in β-catenin siRNA-transfected cells compared with the level seen in control siRNA-transfected cells. Taken together, these results suggest that β-catenin plays a role as a negative regulator, preventing the overproduction of inflammatory cytokines such as IL-6 in LPS-induced inflammatory responses.

  2. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

    PubMed Central

    Liu, Lihua; Zuo, Zhongfu; Lu, Sijing; Liu, Aihua; Liu, Xuezheng

    2017-01-01

    Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 80 mg/kg/day) was intraperitoneally injected into the diabetic rats for twelve weeks. Glial fibrillary acidic protein (GFAP) level, thickness of ganglion cell layer (GCL) and ganglion cell counts were assessed in diabetic retina in vivo. Naringin (50 μM) that significantly inhibited high glucose (HG, 25 mM)-induced cell proliferation was used to treat rat Muller cell line (rMC1) in vitro. Inflammatory response, oxidative stress and activation of nuclear factor kappa B (NF-κB) p65 were evaluated in retina in vivo and in rMC1 cells in vitro. Results: Naringin alleviated DR symptoms as evidenced by the increased retinal ganglion cells and decreased GFAP level in rat retina. Naringin exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the up-regulated antioxidants, glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in DR rats. Moreover, we found that naringin inhibited HG-induced proliferation, abnormal inflammatory response and oxidative stress in rMC1 cells. In addition, the enhanced nuclear translocation of NF-κB p65 in diabetic rat retina and HG-induced rMC1 cells was suppressed by naringin. Conclusion: Naringin attenuates inflammatory response, oxidative stress and NF-κB activation in experimental models of DR. PMID:28852447

  3. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro.

    PubMed

    Liu, Lihua; Zuo, Zhongfu; Lu, Sijing; Liu, Aihua; Liu, Xuezheng

    2017-07-01

    Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 80 mg/kg/day) was intraperitoneally injected into the diabetic rats for twelve weeks. Glial fibrillary acidic protein (GFAP) level, thickness of ganglion cell layer (GCL) and ganglion cell counts were assessed in diabetic retina in vivo . Naringin (50 μM) that significantly inhibited high glucose (HG, 25 mM)-induced cell proliferation was used to treat rat Muller cell line (rMC1) in vitro . Inflammatory response, oxidative stress and activation of nuclear factor kappa B (NF-κB) p65 were evaluated in retina in vivo and in rMC1 cells in vitro . Naringin alleviated DR symptoms as evidenced by the increased retinal ganglion cells and decreased GFAP level in rat retina. Naringin exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the up-regulated antioxidants, glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in DR rats. Moreover, we found that naringin inhibited HG-induced proliferation, abnormal inflammatory response and oxidative stress in rMC1 cells. In addition, the enhanced nuclear translocation of NF-κB p65 in diabetic rat retina and HG-induced rMC1 cells was suppressed by naringin. Naringin attenuates inflammatory response, oxidative stress and NF-κB activation in experimental models of DR.

  4. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice

    PubMed Central

    Shin, Jihyun; Yang, Soo Jin

    2016-01-01

    Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1-α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1. PMID:28211759

  5. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice.

    PubMed

    Shin, Jihyun; Yang, Soo Jin; Lim, Yunsook

    2017-03-01

    Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1- α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1.

  6. Toll-like Receptor 4 and Comorbid Pain in Interstitial Cystitis/Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Study

    PubMed Central

    Schrepf, Andrew; Bradley, Catherine S.; O'Donnell, Michael; Luo, Yi; Harte, Steven E.; Kreder, Karl; Lutgendorf, Susan

    2015-01-01

    Background Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a condition characterized by pelvic pain and urinary symptoms. Some IC/BPS patients have pain confined to the pelvic region, while others suffer widespread pain. Inflammatory processes have previously been linked to pelvic pain in IC/BPS, but their association with widespread pain in IC/BPS has not been characterized. Methods Sixty-six women meeting criteria for IC/BPS completed self-report measures of pain as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP), collected 3 days of saliva for cortisol assays, and provided blood samples. Peripheral blood mononuclear cells (PBMCs) were stimulated with Toll-Like Receptor (TLR) 2 and 4 agonists and cytokines were measured in supernatant; IL-6 was also measured in plasma. Associations between inflammatory variables and the likelihood of endorsing extra-pelvic pain, or the presence of a comorbid syndrome, were tested by logistic regression and General Linear Models, respectively. A subset of patients (n=32) completed Quantitative Sensory Testing. Results A one standard deviation increase in TLR-4 inflammatory response was associated with a 1.59 greater likelihood of endorsing extra-pelvic pain (p = .019). Participants with comorbid syndromes also had higher inflammatory responses to TLR-4 stimulation in PBMCs (p = .016). Lower pressure pain thresholds were marginally associated with higher TLR-4 inflammatory responses (p = .062), and significantly associated with higher IL-6 in plasma (p = .031). Conclusions TLR-4 inflammatory responses in PBMCs are a marker of widespread pain in IC/BPS, and should be explored in other conditions characterized by medically unexplained pain. PMID:25771510

  7. Dendropanax morbifera Léveille extract ameliorates D-galactose-induced memory deficits by decreasing inflammatory responses in the hippocampus.

    PubMed

    Lee, Kwon Young; Jung, Hyo Young; Yoo, Dae Young; Kim, Woosuk; Kim, Jong Whi; Kwon, Hyun Jung; Kim, Dae Won; Yoon, Yeo Sung; Hwang, In Koo; Choi, Jung Hoon

    2017-12-01

    In the present study, we examined the effects of Dendropanax morbifera Léveille leaf extract (DML) on D-galactose-induced morphological changes in microglia and cytokines, including pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Administration of DML to D-galactose-treated mice significantly improved D-galactose-induced reduction in escape latency, swimming speed, and spatial preference for the target quadrant. In addition, administration of DML to D-galactose-treated mice significantly ameliorated the microglial activation and increases of IL-1β, IL-6, and TNF-α levels in the hippocampus. Administration of D-galactose significantly reduced IL-4 levels in the hippocampus, while administration of DML to D-galactose-treated mice significantly increased IL-4 level. However, we did not observe any significant changes in IL-10 levels in hippocampal homogenates. These results suggest that DML reduces D-galactose-induced mouse senescence by reducing pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, as well as increasing anti-inflammatory cytokine IL-4.

  8. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  9. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages

    PubMed Central

    Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil

    2017-01-01

    Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991

  10. Key Role of CD36 in Toll-Like Receptor 2 Signaling in Cerebral Ischemia

    PubMed Central

    Abe, Takato; Shimamura, Munehisa; Jackman, Katherine; Kurinami, Hitomi; Anrather, Josef; Zhou, Ping; Iadecola, Costantino

    2010-01-01

    Background and Purpose Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous “danger signals” generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. Methods The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. Results The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. Conclusions In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury. PMID:20360550

  11. Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection

    PubMed Central

    Wilhelmi, Vanessa; Lisnic, Vanda Juranic; Hsieh, Wei Yuan; Blanc, Mathieu; Livingston, Andrew; Busche, Andreas; Tekotte, Hille; Messerle, Martin; Auer, Manfred; Fraser, Iain; Jonjic, Stipan; Angulo, Ana; Reddehase, Matthias J.; Ghazal, Peter

    2012-01-01

    Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. PMID:22952450

  12. Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators.

    PubMed

    Kovacs-Nolan, Jennifer; Cordeiro, Cristianne; Young, Denise; Mine, Yoshinori; Hincke, Maxwell

    2014-07-15

    Sepsis is a systemic inflammatory response syndrome during infection. Therapeutic agents are essential to protect the host from sepsis. Ovocalyxin-36 (OCX-36) is a chicken eggshell membrane protein and shares protein sequence and gene organization homology with bactericidal permeability-increasing protein (BPI), lipopolysaccharide-binding protein (LBP) and palate, lung and nasal epithelium clone (PLUNC) proteins that play a major role in innate immune protection. We recently reported that OCX-36 binds to both lipopolysaccharide (LPS) and lipoteichoic acid (LTA) (Cordeiro et al., 2013, PLoS ONE 8, e84112), which is an important activity to neutralize endotoxins and non-endotoxin pyrogens during an inflammatory response. Here we investigated the immune modulating effects of OCX-36 and enzymatically digested OCX-36 (dOCX-36) in vitro and in a mouse model of endotoxemia. OCX-36 alone dose-dependently induced both TNF-α and nitric oxide (NO) production by RAW 264.7 macrophage cells, and this immunostimulatory effect was reduced by enzymatic digestion. In the presence of LPS, dOCX-36 was more effective than intact OCX-36 at reducing LPS-induced secretion of TNF-α from RAW 264.7 cells, but did not reduce NO production. In contrast, OCX-36 increased LPS-induced NO production, both in the presence and absence of FBS, PCR array analysis confirmed that OCX-36 and dOCX-36 differentially regulated genes involved in innate immunity, and dOCX-36 down-regulated the expression of genes involved in LPS signaling and inflammatory responses. In vivo, dOCX-36 was more effective at reducing LPS-induced inflammatory symptoms and inhibiting the local production of pro-inflammatory mediators in the small intestine. These results suggest that OCX-36 and OCX-36 derived peptides may differentially modulate innate immune responses, and support our hypothesis that OCX-36 derived peptides have potential therapeutic applications in sepsis. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Inflammation: friend or foe for animal production?

    PubMed

    Broom, Leon J; Kogut, Michael H

    2018-02-01

    Inflammation is an essential immune response that seeks to contain microbial infection and repair damaged tissue. Increased pro-inflammatory mediators have been associated with enhanced resistance to a range of important poultry and pig pathogens. However, inflammation may also have undesirable consequences, including potentially exacerbating tissue damage and diverting nutrients away from productive purposes. The negative effects of inflammation have led to the active pursuit of anti-inflammatory feed additives and/or strategies. These approaches may, however, impair the ability of an animal to respond appropriately and effectively to the array of pathogens that are likely to be encountered in commercial production, and specifically young animals who may be particularly reliant on innate immune responses. Thus, promoting an animal's capacity to mount a rapid, acute inflammatory response to control and contain the infection and the timely transition to anti-inflammatory, tissue repair processes, and a homeostatic state are suggested as the optimum scenario to maintain an animal's resistance to pathogens and minimize non-productive nutrient losses. Important future studies will help to unravel the trade-offs, and relevant metabolic pathways, between robust immune defense and optimum productive performance, and thus provide real insight into methods to appropriately influence this relationship. © 2017 Poultry Science Association Inc.

  14. CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance

    PubMed Central

    Sahay, Bikash; Patsey, Rebeca L.; Eggers, Christian H.; Salazar, Juan C.; Radolf, Justin D.; Sellati, Timothy J.

    2009-01-01

    Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes. PMID:20011115

  15. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease.

    PubMed

    Guarner, Verónica; Rubio-Ruiz, Maria Esther

    2015-01-01

    Aging is associated with immunosenescence and accompanied by a chronic inflammatory state which contributes to metabolic syndrome, diabetes and their cardiovascular consequences. Risk factors for cardiovascular diseases (CVDs) and diabetes overlap, leading to the hypothesis that both share an inflammatory basis. Obesity is increased in the elderly population, and adipose tissue induces a state of systemic inflammation partially induced by adipokines. The liver plays a pivotal role in the metabolism of nutrients and exhibits alterations in the expression of genes associated with inflammation, cellular stress and fibrosis. Hepatic steatosis and its related inflammatory state (steatohepatitis) are the main hepatic complications of obesity and metabolic diseases. Aging-linked declines in expression and activity of endoplasmic reticulum molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the unfolded protein response. These changes predispose aged individuals to CVDs. CVDs and endothelial dysfunction are characterized by a chronic alteration of inflammatory function and markers of inflammation and the innate immune response, including C-reactive protein, interleukin-6, TNF-α, and several cell adhesion molecules are linked to the occurrence of myocardial infarction and stroke in healthy elderly populations and patients with metabolic diseases. 2015 S. Karger AG, Basel.

  16. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype.

    PubMed

    Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T

    2009-07-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.

  17. Oral warfarin intake affects skin inflammatory cytokine responses in rats.

    PubMed

    Aleksandrov, Aleksandra Popov; Mirkov, Ivana; Zolotarevski, Lidija; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    PubMed

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-01-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p < 0.01) and COX-2 mRNA expression (p < 0.01). TNF-α induced PGE2 release was reduced in presence of naproxen sodium (p < 0.05), in association with decreased COX-2 and increased HPDG mRNAs expression. Naproxen sodium decreases endometrial PGE2 release induced by inflammatory stimulus acting on endometrial COX-2 and HPDG expression, suggesting endometrial synthesis of prostaglandins as a possible target for reduction of uterine inflammatory mechanism in dysmenorrhea.

  19. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Role of inflammasomes in inflammatory autoimmune rheumatic diseases.

    PubMed

    Yi, Young-Su

    2018-01-01

    Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

  1. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    PubMed Central

    Oppermann, Elsie; Jobin, Christian; Schleucher, Elke; Marzi, Ingo

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  2. Effects of simulated inflammation on the corrosion of 316L stainless steel.

    PubMed

    Brooks, Emily K; Brooks, Richard P; Ehrensberger, Mark T

    2017-02-01

    Stainless steel alloys, including 316L, find use in orthopaedics, commonly as fracture fixation devices. Invasive procedures involved in the placement of these devices will provoke a local inflammatory response that produces hydrogen peroxide (H 2 O 2 ) and an acidic environment surrounding the implant. This study assessed the influence of a simulated inflammatory response on the corrosion of 316L stainless steel. Samples were immersed in an electrolyte representing either normal or inflammatory physiological conditions. After 24h of exposure, electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to evaluate differences in corrosion behavior and ion release induced by the inflammatory conditions. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) were used to evaluate surface morphology and corrosion products formed on the sample surface. Inflammatory conditions, involving the presence of H 2 O 2 and an acidic pH, significantly alter the corrosion processes of 316L stainless steel, promoting aggressive and localized corrosion. It is demonstrated that particular consideration should be given to 316L stainless steel implants with crevice susceptible areas (ex. screw-head/plate interface), as those areas may have an increased probability of rapid and aggressive corrosion when exposed to inflammatory conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line

    PubMed Central

    Li, Shali; Du, Leilei; Zhang, Lu; Hu, Yue; Xia, Wenchun; Wu, Jia; Zhu, Jing; Chen, Lingling; Zhu, Fengqi; Li, Chunxian; Yang, SiJun

    2013-01-01

    Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line. PMID:23986436

  4. Oily fraction of Semecarpus anacardium Linn nuts involves protein kinase C activation for its pro-inflammatory response.

    PubMed

    Tripathi, Yamini B; Pandey, Nidhi; Tripathi, Deepshikha; Tripathi, Pratibha

    2010-12-01

    The oily fraction (non polar fraction-NPF) of S. anacardium (SA) significantly increased the expression of protein kinase C-delta (PKC-delta) in macrophages in concentration dependent manner, which was similar to phorbol myristate acetate (PMA) response. Further, H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine), an inhibitor of PKC significantly inhibited this NPF mediated response in a concentration dependent manner. In the post treatment kinetics, H-7 showed this inhibition only up to 6 min post NPF/PMA addition, but in similar condition, quercetin, a flavone with reported antioxidant property, showed this inhibition only up to 2 min. The results clearly suggest that oily fraction of SA nuts enhances the expression of PKC protein, which may be responsible for its reported pro-inflammatory property.

  5. Short-term inhalation of stainless steel welding fume causes sustained lung toxicity but no tumorigenesis in lung tumor susceptible A/J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Stone, Sam; Chen, Bean T; Frazer, David G; Young, Shih-Houng; Erdely, Aaron; Kashon, Michael L; Andrews, Ronnee; Antonini, James M

    2011-02-01

    Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at-risk population for development of lung cancer. Our objective was to expose, by inhalation, lung tumor susceptible (A/J) and resistant C57BL/6J (B6) mice to stainless steel (SS) welding fume containing carcinogenic metals and characterize the lung-inflammatory and tumorigenic response. Male mice were exposed to air or gas metal arc (GMA)-SS welding fume at 40 mg/m(3)×3 h/day for 6 and 10 days. At 1, 4, 7, 10, 14, and 28 days after 10 days of exposure, bronchoalveolar lavage (BAL) was done. Lung cytotoxicity, permeability, inflammatory cytokines, and cell differentials were analyzed. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 78 weeks after 6 and 10 days of exposure. Inhalation of GMA-SS fume caused an early, sustained macrophage and lymphocyte response followed by a gradual neutrophil influx and the magnitudes of these differed between the mouse strains. Monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNF-α) were increased in both strains while the B6 also had increased interleukin-6 (IL-6) protein. BAL measures of cytotoxicity and damage were similar between the strains and significantly increased at all time points. Histopathology and tumorigenesis were unremarkable at 78 weeks. In conclusion, GMA-SS welding fume induced a significant and sustained inflammatory response in both mouse strains with no recovery by 28 days. Under our exposure conditions, GMA-SS exposure resulted in no significant tumor development in A/J mice.

  6. Effect of intradialytic intravenous administration of omega-3 fatty acids on nutritional status and inflammatory response in hemodialysis patients: a pilot study.

    PubMed

    Szklarek-Kubicka, Magdalena; Fijałkowska-Morawska, Jolanta; Zaremba-Drobnik, Danuta; Uciński, Andrzej; Czekalski, Stanisław; Nowicki, Michał

    2009-11-01

    Because omega-3 polyunsaturated fatty acids (PUFAs) may have anti-inflammatory properties, we tested the hypothesis that intradialytic, intravenous omega-3 PUFA treatment, combined with dietary supplementation, can modify the inflammatory response to dialysis, and influence the nutritional status of hemodialysis (HD) patients. Twenty HD patients with serum albumin at <39g/L received 100mL of 10% omega-3 PUFA emulsion during 11 consecutive HD sessions. Body mass index (BMI), serum albumin, transferrin, and lipids were measured before and after treatment. Serum interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) levels were determined before and after the HD session at baseline and after 4 weeks of treatment. No adverse events were evident during the study. There were no significant changes in BMI, serum albumin, transferin, total and low-density lipoprotein cholesterol, and triglycerides. Predialysis hsCRP and IL-6 did not change. There was a significant increase in hsCRP (P=.01) and a tendency of IL-6 concentration to increase during the HD session before treatment (P=.067). In contrast, neither hsCRP (P=.21) nor IL-6 (P=.26) changed during the final HD session. Neither urea reduction ratio nor Kt/V changed significantly during the study, but the normalized protein catabolic ratio increased after treatment (P=.003). Short-term parenteral administration of omega-3 PUFA is safe and well-tolerated by HD patients. The intervention does not significantly influence markers of inflammation or change the nutritional status of chronic HD patients, but it may attenuate the inflammatory response to HD sessions.

  7. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound

    PubMed Central

    Chen, Yen-Chu; Lin, Yi-Hsun; Wang, Shyh-Hau; Lin, Shih-Ping; Shung, K. Kirk; Wu, Chia-Ching

    2014-01-01

    Bone fracture induces moderate inflammatory responses that are regulated by cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LO) for initiating tissue repair and bone formation. Only a handful of non-invasive techniques focus on monitoring acute inflammation of injured bone currently exists. In the current study, we monitored in vivo inflammation levels during the initial 2 weeks of the inflammatory stage after mouse bone fracture utilizing 50 MHz ultrasound. The acquired ultrasonic images were correlated well with histological examinations. After the bone fracture in the tibia, dynamic changes in the soft tissue at the medial-posterior compartment near the fracture site were monitored by ultrasound on the days of 0, 2, 4, 7, and 14. The corresponding echogenicity increased on the 2nd, 4th, and 7th day, and subsequently declined to basal levels after the 14th day. An increase of cell death was identified by the positive staining of deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and was consistent with ultrasound measurements. The increases of both COX-2 and Leukotriene B4 receptor 1 (BLT1, 5- LO-relative receptor), which are regulators for tissue inflammation, in the immunohistochemistry staining revealed their involvement in bone fracture injury. Monitoring the inflammatory response to various non-steroidal anti-inflammatory drugs (NSAIDs) treatments was investigated by treating injured mice with a daily oral intake of aspirin (Asp), indomethacin (IND), and a selective COX-2 inhibitor (SC-236). The Asp treatment significantly reduced fracture-increased echogenicity (hyperechogenicity, p < 0.05) in ultrasound images as well as inhibited cell death, and expression of COX-2 and BLT1. In contrast, treatment with IND or SC-236 did not reduce the hyperechogenicity, as confirmed by cell death (TUNEL) and expression levels of COX-2 or BLT1. Taken together, the current study reports the feasibility of a noninvasive ultrasound method capable of monitoring post-fracture tissue inflammation that positively correlates with histological findings. Results of this study also suggest that this approach may be further applied to elucidate the underlying mechanisms of inflammatory processes and to develop therapeutic strategies for facilitating fracture healing. PMID:23871514

  8. Epigenetics of inflammation, maternal infection and nutrition

    USDA-ARS?s Scientific Manuscript database

    Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk for chronic disease development. A few studies have begun to investigate whether dietary nutrients play...

  9. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage.

    PubMed

    Naik, Shruti; Larsen, Samantha B; Gomez, Nicholas C; Alaverdyan, Kirill; Sendoel, Ataman; Yuan, Shaopeng; Polak, Lisa; Kulukian, Anita; Chai, Sophia; Fuchs, Elaine

    2017-10-26

    The skin barrier is the body's first line of defence against environmental assaults, and is maintained by epithelial stem cells (EpSCs). Despite the vulnerability of EpSCs to inflammatory pressures, neither the primary response to inflammation nor its enduring consequences are well understood. Here we report a prolonged memory to acute inflammation that enables mouse EpSCs to hasten barrier restoration after subsequent tissue damage. This functional adaptation does not require skin-resident macrophages or T cells. Instead, EpSCs maintain chromosomal accessibility at key stress response genes that are activated by the primary stimulus. Upon a secondary challenge, genes governed by these domains are transcribed rapidly. Fuelling this memory is Aim2, which encodes an activator of the inflammasome. The absence of AIM2 or its downstream effectors, caspase-1 and interleukin-1β, erases the ability of EpSCs to recollect inflammation. Although EpSCs benefit from inflammatory tuning by heightening their responsiveness to subsequent stressors, this enhanced sensitivity probably increases their susceptibility to autoimmune and hyperproliferative disorders, including cancer.

  10. IL-17+ γδ T cells as kick-starters of inflammation.

    PubMed

    Papotto, Pedro H; Ribot, Julie C; Silva-Santos, Bruno

    2017-05-18

    Shortly after the discovery of interleukin 17 (IL-17)-producing CD4 + helper T cells (T H 17 cells), it was found that γδ T cells can also secrete large amounts of this pro-inflammatory cytokine. A decade later, it is now known that IL-17 + γδ T cells (γδ17 T cells) are often the main providers of IL-17A in various models of inflammatory diseases, while they also contribute to protective immune responses to infectious organisms. Due to an intricate thymic program of differentiation, γδ17 T cells are able to respond faster than T H 17 cells do and thus predominate in the early stages of inflammatory responses. Here we review the current knowledge of the development, activation and pathophysiological functions of γδ17 T cells, aiming to increase the awareness in the community of the therapeutic potential of this 'other side' of IL-17-mediated immune responses.

  11. Inflammation, chronic obstructive pulmonary disease and aging.

    PubMed

    Provinciali, Mauro; Cardelli, Maurizio; Marchegiani, Francesca

    2011-12-01

    Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, particularly cigarette smoke. The determinants of the dysregulated immune responses, which play a role both in the onset and continuation of COPD, are largely unknown. We examined several molecular mechanisms regulating the inflammatory pathway, such as cytokine polymorphisms, miRNA expression, and DNA methylation in COPD and aging, with the aim to provide evidence supporting the view that aging of the immune system may predispose to COPD. The incidence of COPD increases with age. The pathogenesis of the disease is linked to a chronic inflammation and involves the recruitment and regulation of innate and adaptive immune cells. A chronic systemic inflammation characterizes aging and has been correlated with many diseases, most of them age-related. COPD and aging are associated with significant dysregulation of the immune system that leads to a chronic inflammatory response. The similar molecular mechanisms and the common genetic signature shared by COPD and aging suggest that immunosenescence may contribute to the development of COPD.

  12. The effect of manual acupuncture on blood neutrophil counts in moderate intensity exercise

    NASA Astrophysics Data System (ADS)

    Ciang, C. Y.; Simadibrata, C.; Tobing, A.; Srilestari, A.

    2017-08-01

    Exercise, even though it has a beneficial effect, can cause muscle damage and trigger inflammatory responses, as evidenced by increased neutrophils in the blood. Acupuncture is a therapeutic modality that is expected to reduce acute inflammatory responses due to exercise. Thirty untrained men were divided randomly into two groups. The manual acupuncture group (n = 15) received stimulation at acupoints ST36 and SP6 bilateral by needle insertion, while the placebo group (n = 15) received insertion of needles on plaster without penetrating the skin. Therapy was done once for 30 minutes immediately after the subjects completed the exercise. Blood neutrophil counts were assessed before exercise and one hour after exercise ended. The results show there is a statistically significant difference in the number of neutrophils before and after exercise between the manual acupuncture group and the placebo group (0.08±0.91 and 0.97±0.70 p = 0.006). Acupuncture therapy effectively mitigates the acute inflammatory response triggered by exercise.

  13. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  14. Immunity-Related Protein Expression and Pathological Lung Damage in Mice Poststimulation with Ambient Particulate Matter from Live Bird Markets.

    PubMed

    Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.

  15. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction. PMID:28357012

  16. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    PubMed

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  17. Protein–energy malnutrition increases activation of the transcription factor, nuclear factor κB, in the gerbil hippocampus following global ischemia☆

    PubMed Central

    Ji, Liang; Nazarali, Adil J.; Paterson, Phyllis G.

    2013-01-01

    Protein–energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor κB (NFκB), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11–12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NFκB activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NFκB activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NFκB activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NFκB. Since PEM increased NFκB activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM. PMID:18430555

  18. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Neisseria gonorrhoeae–Induced Inflammatory Pyroptosis in Human Macrophages is Dependent on Intracellular Gonococci and Lipooligosaccharide

    PubMed Central

    Ritter, Jessica Leigh; Genco, Caroline Attardo

    2018-01-01

    Neisseria gonorrhoeae, the human obligate pathogen responsible for the sexually transmitted disease gonorrhea, has evolved several mechanisms to evade the host immune response. One such mechanism is the modulation of host cell death pathways. In this study, we defined cell death pathways induced by N gonorrhoeae in human monocyte-derived macrophages (MDMs). In a dose-dependent manner, N gonorrhoeae stimulation of MDMs resulted in caspase 1 and 4–dependent cell deaths, indicative of canonical and noncanonical pyroptosis, respectively. Internalization of bacteria or stimulation with lipooligosaccharide (LOS) specifically induced pyroptosis in MDMs and increased secretion of IL-1β. Collectively, our results demonstrate that N gonorrhoeae induces inflammatory pyroptosis in human macrophages due in part to intracellular LOS. We propose that this in turn may exacerbate inflammatory outcomes observed during mucosal infection. PMID:29434478

  20. Variable transcriptional responsiveness of the P2X3 receptor gene during CFA-induced inflammatory hyperalgesia.

    PubMed

    Nuñez-Badinez, Paulina; Sepúlveda, Hugo; Diaz, Emilio; Greffrath, Wolfgang; Treede, Rolf-Detlef; Stehberg, Jimmy; Montecino, Martin; van Zundert, Brigitte

    2018-05-01

    The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R 2  = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation. © 2017 Wiley Periodicals, Inc.

  1. Childhood maltreatment and inflammatory markers: a systematic review.

    PubMed

    Coelho, R; Viola, T W; Walss-Bass, C; Brietzke, E; Grassi-Oliveira, R

    2014-03-01

    Childhood maltreatment (CM) has been associated with several diseases in adult life, including diabetes, obesity and mental disorders. Inflammatory conditions have been postulated as possible mediators of this relationship. The aim was to conduct a systematic review regarding the association between CM and inflammatory markers in adulthood. A literature search of the PubMed, ISI, EMBASE and PsychINFO databases was conducted. The key terms used were as follows: 'Child Maltreatment', 'Childhood Trauma', 'Early Life Stress', 'Psychological Stress', 'Emotional Stress', 'Child Abuse' and 'Child Neglect'. They were cross-referenced separately with the terms: 'C-reactive Protein (CRP)', 'Tumor Necrosis Factor', 'Cytokine', 'Interleukin', 'Inflammatory' and 'Inflammation'. Twenty articles remained in the review after exclusion criteria were applied. Studies showed that a history of CM was associated with increased levels of CRP, fibrinogen and proinflammatory cytokines. Increased levels of circulating CRP in individuals with a history of CM were the most robust finding among the studies. Data about anti-inflammatory mediators are still few and inconsistent. Childhood maltreatment is associated with a chronic inflammatory state independent of clinical comorbidities. However, studies are heterogeneous regarding CM assessment and definition. Important methodological improvements are needed to better understand the potential impact of CM on inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Wound Trauma Mediated Inflammatory Signaling Attenuates a Tissue Regenerative Response in MRL/MpJ Mice

    DTIC Science & Technology

    2010-01-01

    multi-system organ failure, and remote organ injury at sites such as the lung, liver , small intestines, and brain, representing major causes of...inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound...healing, multi-system organ failure and increased mortality. Methods: In this study, we examined the impact of thermal injury -induced systemic

  3. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research.

    PubMed

    Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael

    2016-07-01

    Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.

  4. Inflammation, leukocytes and menstruation.

    PubMed

    Evans, Jemma; Salamonsen, Lois A

    2012-12-01

    Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.

  5. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  6. The Food Contaminants Nivalenol and Deoxynivalenol Induce Inflammation in Intestinal Epithelial Cells by Regulating Reactive Oxygen Species Release.

    PubMed

    Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania

    2017-12-11

    Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.

  7. Bacterial clearance is improved in septic mice by platelet-activating factor-acetylhydrolase (PAF-AH) administration.

    PubMed

    Teixeira-da-Cunha, Mariana G A; Gomes, Rachel N; Roehrs, Nathassia; Bozza, Fernando A; Prescott, Stephen M; Stafforini, Diana; Zimmerman, Guy A; Bozza, Patricia T; Castro-Faria-Neto, Hugo C

    2013-01-01

    Current evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis. Strategies to block inflammatory mediators such as PAF have been investigated as adjuvant therapies for sepsis. PAF-AH, the enzyme responsible for PAF degradation, showed positive results in pre-clinical studies and phase II clinical trials, but the results of a phase III study were disappointing. In this study, we investigated the potential protective mechanism of PAF-AH in sepsis using the murine model of cecal ligation and puncture (CLP). Treatment with rPAF-AH increased peritoneal fluid levels of the anti-inflammatory mediators MCP-1/CCL2 after CLP. The numbers of bacteria (CFU) in the peritoneal cavity were decreased in the rPAF-AH-treated group, indicating more efficient bacterial clearance after rPAF-AH treatment. Interestingly, we observed increased levels of nitric oxide (NO) after PAF-AH administration, and rPAF-AH treatment did not decrease CFU numbers either in iNOS-deficient mice or in CCR2-deficient mice. We concluded that administration of exogenous rPAF-AH reduced inflammatory injury, altered cytokine levels and favored bacterial clearance with a clear impact on mortality through modulation of MCP-1/CCL2 and NO levels in a clinically relevant sepsis model.

  8. Inflammation in dry eye.

    PubMed

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  9. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response.

    PubMed

    Newton, Jared M; Flores-Arredondo, Jose H; Suki, Sarah; Ware, Matthew J; Krzykawska-Serda, Martyna; Agha, Mahdi; Law, Justin J; Sikora, Andrew G; Curley, Steven A; Corr, Stuart J

    2018-02-22

    Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.

  10. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.

    PubMed

    Frentzou, Georgia A; Drinkhill, Mark J; Turner, Neil A; Ball, Stephen G; Ainscough, Justin F X

    2015-08-01

    Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. © 2015. Published by The Company of Biologists Ltd.

  11. Human β-defensin 3 increases the TLR9-dependent response to bacterial DNA.

    PubMed

    McGlasson, Sarah L; Semple, Fiona; MacPherson, Heather; Gray, Mohini; Davidson, Donald J; Dorin, Julia R

    2017-04-01

    Human β-defensin 3 (hBD3) is a cationic antimicrobial peptide with potent bactericidal activity in vitro. HBD3 is produced in response to pathogen challenge and can modulate immune responses. The amplified recognition of self-DNA by human plasmacytoid dendritic cells has been previously reported, but we show here that hBD3 preferentially enhances the response to bacterial DNA in mouse Flt-3 induced dendritic cells (FLDCs) and in human peripheral blood mononuclear cells. We show the effect is mediated through TLR9 and although hBD3 significantly increases the cellular uptake of both E. coli and self-DNA in mouse FLDCs, only the response to bacterial DNA is enhanced. Liposome transfection also increases uptake of bacterial DNA and amplifies the TLR9-dependent response. In contrast to hBD3, lipofection of self-DNA enhances inflammatory signaling, but the response is predominantly TLR9-independent. Together, these data show that hBD3 has a role in the innate immune-mediated response to pathogen DNA, increasing inflammatory signaling and promoting activation of the adaptive immune system via antigen presenting cells including dendritic cells. Therefore, our data identify an additional immunomodulatory role for this copy-number variable defensin, of relevance to host defence against infection and indicate a potential for the inclusion of HBD3 in pathogen DNA-based vaccines. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An altered peripheral IL6 response in major depressive disorder

    PubMed Central

    Money, Kelli M.; Olah, Zita; Korade, Zeljka; Garbett, Krassimira A.; Shelton, Richard C.; Mirnics, Karoly

    2016-01-01

    Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of antidepressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated proinflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients. PMID:26804030

  13. Incidence of adrenal insufficiency and impact of corticosteroid supplementation in critically ill children with systemic inflammatory syndrome and vasopressor-dependent shock.

    PubMed

    Hebbar, Kiran B; Stockwell, Jana A; Leong, Traci; Fortenberry, James D

    2011-05-01

    Adrenal insufficiency may be common in adults and children with vasopressor-resistant shock. We developed a protocolized approach to low-dose adrenocorticotropin testing and empirical low-dose glucocorticoid/mineralocorticoid supplementation in children with systemic inflammatory response syndrome and persistent hypotension following fluid resuscitation and vasopressor infusion. We hypothesized that absolute and relative adrenal insufficiency was common in children with systemic inflammatory response syndrome requiring vasopressor support and that steroid administration would be associated with decreased vasopressor need. Retrospective review of pediatric patients with systemic inflammatory response syndrome and vasopressor-dependent shock receiving protocol-based adrenocorticotropin testing and low-dose steroid supplementation. The incidence of absolute and relative adrenal insufficiency was determined using several definitions. Vasopressor dose requirements were evaluated before, and following, initiation of corticosteroids. Seventy-eight patients met inclusion criteria for systemic inflammatory response syndrome and shock; 40 had septic shock. Median age was 84 months (range, 0.5-295). By adrenocorticotropin testing, 44 (56%) had absolute adrenal insufficiency, 39 (50%) had relative adrenal insufficiency, and 69 (88%) had either form of adrenal insufficiency. Adrenal insufficiency incidence was significantly higher in children >2 yrs (p = .0209). Therapeutic interventions included median 80-mL/kg fluid resuscitation; 65% of patients required dopamine, 58% norepinephrine, and 49% dopamine plus norepinephrine. With steroid supplementation, median dopamine dose decreased from 10 to 4 μg/kg/min at 4 hrs (p = .0001), and median dose of norepinephrine decreased from 0.175 μg/kg/min to 0.05 μg/kg/min at 4 hrs (p = .039). Absolute and relative adrenal insufficiency was prevalent in this cohort of children with systemic inflammatory response syndrome and vasopressor-dependent shock and increased with age. Introduction of steroids produced a significant reduction in vasopressor duration and dosage. Use of low-dose adrenocorticotropin testing may help further delineate populations who require steroid supplementation.

  14. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide

    PubMed Central

    2011-01-01

    Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells. PMID:21371294

  15. Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK

    PubMed Central

    Wang, Jiansheng; Su, Baishan; Zhu, Hongbin; Chen, Chao; Zhao, Gang

    2016-01-01

    Geraniol is a type of monoterpenoid with a rose scent and a slightly sweet flavor. It is found in the volatile oil of various plants, and has anti-inflammatory and anti-oxidant effects. The present study aimed to investigate the protective effect of geraniol in inhibiting the inflammatory response, oxidative stress and apoptosis in traumatic spinal cord injury (SCI), as well as to analyze the mechanism underlying its effect. Adult male Sprague-Dawley rats were induced to traumatic SCI through a surgical procedure and were defined as the SCI model group. SCI or normal rats were then administered 250 mg/kg/day geraniol for 4 weeks. The Basso, Beattie and Bresnahan (BBB) test and the spinal cord water content were used to analyze the effect of geraniol against traumatic SCI in rats. The inflammatory response, oxidative stress, and caspase-9 and −3 activities were measured using commercial ELISA kits. In addition, the associated mechanism was analyzed, using western blot analysis to determine the protein expression levels of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). The results of the present study demonstrated that BBB scores were significantly increased and the spinal cord water content was significantly inhibited in SCI rats after 3 weeks of geraniol treatment. Furthermore, the inflammatory response, oxidative stress, and the caspase-9 and −3 activities were significantly suppressed upon treatment with geraniol. Finally, the mechanism of geraniol against traumatic SCI downregulated the NF-κB and p38 MAPK pathways in SCI rats. Therefore, the protective effect of geraniol is suggested to inhibit the inflammatory response, oxidative stress and apoptosis in traumatic SCI through the modulation of NF-κB and p38 MAPK. PMID:28105094

  16. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin.

    PubMed

    Gu, Ting-Ting; Song, Lin; Chen, Tian-Yu; Wang, Xing; Zhao, Xiao-Juan; Ding, Xiao-Qin; Yang, Yan-Zi; Pan, Ying; Zhang, Dong-Mei; Kong, Ling-Dong

    2017-08-01

    Fructose induces insulin resistance with kidney inflammation and injury. MicroRNAs are emerged as key regulators of insulin signaling. Morin has insulin-mimetic effect with the improvement of insulin resistance and kidney injury. This study investigated the protective mechanisms of morin against fructose-induced kidney injury, with particular focus on miR-330 expression change, inflammatory response, and insulin signaling impairment. miR-330, sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR)1/3 signaling, nuclear factor-κB (NF-κB)/NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and insulin signaling were detected in kidney cortex of fructose-fed rats and fructose-exposed HK-2 cells, respectively. Whether miR-330 mediated inflammatory response to affect insulin signaling was examined using SphK1 inhibitor, S1PR1/3 short interfering RNA, or miR-330 mimic/inhibitor, respectively. Fructose was found to downregulate miR-330 expression to increase SphK1/S1P/S1PR1/3 signaling, and then activate NF-κB/NLRP3 inflammasome to produce IL-1β, causing insulin signaling impairment. Moreover, morin upregulated miR-330 and partly attenuated inflammatory response and insulin signaling impairment to alleviate kidney injury. These findings suggest that morin protects against fructose-induced kidney insulin signaling impairment by upregulating miR-330 to reduce inflammatory response. Morin may be a potential therapeutic agent for the treatment of kidney injury associated with fructose-induced inflammation and insulin signaling impairment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The dynamics of health in wild field vole populations: a haematological perspective

    PubMed Central

    Beldomenico, Pablo M.; Telfer, Sandra; Gebert, Stephanie; Lukomski, Lukasz; Bennett, Malcolm; Begon, Michael

    2010-01-01

    Summary Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. There were three well-characterized ‘physiological’ seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer—autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). All the haematological parameters were affected adversely by high population densities. PMID:18564292

  18. Inflammatory response to Escherichia coli urinary tract infection in the neurogenic bladder of the spinal cord injured host.

    PubMed

    Chaudhry, Rajeev; Madden-Fuentes, Ramiro J; Ortiz, Tara K; Balsara, Zarine; Tang, Yuping; Nseyo, Unwanaobong; Wiener, John S; Ross, Sherry S; Seed, Patrick C

    2014-05-01

    Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1β, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1β and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.

    PubMed

    Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter

    2017-01-01

    It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.

  20. Short term supplementation of dietary antioxidants selectively regulates the inflammatory responses during early cutaneous wound healing in diabetic mice

    PubMed Central

    2011-01-01

    Background Diabetic foot ulcers are serious complications for diabetic patients, yet the precise mechanism that underlines the treatment of these diabetic complications remains unclear. We hypothesized that dietary antioxidant supplementation with vitamin C, combined either with vitamin E or with vitamin E and NAC, improves delayed wound healing through modulation of blood glucose levels, oxidative stress, and inflammatory response. Methods Diabetes was induced by administration of alloxan monohydrate. Mice were divided into 4 groups; CON (non-diabetic control mice fed AIN 93 G purified rodent diet), DM (diabetic mice fed AIN 93 G purified rodent diet), VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet), and Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E, and 2.5% NAC supplemented diet). After 10 days of dietary antioxidant supplementation, cutaneous full-thickness excisional wounds were performed, and the rate of wound closure was examined. TBARS as lipid peroxidation products and vitamin E levels were measured in the liver. Expression levels of oxidative stress and inflammatory response related proteins were measured in the cutaneous wound site. Results Dietary antioxidant supplementation improved blood glucose levels and wound closure rate and increased liver vitamin E, but not liver TBARS levels in the diabetic mice as compared to those of the CON. In addition, dietary antioxidant supplementation modulated the expression levels of pIκBα, HO-1, CuZnSOD, iNOS and COX-2 proteins in the diabetic mice. Conclusions These findings demonstrated that delayed wound healing is associated with an inflammatory response induced by hyperglycaemia, and suggests that dietary antioxidant supplementation may have beneficial effects on wound healing through selective modulation of blood glucose levels, oxidative stress, and inflammatory response. PMID:22088091

Top