Science.gov

Sample records for increased lean mass

  1. A Combined Training Intervention Programme Increases Lean Mass in Youths with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2011-01-01

    Aim: The present study aimed to determine whether youths with Down syndrome (DS) are able to increase lean mass and decrease fat mass, after 21 weeks of conditioning combined with a plyometric jumps training program. Methods: Twenty-six participants with DS (15 males) aged 10-19 years joined the study. Participants were divided into two comparable…

  2. A Combined Training Intervention Programme Increases Lean Mass in Youths with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2011-01-01

    Aim: The present study aimed to determine whether youths with Down syndrome (DS) are able to increase lean mass and decrease fat mass, after 21 weeks of conditioning combined with a plyometric jumps training program. Methods: Twenty-six participants with DS (15 males) aged 10-19 years joined the study. Participants were divided into two comparable…

  3. Increasing Protein Distribution Has No Effect on Changes in Lean Mass During a Rugby Preseason.

    PubMed

    MacKenzie-Shalders, Kristen L; King, Neil A; Byrne, Nuala M; Slater, Gary J

    2016-02-01

    Increasing the frequency of protein consumption is recommended to stimulate muscle hypertrophy with resistance exercise. This study manipulated dietary protein distribution to assess the effect on gains in lean mass during a rugby preseason. Twenty-four developing elite rugby athletes (age 20.1 ± 1.4 years, mass 101.6 ± 12.0 kg; M ± SD) were instructed to consume high biological value (HBV) protein at their main meals and immediately after resistance exercise while limiting protein intake between meals. To manipulate protein intake frequency, the athletes consumed 3 HBV liquid protein supplements (22 g protein) either with main meals (bolus condition) or between meals (frequent condition) for 6 weeks in a 2 × 2 crossover design. Dietary intake and change in lean mass values were compared between conditions by analysis of covariance and correlational analysis. The dietary manipulation successfully altered the protein distribution score (average number of eating occasions containing > 20 g of protein) to 4.0 ± 0.8 and 5.9 ± 0.7 (p < .01) for the bolus and frequent conditions, respectively. There was no difference in gains in lean mass between the bolus (1.4 ± 1.5 kg) and frequent (1.5 ± 1.4 kg) conditions (p = .91). There was no clear effect of increasing protein distribution from approximately 4-6 eating occasions on changes in lean mass during a rugby preseason. However, other dietary factors may have augmented adaptation.

  4. Increased lean mass with reduced fat mass in an elite female cyclist returning to competition: case study.

    PubMed

    Haakonssen, Eric C; Martin, David T; Burke, Louise M; Jenkins, David G

    2013-11-01

    Body composition in a female road cyclist was measured using dual-energy X-ray absorptiometry (5 occasions) and anthropometry (10 occasions) at the start of the season (Dec to Mar), during a period of chronic fatigue associated with poor weight management (Jun to Aug), and in the following months of recovery and retraining (Aug to Nov). Dietary manipulation involved a modest reduction in energy availability to 30-40 kcal · kg fat-free mass(-1) · d(-1) and an increased intake of high-quality protein, particularly after training (20 g). Through the retraining period, total body mass decreased (-2.82 kg), lean mass increased (+0.88 kg), and fat mass decreased (-3.47 kg). Hemoglobin mass increased by 58.7 g (8.4%). Maximal aerobic- and anaerobic-power outputs were returned to within 2% of preseason values. The presented case shows that through a subtle energy restriction associated with increased protein intake and sufficient energy intake during training, fat mass can be reduced with simultaneous increases in lean mass, performance gains, and improved health.

  5. The influence of increased body fat or lean body mass on aerobic performance.

    PubMed

    Maciejczyk, Marcin; Więcek, Magdalena; Szymura, Jadwiga; Szyguła, Zbigniew; Wiecha, Szczepan; Cempla, Jerzy

    2014-01-01

    The purpose of this study was to determine aerobic performance in men with an increased body mass due to (a) high body fat (>21.5%) but with a average (59.0-64.3 kg) lean body mass (HBF group) and (b) high lean body mass (>66.3 kg), but with average body fat (14.0-18.5%) (HLBM group). The men in the HBF and HLBM had similar absolute body mass and body mass index (BMI). The aerobic performance was also determined in control group. Methods: Study participants comprised 39 men aged 21.3 ± 1.9 years who did not participate in competitive sports but were recreationally physically active. Participants were divided into three groups. Each group comprised 13 persons. The study involved anthropometric measurements, assessing aerobic performance (VO2max) using an incremental test on a mechanical treadmill. VO2max was expressed in absolute values, relative to body mass (VO2max ⋅ BM(-1)), relative to lean body mass (VO2max ⋅ LBM(-1)), and relative to BM raised by the exponents of 0.75 and 0.67. Body composition was measured using bioelectrical impedance analysis. No statistically significant differences in relative values of VO2max were found between the HBF and HLBM groups, in VO2max ⋅ BM(-1) (50.24 ± 4.56 vs. 53.11 ± 5.45 mL ⋅ kg(-1)), VO2max ⋅ LBM(-1) (65.33 ± 5.63 vs. 63.86 ± 7.13 mL ⋅ kgLBM(-1)), and VO2max ⋅ BM(-0.75) (150.29 ± 13.5 vs. 160.39 ± 16.15 mL ⋅ kg(-0.75)). Values of VO2max ⋅ BM(-1) were significantly lower in the HBF and HLBM groups than in the control group (58.23 ± 5.84 mL ⋅ kg(-1)). High body mass, regardless of the cause decreases VO2max ⋅ BM(-1).

  6. The Influence of Increased Body Fat or Lean Body Mass on Aerobic Performance

    PubMed Central

    Maciejczyk, Marcin; Więcek, Magdalena; Szymura, Jadwiga; Szyguła, Zbigniew; Wiecha, Szczepan; Cempla, Jerzy

    2014-01-01

    Purpose The purpose of this study was to determine aerobic performance in men with an increased body mass due to (a) high body fat (>21.5%) but with a average (59.0–64.3 kg) lean body mass (HBF group) and (b) high lean body mass (>66.3 kg), but with average body fat (14.0–18.5%) (HLBM group). Methods The men in the HBF and HLBM had similar absolute body mass and body mass index (BMI). The aerobic performance was also determined in control group. Methods: Study participants comprised 39 men aged 21.3±1.9 years who did not participate in competitive sports but were recreationally physically active. Participants were divided into three groups. Each group comprised 13 persons. The study involved anthropometric measurements, assessing aerobic performance (VO2max) using an incremental test on a mechanical treadmill. VO2max was expressed in absolute values, relative to body mass (VO2max⋅BM−1), relative to lean body mass (VO2max⋅LBM−1), and relative to BM raised by the exponents of 0.75 and 0.67. Body composition was measured using bioelectrical impedance analysis. Results No statistically significant differences in relative values of VO2max were found between the HBF and HLBM groups, in VO2max⋅BM−1 (50.24±4.56 vs. 53.11±5.45 mL⋅kg−1), VO2max⋅LBM−1 (65.33±5.63 vs. 63.86±7.13 mL⋅kgLBM−1), and VO2max⋅BM−0.75 (150.29±13.5 vs. 160.39±16.15 mL⋅kg−0.75). Values of VO2max⋅BM−1 were significantly lower in the HBF and HLBM groups than in the control group (58.23±5.84 mL⋅kg−1). Conclusion High body mass, regardless of the cause decreases VO2max⋅BM−1. PMID:24752377

  7. Increased 2-hydroxylation of estrogen is associated with lower body fat and increased lean body mass in postmenopausal women.

    PubMed

    Napoli, Nicola; Vattikuti, Swapna; Yarramaneni, Jayasree; Giri, Tusar K; Nekkalapu, Srenath; Qualls, Clifford; Armamento-Villareal, Reina C

    2012-05-01

    Menopause is associated with changes in bone, muscle and fat mass. The importance of postmenopausal estrogen metabolism in bone health has been established. However, its relationship to body composition in postmenopausal women remains undetermined. The objective of this study is to determine the association between estrogen metabolism and body composition in postmenopausal women. This is a cross sectional study of 97 postmenopausal Caucasian women, 49-80 y.o., ≥1 year from the last normal menstrual period or those who have had oophorectomy. Inactive [2-hydroxyestrone (2OHE(1))] and active [16α-hydroxyestrone (16α-OHE(1))] urinary metabolites of estrogen were measured by ELISA. The whole and regional body composition was measured by DXA. We have found that both 2OHE(1), and 2OHE(1)/16α-OHE(1) ratio were negatively correlated with % total fat, and % truncal fat but positively correlated with % total lean mass. Comparing the fat and lean parameters of body composition according to tertiles of 2OHE(1) and 2OHE(1)/16αOHE(1) ratio showed that subjects in the lowest tertiles, had the highest % total fat, and % truncal fat and the lowest % total lean mass. Multiple regression analysis also showed 2OHE(1) and calcium intake as statistically significant predictors of all body composition parameters. In conclusion, in postmenopausal women, an increase in the metabolism of estrogen towards the inactive metabolites is associated with lower body fat and higher lean mass than those with predominance of the metabolism towards the active metabolites.

  8. Dietary Intervention with Vitamin D, Calcium and Whey Protein Reduced Fat Mass and Increased Lean Mass in Rats

    PubMed Central

    Siddiqui, S.M.K.; Chang, E.; Li, J.; Burlage, C.; Zou, M.; Buhman, K. K.; Koser, S.; Donkin, S.S.; Teegarden, D.

    2008-01-01

    The aim of the current study is to determine the effects and the mechanisms of inclusion of dietary whey protein, high calcium and high vitamin D intake with either a high sucrose or high fat base diets on body composition of rodents. Male Wistar rats were assigned to either no whey protein, suboptimal calcium (0.25%) and vitamin D (400 IU/kg) diet (LD) or a diet containing whey protein, high calcium (1.5%) and vitamin D (10,000 IU/kg) diet (HD) and either high fat (40% of energy) or high sucrose (60%) base diets for 13 weeks. Liver tissue homogenates were used to determine [14C]glucose and [14C]palmitate oxidation. mRNA expression of enzymes related to energy metabolism in liver, adipose and muscle as well as regulators of muscle mass and insulin receptor were assessed. The results demonstrated that there was reduced accumulation of body fat mass (P = 0.01) and greater lean mass (P = 0.03) for the HD compared to LD fed group regardless of the background diet. There were no consistent differences between the LD and HD groups across background diets in substrate oxidation and mRNA expression for enzymes measured that regulate energy metabolism, myostatin or muscle VEGF. However, there was an increase in insulin receptor mRNA expression in muscle in the HD compared to the LD groups. In conclusion, elevated whey protein, calcium and vitamin D intake resulted in reduced accumulation of body fat mass and increased lean mass, with a commensurate increase in insulin receptor expression, regardless of the level of calories from fat or sucrose. PMID:19083488

  9. Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats.

    PubMed

    Siddiqui, Shamim M K; Chang, Eugene; Li, Jia; Burlage, Catherine; Zou, Mi; Buhman, Kimberly K; Koser, Stephanie; Donkin, Shawn S; Teegarden, Dorothy

    2008-11-01

    The aim of the current study was to determine the effects and the mechanisms of inclusion of dietary whey protein, high calcium, and high vitamin D intake with either a high-sucrose or high-fat base diets on body composition of rodents. Male Wistar rats were assigned to either no whey protein, suboptimal calcium (0.25%), and vitamin D (400 IU/kg) diet (LD), or a diet containing whey protein, high calcium (1.5%), and vitamin D (10 000 IU/kg) diet (HD), and either high-fat (40% of energy) or high-sucrose (60%) base diets for 13 weeks. Liver tissue homogenates were used to determine [(14)C]glucose and [(14)C]palmitate oxidation. mRNA expression of enzymes related to energy metabolism in liver, adipose, and muscle, as well as regulators of muscle mass and insulin receptor was assessed. The results demonstrated that there was reduced accumulation of body fat mass (P = .01) and greater lean mass (P = .03) for the HD- compared to LD-fed group regardless of the background diet. There were no consistent differences between the LD and HD groups across background diets in substrate oxidation and mRNA expression for enzymes measured that regulate energy metabolism, myostatin, or muscle vascular endothelial growth factor. However, there was an increase in insulin receptor mRNA expression in muscle in the HD compared to the LD groups. In conclusion, elevated whey protein, calcium, and vitamin D intake resulted in reduced accumulation of body fat mass and increased lean mass, with a commensurate increase in insulin receptor expression, regardless of the level of calories from fat or sucrose.

  10. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    PubMed

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  11. Low-dose recombinant human growth hormone increases body weight and lean body mass in patients with short bowel syndrome.

    PubMed Central

    Ellegård, L; Bosaeus, I; Nordgren, S; Bengtsson, B A

    1997-01-01

    OBJECTIVE: The authors investigate the effects of low dose recombinant human growth hormone (rhGH) on body composition and absorptive capacity in patients with short bowel syndrome from Crohn's disease. SUMMARY BACKGROUND DATA: Patients with short bowel syndrome usually are malnourished because of malabsorption. The anabolic effects of high doses of rhGH have been tested in different clinical catabolic conditions, recently including patients with short bowel syndrome. The authors have investigated the effects of low-dose rhGH in short bowel syndrome in a placebo-controlled crossover clinical trial. METHODS: Ten patients were treated with daily subcutaneous doses of rhGH/placebo (0.5 international units/kg-1 per week-1 = 0.024 mg/kg-1 per day-1) for 8 weeks in a randomized, double-blind, placebo-controlled crossover clinical trial with a minimum of 12 weeks wash-out. Absorptive capacity and biochemical parameters were investigated in a metabolic ward before treatment and during first and last week of treatment. Body composition was determined by DEXA-Scan (Lunar DPX, Scanexport Medical, Helsingborg, Sweden), impedance analysis, and whole body potassium counting. RESULTS: Low-dose rhGH doubled serum levels of insulin-like growth factor-1 (IGF-1) and increased body weight, lean body mass, and total body potassium by 5% (p < 0.05). Fat-free mass and total body water increased by 6% (p = 0.008). Increases in IGF-1 levels correlated with increases in fat-free mass (r = 0.77, p < 0.02). No significant changes in absorptive capacity of water, energy, or protein were detected. CONCLUSION: Eight weeks of low-dose rhGH treatment leads to increases in body weight, lean body mass, and fat-free mass in patients with short bowel syndrome, correlated to increases in IGF-1 levels. PMID:8998124

  12. Twenty weeks of weight training increases lean tissue mass but not bone mineral mass or density in healthy, active young women.

    PubMed

    Chilibeck, P D; Calder, A; Sale, D G; Webber, C E

    1996-10-01

    Twenty young women (20.3 +/- 1.0 years) participated in a weight training program in which upper and lower body exercises were done twice per week for 20 weeks. Ten other women (20.2 +/- 0.4 years) served as a control group. Training resulted in significant (p < 0.05) increases in arm curl (73%), bench press (33%), and leg press (23%) lifting performance. Whole body (3.7%), trunk (3.0%), arm (9.7%), and leg (3.3%) lean tissue mass also increased significantly, based on measurements made by dual energy x-ray absorptiometry (DEXA). Changes in the control group were small and nonsignificant. In contrast, training did not increase DEXA-measured bone mineral content (BMC) and density (BMD) in a whole body measure nor in arm, leg, ribs, thoracic and lumbar spine, and pelvis segments. Similarly, hip BMC and BMD at femoral neck, trochanter, intertrochanter, and Ward's triangle sites, and total hip did not increase with training. The data indicate that a resistance training program that effectively increases strength and lean tissue mass in young women may fail to increase BMC or BMD over a 20-week training period.

  13. Body fat is associated with increased and lean mass with decreased knee cartilage loss in older adults: a prospective cohort study.

    PubMed

    Ding, C; Stannus, O; Cicuttini, F; Antony, B; Jones, G

    2013-06-01

    To determine the associations between body composition at baseline and knee cartilage loss over 2.9 years in older adults. A total of 395 randomly selected subjects (mean 62 years, range 51-81, 50% female) were studied at baseline and 2.9 years later. T1-weighted fat-suppressed magnetic resonance imaging of the right knee was performed to determine knee cartilage volume and tibial bone area at baseline and follow-up. Height, weight and radiographic osteoarthritis were measured by standard protocols at baseline. Fat mass and lean mass were measured by dual-energy X-ray absorptiometry at baseline. Tibial cartilage volume decreased by 2.0-2.7% per annum. In multivariable analysis, annual change in medial cartilage volume was negatively and significantly associated with body mass index (β: -0.14% per kg m(-2), 95% confidence interval (CI): -0.25%, -0.02%), percentage total body fat (β: -0.19% per %, 95% CI: -0.30%, -0.07%) and percentage trunk fat (β: -0.10% per %, 95% CI: -0.19%, -0.02%), and positively associated with percentage lean mass (β: 0.20% per %, 95% CI: 0.08%, 0.32%). Change in lateral tibial cartilage volume was also significantly associated with percentage total body fat (β: -0.11% per %, 95% CI: -0.21%, -0.001%) and total lean mass (β: 0.13% per kg, 95% CI: 0.04%, 0.22%). These were independent of sex and age even though both were also significant predictors. Body fat adversely affects tibial cartilage loss over time, whereas lean mass is protective. Strategies aimed at reducing body fat but increasing lean mass may reduce knee cartilage loss in older people.

  14. Does increased glucose exposure lead to increased body fat and reduced lean body mass in anuric peritoneal dialysis patients?

    PubMed

    Fan, S; Davenport, A

    2014-11-01

    Residual renal function has been reported to be a major determinant of peritoneal dialysis (PD) technique survival for patients with end-stage kidney disease. Anuria leads to increases in PD prescriptions designed to maintain small solute clearances and ultrafiltration volumes, resulting in greater exposure to hypertonic glucose dialysates. We reviewed the effect of developing anuria in a cohort of 136 PD patients followed for a median of 12 months, to determine whether increasing exposure to higher glucose dialysates affected body composition by increasing body fat and reducing muscle mass. Despite increasing prescription of 22.7 and 38.6 g/l glucose dialysates there was no increase in body fat (31.1±15.4 vs 30.9±16.3 kg) or loss of fat-free weight (36.4±12.1 vs 35.8±12.3 kg). Changing PD prescriptions to maintain small solute clearances and ultrafiltration volumes did not lead to detrimental changes in body composition in the short term.

  15. Stem cell activation in adults can reverse detrimental changes in body composition to reduce fat and increase lean mass in both sexes.

    PubMed

    Wiren, Kristine M; Hashimoto, Joel G; Zhang, Xiao-Wei

    2011-12-01

    Detrimental changes in body composition are often associated with declining levels of testosterone. Here, we evaluated the notion that multipotent mesenchymal stem cells, that give rise to both fat and muscle tissue, can play a significant role to alter existing body composition in the adult. Transgenic mice with targeted androgen receptor (AR) overexpression in stem cells were employed. Wild-type littermate and AR-transgenic male and female mice were gonadectomized and left untreated for 2 months. After the hypogonadal period, mice were then treated with 5α-dihydrotestosterone (DHT) for 6 weeks. After orchidectomy (ORX), wild-type males have reduced lean mass and increased fat mass compared to shams. DHT treatment was beneficial to partially restore body composition. In wild-type females, ovariectomy (OVX) produced a similar change but there was no improvement with DHT. In targeted AR transgenic mice, DHT treatment increased lean and reduced fat mass to sham levels. In contrast to wild-type females, DHT treatment in female transgenic mice significantly ameliorated the increased fat and decreased lean mass changes that result after OVX. Our results show that DHT administration reduces fat mass and increases lean mass in wild-type males but not females, indicating that wild-type females are not as sensitive to androgen treatment. Because both male and female transgenic mice are more responsive than wild-type, results suggest that body composition remains linked to stem cell fate in the adult and that targeted androgen signaling in stem cells can play a significant role to reverse detrimental changes in body composition in both sexes. Copyright © 2011 Wiley Periodicals, Inc.

  16. Serum Predictors of Percent Lean Mass in Young Adults.

    PubMed

    Lustgarten, Michael S; Price, Lori L; Phillips, Edward M; Kirn, Dylan R; Mills, John; Fielding, Roger A

    2016-08-01

    Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.

  17. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    PubMed

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.

  18. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice

    PubMed Central

    Gotthardt, Juliet D.; Verpeut, Jessica L.; Yeomans, Bryn L.; Yang, Jennifer A.; Yasrebi, Ali; Bello, Nicholas T.

    2016-01-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%–52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%–13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%–42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%–60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%–32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%–75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy. PMID:26653760

  19. Oestradiol, but not genistein, inhibits the rise in food intake following gonadectomy in cats, but genistein is associated with an increase in lean body mass.

    PubMed

    Cave, N J; Backus, R C; Marks, S L; Klasing, K C

    2007-10-01

    The prevalence of obesity in domestic cats is increasing worldwide, and is strongly associated with gonadectomy. We have previously demonstrated the effectiveness of oestradiol in reducing food intake in both male and female neutered cats. This experiment was designed to test the hypothesis that oestradiol or genistein would prevent the increase in food intake following gonadectomy of male and female cats, and would prevent an increase in body fat mass. Three groups of eight cats each were surgically neutered then treated daily with either 0.5 mug oestradiol subcutaneously, 100 mg/kg genistein orally, or vehicle only. Effect of treatment on food intake, vaginal cytology and body weight were recorded, and body composition was assayed using the D(2)O isotopic dilution method. Neutering was followed by an increase in food intake, bodyweight and body fat mass in the control group, which were almost completely prevented by treatment with oestradiol (p < 0.001). Treatment with genistein had no effect on food intake or bodyweight increase, but was associated with a significant increase in lean body mass (p = 0.018), and significantly less body fat accumulation than the control group (p = 0.01). There were no significant differences in responses to treatment between sexes. These findings demonstrate the importance of gonadal oestrogen for the control of food intake in male and female cats, and suggest the provision of an oestrogenic compound could help prevent obesity following neutering. In addition, the findings of this study are consistent with observations in rodents of the efficacy of genistein in inhibiting adipogenesis and promoting lean body tissue development.

  20. High dose trans-10,cis-12 CLA increases lean body mass in hamsters, but elevates levels of plasma lipids and liver enzyme biomarkers.

    PubMed

    Liu, Xiaoran; Joseph, Shama V; Wakefield, Andrew P; Aukema, Harold M; Jones, Peter J H

    2012-01-01

    The current study examined the efficacy of graded doses of c9,t11 and t10,c12 CLA isomers on body composition, energy expenditure, hepatic and serum lipid liver biomarkers in hamsters. Animals (n = 105) were randomized to seven treatments (control, 1, 2, 3% of c9,t11; 1, 2, 3% of t10,c12) for 28 days. After 28 days treatment, 1-3% of t10,c12 lowered (p < 0.05) body fat mass compared to the control group. The 1-3% t10,c12 and 3% c9,t11 fed groups showed higher (p < 0.05) lean mass compared to other groups. We observed unfavorable changes in plasma total cholesterol and non-HDL cholesterol levels in animals fed with 3% t10,c12 CLA isomers. The 2%, 3% t10,c12 groups presented elevated (p < 0.05) ALT levels. The present data suggest that a diet enriched with more than 2% t10, c12 led to liver malfunction and poses unfavorable changes on plasma lipid profiles. The 1% t10,c12 CLA lowered (p < 0.05) body fat mass and increased (p < 0.05) lean body mass. The c9,t11 CLA has less potent actions than t10,c12 CLA. We conclude that the actions of CLA on energy and lipid metabolism are form and dose dependent in the hamster model.

  1. Increased Consumption of Dairy Foods and Protein during Diet- and Exercise-Induced Weight Loss Promotes Fat Mass Loss and Lean Mass Gain in Overweight and Obese Premenopausal Women1234

    PubMed Central

    Josse, Andrea R.; Atkinson, Stephanie A.; Tarnopolsky, Mark A.; Phillips, Stuart M.

    2011-01-01

    Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8–16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8–16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain. PMID:21775530

  2. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women.

    PubMed

    Josse, Andrea R; Atkinson, Stephanie A; Tarnopolsky, Mark A; Phillips, Stuart M

    2011-09-01

    Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8-16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8-16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain.

  3. High-load resistance exercise with superimposed vibration and vascular occlusion increases critical power, capillaries and lean mass in endurance-trained men.

    PubMed

    Mueller, Sandro Manuel; Aguayo, David; Lunardi, Fabio; Ruoss, Severin; Boutellier, Urs; Frese, Sebastian; Petersen, Jens A; Jung, Hans H; Toigo, Marco

    2014-01-01

    It is a widely accepted premise in the scientific community and by athletes alike, that adding resistance exercise to a regular regimen of endurance training increases endurance performance in endurance-trained men. However, critical power (CP), capillarization, and myofiber size remain unaffected by this addition. Therefore, we tested whether the superimposition of resistance exercise with whole-body vibration and vascular occlusion (vibroX) would improve these variables in endurance-trained males relative to resistance exercise alone. Twenty-one young, endurance-trained males were randomly assigned either to a vibroX (n = 11) or resistance (n = 10) training group. Both groups trained in a progressive mode twice a week for 8 weeks. Pre and post training, histochemical muscle characteristics, thigh muscle size, endurance and strength parameters were determined. vibroX increased CP (P = 0.001), overall capillary-to-fiber ratio (P = 0.001) and thigh lean mass (P < 0.001), while these parameters were unaffected by resistance training. The gain in CP by vibroX was positively correlated with the gain in capillarization (R(2) = 0.605, P = 0.008), and the gain in thigh lean mass was paralleled by increases in MyHC-1 and MyHC-2 fiber cross-sectional areas and strength. Maximum voluntary torque and the finite work capacity above CP (W') increased significantly only following resistance training. We achieved a proof of concept by demonstrating that modification of resistance exercise by superimposing side-alternating whole-body vibration and sustained vascular occlusion induced further improvements in CP, capillarization and hypertrophy, all of which were not observed with resistance training alone.

  4. Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in Division III collegiate female basketball players.

    PubMed

    Taylor, Lemuel W; Wilborn, Colin; Roberts, Michael D; White, Andrew; Dugan, Kristen

    2016-03-01

    We examined if 8 weeks of whey protein (WP) supplementation improved body composition and performance measures in NCAA Division III female basketball players. Subjects were assigned to consume 24 g WP (n = 8; age, 20 ± 2 years; height, 170 ± 6 cm; weight, 66.0 ± 3.1 kg) or 24 g of maltodextrin (MD) (n = 6; age, 21 ± 3 years; height, 169 ± 6 cm; weight, 68.2 ± 7.6 kg) immediately prior to and following training (4 days/week anaerobic and resistance training) for 8 weeks. Prior to (T1) and 8 weeks following supplementation (T2), subjects underwent dual X-ray absorptiometry body composition assessment as well as performance tests. The WP group gained lean mass from T1 to T2 (+1.4 kg, p = 0.003) whereas the MD group trended to gain lean mass (+0.4 kg, p = 0.095). The WP group also lost fat mass from T1 to T2 (-1.0 kg, p = 0.003) whereas the MD group did not (-0.5 kg, p = 0.41). The WP group presented greater gains in 1-repetition maximum (1RM) bench press (+4.9 kg) compared with the MD group (+2.3 kg) (p < 0.05). Moreover, the WP group improved agility from T1 to T2 (p = 0.001) whereas the MD group did not (p = 0.38). Both groups equally increased leg press 1RM, vertical jump, and broad jump performances. This study demonstrates that 8 weeks of WP supplementation improves body composition and select performance variables in previously trained female athletes.

  5. Protein Supplementation at Breakfast and Lunch for 24 Weeks beyond Habitual Intakes Increases Whole-Body Lean Tissue Mass in Healthy Older Adults.

    PubMed

    Norton, Catherine; Toomey, Clodagh; McCormack, William G; Francis, Peter; Saunders, Jean; Kerin, Emmet; Jakeman, Philip

    2016-01-01

    Key areas of research on the preservation of lean tissue mass (LTM) during aging are determinations of the protein requirement and optimal protein intake at meals. The aim of this study was to determine the effect of protein supplementation at breakfast and lunch for 24 wk beyond habitual intakes on whole-body LTM in healthy adults aged 50-70 y. In a single-blinded, randomized, controlled design, 60 healthy older men and women (aged 61 ± 5 y) with a body mass index (in kg/m(2)) of 25.8 ± 3.6 consumed either 0.165 g/kg body mass of a milk-based protein matrix (PRO) or an isoenergetic, nonnitrogenous maltodextrin control (CON) at breakfast and midday meals, the lower protein-containing meals of the day, for 24 wk. Dual-energy X-ray absorptiometry was used to measure the change in LTM. After the intervention, protein intake in the PRO group increased from 0.23 ± 0.1 to 0.40 ± 0.1 g/kg for breakfast and from 0.31 ± 0.2 to 0.47 ± 2 g/kg for the midday meal. In response, LTM increased by 0.45 (95% CI: 0.06, 0.83) kg in the PRO group compared with a decrease of 0.16 (95% CI: -0.49, 0.17) kg in the CON group (P = 0.006). Appendicular LTM accounted for the majority of the difference in LTM, increasing by 0.27 (95% CI: 0.05, 0.48) kg in the PRO group compared with no change in the CON group (P = 0.002). Protein supplementation at breakfast and lunch for 24 wk in healthy older adults resulted in a positive (+0.6 kg) difference in LTM compared with an isoenergetic, nonnitrogenous maltodextrin control. These observations suggest that an optimized and balanced distribution of meal protein intakes could be beneficial in the preservation of lean tissue mass in the elderly. This trial was registered at clinicaltrials.gov as NCT02529124. © 2016 American Society for Nutrition.

  6. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program.

    PubMed

    Jówko, E; Ostaszewski, P; Jank, M; Sacharuk, J; Zieniewicz, A; Wilczak, J; Nissen, S

    2001-01-01

    We investigated whether creatine (CR) and beta-hydroxy-beta-methylbutyrate (HMB) act by similar or different mechanisms to increase lean body mass (LBM) and strength in humans undergoing progressive resistance-exercise training. In this double-blind, 3-wk study, subjects (n = 40) were randomized to placebo (PL; n = 10), CR (20.0 g of CR/d for 7 d followed by 10.0 g of CR/d for 14 d; n = 11), HMB (3.0 g of HMB/d; n = 9), or CR-and-HMB (CR/HMB; n = 10) treatment groups. Over 3 wk, all subjects gained LBM, which was assessed by bioelectrical impedance analysis. The CR, HMB and CR/HMB groups gained 0.92, 0.39, and 1.54 kg of LBM, respectively, over the placebo group, with a significant effect with CR supplementation (main effect P = 0.05) and a trend with HMB supplementation (main effect P = 0.08). These effects were additive because there was no interaction between CR and HMB (CR x HMB main effect P = 0.73). Across all exercises, HMB, CR, and CR/HMB supplementation caused accumulative strength increases of 37.5, 39.1, and 51.9 kg, respectively, above the placebo group. The exercise-induced rise in serum creatine phosphokinase was markedly suppressed with HMB supplementation (main effect P = 0.01). However, CR supplementation antagonized the HMB effects on serum creatine phosphokinase (CR x HMB interactive effect P = 0.04). Urine urea nitrogen and plasma urea were not affected by CR supplementation, but both decreased with HMB supplementation (HMB effect P < 0.05), suggesting a nitrogen-sparing effect. In summary, CR and HMB can increase LBM and strength, and the effects are additive. Although not definitive, these results suggest that CR and HMB act by different mechanisms.

  7. Whey protein supplementation during resistance training augments lean body mass.

    PubMed

    Volek, Jeff S; Volk, Brittanie M; Gómez, Ana L; Kunces, Laura J; Kupchak, Brian R; Freidenreich, Daniel J; Aristizabal, Juan C; Saenz, Catherine; Dunn-Lewis, Courtenay; Ballard, Kevin D; Quann, Erin E; Kawiecki, Diana L; Flanagan, Shawn D; Comstock, Brett A; Fragala, Maren S; Earp, Jacob E; Fernandez, Maria L; Bruno, Richard S; Ptolemy, Adam S; Kellogg, Mark D; Maresh, Carl M; Kraemer, William J

    2013-01-01

    Compared to soy, whey protein is higher in leucine, absorbed quicker and results in a more pronounced increase in muscle protein synthesis. To determine whether supplementation with whey promotes greater increases in muscle mass compared to soy or carbohydrate, we randomized non-resistance-trained men and women into groups who consumed daily isocaloric supplements containing carbohydrate (carb; n = 22), whey protein (whey; n = 19), or soy protein (soy; n = 22). All subjects completed a supervised, whole-body periodized resistance training program consisting of 96 workouts (~9 months). Body composition was determined at baseline and after 3, 6, and 9 months. Plasma amino acid responses to resistance exercise followed by supplement ingestion were determined at baseline and 9 months. Daily protein intake (including the supplement) for carb, whey, and soy was 1.1, 1.4, and 1.4 g·kg body mass⁻¹, respectively. Lean body mass gains were significantly (p < 0.05) greater in whey (3.3 ± 1.5 kg) than carb (2.3 ± 1.7 kg) and soy (1.8 ± 1.6 kg). Fat mass decreased slightly but there were no differences between groups. Fasting concentrations of leucine were significantly elevated (20%) and postexercise plasma leucine increased more than 2-fold in whey. Fasting leucine concentrations were positively correlated with lean body mass responses. Despite consuming similar calories and protein during resistance training, daily supplementation with whey was more effective than soy protein or isocaloric carbohydrate control treatment conditions in promoting gains in lean body mass. These results highlight the importance of protein quality as an important determinant of lean body mass responses to resistance training.

  8. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    PubMed

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56-75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is

  9. Chronic exercise preserves lean muscle mass in masters athletes.

    PubMed

    Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda

    2011-09-01

    Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these

  10. Individualisation of Lean Concept in Companies Dealing with Mass Production

    NASA Astrophysics Data System (ADS)

    Bednár, Roman

    2012-12-01

    The methods of lean manufacturing primarily designed for businesses dealing with serial production, are also used in other types of production. However the concept of lean production was not designed for these types of businesses, they are utilized only partially. Paper focuses on applying methods of lean concept in companies which are dealing with mass production and their options of exchange for other methods in the event of disagreement. Basis of the article is a list of lean methods with its description and its utilization in practice. The questionnaire was utilized to identify information from the practice. Based on this survey were identified the critical methods that are no longer appropriate for companies dealing with mass production. However, there are alternative methods of describing the problem. It is possible to say that companies are trying to get closer to their goal by modification of the basic concepts. And the concept of Lean Enterprise serves as a standard.

  11. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    PubMed

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  12. Peripubertal-onset but not adult-onset obesity increases IGF-I and drives development of lean mass, which may lessen the metabolic impairment in adult obesity.

    PubMed

    Cordoba-Chacon, Jose; Gahete, Manuel D; Pozo-Salas, Ana I; Moreno-Herrera, Antonio; Castaño, Justo P; Kineman, Rhonda D; Luque, Raúl M

    2012-11-01

    It has been suggested that adult metabolic dysfunction may be more severe in individuals who become obese as children compared with those who become obese later in life. To determine whether adult metabolic function differs if diet-induced weight gain occurs during the peripubertal age vs. if excess weight gain occurs after puberty, male C57Bl/6J mice were fed a low-fat (LF; 10% kcal from fat) or high-fat (HF; 60% kcal from fat) diet starting during the peripubertal period (pHF; 4 wk of age) or as adults (aHF; 12 wk of age). Both pHF and aHF mice were hyperinsulinemic and hyperglycemic, and both showed impaired glucose tolerance and insulin resistance compared with their LF-fed controls. However, despite a longer time on diet, pHF mice were relatively more insulin sensitive than aHF mice, which was associated with higher lean mass and circulating IGF-I levels. In addition, HF feeding had an overall stimulatory effect on circulating corticosterone levels; however, this rise was associated only with elevated plasma ACTH in the aHF mice. Despite the belief that adult metabolic dysfunction may be more severe in individuals who become obese as children, data generated using a diet-induced obese mouse model suggest that adult metabolic dysfunction associated with peripubertal onset of obesity is not worse than that associated with adult-onset obesity.

  13. Reduction of subcutaneous mass, but not lean mass, in normal fetuses in Denver, Colorado.

    PubMed

    Galan, H L; Rigano, S; Radaelli, T; Cetin, I; Bozzo, M; Chyu, J; Hobbins, J C; Ferrazzi, E

    2001-10-01

    To test the hypothesis that reduced birth weight in normal fetuses born at moderately high altitude (Denver), compared with the birth weight in normal fetuses born at sea level (Milan), is caused by a reduction in both lean mass and subcutaneous fat mass. Ninety-four normal singleton pregnancies (46 in Denver, 48 in Milan) had serial ultrasonographic axial images obtained to assess subcutaneous tissues of fetuses as a measure of body fat. The abdominal wall thickness and mid upper arm and mid thigh were examined. The equation was: Subcutaneous tissue equals total cross-sectional area minus bone and muscle area. Lean mass included the area of muscle and bone, head circumference, and femur length. Gestational age at delivery was similar between groups. Birth weight was less at Denver's altitude (2991 +/- 79 g versus 3247 +/- 96 g; P =.04). Abdominal wall thickness, mid upper arm, and mid thigh subcutaneous tissues measurements were significantly reduced at Denver's altitude and increased further in significance with advancing gestational age. Lean mass measurements were similar between groups. The reduced birth weight of the newborns in Denver was the result of a reduction in fetal subcutaneous fat tissue and not lean mass. Ultrasonography can be used to follow subcutaneous measurements longitudinally and to detect differences, and potentially disease processes, in study populations.

  14. Lean Body Mass and Bone Health in Urban Adolescents From Northern India.

    PubMed

    Marwaha, Raman K; Garg, M K; Bhadra, Kuntal; Mahalle, Namita; Mithal, Ambrish; Tandon, Nikhil

    2017-03-15

    To prepare percentile charts of lean body mass (LBM) among Indian urban children and adolescents; and to evaluate gender differences in LBM, and its relation with pubertal status. Secondary data analysis. School in city of Delhi, India. 1403 apparently healthy children and adolescents (826 boys) with mean (SD) age 13.2 (2.7) years. Lean body mass assessed by dual energy absorptiometry. Total and regional lean mass were greater in older age groups in both sexes. LBM showed rising trends up to the age of 18 years in boys, whereas it plateaued after the age of 15 years in girls. The age-associated increase in LBM was significantly higher in boys (130%) compared to girls (83%) (P<0.001). Total and regional lean mass increased with progression of pubertal staging in both genders. During pubertal development, LBM almost doubled (100% increase) from stage-2 to stage-5 in boys, as opposed to a 73% rise in girls (P<0.001). Total and regional lean mass and Appendicular skeletal muscle mass index (ASMI) was positively correlated with age, body mass index (BMI), serum 25(OH)D, total fat mass, and bone mineral content (BMC). Relation between LBM and BMC remained significant even after adjusting for age, fat mass and various biochemical parameters. Total and regional LBM rise with age and pubertal maturation in both genders, but more so in boys when compared to girls. LBM has direct bearing on BMC even after adjusting for age, fat mass and biochemical parameters.

  15. Estimation of lipids and lean mass of migrating sandpipers

    USGS Publications Warehouse

    Skagen, Susan K.; Knopf, Fritz L.; Cade, Brian S.

    1993-01-01

    Estimation of lean mass and lipid levels in birds involves the derivation of predictive equations that relate morphological measurements and, more recently, total body electrical conductivity (TOBEC) indices to known lean and lipid masses. Using cross-validation techniques, we evaluated the ability of several published and new predictive equations to estimate lean and lipid mass of Semipalmated Sandpipers (Calidris pusilla) and White-rumped Sandpipers (C. fuscicollis). We also tested ideas of Morton et al. (1991), who stated that current statistical approaches to TOBEC methodology misrepresent precision in estimating body fat. Three published interspecific equations using TOBEC indices predicted lean and lipid masses of our sample of birds with average errors of 8-28% and 53-155%, respectively. A new two-species equation relating lean mass and TOBEC indices revealed average errors of 4.6% and 23.2% in predicting lean and lipid mass, respectively. New intraspecific equations that estimate lipid mass directly from body mass, morphological measurements, and TOBEC indices yielded about a 13% error in lipid estimates. Body mass and morphological measurements explained a substantial portion of the variance (about 90%) in fat mass of both species. Addition of TOBEC indices improved the predictive model more for the smaller than for the larger sandpiper. TOBEC indices explained an additional 7.8% and 2.6% of the variance in fat mass and reduced the minimum breadth of prediction intervals by 0.95 g (32%) and 0.39 g (13%) for Semipalmated and White-rumped Sandpipers, respectively. The breadth of prediction intervals for models used to predict fat levels of individual birds must be considered when interpreting the resultant lipid estimates.

  16. Lean Mass Appears to Be More Strongly Associated with Bone Health than Fat Mass in Urban Black South African Women.

    PubMed

    Sotunde, O F; Kruger, H S; Wright, H H; Havemann-Nel, L; Kruger, I M; Wentzel-Viljoen, E; Kruger, A; Tieland, M

    2015-06-01

    To examine the association between body composition (fat mass, lean mass and body mass index, BMI) and bone health (bone mineral density, BMD and fracture risk) in urban black South African women. A cross sectional study examining associations between body composition, dietary intake (food frequency questionnaire), habitual physical activity (Activity energy expenditure (AEE) measured using an accelerometer with combined heart rate monitor and physical activity questionnaire) and bone health (BMD using dual-energy X ray absorptiometry, DXA and fracture risk). Urban community dwellers from Ikageng in the North-West Province of South Africa. One hundred and eighty nine (189) healthy postmenopausal women aged ≥43 years. Fat mass and lean mass were significantly associated with BMD and fracture risk when adjusted for potential confounders. However, lean mass and not fat mass remained significantly associated with femoral neck BMD (β = 0.49, p <0.001), spine BMD (β = 0.48, p< 0.0001) and hip BMD (β = 0.59, p< 0.0001). Lean mass was also negatively associated with fracture risk (β = -0.19 p =0.04) when both lean and fat mass were in the same model. Lean mass and fat mass were positively associated with femoral neck, spine and hip BMDs and negatively associated with fracture risk in urban black South African women. Our finding suggests that increasing lean mass rather than fat mass is beneficial to bone health. Our study emphasises the importance of positive lifestyle changes, intake of calcium from dairy and adequate weight to maintain and improve bone health of postmenopausal women.

  17. Alkaline diets favor lean tissue mass in older adults1234

    PubMed Central

    Dawson-Hughes, Bess; Harris, Susan S; Ceglia, Lisa

    2008-01-01

    Background Maintaining muscle mass while aging is important to prevent falls and fractures. Metabolic acidosis promotes muscle wasting, and the net acid load from diets that are rich in net acid–producing protein and cereal grains relative to their content of net alkali–producing fruit and vegetables may therefore contribute to a reduction in lean tissue mass in older adults. Objective We aimed to determine whether there was an association of 24-h urinary potassium and an index of fruit and vegetable content of the diet with the percentage lean body mass (%LBM) or change in %LBM in older subjects. Design Subjects were 384 men and women ≥65 y old who participated in a 3-y trial comparing calcium and vitamin D with placebo. Potassium was measured in 24-h urine collections at baseline. The %LBM, defined as total body nonfat, nonbone tissue weight ÷ weight × 100, was measured by using dual-energy X-ray absorptiometry at baseline and at 3 y. Physical activity, height, and weight were assessed at baseline and at 3 y. Results At baseline, the mean urinary potassium excretion was 67.0 ± 21.1 mmol/d. Urinary potassium (mmol/d) was significantly positively associated with %LBM at baseline (β = 0.033, P = 0.006; adjusted for sex, weight, and nitrogen excretion) but not with 3-y change in %LBM. Over the 3-y study, %LBM increased by 2.6 ± 3.6%. Conclusion Higher intake of foods rich in potassium, such as fruit and vegetables, may favor the preservation of muscle mass in older men and women. PMID:18326605

  18. Alkaline diets favor lean tissue mass in older adults.

    PubMed

    Dawson-Hughes, Bess; Harris, Susan S; Ceglia, Lisa

    2008-03-01

    Maintaining muscle mass while aging is important to prevent falls and fractures. Metabolic acidosis promotes muscle wasting, and the net acid load from diets that are rich in net acid-producing protein and cereal grains relative to their content of net alkali-producing fruit and vegetables may therefore contribute to a reduction in lean tissue mass in older adults. We aimed to determine whether there was an association of 24-h urinary potassium and an index of fruit and vegetable content of the diet with the percentage lean body mass (%LBM) or change in %LBM in older subjects. Subjects were 384 men and women > or =65 y old who participated in a 3-y trial comparing calcium and vitamin D with placebo. Potassium was measured in 24-h urine collections at baseline. The %LBM, defined as total body nonfat, nonbone tissue weight/weight x 100, was measured by using dual-energy X-ray absorptiometry at baseline and at 3 y. Physical activity, height, and weight were assessed at baseline and at 3 y. At baseline, the mean urinary potassium excretion was 67.0 +/- 21.1 mmol/d. Urinary potassium (mmol/d) was significantly positively associated with %LBM at baseline (beta = 0.033, P = 0.006; adjusted for sex, weight, and nitrogen excretion) but not with 3-y change in %LBM. Over the 3-y study, %LBM increased by 2.6 +/- 3.6%. Higher intake of foods rich in potassium, such as fruit and vegetables, may favor the preservation of muscle mass in older men and women.

  19. Pharmacology of manipulating lean body mass

    PubMed Central

    Sepulveda, Patricio V; Bush, Ernest D; Baar, Keith

    2015-01-01

    Summary Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts.Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health.With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development.The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader. PMID:25311629

  20. Ethnic differences in the accumulation of fat and lean mass in late gestation

    PubMed Central

    Lampl, M; Lee, W; Koo, W; Frongillo, EA; Barker, DJP; Romero, R

    2012-01-01

    Objectives Lower birth weight within the normal range predicts adult chronic diseases, but the same birth weight in different ethnic groups may reflect different patterns of tissue development. Neonatal body composition was investigated among non-Hispanic Caucasians and African Americans, taking advantage of variability in gestational duration to understand growth during late gestation. Methods Air displacement plethysmography assessed fat and lean body mass among 220 non-Hispanic Caucasian and 93 non-Hispanic African American neonates. The two ethnic groups were compared using linear regression. Results At 36 weeks gestation, the average lean mass of Caucasian neonates was 2,515 g vs. that of 2,319 g of African American neonates (difference, P = 0.02). The corresponding figures for fat mass were 231 and 278 g, respectively (difference, P = 0.24). At 41 weeks, the Caucasians were 319 g heavier in lean body mass (P < 0.001) but were also 123 g heavier in fat mass (P = 0.001). The slopes for lean mass vs. gestational week were similar, but the slope of fat mass was 5.8 times greater (P = 0.009) for Caucasian (41.0 g/week) than for African American neonates (7.0 g/week). Conclusions By 36 weeks of gestation, the African American fetus developed similar fat mass and less lean mass compared with the Caucasian fetus. Thereafter, changes in lean mass among the African American fetus with increasing gestational age at birth were similar to the Caucasian fetus, but fat accumulated more slowly. We hypothesize that different ethnic fetal growth strategies involving body composition may contribute to ethnic health disparities in later life. PMID:22565933

  1. Lower lean mass and higher percent fat mass in patients with Alzheimer's disease.

    PubMed

    Buffa, R; Mereu, E; Putzu, P; Mereu, R M; Marini, E

    2014-10-01

    In this study we analyzed body composition in relation to cognitive and functional status, in a cross-sectional sample of patients with Alzheimer's disease (AD). Seventy individuals (27 men, 78.1±6.5years; 43 women, 80.4±5.6years) with mild-moderate stages of AD (clinical dementia ratings 1 and 2) were selected from the Alzheimer Center, SS. Trinità Hospital, ASL 8 of Cagliari (Italy). Cognitive and psycho-functional status was evaluated using mini-mental state examination (MMSE), activities of daily living (ADL) scale, and geriatric depression scale (GDS). Mini-nutritional assessment (MNA) was applied. Anthropometric measurements were taken and body mass index (BMI) was calculated. Body composition was assessed by means of specific bioelectrical impedance vector analysis (BIVA), using the references for the elderly. In comparison with the reference group, patients with AD showed similar BMI and MNA, but peculiar bioelectrical characteristics: lower phase angles and longer vectors (p<0.05). According to specific BIVA, this bioelectrical pattern is indicative of a reduction of lean tissue mass and an increase of percent fat mass (FM%). A more accentuated lean mass reduction (p < 0.05) was observed in women with worse cognitive status and a FM% increase (p < 0.01) in women with worse functional status. In conclusion, patients with AD had lower lean tissue mass and higher percent fat mass than healthy elderly individuals. In women, this pattern was associated with cognitive and functional decline, as indicated by MMSE and ADL values. Specific BIVA showed to be a suitable technique in the elderly, that could enhance BMI and MNA information in the evaluation of nutritional status. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study

    PubMed Central

    Granell, Raquel; Henderson, A. John; Evans, David M.; Smith, George Davey; Ness, Andrew R.; Lewis, Sarah; Palmer, Tom M.; Sterne, Jonathan A. C.

    2014-01-01

    Background Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach. Methods and Findings We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-values<0.001) and with childhood asthma (RR 2.56, 95% CI 1.38–4.76 per unit score, p = 0.003). The estimated causal RR for the effect of BMI on asthma was 1.55 (95% CI 1.16–2.07) per kg/m2, p = 0.003. This effect appeared stronger for non-atopic (1.90, 95% CI 1.19–3.03) than for atopic asthma (1.37, 95% CI 0.89–2.11) though there was little evidence of heterogeneity (p = 0.31). The estimated causal RRs for the effects of fat mass and lean mass on asthma were 1.41 (95% CI 1.11–1.79) per 0.5 kg and 2.25 (95% CI 1.23–4.11) per kg, respectively. The possibility of genetic pleiotropy could not be discounted completely; however, additional IV analyses using FTO variant rs1558902 and the other BMI-related SNPs separately provided similar causal effects with wider confidence intervals. Loss of follow-up was unlikely to bias the estimated effects. Conclusions Higher BMI increases the risk of asthma in mid-childhood. Higher BMI may have contributed to the increase in asthma risk toward the end of the 20th century. Please see

  3. Effects of BMI, fat mass, and lean mass on asthma in childhood: a Mendelian randomization study.

    PubMed

    Granell, Raquel; Henderson, A John; Evans, David M; Smith, George Davey; Ness, Andrew R; Lewis, Sarah; Palmer, Tom M; Sterne, Jonathan A C

    2014-07-01

    Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach. We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-values<0.001) and with childhood asthma (RR 2.56, 95% CI 1.38-4.76 per unit score, p = 0.003). The estimated causal RR for the effect of BMI on asthma was 1.55 (95% CI 1.16-2.07) per kg/m2, p = 0.003. This effect appeared stronger for non-atopic (1.90, 95% CI 1.19-3.03) than for atopic asthma (1.37, 95% CI 0.89-2.11) though there was little evidence of heterogeneity (p = 0.31). The estimated causal RRs for the effects of fat mass and lean mass on asthma were 1.41 (95% CI 1.11-1.79) per 0.5 kg and 2.25 (95% CI 1.23-4.11) per kg, respectively. The possibility of genetic pleiotropy could not be discounted completely; however, additional IV analyses using FTO variant rs1558902 and the other BMI-related SNPs separately provided similar causal effects with wider confidence intervals. Loss of follow-up was unlikely to bias the estimated effects. Higher BMI increases the risk of asthma in mid-childhood. Higher BMI may have contributed to the increase in asthma risk toward the end of the 20th century. Please see later in the article for the Editors' Summary.

  4. Leg Strength and Lean Mass Symmetry Influences Kicking Performance in Australian Football

    PubMed Central

    Hart, Nicolas H.; Nimphius, Sophia; Spiteri, Tania; Newton, Robert U.

    2014-01-01

    Differential loading patterns during game-based participation may produce or exacerbate strength imbalances between the lower limbs. It is currently unknown whether such imbalances are functionally beneficial or detrimental to performance. This study assessed the influence of lower limb strength and lean mass symmetry on kicking accuracy in Australian Football. Thirty-one Australian footballers were required to perform a kicking assessment, producing ten drop punt kicks over twenty metres to a player target. Athletes were subsequently separated into accurate (n = 15) and inaccurate (n = 16) groups, with lower-body lean mass assessed using whole body DXA scans, and lower-body strength assessed using an isometric protocol. Accurate kickers demonstrated significantly higher relative lean mass (~8% to 16%; p = 0. 001 to 0.004) and significantly lower relative fat mass (~21% to 40%; p = 0.001 to 0.024) than inaccurate kickers. Accurate kickers did not contain any significant difference in lean mass or unilateral strength between lower limbs. Inaccurate kickers displayed significant asymmetry in lean mass (~3%; p ≤ 0.003), producing significant imbalances in strength (~8%; p ≤ 0.002) highlighting a deficiency in their support leg. Greater relative strength and improved lower limb symmetry in strength and muscularity could increase the capacity of an athlete to be technically proficient in favour of greater accuracy. Key Points Strength deficits in the support leg may lead to inaccurate kicking outcomes. An asymmetry of 3% in lean mass generated an 8% imbalance in leg strength. Greater levels of relative lower-body strength and muscle mass are associated with improved kicking accuracy performance. PMID:24570620

  5. Reference Values of Total Lean Mass, Appendicular Lean Mass, and Fat Mass Measured with Dual-Energy X-ray Absorptiometry in a Healthy Mexican Population.

    PubMed

    Clark, Patricia; Denova-Gutiérrez, Edgar; Ambrosi, Regina; Szulc, Pawel; Rivas-Ruiz, Rodolfo; Salmerón, Jorge

    2016-11-01

    The aim of this study was to develop age- and gender-specific reference values of total lean body mass (LBM), appendicular lean body mass (ALBM), and fat mass (FM) by dual-energy X-ray absorptiometry (DXA) data in a healthy Mexican population. A cross-sectional analysis was conducted on 9518 healthy subjects 7-89 years of age participating in the baseline measurement of the Health Workers Cohort Study. Using DXA, LBM, ALBM, and FM were measured. Using these data, LBM index (LBMI), ALBM index (ALBMI), and fat mass index (FMI) were calculated. LMI, ALMI, and FMI were calculated as the LBM, ALBM, and FM kg divided by the height in meters squared. Males and females were analyzed separately; sex-specific means and standard deviations for LBM, ALBM, FM, LBMI, ALBMI, and FMI were calculated. A total of 2829 males and 6694 females were included in the final analysis. Strong sex gaps were observed after 12 years in LBM, ALBM, LBMI, and ALBMI (P < 0.01). LBM and ALBM values continue to increase for males up to age 20; females plateaued approximately after age 15. Significant sex differences were also observed for FM and FMI. Significant sex- and age-related differences exist in LBM, ALBM, and FM in the Mexican population. In addition, given the null data available in this area, these reference values may be useful in the evaluation of a variety of childhood and adult abnormalities involving lean body mass deficits, mainly in the assessment of muscle wasting, with important medical and epidemiological uses.

  6. Associations Between Fat Mass, Lean Mass, and Knee Osteoarthritis: The Fifth Korean National Health and Nutrition Examination Survey (KNHANES V).

    PubMed

    Kim, Seong Rae; Choi, Kyung-Hyun; Jung, Go-Un; Shin, Doosup; Kim, Kyuwoong; Park, Sang Min

    2016-12-01

    As little is known about the associations between body composition (fat mass and lean mass) and knee OA, especially regarding body parts (upper body and lower limbs), the purpose of this study was to identify the association between the former and the prevalence of the latter according to body parts. This study was designed as a cross-sectional analysis, with 4194 people (1801 men and 2393 women) from the fifth Korean National Health and Nutrition Examination Survey (KNHANES V, 2010-2011) included. Body composition (fat mass and lean mass) was measured by using dual-energy X-ray absorptiometry, and knee OA was diagnosed based on the level of Kellgren-Lawrence grade. In multivariate logistic regression analysis, upper body composition was not significantly correlated with radiographic knee OA (P > 0.05), while participants with higher lean mass of lower limbs were less likely to have radiographic knee OA (aOR 0.57; 95 % CI 0.32-0.99). In stratified analysis, participants with higher lean mass of lower limbs were less likely to have a radiographic knee OA in 40-54 kg (P for trend = 0.05) and 55-70 kg stratum (P for trend = 0.03), while this trend slightly attenuated in 70-85 kg stratum (P for trend = 0.15). In conclusion, the increase in lean mass of lower limbs is inversely related to the prevalence of knee OA while upper body composition is not. This study suggests that the lean mass of lower limbs might be associated with reduction in the risk of knee OA.

  7. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly

    PubMed Central

    Pinto, Camila Lemos; Botelho, Patrícia Borges; Carneiro, Juliana Alves

    2016-01-01

    Abstract Background Human ageing is a process characterized by loss of muscle mass, strength, and bone mass. We aimed to examine the efficacy of low‐dose creatine supplementation associated with resistance training on lean mass, strength, and bone mass in the elderly. Methods This was a 12‐week, parallel‐group, double‐blind, randomized, placebo‐controlled trial. The individuals were randomly allocated into one of the following groups: placebo plus resistance training (PL + RT) and creatine supplementation plus resistance training (CR + RT) . The participants were assessed at baseline and after 12 weeks. The primary outcomes were lean mass and strength, assessed by dual energy X‐ray absorptiometry (DXA) and ten‐repetition maximal tests (10 RM), respectively. Secondary outcomes included the lumbar spine, right and left femoral neck, both femur and whole body bone mineral density (BMD), and whole body bone mineral content (BMC), assessed by DXA. Results The CR + RT group had superior gains in lean mass when compared with the PL + RT group (P = 0.02). Changes in the 10 RM tests in bench press and leg press exercises, body composition, BMD, and BMC of all assessed sites did not significantly differ between the groups (P > 0.05). Conclusions Twelve weeks of low‐dose creatine supplementation associated with resistance training resulted in increases in lean mass in the elderly. PMID:27239423

  8. Assessment of Lean Mass and Physical Performance in Sarcopenia.

    PubMed

    Cawthon, Peggy M

    2015-01-01

    This review provides a description of the assessment of lean mass and physical performance with particular attention to how these measures are used in the context of sarcopenia, in both research and clinical settings. One of the most common methods to estimate muscle mass is whole-body dual-energy X-ray absorptiometry (DXA). DXA estimates the total amount of lean tissue but does not directly measure muscle mass. Appendicular lean mass (ALM), derived from DXA scans, is the sum of the lean tissue in the arms and legs. ALM alone, or scaled to height squared (ALM/height(2)) or body mass index (ALM/body mass index), is the most common metric used as an approximation of muscle mass in sarcopenia research. Other methods to assess muscle mass include central or peripheral quantitative computed tomography (to determine muscle cross-sectional area and muscle density, a marker of fat i nfiltration into the muscle); magnetic resonance (to assess muscle cross-sectional area and volume); and bioelectrical impedance analysis (to determine fat-free mass). Many approaches to objectively measuring physical performance have been used in sarcopenia research. Muscle strength is often measured: Grip strength is very inexpensive and straightforward to assess, whereas assessment of lower extremity strength is more difficult. However, lower extremity strength may be a more relevant measure than grip strength in the context of mobility outcomes. Dynamic physical performance is also widely measured in research settings and may be emerging as a routine assessment in clinical care. The most widely used measure of physical performance is walking speed over a short distance, usually 3-6 m. Other measures of objective physical performance include the Short Physical Performance Battery that includes gait speed, ability and time to rise from a chair 5 times, and static balance tests; and the Timed Up and Go test that measures the time to rise from a chair and walk a short distance. Finally, longer

  9. The association between physiologic testosterone levels, lean mass, and fat mass in a nationally representative sample of men in the United States.

    PubMed

    Mouser, J Grant; Loprinzi, Paul D; Loenneke, Jeremy P

    2016-11-01

    Testosterone deficiency leads to increased muscle loss with aging and increased fat mass. Supraphysiologic levels cause an increase in muscle mass and decrease in fat mass. The difference in lean and fat mass across physiologic levels of testosterone has been under examined in men.

  10. Low Lean Mass Predicts Incident Fractures Independently From FRAX: a Prospective Cohort Study of Recent Retirees.

    PubMed

    Hars, Mélany; Biver, Emmanuel; Chevalley, Thierry; Herrmann, François; Rizzoli, René; Ferrari, Serge; Trombetti, Andrea

    2016-11-01

    Whether low muscle mass predisposes to fracture is still poorly understood. In the diagnosis of sarcopenia, different thresholds for low lean mass have been proposed but comparative data for these criteria against hard outcomes such as fractures are lacking. This study aimed to investigate the prevalence of low lean mass according to different thresholds used in operational definitions of sarcopenia and their association with 3-year fracture incidence in a cohort of healthy 63- to 67-year-old community dwellers. In a longitudinal analysis of 913 participants (mean age 65.0 ± 1.4 years) enrolled in the Geneva Retirees Cohort (GERICO) study, lean mass was assessed by dual-energy X-ray absorptiometry (DXA), and low trauma clinical fracture incidence was recorded over a 3-year period. Prevalence of low lean mass ranged from 3.5% to 20.2% according to the threshold applied. During a follow-up of 3.4 ± 0.9 years, 40 (4.4%) participants sustained at least one low trauma fracture. After multivariate adjustment including Fracture Risk Assessment Tool (FRAX) probability with femoral neck bone mineral density (BMD), low lean mass, as defined by Baumgartner thresholds, was associated with higher fracture risk (odds ratio [OR], 2.32; 95% CI, 1.04 to 5.18; p = 0.040). It also added significant predictive value beyond FRAX (likelihood ratio test for nested models, 4.28; p < 0.039). No significant association was found for other definition thresholds. The coexistence of sarcopenia and a T-score <-2.5 at spine or hip was associated with a 3.39-fold (95% CI, 1.54 to 7.46; p = 0.002) increase in low trauma fracture risk. In conclusion, low lean mass, as defined by the Baumgartner thresholds, is a predictor of incident fractures in a large cohort of healthy 65-year-old community dwellers, independently of FRAX probability. The increased risk is related to the threshold for low lean mass selected. These findings suggest that identification of sarcopenia should be

  11. Lean adolescents with increased risk for metabolic syndrome.

    PubMed

    Molero-Conejo, Emperatriz; Morales, Luz Marina; Fernández, Virginia; Raleigh, Xiomara; Gómez, Maria Esther; Semprún-Fereira, Maritza; Campos, Gilberto; Ryder, Elena

    2003-03-01

    The aim of the present study was to determine in adolescents the relationship between insulin levels and body mass index (BMI), body fat distribution, diet, life style and lipid profile. We studied 167 adolescents (68 boys and 99 girls) whose ages ranged from 14 to 17 years. A detailed medical (including pubertal stage) and nutritional record was obtained from each subject. Biochemical measurements included fasting serum insulin, glucose, total cholesterol (TC), triglycerides (Tg), HDL-C, LDL-C and VLDL-C. HOMA insulin resistance (IR) and HOMA beta-cell function (beta-cell) were calculated. Insulin levels were over 84 pmol/L (cut off normal value in our lab) in 56% of the boys and 43% of the girls. Thirty-seven percent of lean adolescents whose BMI was 21.5 +/- 1.9 kg/m2 presented higher fasting insulin levels. HOMA IR, Tg, systolic (SBP) and diastolic blood pressure (DBP) values when compared to a lean normoinsulinemic group. Insulin levels were correlated (p < 0.01) with body mass index. Both boys and girls in the highest BMI quartile (BMI > 24 kg/m2) had significantly higher serum insulin, HOMA beta-cell, and Tg levels, and the lowest HDL-C levels. A high-energy intake rich in saturated fat and low physical activity were found in this lean but metabolically altered adolescents. We conclude that even with a BMI as low as 21 kg/m2 an inappropriate diet and low physical activity might be responsible for the high insulin levels and dislipidemias in adolescents.

  12. The negative effect of sitting time on bone is mediated by lean mass in pubertal children

    PubMed Central

    Binkley, T.L.; Specker, B.L.

    2016-01-01

    Objective: Effects of time in moderate to vigorous physical activity (MVPA) and sitting (SIT) on bone were tested, hypothesizing that high MVPA would be positively associated with bone size and strength, offset effects of high SIT, and be mediated by lean mass. Methods: 155 children (79 male, 58 pubertal), 6-20 years (10.2±3.5 yr) were measured by dual-energy x-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). MVPA and SIT were measured by 7-day activity recall. Regression analyses tested effects of MVPA and SIT on bone. Mediation analysis was conducted to determine if lean mass mediated the effect of activity on bone. Results: In pubertal boys, SIT was negatively associated with tibial endosteal and periosteal circumference as well as bone strength (β= -0.19, -0.14, and -5.68, respectively; all p<0.05). Effects of SIT on bone circumferences and strength were mediated by lean mass. MVPA did not offset the effects of SIT. In pubertal girls, MVPA was positively associated with cortical thickness (β=0.01, p<0.05) and the association was not mediated by lean mass. Conclusions: Current health communications that encourage increased physical activity should include additional messaging to decrease time spent sitting, especially in pubertal boys. PMID:26944819

  13. Jumping improves lower limbs bone mass and lean mass in elite jumpers.

    PubMed

    Trabelsi, Hela; Elloumi, Mohamed; Mrad, Mehdi; Aouichaoui, Chirine; Chortane, Sabri G; Cheour, Ilhem; Tabka, Zouhaier

    2016-12-01

    The present study was designed to examine the influence of extreme impact loading induced by jump training on bone mineral density (BMD) and bone mineral content (BMC) in high level jumpers. Forty boys volunteered for the study aged 20 to 21 years. They were 22 high level jumpers and 18 controls. Bone mass and body composition measurements were performed by dual-energy X-ray absorptiometry, in the total body and at different sites. The results showed that BMC, BMD, bone area, and lean mass (P<0.0001) were significantly higher in the jumpers compared to the controls. A strong positive correlation was found between lean mass and bone parameters (BMC at the right femur, r=0.80; P<0.01). The values of the same correlation were weak in the control group. In addition, the effects of the regular practice of jumping on the BMD, BMC, and bone area were more pronounced in the lower limbs (P<0.01). These adaptations were site-specific, with increased bone mass at the lower limbs (P<0.01), especially at the legs, right and left leg (LRL) (P<0.05). It appears that the time dedicated to this activity may be account for the difference between jumpers and controls. The practice of high level jump starting at pubertal age generates an increase and an acquisition of the bone mass in males. This adaptation is further enhanced by the times dedicated for this activity. Therefore, it would be interesting to program jumping activities daily to conserve bone mineral and to prevent osteopenia.

  14. Relation of Body's Lean Mass, Fat Mass, and Body Mass Index With Submaximal Systolic Blood Pressure in Young Adult Men.

    PubMed

    Prasad, Vivek K; Drenowatz, Clemens; Hand, Gregory A; Lavie, Carl J; Sui, Xuemei; Demello, Madison; Blair, Steven N

    2016-02-01

    We examined the association of body composition and body mass index (BMI) with submaximal systolic blood pressure (SSBP) among young adult men. The analysis included 211 men with BMI between 20 and 35 kg/m(2). Total lean mass and fat mass were measured using dual x-ray absorptiometry and lean mass percentage was calculated from the total lean mass. Fat mass index (FMI) and BMI were calculated using height and weight (total fat mass and total weight, respectively) measurements. SSBP was measured at each stage of a graded exercise test. Quintiles of lean mass percentage, FMI, and BMI were created with quintile 1 the lowest and quintile 5 the highest lean mass percentage, FMI, and BMI. Compared with men in lean mass percentage quintile 1, those in quintiles 2, 3, and 4 had significantly lower SSBP, whereas there was no significant difference in SSBP between quintile 1 and 5 at 6, 8, and 10 minutes. Compared with men in FMI quintile 5, those in quintiles 2, 3, and 4 had significantly lower SSBP, whereas there was no significant difference in SSBP between quintile 1 and 5. SSBP among men in lean mass percentage quintile 5 and FMI quintile 1 were still less than lean mass percentage quintile 1 and FMI quintile 5, respectively. There were no significant differences in SSBP across BMI quintiles 1 to 4 but a significantly higher SSBP in quintile 5 compared with quintiles 1 to 4. In conclusion, there was a J-curve pattern between SSBP and components of body composition, whereas, a linear relation between SSBP and BMI.

  15. Leptin treatment reduces body fat but does not affect lean body mass or the myostatin-follistatin-activin axis in lean hypoleptinemic women.

    PubMed

    Brinkoetter, Mary; Magkos, Faidon; Vamvini, Maria; Mantzoros, Christos S

    2011-07-01

    Animal studies in vivo indicate that leptin treatment in extremely leptin-sensitive ob/ob mice reduces body weight exclusively by reducing fat mass and that it increases muscle mass by downregulating myostatin expression. Data from human trials are limited. Therefore, we aimed at characterizing the effects of leptin administration on fat mass, lean body mass, and circulating regulators of muscle growth in hypoleptinemic and presumably leptin-sensitive human subjects. In an open-label, single-arm trial, seven lean, strenuously exercising, amenorrheic women with low leptin concentrations (≤5 ng/ml) were given recombinant methionyl human leptin (metreleptin; 0.08 mg·kg(-1)·day(-1)) for 10 wk. In a separate randomized, double-blind, placebo-controlled trial, seven women were given metreleptin (initial dose: 0.08 mg·kg(-1)·day(-1) for 3 mo, increased thereafter to 0.12 mg·kg(-1)·day(-1) if menstruation did not occur), and six were given placebo for 9 mo. Metreleptin significantly reduced total body fat by an average of 18.6% after 10 wk (P < 0.001) in the single-arm trial and by 19.5% after 9 mo (placebo subtracted; P for interaction = 0.025, P for metreleptin = 0.004) in the placebo-controlled trial. There were no significant changes in lean body mass (P ≥ 0.33) or in serum concentrations of myostatin (P ≥ 0.35), follistatin (P ≥ 0.30), and activin A (P ≥ 0.20) whether in the 10-wk trial or the 9-mo trial. We conclude that metreleptin administration in lean hypoleptinemic women reduces fat mass exclusively and does not affect lean body mass or the myostatin-follistatin-activin axis.

  16. The role of fat and lean mass in bone loss in older men: findings from the CHAMP study.

    PubMed

    Bleicher, Kerrin; Cumming, Robert G; Naganathan, Vasikaran; Travison, Thomas G; Sambrook, Philip N; Blyth, Fiona M; Handelsman, David J; Le Couteur, David G; Waite, Louise M; Creasey, Helen M; Seibel, Markus J

    2011-12-01

    Weight loss is associated with bone loss; however, it is unclear whether loss of fat or loss of lean body mass plays the key role in this relationship. The aim of this longitudinal analysis was to clarify the relationship between hip BMD, hip BMC and whole body BMC with changes in fat and lean tissue mass in older men. The Concord Health and Aging in Men Project (CHAMP) is a population-based study in Sydney, Australia, involving 1705 men aged 70-97 years. Bone mineral density (BMD) of the total hip, and bone mineral content (BMC) of the hip and whole body (WB), lean mass and fat mass were measured with Dual X-ray Absorptiometry (DXA). Multivariate linear regression models were used to assess relationships. Over 2.2 years of follow-up, 368(33%) men lost at least 2% of their body weight, which included a mean loss of 0.8 kg/year of lean body mass and 0.9 kg/year of fat body mass. Fat loss was strongly associated with BMD loss in men who lost weight. As a group, weight losers lost 1.0% of hip BMD annually compared to 0.2% in men who gained weight, with each kilo of fat loss associated with 0.6%/year hip BMD loss (p<0.0001). Lean mass was not associated with hip BMD loss in weight losers, however, lean mass change was associated with BMD change in men who gained weight (0.3% hip BMD increase per kilo increase of lean mass p<0.01). Maintaining body weight is important for bone health in elderly men. Body fat plays an important role in this relationship, which may reflect the additional metabolic function of adipose tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Fat and Lean Masses in Youths with Down Syndrome: Gender Differences

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Ara, Ignacio; Moreno, Luis A.; Vicente-Rodriguez, German; Casajus, Jose A.

    2011-01-01

    The present study aimed at comparing fat and lean masses between children and adolescents with and without Down syndrome (DS) and evaluating the presence of sexual dimorphism. Total and regional fat and lean masses were assessed by dual energy X-ray absorptiometry (DXA) and the percentage of body fat (%BF) by air-displacement plethysmography (ADP)…

  18. Fat and Lean Masses in Youths with Down Syndrome: Gender Differences

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Ara, Ignacio; Moreno, Luis A.; Vicente-Rodriguez, German; Casajus, Jose A.

    2011-01-01

    The present study aimed at comparing fat and lean masses between children and adolescents with and without Down syndrome (DS) and evaluating the presence of sexual dimorphism. Total and regional fat and lean masses were assessed by dual energy X-ray absorptiometry (DXA) and the percentage of body fat (%BF) by air-displacement plethysmography (ADP)…

  19. New compartment model analysis of lean-mass and fat-mass growth with overfeeding.

    PubMed

    Shumilov, Dmytro; Heymsfield, Steven B; Redman, Leanne M; Kalluri, Kesava; Dey, Joyoni

    2016-05-01

    Mathematical models of lean- and fat-mass growth with diet are useful to help describe and potentially predict the fat- and lean-mass change with different diets as a function of consumed protein and fat calories. Most of the existing models do not explicitly account for interdependence of fat-mass on the lean-mass and vice versa. The aim of this study was to develop a new compartmental model to describe the growth of lean and fat mass depending on the input of dietary protein and fat, and accounting for the interdependence of adipose tissue and muscle growth. The model was fitted to existing clinical data of an overfeeding trial for 23 participants (with a high-protein diet, a normal-protein diet, and a low-protein diet) and compared with the existing Forbes model. Qualitatively and quantitatively, the compartment model data fit was smoother with less overall error than the Forbes model. The root means square error were 0.39, 0.93 and 0.72 kg for the new model, the Forbes model, and the modified Forbes model, respectively. Additionally, for the present model, the differences between some of the coefficients (on the cross dependence of fat and lean mass as well as on the intake diet dependence) across different diets were statistically significant (P < 0.05). Our new Dey-model showed excellent fit to overfeeding data for 23 normal participants with some significant differences of model coefficients across diets, enabling further studies of the model coefficients for larger groups of participants with obesity or other diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of Exercise Training on Fat Loss and Lean Mass Gain in Mexican-American and Korean Premenopausal Women.

    PubMed

    Wu, Shenghui; Park, Kyung-Shin; McCormick, Joseph B

    2017-01-01

    We investigated the effect of exercise training on body composition change in women. Nineteen Mexican-American and 18 Korean premenopausal overweight/obese women were randomized into one of the following groups: control, low-intensity training group (LI), and high-intensity training group (HI). Subjects completed 12 weeks of training at 50-56% maximal oxygen consumption (LI) or 65-70% maximal oxygen consumption (HI). Body composition components were measured at baseline and after training using dual-energy X-ray absorptiometry for Mexican-Americans, while whole-body composition was measured by the direct segmental multifrequency bioelectrical impedance analysis and abdominal fat was measured by single-slice computed tomography for Koreans. Data were analyzed using mixed-model repeated measures independent of age, ethnicity, and body mass index (BMI). Exercise training showed a significant effect on BMI, fat percentage, fat mass, lean mass, and visceral adipose tissue area. HI significantly decreased fat mass and fat percentage but increased lean mass (all P < 0.05). LI significantly reduced BMI, fat mass, fat percentage, and visceral adipose tissue area but increased lean mass (all P < 0.05). Exercise training had a beneficial effect on reducing BMI, fat percentage, fat mass, and visceral adipose tissue area but had no effect on increasing lean mass for Mexican-American and Korean premenopausal overweight/obese women.

  1. Validation of a skinfold based index for tracking proportional changes in lean mass

    PubMed Central

    Slater, G J; Duthie, G M; Pyne, D B; Hopkins, W G

    2006-01-01

    Background The lean mass index (LMI) is a new empirical measure that tracks within‐subject proportional changes in body mass adjusted for changes in skinfold thickness. Objective To compare the ability of the LMI and other skinfold derived measures of lean mass to monitor changes in lean mass. Methods 20 elite rugby union players undertook full anthropometric profiles on two occasions 10 weeks apart to calculate the LMI and five skinfold based measures of lean mass. Hydrodensitometry, deuterium dilution, and dual energy x ray absorptiometry provided a criterion choice, four compartment (4C) measure of lean mass for validation purposes. Regression based measures of validity, derived for within‐subject proportional changes through log transformation, included correlation coefficients and standard errors of the estimate. Results The correlation between change scores for the LMI and 4C lean mass was moderate (0.37, 90% confidence interval −0.01 to 0.66) and similar to the correlations for the other practical measures of lean mass (range 0.26 to 0.42). Standard errors of the estimate for the practical measures were in the range of 2.8–2.9%. The LMI correctly identified the direction of change in 4C lean mass for 14 of the 20 athletes, compared with 11 to 13 for the other practical measures of lean mass. Conclusions The LMI is probably as good as other skinfold based measures for tracking lean mass and is theoretically more appropriate. Given the impracticality of the 4C criterion measure for routine field use, the LMI may offer a convenient alternative for monitoring physique changes, provided its utility is established under various conditions. PMID:16505075

  2. Validation of a skinfold based index for tracking proportional changes in lean mass.

    PubMed

    Slater, G J; Duthie, G M; Pyne, D B; Hopkins, W G

    2006-03-01

    The lean mass index (LMI) is a new empirical measure that tracks within-subject proportional changes in body mass adjusted for changes in skinfold thickness. To compare the ability of the LMI and other skinfold derived measures of lean mass to monitor changes in lean mass. 20 elite rugby union players undertook full anthropometric profiles on two occasions 10 weeks apart to calculate the LMI and five skinfold based measures of lean mass. Hydrodensitometry, deuterium dilution, and dual energy x ray absorptiometry provided a criterion choice, four compartment (4C) measure of lean mass for validation purposes. Regression based measures of validity, derived for within-subject proportional changes through log transformation, included correlation coefficients and standard errors of the estimate. The correlation between change scores for the LMI and 4C lean mass was moderate (0.37, 90% confidence interval -0.01 to 0.66) and similar to the correlations for the other practical measures of lean mass (range 0.26 to 0.42). Standard errors of the estimate for the practical measures were in the range of 2.8-2.9%. The LMI correctly identified the direction of change in 4C lean mass for 14 of the 20 athletes, compared with 11 to 13 for the other practical measures of lean mass. The LMI is probably as good as other skinfold based measures for tracking lean mass and is theoretically more appropriate. Given the impracticality of the 4C criterion measure for routine field use, the LMI may offer a convenient alternative for monitoring physique changes, provided its utility is established under various conditions.

  3. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers

    PubMed Central

    Kim, Chul-Ho

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects. PMID:27479009

  4. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers.

    PubMed

    Kim, Chul-Ho; Wheatley, Courtney M; Behnia, Mehrdad; Johnson, Bruce D

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects.

  5. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population.

    PubMed

    Moon, Seong-Su

    2014-09-01

    We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009-2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥ 50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20-29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40-49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women.

  6. Development of Novel Methods to Define Deficits in Appendicular Lean Mass Relative to Fat Mass

    PubMed Central

    Weber, David; Long, Jin; Leonard, Mary B.; Zemel, Babette; Baker, Joshua F.

    2016-01-01

    Background Recent studies suggest that adjustment of measures of lean mass for adiposity improves associations with physical function. Our objective was to develop and test a method to adjust appendicular lean mass for adiposity. Methods Whole-body DXA data in 14,850 adults in the National Health and Nutrition Examination Survey were used to generate sex-, and race-specific standard deviation scores (Z-Scores relative to age and T-scores relative to 25 year-olds) for appendicular lean mass index (ALMI, kg/m2) and fat mass index (FMI, kg/m2). Correlations between ALMI and FMI Z- and T-Scores were assessed within demographic categories. Fat-adjusted ALMI (ALMIFMI) scores were determined using residual methods. Sarcopenia was defined as a T-Score <-2.0 and low lean for age as a Z-Score <-1.0. Correlations with physical function were assessed in an at-risk population. Results Positive associations between ALMI and FMI Z- and T-Scores were significant (R >0.50; p<0.001) within all demographic categories. The impact of a unit greater FMI Z-score on ALMI Z-score was less in the elderly, men, white subjects, and among individuals with lower FMI (all tests for interaction p<0.001). There was fair agreement between ALMI and ALMIFMI estimates of sarcopenia and low lean for age [Kappa: 0.46, 0.52, respectively (p<0.0001)]. Elderly subjects were likely to be re-classified as sarcopenic while young subjects were likely to be re-classified as normal using ALMIFMI. ALMIFMI T-scores resulted in approximately twice the number of subjects defined as sarcopenic, compared with ALMI T-Scores. (1299 v. 534). Among rheumatoid arthritis patients, ALMIFMI Z-scores correlated with physical function (Health Assessment Questionnaire: rho = -0.22, p = 0.04; Short Physical Performance Battery: rho = 0.27, p = 0.01); however, the ALMI Z-Score did not. Conclusions Adjustment of ALMI for the confounding association with FMI impacts the definition of lean mass deficits. These methods provide a

  7. Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis.

    PubMed

    Nissen, Steven L; Sharp, Rick L

    2003-02-01

    The purpose of this study was to quantify which dietary supplements augment lean mass and strength gains during resistance training. Peer-reviewed studies between the years 1967 and 2001 were included in the analysis if they met a predetermined set of experimental criteria, among which were at least 3-wk duration and resistance-training 2 or more times a week. Lean mass and strength were normalized for meta-analysis by conversion to percent change per week and by calculating the effect size for each variable. Of the 250 supplements examined, only 6 had more than 2 studies that met the criteria for inclusion in the meta-analysis. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) were found to significantly increase net lean mass gains of 0.36 and 0.28%/wk and strength gains of 1.09 and 1.40%/wk (P < 0.05), respectively. Chromium, dehydroepiandrosterone, androstenedione, and protein did not significantly affect lean gain or strength. In conclusion, two supplements, creatine and HMB, have data supporting their use to augment lean mass and strength gains with resistance training.

  8. The social patterning of fat and lean mass in a contemporary cohort of children.

    PubMed

    Ness, Andy R; Leary, Sam; Reilly, John; Wells, Jonathan; Tobias, Jon; Clark, Emma; Smith, George Davey

    2006-01-01

    Studies of the social patterning of obesity in children using body mass index have reported inconsistent results. We explored the association of social class with fat mass and lean mass in a contemporary cohort of children measured using dual energy X-ray absorptiometry. We observed a clear social gradient of fat mass (with children of higher social class having a lower fat mass), but no gradient in lean mass or trunk fat mass. Our data show that inequalities in adiposity are present in primary school children and suggest that social inequalities in childhood obesity may have been underestimated in previous studies.

  9. Collateral fattening: When a deficit in lean body mass drives overeating.

    PubMed

    Dulloo, Abdul G

    2017-02-01

    In his last review entitled "Some Adventures in Body Composition," Gilbert Forbes reminded us that "lean body mass and body fat are in a sense companions." To what extent the lean body mass (or fat-free mass) component in this companionship impacts on energy intake is rarely a topic for discussion, amid a dominant adipocentric view of appetite control. Yet an analysis of the few human studies that have investigated the relationships between objectively measured food intake and body composition reveals a potentially important role for both an increase and a decrease in fat-free mass in the drive to eat. These studies are highlighted here, together with the implications of their findings for research directed as much toward the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, as toward understanding the mechanisms by which dieting and sedentariness predispose to fatness. © 2017 The Authors. Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  10. Relative Importance of Lean and Fat Mass on Bone Mineral Density in Iranian Children and Adolescents

    PubMed Central

    Jeddi, Marjan; Dabbaghmanesh, Mohammad Hossein; Ranjbar Omrani, Gholamhossein; Ayatollahi, Sayed Mohammad Taghi; Bagheri, Zahra; Bakhshayeshkaram, Marzieh

    2015-01-01

    Background: Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. Objectives: The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. Patients and Methods: A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. Results: Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. Conclusions: These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children. PMID:26401143

  11. Nutritional supplements to increase muscle mass.

    PubMed

    Clarkson, P M; Rawson, E S

    1999-07-01

    Although nutritional supplements purported to increase muscle mass are widely available at health food stores, gyms, by mail order, and over the Internet, many of these supplements have little or no data to support their claims. This article reviews the theory and research behind popular nutritional supplements commonly marketed as muscle mass builders. Included are the minerals chromium, vanadyl sulfate, and boron, the steroid hormone dehydroepiandrosterone (DHEA), beta-methyl-hydroxy-beta-methylbutyrate (HMB), creatine, protein supplements, and amino acids. Research has shown that chromium vanadyl sulfate, and boron do not appear to be effective in increasing lean body mass. The few studies examining DHEA have not supported the claim of increased muscle gain. Preliminary work on HMB supports an anticatabolic effect, but only one human study is currently available. Many studies reported increased body mass and several have reported increased lean body mass following creatine ingestion. This weight gain is most likely water retention in muscle but could also be due to some new muscle protein. Although athletes have a greater protein requirement than sedentary individuals, this is easily obtained through the diet, negating the use of protein supplements. Studies on amino acids have not supported their claim to increase growth hormone or insulin secretion. Nutritional supplements can be marketed without FDA approval of safety or effectiveness. Athletes who choose to ingest these supplements should be concerned with unsubstantiated claims, questionable quality control, and safety of long-term use.

  12. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis.

    PubMed

    Torres-Costoso, Ana; Gracia-Marco, Luis; Sánchez-López, Mairena; García-Prieto, Jorge Cañete; García-Hermoso, Antonio; Díez-Fernández, Ana; Martínez-Vizcaíno, Vicente

    2015-01-01

    This report aims to analyse the independent association of lean mass and muscle fitness with bone mineral content (BMC) and bone mineral density (BMD), and to examine whether the relationship between muscle fitness and bone health is mediated by lean mass. Body composition (by dual energy X-ray absorptiometry (DXA)), muscle fitness, physical activity, age and height were measured in 132 schoolchildren (62 boys, aged 8-11 years). Analysis of covariance tested differences in bone-related variables by lean mass and muscle fitness, controlling for different sets of confounders. Linear regression models fitted for mediation analyses examined whether the association between muscle fitness and bone mass was mediated by lean mass. Children with good performance in handgrip and standing long jump had better and worse bone health, respectively. These differences disappeared after controlling for lean mass. Children with high lean mass had higher values in all bone-related variables. In addition, the relationship between muscle fitness and bone mass was fully mediated by lean mass. In conclusion, the relationship between upper-limbs muscle fitness and bone health seems to be dependent on lean mass but not on muscle fitness. Schoolchildren with high lean mass have more BMC and BMD in all regions. Lean mass mediates the association between muscle fitness and bone mass.

  13. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon.

    PubMed

    Koefoed, Mette; Kromann, Charles Boy; Juliussen, Sophie Ryberg; Hvidtfeldt, Danni; Ekelund, Bo; Frandsen, Niels Erik; Marckmann, Peter

    2016-01-01

    Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment. In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences), and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients. Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2-12) as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22-44). Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32-55). Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5-19). The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology. Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index.

  14. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon

    PubMed Central

    Koefoed, Mette; Kromann, Charles Boy; Juliussen, Sophie Ryberg; Hvidtfeldt, Danni; Ekelund, Bo; Frandsen, Niels Erik; Marckmann, Peter

    2016-01-01

    Background and Aims Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment. Methods In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences), and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients. Results Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2–12) as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22–44). Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32–55). Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5–19). The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology. Conclusions Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index. PMID:26919440

  15. Effects of exercise training on resting energy expenditure and lean mass during pediatric burn rehabilitation.

    PubMed

    Al-Mousawi, Ahmed M; Williams, Felicia N; Mlcak, Ronald P; Jeschke, Marc G; Herndon, David N; Suman, Oscar E

    2010-01-01

    Severe burns cause profound hormonal and metabolic disturbances resulting in hypermetabolism, reflected in extreme elevation of resting energy expenditure (REE) and extensive skeletal muscle catabolism. Aerobic and resistive exercise programs during rehabilitation have shown substantial benefits, although whether such training potentially exacerbates basal metabolism is unknown. Therefore, the effects of exercise training on REE during the rehabilitation of severely burned pediatric patients were examined. Children with 40% total body surface area burns and greater were enrolled at admission to the burn intensive care unit to participate in a 12-week, hospital-based exercise program (EX) or a home-based standard of care program (SOC), commencing 6 months after injury. Twenty-one patients (aged 7-17 years) were enrolled and randomized to SOC (n = 10) or EX (n = 11). Age, sex, and total body surface area burned were similar. Mean change (+/-standard deviation) in REE, normalized to individual lean body mass, was almost negligible between SOC and EX group patients (SOC, 0.03 +/- 17.40% vs EX, 0.01 +/- 26.38%). A significant increase in lean body mass was found for EX patients (SOC, 2.06 +/- 3.17% vs EX, 8.75 +/- 5.65%; P = .004), which persisted when normalized to height (SOC, 0.70 +/- 2.39% vs EX, 6.14 +/- 6.46%; P = .02). Peak torque also improved significantly more in EX patients (SOC, 12.29 +/- 16.49% vs EX, 54.31 +/- 44.25%; P = .02), reflecting improved strength. Exercise training significantly enhanced lean mass and strength, without observed exacerbation of postburn hypermetabolism. Therefore, the use of exercise conditioning as a safe and effective component of pediatric burn rehabilitation is advocated.

  16. Is lost lean mass from intentional weight loss recovered during weight regain in postmenopausal women?123

    PubMed Central

    Lyles, Mary F; Davis, Cralen C; Wang, Xuewen; Beavers, Daniel P; Nicklas, Barbara J

    2011-01-01

    Background: Despite the well-known recidivism of obesity, surprisingly little is known about the composition of body weight during weight regain. Objective: The objective of this study was to determine whether the composition of body weight regained after intentional weight loss is similar to the composition of body weight lost. Design: The design was a follow-up to a randomized controlled trial of weight loss in which body composition was analyzed and compared in 78 postmenopausal women before the intervention, immediately after the intervention, and 6 and 12 mo after the intervention. Results: All body mass and composition variables were lower immediately after weight loss than at baseline (all P < 0.05). More fat than lean mass was lost with weight loss, which resulted in body-composition changes favoring a lower percentage of body fat and a higher lean-to-fat mass ratio (P < 0.001). Considerable interindividual variability in weight regain was noted (CV = 1.07). In women who regained ≥2 kg body weight, a decreasing trend in the lean-to-fat mass ratio was observed, which indicated greater fat mass accretion than lean mass accretion (P < 0.001). Specifically, for every 1 kg fat lost during the weight-loss intervention, 0.26 kg lean tissue was lost; for every 1 kg fat regained over the following year, only 0.12 kg lean tissue was regained. Conclusions: Although not all postmenopausal women who intentionally lose weight will regain it within 1 y, the data suggest that fat mass is regained to a greater degree than is lean mass in those who do experience some weight regain. The health ramifications of our findings remain to be seen. PMID:21795437

  17. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  18. The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise.

    PubMed

    Montgomery, Melissa M; Tritsch, Amanda J; Cone, John R; Schmitz, Randy J; Henson, Robert A; Shultz, Sandra J

    2017-08-01

      The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown.   To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP.   Cohort study.   Controlled laboratory.   A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated.   Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM.   Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time.   Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament-loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively).   Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a

  19. Lean body mass and leg power best predict bone mineral density in adolescent girls.

    PubMed

    Witzke, K A; Snow, C M

    1999-11-01

    We evaluated anthropometric and performance measures that best predict bone mineral density (BMD) and bone mineral content (BMC) in 54 adolescent girls (14.6 +/- 0.5 yr; 22.7 +/- 14.0 months past menarche). Whole body, femoral neck, greater trochanter, lumbar spine (L2-L4), and mid-femoral shaft BMD and BMC, and whole body bone-free lean mass and fat mass were assessed using DXA (Hologic QDR 1000/W). Knee extensor strength and leg power were assessed by isokinetic dynamometry and the Wingate Anaerobic Power Test, respectively. Whole body lean mass was correlated with BMD at all bone sites (r = 0.45-0.77; P < 0.001) and was more highly correlated with bone at all sites than was body weight. Leg power was also associated with BMD at all sites (r = 0.41-0.67; P < 0.001), whereas leg strength correlated significantly with all sites (r = 0.41-0.53; P < 0.001) except the lumbar spine. Stepwise regression analyses revealed that 59% of the variance in whole body BMD was predicted by lean mass alone. No other variables, including fat mass, height, months past menarche, leg power, or leg strength, contributed additionally to the regression model. Similarly, lean mass was the only predictor of lumbar spine and femoral shaft BMD (R2 = 0.25, R2 = 0.37, respectively), while femoral neck and trochanteric BMD were best predicted by leg power (R2 = 0.38, R2 = 0.36, respectively). Similar but stronger models emerged using BMC as the outcome, with lean mass and leg power explaining the most variance in BMC values. In this group of adolescent girls, lean body mass and leg power best predicted BMC and BMD of the whole body, lumbar spine, femoral shaft, and hip, which may suggest an important role for muscle mass development during growth to maximize peak bone density.

  20. Lean Body Mass Is the Predominant Anthropometric Risk Factor for Atrial Fibrillation.

    PubMed

    Fenger-Grøn, Morten; Overvad, Kim; Tjønneland, Anne; Frost, Lars

    2017-05-23

    Obesity is repeatedly emphasized as a risk factor for atrial fibrillation or flutter (AF). However, the underlying evidence may be questioned, as the obvious correlations between various anthropometric measures hamper identification of the characteristics that are biologically driving AF risk, and recent studies suggest that fat carries limited or no independent risk of AF. This study sought to assess mutually adjusted associations among AF risk and height, weight, body mass index, hip and waist circumference, waist-to-hip ratio, and bioelectrical impedance-derived measures of fat mass, lean body mass, and fat percentage. Anthropometric measures and self-reported life-style information were collected from 1993 to 1997 in a population-based cohort including 55,273 persons age 50 to 64 years who were followed in Danish registers until June 2013. During a median of 17 years of follow-up, 3,868 persons developed AF. Adjusted hazard ratios per population SD difference (HRs) showed highly statistically significant, positive associations for all 9 anthropometric measures (HRs ranging from 1.08 [95% confidence interval (CI): 1.05 to 1.12] for waist-to-hip ratio to 1.37 [95% CI: 1.33 to 1.42] for lean body mass). Pairwise mutual adjustment of the 9 measures left the association for lean body mass virtually unchanged (lowest HR: 1.33 [95% CI: 1.28 to 1.39] when adjusting for height), whereas no other association remained substantial when adjusted for lean body mass (highest HR: 1.05 [95% CI: 1.01 to 1.10] for height). Lean body mass was the predominant anthropometric risk factor for AF, whereas no association was observed for either of the obesity-related anthropometric measures after adjustment for lean body mass. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Dietary Protein Intake and Lean Muscle Mass in Survivors of Childhood Acute Lymphoblastic Leukemia: Report From the St. Jude Lifetime Cohort Study

    PubMed Central

    Boland, Alexandra M.; Gibson, Todd M.; Lu, Lu; Kaste, Sue C.; DeLany, James P.; Partin, Robyn E.; Lanctot, Jennifer Q.; Howell, Carrie R.; Nelson, Heather H.; Chemaitilly, Wassim; Pui, Ching-Hon; Robison, Leslie L.; Mulrooney, Daniel A.; Hudson, Melissa M.

    2016-01-01

    Background Survivors of childhood acute lymphoblastic leukemia (ALL) are at risk for low lean muscle mass and muscle weakness, which may contribute to inactivity and early development of chronic diseases typically seen in older adults. Although increasing protein intake, in combination with resistance training, improves lean muscle mass in other populations, it is not known whether muscular tissue among survivors of ALL, whose impairments are treatment-related, will respond similarly. Objective The aim of this study was to evaluate associations among dietary protein intake, resistance training, and lean muscle mass in survivors of ALL and age-, sex-, and race-matched controls. Design This was a cross-sectional study. Methods Lean muscle mass was determined with dual-energy x-ray absorptiometry, dietary information with 24-hour recalls, and participation in resistance training with a questionnaire. Participants were 365 survivors of ALL (52% male; 87% white; median age=28.5 years, range=23.6–31.7) and 365 controls with no previous cancer. Results Compared with controls, survivors of ALL had lower lean muscle mass (55.0 versus 57.2 kg, respectively) and lower percentage of lean muscle mass (68.6% versus 71.4%, respectively) than controls. Similar proportions of survivors (71.1%) and controls (69.7%) met recommended dietary protein intake (0.8 g/kg/d). Survivors (45.4%) were less likely to report resistance training than controls (53.8%). In adjusted models, 1-g higher protein intake per kilogram of body mass per day was associated with a 7.9% increase and resistance training ≥1×wk, with a 2.8% increase in lean muscle mass. Limitations The cross-sectional study design limits temporal evaluation of the association between protein intake and lean muscle mass. Conclusions The findings suggest that survivors of childhood ALL with low lean muscle mass may benefit from optimizing dietary protein intake in combination with resistance training. Research is needed to

  2. Dietary Protein Intake and Lean Muscle Mass in Survivors of Childhood Acute Lymphoblastic Leukemia: Report From the St. Jude Lifetime Cohort Study.

    PubMed

    Boland, Alexandra M; Gibson, Todd M; Lu, Lu; Kaste, Sue C; DeLany, James P; Partin, Robyn E; Lanctot, Jennifer Q; Howell, Carrie R; Nelson, Heather H; Chemaitilly, Wassim; Pui, Ching-Hon; Robison, Leslie L; Mulrooney, Daniel A; Hudson, Melissa M; Ness, Kirsten K

    2016-07-01

    Survivors of childhood acute lymphoblastic leukemia (ALL) are at risk for low lean muscle mass and muscle weakness, which may contribute to inactivity and early development of chronic diseases typically seen in older adults. Although increasing protein intake, in combination with resistance training, improves lean muscle mass in other populations, it is not known whether muscular tissue among survivors of ALL, whose impairments are treatment-related, will respond similarly. The aim of this study was to evaluate associations among dietary protein intake, resistance training, and lean muscle mass in survivors of ALL and age-, sex-, and race-matched controls. This was a cross-sectional study. Lean muscle mass was determined with dual-energy x-ray absorptiometry, dietary information with 24-hour recalls, and participation in resistance training with a questionnaire. Participants were 365 survivors of ALL (52% male; 87% white; median age=28.5 years, range=23.6-31.7) and 365 controls with no previous cancer. Compared with controls, survivors of ALL had lower lean muscle mass (55.0 versus 57.2 kg, respectively) and lower percentage of lean muscle mass (68.6% versus 71.4%, respectively) than controls. Similar proportions of survivors (71.1%) and controls (69.7%) met recommended dietary protein intake (0.8 g/kg/d). Survivors (45.4%) were less likely to report resistance training than controls (53.8%). In adjusted models, 1-g higher protein intake per kilogram of body mass per day was associated with a 7.9% increase and resistance training ≥1×wk, with a 2.8% increase in lean muscle mass. The cross-sectional study design limits temporal evaluation of the association between protein intake and lean muscle mass. The findings suggest that survivors of childhood ALL with low lean muscle mass may benefit from optimizing dietary protein intake in combination with resistance training. Research is needed to determine whether resistance training with protein supplementation

  3. Pre-menarcheal physical activity predicts post-menarcheal lean mass and core strength, but not fat mass.

    PubMed

    Day, M A; Dowthwaite, J N; Rosenbaum, P F; Roedel, G G; Brocker, A A; Scerpella, T A

    2015-12-01

    Youth exercise is associated with improved body composition, but details regarding timing and persistence are limited. We examined pre- and circum-menarcheal organized physical activity exposure (PA) as a factor in development of early post-menarcheal lean mass, fat mass and muscle strength. Participants in a longitudinal study of musculoskeletal growth using dual energy X-ray absorptiometry (DXA) were included based on: 1) Whole body DXA scans: 0.5-1.5 years pre-menarche, 0.5-1.5 years post-menarche; 2) PA records for ⋝6 months preceding the first DXA (prePA) and for the inter-DXA interval (circumPA). Dominant arm grip strength and sit-ups tests coincided with DXA scans; PA, height and maturity were recorded semi-annually. Regressions correlated PA with lean mass/fat mass/strength, accounting for maturity, body size, and baseline values. Seventy girls [baseline: 11.8 yrs (sd 1.0), follow-up: 13.9 years (sd 1.0)] demonstrated circum-menarcheal gains of 25-29% for lean and fat mass and 33% for grip strength. PREPA correlated with pre- and post-menarcheal lean mass, sit-ups and pre-menarcheal fat mass (p<0.05), but not grip strength. CIRCUMPA correlated with only post-menarcheal sub-head lean mass (p=0.03). Lean mass and core strength at 1-year post-menarche were more strongly predicted by pre-menarcheal organized PA than by recent circum-menarcheal PA.

  4. Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke

    PubMed Central

    Pang, Marco YC; Eng, Janice J; McKay, Heather A; Dawson, Andrew S

    2011-01-01

    Following a stroke, reduced level of physical activity and functional use of the paretic leg may lead to bone loss and muscle atrophy. These factors and the high incidence of falls may contribute to hip fractures in the stroke population. This study was the first to examine total proximal femur bone mineral content (BMC) and bone mineral density (BMD) and their relationship to stroke-specific impairments in ambulatory individuals with chronic stroke (onset >1 year). We utilized dual-energy X-ray absorptiometry (DXA) to acquire proximal femur and total body scans on 58 (23 women) community-dwelling individuals with chronic stroke. We report total proximal femur BMC (g) and BMD (g/cm2) derived from the proximal femur scans, and lean mass (g) and fat mass (g) for each leg derived from the total body scans. Each subject was evaluated for ambulatory capacity (Six Minute Walk Test), knee extension strength (hand-held dynamometry), physical fitness [Maximal oxygen uptake (VO2max)], and spasticity (Modified Ashworth Scale). Results showed that the paretic leg had significantly lower proximal femur BMD, lean mass, and percent lean mass but higher fat mass than the non-paretic leg for both men and women. Proximal femur BMD of the paretic leg was significantly related to ambulatory capacity (r=0.33, p=0.011), muscle strength (r=0.39, p=0.002), physical fitness (r=0.57, p<0.001) but not related to spasticity (r=−0.23, p=0.080). Multiple regression analysis showed that lean mass in the paretic leg was a major predictor (R2=0.371, p<0.001) of the paretic proximal femur BMD. VO2max was a significant predictor of both paretic proximal femur BMD (R2=0.325, p<0.001) and lean mass in the paretic leg (R2=0.700, p<0.001). Further study is required to determine whether increasing physical fitness and lean mass is important to improve hip bone health in chronic stroke. PMID:15902416

  5. Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke.

    PubMed

    Pang, Marco Y C; Eng, Janice J; McKay, Heather A; Dawson, Andrew S

    2005-12-01

    Following a stroke, the reduced level of physical activity and functional use of the paretic leg may lead to bone loss and muscle atrophy. These factors and the high incidence of falls may contribute to hip fractures in the stroke population. This study was the first to examine total proximal femur bone mineral content (BMC) and bone mineral density (BMD) and their relationship to stroke-specific impairments in ambulatory individuals with chronic stroke (onset >1 year). We utilized dual-energy X-ray absorptiometry (DXA) to acquire proximal femur and total body scans on 58 (23 women) community-dwelling individuals with chronic stroke. We reported total proximal femur BMC (g) and BMD (g/cm2) derived from the proximal femur scans, and lean mass (g) and fat mass (g) for each leg derived from the total body scans. Each subject was evaluated for ambulatory capacity (Six-Minute Walk Test), knee extension strength (hand-held dynamometry), physical fitness [maximal oxygen uptake (VO2max)] and spasticity (Modified Ashworth Scale). Results showed that the paretic leg had significantly lower proximal femur BMD, lean mass and percent lean mass, but higher fat mass than the non-paretic leg for both men and women. Proximal femur BMD of the paretic leg was significantly related to ambulatory capacity (r=0.33, P=0.011), muscle strength (r=0.39, P=0.002), physical fitness (r=0.57, P<0.001), but not related to spasticity (r=-0.23, P=0.080). Multiple regression analysis showed that lean mass in the paretic leg was a major predictor (r2=0.371, P<0.001) of the paretic proximal femur BMD. VO2max was a significant predictor of both paretic proximal femur BMD (r2=0.325, P<0.001) and lean mass in the paretic leg (r2=0.700, P<0.001). Further study is required to determine whether increasing physical fitness and lean mass are important to improve hip bone health in chronic stroke.

  6. Association between fat mass, lean mass, and bone loss: the Dubbo Osteoporosis Epidemiology Study.

    PubMed

    Yang, S; Center, J R; Eisman, J A; Nguyen, T V

    2015-04-01

    Lower body fat mass is a risk factor for bone loss at lumbar spine in postmenopausal women, but not in men. Body lean mass and fat mass were not associated with femoral neck bone loss in either gender. Bone density and body mass are closely associated. Whole body lean mass (LM) and fat mass (FM) together account for approximately 95 % of body mass. Bone loss is associated with loss of body mass but which of the components of body mass (FM or LM) is related to bone loss is not well understood. Therefore, in this study, we sought to assess whether baseline FM or LM has predictive value for future relative rate of bone mineral density (BMD) changes (%/year). The present population-based cohort study was part of the ongoing Dubbo Osteoporosis Epidemiology Study (DOES). BMD, FM, and LM were measured with dual energy X-ray absorptiometry (GE-LUNAR Corp, Madison, WI). BMD measurements were taken in approximately every 2 years between 2000 and 2010. We only included the participants with at least two BMD measurements at the femoral neck and lumbar spine. In total, 717 individuals (204 men and 513 women) aged 50 years or older were studied. Rate of bone loss at femoral neck and lumbar spine was faster in women than in men (all P < 0.01). In bivariable regression analysis, each 5 kg greater FM in women was associated with 0.4 %/year (P = 0.003) lower bone loss at lumbar spine. This magnitude of association remained virtually unchanged after adjusting for LM and/or other covariates (P = 0.03). After adjusting for covariates, variation of FM accounted for ∼1.5 % total variation in lumbar spine bone loss. However, there was no significant association between FM and change in femoral neck BMD in either men or women. Lower FM was an independent but modest risk factor for greater bone loss at the lumbar spine in women but not in men. If further studies confirm our findings, FM can help predict lumbar spine bone loss in women.

  7. Cull sow knife-separable lean content evaluation at harvest and lean mass content prediction equation development.

    PubMed

    Abell, Caitlyn E; Stalder, Kenneth J; Hendricks, Haven B; Fitzgerald, Robert F

    2012-07-01

    The objectives of this study were to develop a prediction equation for carcass knife-separable lean within and across USDA cull sow market weight classes (MWC) and to determine carcass and individual primal cut knife separable lean content from cull sows. There were significant percent lean and fat differences in the primal cuts across USDA MWC. The two lighter USDA MWC had a greater percent carcass lean and lower percent fat compared to the two heavier MWC. In general, hot carcass weight explained the majority of carcass lean variation. Additionally, backfat was a significant variation source when predicting cull sow carcass lean. The findings support using a single lean prediction equation across MWC to assist processors when making cull sow purchasing decisions and determine the mix of animals from various USDA MWC that will meet their needs when making pork products with defined lean:fat content.

  8. Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass.

    PubMed

    Paris, Michael T; Lafleur, Benoit; Dubin, Joel A; Mourtzakis, Marina

    2017-07-19

    Ultrasound is a non-invasive and readily available tool that can be prospectively applied at the bedside to assess muscle mass in clinical settings. The four-site protocol, which images two anatomical sites on each quadriceps, may be a viable bedside method, but its ability to predict musculature has not been compared against whole-body reference methods. Our primary objectives were to (i) compare the four-site protocol's ability to predict appendicular lean tissue mass from dual-energy X-ray absorptiometry; (ii) optimize the predictability of the four-site protocol with additional anatomical muscle thicknesses and easily obtained covariates; and (iii) assess the ability of the optimized protocol to identify individuals with low lean tissue mass. This observational cross-sectional study recruited 96 university and community dwelling adults. Participants underwent ultrasound scans for assessment of muscle thickness and whole-body dual-energy X-ray absorptiometry scans for assessment of appendicular lean tissue. Ultrasound protocols included (i) the nine-site protocol, which images nine anterior and posterior muscle groups in supine and prone positions, and (ii) the four-site protocol, which images two anterior sites on each quadriceps muscle group in a supine position. The four-site protocol was strongly associated (R(2)  = 0.72) with appendicular lean tissue mass, but Bland-Altman analysis displayed wide limits of agreement (-5.67, 5.67 kg). Incorporating the anterior upper arm muscle thickness, and covariates age and sex, alongside the four-site protocol, improved the association (R(2)  = 0.91) with appendicular lean tissue and displayed narrower limits of agreement (-3.18, 3.18 kg). The optimized protocol demonstrated a strong ability to identify low lean tissue mass (area under the curve = 0.89). The four-site protocol can be improved with the addition of the anterior upper arm muscle thickness, sex, and age when predicting appendicular lean tissue mass

  9. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Green, N. R.

    1993-01-01

    The effect of boron supplementation was investigated in 19 male bodybuilders ages 20-27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p < 0.05) different as the experimental group increased from (+/- SD) 20.1 +/- 7.7 ppb pretest to 32.6 +/- 27.6 ppb posttest, while the control group mean decreased from 15.1 +/- 14.4 ppb pretest to 6.3 +/- 5.5 ppb posttest. Analysis of variance indicated no significant effect of boron supplementation on any of the dependent variables. Both groups demonstrated significant increases in total testosterone, lean body mass, 1-RM squat, and 1-RM bench press. The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

  10. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Green, N. R.

    1993-01-01

    The effect of boron supplementation was investigated in 19 male bodybuilders ages 20-27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p < 0.05) different as the experimental group increased from (+/- SD) 20.1 +/- 7.7 ppb pretest to 32.6 +/- 27.6 ppb posttest, while the control group mean decreased from 15.1 +/- 14.4 ppb pretest to 6.3 +/- 5.5 ppb posttest. Analysis of variance indicated no significant effect of boron supplementation on any of the dependent variables. Both groups demonstrated significant increases in total testosterone, lean body mass, 1-RM squat, and 1-RM bench press. The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

  11. IGF-I Polymorphism is Associated with Lean Mass, Exercise Economy and Performance Among Premenopausal Women

    PubMed Central

    López-Alarcón, Mardya; Hunter, Gary R.; Gower, Barba A.; Fernández, José R.

    2007-01-01

    Background We undertook this study to investigate the association of a genetic polymorphism of the insulin-like growth factor, IGF-I189, on body composition, exercise performance and exercise economy, after controlling for the independent effect of race as assessed by African genetic admixture (AFADM). Methods A total of 114 premenopausal sedentary women were genotyped for IGF-I189, obtaining measures of fat mass, lean body mass, VO2 during cycling and stairclimbing, time on treadmill and leg strength. A quantitative value for AFADM was derived from genotypic information of approximately 40 ancestry informative markers and used as covariate in statistical models. Results After adjusting for AFADM, IGF-I189 was negatively associated with lean body mass (p = 0.029) and lean leg mass (p = 0.050). Leg strength was not associated with the presence/absence of IGF-I189 (p = 0.380), but carriers of the allele demonstrated a longer time on the treadmill (p = 0.015) after adjusting for AFADM. There was also a negative relationship between oxygen uptake during cycling and presence of the IGF-I189 independent of AFADM (p = 0.010). Conclusion Independent of AFADM, individuals with IGF-I189 are more likely to have low leg lean mass and to perform better in activities requiring exercise economy and endurance performance. PMID:17174724

  12. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial.

    PubMed

    Liu, Yuejun; Cotillard, Aurélie; Vatier, Camille; Bastard, Jean-Philippe; Fellahi, Soraya; Stévant, Marie; Allatif, Omran; Langlois, Clotilde; Bieuvelet, Séverine; Brochot, Amandine; Guilbot, Angèle; Clément, Karine; Rizkalla, Salwa W

    2015-01-01

    Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue. Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed. In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥ 25 kg/m(2), unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization. Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24 ± 0.50 vs +0.12 ± 0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement. Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes. ClinicalTrials.gov NCT01530685.

  13. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Liu, Yuejun; Cotillard, Aurélie; Vatier, Camille; Bastard, Jean-Philippe; Fellahi, Soraya; Stévant, Marie; Allatif, Omran; Langlois, Clotilde; Bieuvelet, Séverine; Brochot, Amandine; Guilbot, Angèle; Clément, Karine; Rizkalla, Salwa W.

    2015-01-01

    Background Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue. Objectives Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed. Methods In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥25 kg/m2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization. Results Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24±0.50 vs +0.12±0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement. Conclusions Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes. Trial Registration ClinicalTrials.gov NCT01530685 PMID:26406981

  14. Relationship of Heath and Carter's Second Component to Lean Body Mass and Height in College Women

    ERIC Educational Resources Information Center

    Slaughter, M. H.; And Others

    1977-01-01

    The Heath and Carter approach to determining somatotypes is less accurate than is regression analysis, mainly because of the lack of association between skeletal widths and lean body mass as measured by body density and whole-body fat percentage, holding constant muscle circumference. (Author)

  15. Relationship of Heath and Carter's Second Component to Lean Body Mass and Height in College Women

    ERIC Educational Resources Information Center

    Slaughter, M. H.; And Others

    1977-01-01

    The Heath and Carter approach to determining somatotypes is less accurate than is regression analysis, mainly because of the lack of association between skeletal widths and lean body mass as measured by body density and whole-body fat percentage, holding constant muscle circumference. (Author)

  16. Effects of exercise training on resting energy expenditure and lean mass during pediatric burn rehabilitation

    PubMed Central

    Al-Mousawi, Ahmed M.; Williams, Felicia N.; Mlcak, Ronald P.; Jeschke, Marc G.; Herndon, David N.; Suman, Oscar E.

    2013-01-01

    Objective Severe burns cause profound hormonal and metabolic disturbances resulting in hypermetabolism, reflected in extreme elevation of resting energy expenditure (REE) and extensive skeletal muscle catabolism. Aerobic and resistive exercise programs during rehabilitation have shown substantial benefits, although whether such training potentially exacerbates basal metabolism is unknown. We therefore examined the effects of exercise training upon REE during the rehabilitation of severely burned pediatric patients. Methods Children with 40% total body surface area (TBSA) burns and greater were enrolled on admission to our burn intensive-care unit to participate in a twelve-week, hospital-based exercise program (EX), or a home-based standard of care program (SOC), commencing six months post-injury. Results Twenty-one patients (7–17 years) were enrolled and randomized to SOC (n=10) or EX (n=11). Age, gender, and TBSA burned were similar. Mean change (± sd) in REE, normalized to individual lean body mass (LBM), was almost negligible between SOC and EX group patients (0.03 ± 17.40%, SOC vs. 0.01 ± 26.38%, EX). A significant increase in LBM was found for EX patients (2.06 ± 3.17%, SOC vs. 8.75 ± 5.65%, EX; p=0.004), which persisted when normalized to height (0.70 ± 2.39%, SOC vs. 6.14 ± 6.46%, EX; p=0.02). Peak torque also improved significantly more in EX patients (12.29 ± 16.49%, SOC vs. 54.31 ± 44.25%, EX; p=0.02), reflecting improved strength. Conclusion Exercise training significantly enhanced lean mass and strength, without observed exacerbation of post-burn hypermetabolism. We therefore advocate use of exercise conditioning as a safe and effective component of pediatric burn rehabilitation. PMID:20354445

  17. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    PubMed

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephan; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10(-8)) or suggestively genome wide (p < 2.3 × 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  18. Effect of low appendicular lean mass, grip strength, and gait speed on the functional outcome after surgery for distal radius fractures.

    PubMed

    Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis

  19. Association between low lean mass and low bone mineral density in 653 women with hip fracture: does the definition of low lean mass matter?

    PubMed

    Di Monaco, Marco; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa

    2017-02-03

    Loss of both muscle and bone mass results in fragility fractures with increased risk of disability, poor quality of life, and death. Our aim was to assess the association between low appendicular lean mass (aLM) defined according to different criteria and low bone mineral density (BMD) in hip-fracture women. Six hundred fifty-three women admitted to our rehabilitation hospital underwent dual energy X-ray absorptiometry 19.1 ± 4.1 (mean ± SD) days after hip-fracture occurrence. Low aLM was identified according to either Baumgartner's definition (aLM/height(2) less than two standard deviations below the mean of the young reference group) or FNIH criteria: aLM <15.02 kg, or aLM adjusted for body mass index (BMI) <0.512. Low BMD was diagnosed with a T-score <-2.5 at the unfractured femoral neck. Using Baumgartner's definition, the association between low aLM/height(2) and low BMD was significant: χ (2)(1, n = 653) = 8.52 (p = 0.004), but it was erased by adjustments for age and fat mass. Using the FNIH definition the association between low aLM and low BMD was significant: χ (2)(1, n = 653) = 42.5 (p < 0.001), and it was confirmed after adjustment for age and fat mass (p < 0.001). With the FNIH definition based on aLM/BMI ratio the association between low aLM/BMI ratio and low BMD was nonsignificant: χ (2)(1, n = 653) = 0.003 (p = 0.957). The association between low aLM and low BMD in women with hip fracture dramatically depends on the adopted definition of low aLM. FNIH threshold for aLM (<15.02 kg) emerges as a useful tool to capture women with damage of the muscle-bone unit.

  20. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study.

    PubMed

    Gould, Haslinda; Brennan, Sharon L; Kotowicz, Mark A; Nicholson, Geoffrey C; Pasco, Julie A

    2014-04-01

    The aim of this study was to develop reference ranges for total and appendicular lean mass measured using dual-energy X-ray absorptiometry (DXA) from a randomly selected population-based sample of men and women residing in southeastern Australia. Men (n = 1,411) and women (n = 960) aged 20-93 years, enrolled in the Geelong Osteoporosis Study, were randomly selected from the Barwon Statistical Division using the electoral roll as a sampling frame in 2001-2006 (67 % participation) and 1993-1997 (77 % participation), respectively. Using DXA (Lunar DPX-L or Prodigy Pro) at baseline for men and at the 10-year follow-up for women (2004-2008), total and appendicular lean mass were measured. Means and standard deviations for each lean mass measure (absolute and relative to height squared) were generated for each age decade, and cutpoints equivalent to T scores of -2.0 and -1.0 were calculated using data from young adult men and women aged 20-39 years. Young adult reference data were derived from 374 men and 308 women. Cutpoints for relative appendicular lean mass equal to T scores of -2.0 and -1.0 were 6.94 and 7.87 kg/m(2) for men and 5.30 and 6.07 kg/m(2) for women. The proportions of men and women aged ≥80 years with a T score less than -2.0 were 16.0 and 6.2 %, respectively. These reference ranges may be useful for identifying lean mass deficits in the assessment of muscle wasting and sarcopenia.

  1. Do 6 months of whole-body vibration training improve lean mass and bone mass acquisition of adolescent swimmers?

    PubMed

    Gómez-Bruton, A; González-Agüero, A; Matute-Llorente, A; Julián, C; Lozano-Berges, G; Gómez-Cabello, A; Casajús, J A; Vicente-Rodríguez, G

    2017-12-01

    Swimming has little effect on bone mass. Therefore, adolescent swimmers should complement their water training with a short and intense weight-bearing training, aiming to increase their bone acquisition. Forty swimmers performed a six-month whole-body vibration (WBV) training. WBV had no effect on adolescent swimmers' bone mass or lean mass. The aims of the present study were to evaluate the effects of a whole-body vibration (WBV) intervention on bone mineral density (BMD), bone mineral content (BMC) and lean mass (LM) in adolescent swimmers. Forty male and female adolescent swimmers (VIB; mean age 14.2 ± 1.9 years) completed the WBV protocol that consisted of 15 min of training 3 days per week during a 6-month period (ranging from 3.6 to 11.6 g), while 23 swimmers (SWI; mean age 15.0 ± 2.2 years) continued with their regular swimming training alone. VIB were divided into tertiles according to training compliance in order to evaluate if any dose-effect relation existed. BMD, BMC and LM were measured longitudinally by dual energy X-ray at the whole body, lumbar-spine and hip. No group by time interactions and no differences in change percentage were found for BMD, BMC or LM in any of the measured variables. The mean change percentage of the subtotal body (whole body minus the head) for VIB and SWI, respectively, was 2.3 vs. 2.4% for BMD, 5.7 vs 5.7% for BMC and 7.3 vs. 8.0% for lean mass. Moreover, no indication for dose-response was observed. The proposed WBV protocol had no effect on BMD, BMC and LM in adolescent swimmers. Other types of training should be used in this population to improve both bone and lean mass.

  2. The role of lean body mass and physical activity in bone health in children.

    PubMed

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p < 0.05), while habitual weight-bearing PA positively influenced BMC in boys (p < 0.05). The effect of muscle in bone was not determined by PA and fitness score did not explain bone variability. Femoral neck was the bone site more closely associated with mechanical loading factors; boys with a PA > 608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be

  3. Resistance Training Combined With Diet Decreases Body Fat While Preserving Lean Mass Independent of Resting Metabolic Rate: A Randomized Trial.

    PubMed

    Miller, Todd; Mull, Stephanie; Aragon, Alan Albert; Krieger, James; Schoenfeld, Brad Jon

    2017-09-05

    The purpose of this study was to determine the effects of resistance training only (RT n=10), dietary intervention only (DIET n=10), resistance training plus diet (RT+DIET n=10) and control (CON n=10) on body composition and resting metabolic rate (RMR) in a cohort of 40 premenopausal female volunteers. Subjects in DIET and RT+DIET were provided with daily macronutrient and calorie goals based on DXA and RMR tests, with protein maintained at 1.4 g/kg/day. Subjects in the RT and RT+DIET groups performed a supervised progressive RT program consisting of exercises for all the major muscle groups of the body. Results showed a significant month-by-group interaction for change in fat mass with no significant linear trend for control. The three treatment groups all showed significant linear decreases in fat mass, but the slope of the decrease became progressively steeper from the RT, to DIET, to RT+DIET. A significant linear increase for lean mass was seen for resistance training-only. There was a non-significant increase in RMR in all groups from Month 0 to Month 4 but no significant month by group interaction. In conclusion, significant reductions in fat mass were achieved by all experimental groups, but results were maximized by RT+DIET. Only the RT group showed significant increases in lean mass.

  4. The Relationship between Lean Mass and Contractile Properties of the Quadriceps in Elderly and Young Adults.

    PubMed

    Mau-Moeller, Anett; Bruhn, Sven; Bader, Rainer; Behrens, Martin

    2015-01-01

    Aging is associated with a loss of muscle mass (sarcopenia) and function. The twitch torque evoked by supramaximal electrical stimulation of peripheral nerves has been frequently used to analyse age-related modulations at the skeletal muscle level, such as changes in muscle mass. However, only one study has investigated the association between twitch contractile properties and skeletal muscle mass. A significant positive correlation between cross-sectional area and twitch parameters was found for the plantar flexors in young adults when using supramaximal doublet stimulation. It remains unclear whether this relationship exists for the quadriceps in elderly and young subjects when using single and doublet stimulation. The aim of the present study was to investigate the relationship between the lean mass of the thigh and evoked twitch properties of the quadriceps using single and doublet stimulation in two age groups. Fifteen young (aged 25.3 ± 3.6 years) and 15 elderly (aged 69.6 ± 3.1 years) subjects were recruited to participate in this study. The lean mass of the thigh was measured by dual-energy X-ray absorptiometry. Supramaximal single and doublet electrical stimulation was used to assess the contractile properties of the quadriceps. We observed no significant associations between lean mass and contractile properties when using single stimulation. Significant positive correlations were shown between lean mass and peak twitch torque evoked by doublet stimulation in young (r = 0.56; p = 0.030) and elderly (r = 0.54; p = 0.040) subjects. The analysis of twitch time and slope parameters demonstrated no significant correlations with lean mass. The peak twitch torque evoked by doublet electrical stimulation seems to be an appropriate measure to assess modulations in muscle mass in elderly and young subjects. The use of supramaximal single stimulation and the analysis of time and slope parameters may not be recommended for estimating changes in muscle mass

  5. Development and validation of anthropometric prediction equations for estimation of lean body mass and appendicular lean soft tissue in Indian men and women.

    PubMed

    Kulkarni, Bharati; Kuper, Hannah; Taylor, Amy; Wells, Jonathan C; Radhakrishna, K V; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M; Hills, Andrew P

    2013-10-15

    Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14-44 kg/m(2)), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307-310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.

  6. Development and validation of anthropometric prediction equations for estimation of lean body mass and appendicular lean soft tissue in Indian men and women

    PubMed Central

    Kuper, Hannah; Taylor, Amy; Wells, Jonathan C.; Radhakrishna, K. V.; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M.; Hills, Andrew P.

    2013-01-01

    Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14–44 kg/m2), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5–8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307–310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition. PMID:23950165

  7. Androgen receptor gene polymorphisms lean mass and performance in young men.

    PubMed

    Guadalupe-Grau, Amelia; Rodríguez-González, F Germán; Dorado, Cecilia; Olmedillas, Hugo; Fuentes, Teresa; Pérez-Gómez, Jorge; Delgado-Guerra, Safira; Vicente-Rodríguez, Germán; Ara, Ignacio; Guerra, Borja; Arteaga-Ortiz, Rafael; Calbet, José A L; Díaz-Chico, B Nicolás

    2011-02-01

    The exon-1 of the androgen receptor (AR) gene contains two repeat length polymorphisms which modify either the amount of AR protein inside the cell (GGN(n), polyglycine) or its transcriptional activity (CAG(n), polyglutamine). Shorter CAG and/or GGN repeats provide stronger androgen signalling and vice versa. To test the hypothesis that CAG and GGN repeat AR polymorphisms affect muscle mass and various variables of muscular strength phenotype traits, the length of CAG and GGN repeats was determined by PCR and fragment analysis and confirmed by DNA sequencing of selected samples in 282 men (28.6 ± 7.6 years). Individuals were grouped as CAG short (CAG(S)) if harbouring repeat lengths of ≤ 21 and CAG long (CAG(L)) if CAG >21. GGN was considered short (GGN(S)) or long (GGN(L)) if GGN ≤ 23 or >23, respectively. No significant differences in lean body mass or fitness were observed between the CAG(S) and CAG(L) groups, or between GGN(S) and GGN(L) groups, but a trend for a correlation was found for the GGN repeat and lean mass of the extremities (r=-0.11, p=0.06). In summary, the lengths of CAG and GGN repeat of the AR gene do not appear to influence lean mass or fitness in young men.

  8. The effect of anabolic steroids on lean body mass: the dose response curve.

    PubMed

    Forbes, G B

    1985-06-01

    Data from human subjects given various amounts of anabolic steroids show that the resultant increment in lean body mass (LBM) has the features of a typical dose response curve. Low doses produce a very modest effect, while large doses result in a progressive augmentation of the LBM. Endogenous testosterone production during male adolescence is accompanied by a sex differential in LBM that is comparable to the LBM increment generated by exogenous steroids given to adults.

  9. Deletion of murine Arv1 results in a lean phenotype with increased energy expenditure

    PubMed Central

    Lagor, W R; Tong, F; Jarrett, K E; Lin, W; Conlon, D M; Smith, M; Wang, M Y; Yenilmez, B O; McCoy, M G; Fields, D W; O'Neill, S M; Gupta, R; Kumaravel, A; Redon, V; Ahima, R S; Sturley, S L; Billheimer, J T; Rader, D J

    2015-01-01

    Background: ACAT-related enzyme 2 required for viability 1 (ARV1) is a putative lipid transporter of the endoplasmic reticulum that is conserved across eukaryotic species. The ARV1 protein contains a conserved N-terminal cytosolic zinc ribbon motif known as the ARV1 homology domain, followed by multiple transmembrane regions anchoring it in the ER. Deletion of ARV1 in yeast results in defective sterol trafficking, aberrant lipid synthesis, ER stress, membrane disorganization and hypersensitivity to fatty acids (FAs). We sought to investigate the role of Arv1 in mammalian lipid metabolism. Methods: Homologous recombination was used to disrupt the Arv1 gene in mice. Animals were examined for alterations in lipid and lipoprotein levels, body weight, body composition, glucose tolerance and energy expenditure. Results: Global loss of Arv1 significantly decreased total cholesterol and high-density lipoprotein cholesterol levels in the plasma. Arv1 knockout mice exhibited a dramatic lean phenotype, with major reductions in white adipose tissue (WAT) mass and body weight on a chow diet. This loss of WAT is accompanied by improved glucose tolerance, higher adiponectin levels, increased energy expenditure and greater rates of whole-body FA oxidation. Conclusions: This work identifies Arv1 as an important player in mammalian lipid metabolism and whole-body energy homeostasis. PMID:26479315

  10. Metformin increases pressure pain threshold in lean women with polycystic ovary syndrome

    PubMed Central

    Kiałka, Marta; Milewicz, Tomasz; Sztefko, Krystyna; Rogatko, Iwona; Majewska, Renata

    2016-01-01

    Background Despite the strong preclinical rationale, there are only very few data considering the utility of metformin as a potential pain therapeutic in humans. The aim of this study was to determine the association between metformin therapy and pressure pain threshold (PPT) in lean women with polycystic ovary syndrome (PCOS). We hypothesized that metformin therapy in lean PCOS women increases PPT. Materials and methods Twenty-seven lean PCOS women with free androgen index phenotype >5 and 18 lean healthy controls were enrolled in the study. Fifteen of the PCOS women were randomly assigned to be treated with metformin 1,500 mg daily for 6 months. PPT and plasma β-endorphin levels were measured in all women at the beginning of the study and after 6 months of observation. Results We observed an increase in PPT values measured on deltoid and trapezius muscle in the PCOS with metformin group after 6 months of metformin administration (4.81±0.88 kg/cm2, P<0.001 on deltoid muscle, and 5.71±1.16 kg/cm2 on trapezius muscle). We did not observe any significant changes in PPT values in the PCOS without treatment group and in controls. We did not observe any significant changes in serum β-endorphin levels in any studied groups during the 6-month observation. Conclusion We conclude that metformin therapy increases PPT in lean PCOS women, without affecting plasma β-endorphin concentration. Our results may suggest the potential role of metformin in pain therapy. We propose that larger, randomized studies on metformin impact on pain perception should be performed. PMID:27536069

  11. Correlation and prediction of dynamic human isolated joint strength from lean body mass

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.

    1992-01-01

    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.

  12. Dietary protein intake is associated with lean body mass in community-dwelling older adults.

    PubMed

    Geirsdottir, Olof G; Arnarson, Atli; Ramel, Alfons; Jonsson, Palmi V; Thorsdottir, Inga

    2013-08-01

    Lean body mass (LBM) is important to maintain physical function during aging. We hypothesized that dietary protein intake and leisure-time physical activity are associated with LBM in community-dwelling older adults. To test the hypothesis, participants (n = 237; age, 65-92 years) did 3-day weighed food records and reported physical activity. Body composition was assessed using dual-energy x-ray absorptiometry. Protein intake was 0.98 ± 0.28 and 0.95 ± 0.29 g/kg body weight in male and female participants, respectively. Protein intake (in grams per kilogram of body weight) was associated with LBM (in kilograms); that is, the differences in LBM were 2.3 kg (P < .05) and 2.0 kg (P = .054) between the fourth vs the first and the fourth vs the second quartiles of protein intake, respectively. Only a minor part of this association was explained by increased energy intake, which follows an increased protein intake. Our study shows that dietary protein intake was positively associated with LBM in older adults with a mean protein intake higher than the current recommended daily allowance of 0.8 g/kg per day. Leisure-time physical activity, predominantly consisting of endurance type exercises, was not related to LBM in this group.

  13. Association between sleep duration, fat mass, lean mass and obesity in Korean adults: the fourth and fifth Korea National Health and Nutrition Examination Surveys.

    PubMed

    Kim, Kyuwoong; Shin, Doosup; Jung, Go-Un; Lee, Donghoon; Park, Sang Min

    2017-02-21

    This study investigated the association between sleep duration, fat mass, lean mass and obesity. Participants of this cross-sectional study were 16 905 adults included into the 4th and 5th Korea National Health and Nutrition Examination Surveys. Sleep duration was assessed by self-reported survey and categorized into ≤ 5, 6, 7, 8 and ≥ 9 h per day. The group reporting 7 h of sleep per day (comprised of those sleeping 7-8 h per day) was used as the reference group. Body composition was measured by dual X-ray absorptiometry (DEXA). Obesity was defined based on the criteria from the Korean Society for the Study of Obesity. Least-squares means of fat mass index (FMI) and lean mass index (LMI) adjusted for age, employment status, comorbidities and physical activity were used to assess the relation between sleep duration and body composition. Multivariable logistic regression was used to calculate the adjusted odds ratios (aOR) and 95% confidence intervals (95% CI) of obesity according to sleep duration after adjusting for sociodemographic and health-related factors. After adjustment, FMI increased with fewer hours of sleep (P for trend: < 0.001) and LMI decreased with more hours of sleep (P for trend: 0.011). Compared to the reference group, sleep-deprived individuals were 1.22 times more likely to have general obesity (aOR: 1.22; 95% CI: 1.03-1.45) and 1.32 times more likely to have abdominal obesity (aOR: 1.32; 95% CI: 1.10-1.58). Our findings suggest that sleep deprivation might be related to an increase of fat mass and obesity, while oversleeping could be linked to a reduction of lean mass.

  14. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    PubMed

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (p<0.01) followed by young adults and older adults. Female subjects (across all ages) had significantly lower plasma HMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; p<0.001) was observed in the young adults and older adults group. Handgrip strength was positively associated with plasma HMB concentrations in young adults (r=0.58; p<0.01) and the older adults group (r=0.28; p<0.01). The findings of the present study suggest that there is an age- related decline in endogenous HMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group.

  15. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    NASA Technical Reports Server (NTRS)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical

  16. Relationship of lean mass and obesity in Indian urban children and adolescents

    PubMed Central

    Garg, M. K.; Marwaha, Raman K.; Mahalle, Namita; Tandon, Nikhil

    2016-01-01

    Background: The association of obesity and lean mass (LM) has not been examined well in children and adolescents, and it remains controversial. Objective: The objective of this study was to evaluate the relationship of body mass index (BMI) categories and regional obesity with total and regional LM in children and adolescents. Methods: A total of 1408 children and adolescents (boys 58.9%; girls 41.1%) divided according to BMI (normal weight 79.5%, overweight 16.0%, and obese 4.5%) were included in this cross-sectional study. Total and regional LM and fat mass were measured by DXA. Leg and arm fat-to-total fat ratio (LATR) indicative of subcutaneous fat and trunk fat-to-total fat ratio (TTR), an indicator of visceral fat, were calculated. Results: Mean age of the study population was 13.2 ± 2.7 years (boys - 13.0 ± 2.7; girls - 13.4 ± 2.8 years). Total LM (TLM) and its regional distribution were higher in overweight and obese groups when compared with those with normal BMI in both genders. TLM was comparable between overweight and obese in both genders. TLM per unit of fat progressively decreased from normal to obese categories. The difference in LM per unit fat between BMI categories persisted after adjustment for age, height, and sexual maturity score. TLM increased across the quartiles of TTR, but decreased with an increment in subcutaneous fat (quartiles of LATR). Conclusions: Obese children and adolescents apparently have higher LM than normal BMI children, but have lower LM per unit of fat. Subcutaneous fat had a negative impact and visceral fat had a positive impact on TLM. PMID:27867879

  17. Downsizing of lean body mass is a key determinant of Alzheimer's disease.

    PubMed

    Ingenbleek, Yves; Bernstein, Larry H

    2015-01-01

    Lean body mass (LBM) encompasses all metabolically active organs distributed into visceral and structural tissue compartments and collecting the bulk of N and K stores of the human body. Transthyretin (TTR) is a plasma protein mainly secreted by the liver within a trimolecular TTR-RBP-retinol complex revealing from birth to old age strikingly similar evolutionary patterns with LBM in health and disease. TTR is also synthesized by the choroid plexus along distinct regulatory pathways. Chronic dietary methionine (Met) deprivation or cytokine-induced inflammatory disorders generates LBM downsizing following differentiated physiopathological processes. Met-restricted regimens downregulate the transsulfuration cascade causing upstream elevation of homocysteine (Hcy) safeguarding Met homeostasis and downstream drop of hydrogen sulfide (H2S) impairing anti-oxidative capacities. Elderly persons constitute a vulnerable population group exposed to increasing Hcy burden and declining H2S protection, notably in plant-eating communities or in the course of inflammatory illnesses. Appropriate correction of defective protein status and eradication of inflammatory processes may restore an appropriate LBM size allowing the hepatic production of the retinol circulating complex to resume, in contrast with the refractory choroidal TTR secretory process. As a result of improved health status, augmented concentrations of plasma-derived TTR and retinol may reach the cerebrospinal fluid and dismantle senile amyloid plaques, contributing to the prevention or the delay of the onset of neurodegenerative events in elderly subjects at risk of Alzheimer's disease.

  18. Lean body mass in small for gestational age and appropriate for gestational age infants

    SciTech Connect

    Petersen, S.; Gotfredsen, A.; Knudsen, F.U.

    1988-11-01

    Dual photon absorptiometry using /sup 153/Gd in a whole-body scanner was used to measure lean body mass (LBM) in 51 newborn infants. LBM% decreased exponentially with increasing gestational age in both small for gestational age (SGA) and appropriate for gestational age (AGA) infants. In preterm SGA and AGA infants LBM was 104% and 103%, respectively, indicating that no fat was detectable. In term SGA infants LBM was 98%, which corresponded to 48 gm fat on average, and in term AGA infants LBM was 87%, which corresponded to 452 gm fat on average. The LBM%, ponderal index, and skinfold thickness were significantly different between AGA and SGA infants. Infants with clinical signs of intrauterine wastage had significantly higher LBM% than did infants without signs of weight loss. Our results on LBM% by dual photon absorptiometry agree with earlier dissection data; the clinically applicable methods of (1) height combined with weight (i.e., ponderal index), (2) skinfold thickness, and (3) scoring by clinical observations are useful for the estimation of lack of fat as an indicator of intrauterine growth retardation.

  19. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    PubMed

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p < 0.001). Regression analysis revealed the only predictor of L1-L4 BMD was LBM (R(2) = 0.18, p < 0.05), for FN--both LBM and fat (R(2) = 0.18, p < 0.05 and p < 0.001, respectively). Of the women, 44.5% were overweight, 18.4% obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive.

  20. Prediction of segmental lean mass using anthropometric variables in young adults.

    PubMed

    Scafoglieri, Aldo; Tresignie, Jonathan; Provyn, Steven; Marfell-Jones, Mike; Reilly, Thomas; Bautmans, Ivan; Clarys, Jan Pieter

    2012-01-01

    The aim of the present study was to develop and cross-validate anthropometrical prediction equations for segmental lean tissue mass (SLM). One hundred and seventeen young healthy Caucasians (67 men and 50 women; mean age: 31.9 ± 10.0 years; Body Mass Index: 24.3 ± 3.2 kg · m(-2)) were included. Body mass (BM), stretch stature (SS), 14 circumferences (CC), 13 skinfolds (SF) and 4 bone breadths (BB) were used as anthropometric measurements. Segmental lean mass of both arms, trunk and both legs were measured by dual energy X-ray absorptiometry as the criterion method. Three prediction equations for SLM were developed as follows: arms = 40.394(BM) + 169.836(CCarm-tensed) + 399.162(CCwrist) - 85.414(SFtriceps) - 39.790(SFbiceps) - 7289.190, where Adj.R (2) = 0.97, P < 0.001, and standard error of estimate (SEE) = 355 g;trunk = 181.530(BM) + 155.037(SS) + 534.818(CCneck) + 175.638(CCchest) - 88.359(SFchest) - 147.232(SFsupraspinale) - 46522.165, where Adj.R(2) = 0.97, P < 0.001, and SEE = 1077g; and legs = 55.838(BM) + 88.356(SS) + 235.579(CCmid-thigh) + 278.595(CCcalf) + 288.984(CCankle) - 84.954(SFfront-thigh) - 53.009(SFmedial calf) - 28522.241, where Adj.R (2) = 0.96, P < 0.001, and SEE = 724 g. Cross-validation statistics showed no significant differences (P < 0.05) between observed and predicted SLM. Root mean squared errors were smallest for arms (362 g), followed by legs (820 g) and trunk (1477 g). These new prediction equations allow an accurate estimation of segmental lean mass in groups of young adults, but estimation errors of 8 to 14% can occur in certain individuals.

  1. Effects of Combined Strength and Sprint Training on Lean Mass, Strength, Power and Sprint Performance in Masters Road Cyclists.

    PubMed

    Del Vecchio, Luke; Stanton, Robert; Reaburn, Peter; Macgregor, Campbell; Meerkin, Jarrod; Villegas, Jerome; Korhonen, Marko T

    2017-05-25

    Strength and sprint training exercises are integral part of training in many younger endurance cyclists to improve cycling efficiency and sprinting ability. This study was undertaken to examine whether muscle and performance characteristics could be improved in endurance-trained masters cyclist by adding strength and sprint training stimuli into their training regimen. Twenty five masters road cyclists were assigned to a combined strength and sprint training group (CT; n=9, 53.5 ± 9.3 years), a sprint training group (ST, n=7, 49.4 ± 4.8 years) or a control group (CG, n=9, 56.9 ± 8.6 years). Before and after the 12 week intervention, whole body lean mass (WBLM), total lower limb lean mass (LLLM), countermovement jump height (CMJ), peak isometric torque of quadriceps (QPT) and hamstring (HPT) muscles were examined. For evaluation of sport-specific performance, 10 second sprint cycling peak power (PP10), total 30 second work (TW), peak power output (PPO) and flying 200 meter time trial performance (TT) were assessed. No pre-training differences were observed between CT, ST and CG groups for any of the dependant variables. After training, a significant (p<0.05) between group difference was observed in TW between CT and CG groups. A significant effect of time (p<0.05) was observed for LLLM in CT and ST groups, and for TT in the CT group. These results suggest including strength and sprint exercises in training can increase lower limb lean mass and sprint performance in endurance trained masters road cyclists. Further research is warranted to find out an ideal pattern of training to maintain aerobic capabilities along with sprint performance in aging road cyclists.

  2. Effects of multicomponent training on lean and bone mass in postmenopausal and older women: a systematic review.

    PubMed

    Marín-Cascales, Elena; Alcaraz, Pedro E; Ramos-Campo, Domingo J; Rubio-Arias, Jacobo A

    2017-08-14

    The purpose of this systematic review was to update and examine to what extent multicomponent training interventions could improve lean and bone mass at different anatomical regions of the body in postmenopausal and older women. A computerized literature search was performed in the following online databases: PubMed MEDLINE, Cochrane, and Web of Knowledge. The search was performed to include articles up until February 2017. The methodological quality of selected studies was evaluated using the Cochrane risk of bias tool. Fifteen studies met the inclusion criteria. Studies examining the effects of combined training methods in postmenopausal and older women showed contrasting results, possibly due to the wide range of the participants' age, the evaluation of different regions, and the varying characteristics of the training methods between studies. Overall, it appears that exercise modes that combine resistance, weight-bearing training, and impact-aerobic activities can increase or prevent muscle and skeletal mass loss during the ageing process in women. Further studies are needed to identify the optimal multicomponent training protocols, specifically the training loads that will improve lean and bone mass at different anatomical locations, in postmenopausal and older women.

  3. Birth weight and growth from infancy to late adolescence in relation to fat and lean mass in early old age: findings from the MRC National Survey of Health and Development

    PubMed Central

    Bann, D; Wills, A; Cooper, R; Hardy, R; Aihie Sayer, A; Adams, J; Kuh, D

    2014-01-01

    Objective: High birth weight and greater weight gain in infancy have been associated with increased risk of obesity as assessed using body mass index, but few studies have examined associations with direct measures of fat and lean mass. This study examined associations of birth weight and weight and height gain in infancy, childhood and adolescence with fat and lean mass in early old age. Subjects: A total of 746 men and 812 women in England, Scotland and Wales from the MRC National Survey of Health and Development whose heights and weights had been prospectively ascertained across childhood and adolescence and who had dual energy X-ray absorptiometry measures at age 60–64 years. Methods: Associations of birth weight and standardised weight and height (0–2 (weight only), 2–4, 4–7, 7–11, 11–15, 15–20 years) gain velocities with outcome measures were examined. Results: Higher birth weight was associated with higher lean mass and lower android/gynoid ratio at age 60–64 years. For example, the mean difference in lean mass per 1 standard deviation increase in birth weight was 1.54 kg in males (95% confidence interval=1.04, 2.03) and 0.78 kg in females (0.41, 1.14). Greater weight gain in infancy was associated with higher lean mass, whereas greater gains in weight in later childhood and adolescence were associated with higher fat and lean mass, and fat/lean and android/gynoid ratios. Across growth intervals greater height gain was associated with higher lean but not fat mass, and with lower fat/lean and android/gynoid ratios. Conclusion: Findings suggest that growth in early life may have lasting effects on fat and lean mass. Greater weight gain before birth and in infancy may be beneficial by leading to higher lean mass, whereas greater weight gain in later childhood and adolescence may be detrimental by leading to higher fat/lean and android/gynoid ratios. PMID:23779050

  4. Cross-sex hormone therapy in transgender persons affects total body weight, body fat and lean body mass: a meta-analysis.

    PubMed

    Klaver, M; Dekker, M J H J; de Mutsert, R; Twisk, J W R; den Heijer, M

    2017-06-01

    Weight gain and body fat increase the risk of cardiometabolic disease. Cross-sex hormone therapy in transgender persons leads to changes in body weight and body composition, but it is unclear to what extent. We performed a meta-analysis to investigate the changes in body weight, body fat and lean body mass during cross-sex hormone therapy in transgender persons. We searched the PubMed database for eligible studies until November 2015. Ten studies reporting changes in body weight, body fat or lean mass in hormone naive transgender persons were included, examining 171 male-to-female and 354 female-to-male transgender people. Pooled effect estimates in the male-to-female group were +1.8 kg (95% CI: 0.2;3.4) for body weight, +3.0 kg (2.0;3.9) for body fat and -2.4 kg (-2.8; -2.1) for lean body mass. In the female-to-male group, body weight changed with +1.7 kg (0.7;2.7), body fat with -2.6 kg (-3.9; -1.4) and lean body mass with +3.9 kg (3.2;4.5). Cross-sex hormone therapy increases body weight in both sexes. In the male-to-female group, a gain in body fat and a decline in lean body mass are observed, while the opposite effects are seen in the female-to-male group. Possibly, these changes increase the risk of cardiometabolic disease in the male-to-female group. © 2016 Blackwell Verlag GmbH.

  5. Lean Mass Loss Is Associated with Low Protein Intake during Dietary-Induced Weight Loss in Postmenopausal Women

    PubMed Central

    BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.

    2013-01-01

    The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032

  6. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis.

    PubMed

    Peterson, Mark D; Sen, Ananda; Gordon, Paul M

    2011-02-01

    sarcopenia plays a principal role in the pathogenesis of frailty and functional impairment that occur with aging. There are few published accounts that examine the overall benefit of resistance exercise (RE) for lean body mass (LBM) while considering a continuum of dosage schemes and/or age ranges. Therefore, the purpose of this meta-analysis was to determine the effects of RE on LBM in older men and women while taking these factors into consideration. this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations. Randomized controlled trials and randomized or nonrandomized studies among adults ≥ 50 yr were included. Heterogeneity between studies was assessed using the Cochran Q and the I statistics, and publication bias was evaluated through physical inspection of funnel plots as well as formal rank-correlation statistics. Mixed-effects meta-regression was incorporated to assess the relationship between RE dosage and changes in LBM. data from 49 studies, representing a total of 1328 participants, were pooled using random-effect models. Results demonstrated a positive effect for LBM, and there was no evidence of publication bias. The Cochran Q statistic for heterogeneity was 497.8, which was significant (P < 0.01). Likewise, I was equal to 84%, representing rejection of the null hypothesis of homogeneity. The weighted pooled estimate of mean LBM change was 1.1 kg (95% confidence interval = 0.9-1.2 kg). Meta-regression revealed that higher-volume interventions were associated (β = 0.05, P < 0.01) with significantly greater increases in LBM, whereas older individuals experienced less increase (β = -0.03, P = 0.01). RE is effective for eliciting gains in LBM among aging adults, particularly with higher-volume programs. Findings suggest that RE participation earlier in life may provide superior effectiveness.

  7. Smoking during pregnancy and offspring fat and lean mass in childhood

    PubMed Central

    Leary, Sam D; Smith, George Davey; Rogers, Imogen S; Reilly, John J; Wells, Jonathan CK; Ness, Andy R

    2007-01-01

    Objective: Maternal smoking during pregnancy has been shown to be associated with obesity in the offspring, but findings have mainly been based on body mass index (BMI) derived from height and weight. We therefore examined the association between maternal and partner smoking during pregnancy, and offspring total fat, truncal fat and lean mass in childhood. Research Methods and Procedures: Analysis was based on 5 689 white singletons born in 1991-2 and enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC), with maternal smoking data recorded for at least one trimester in pregnancy, and their own body composition assessed by DXA at mean age 9.9 years. Results: Smoking at any time during pregnancy was associated with higher offspring BMI (0.18 (95% CI 0.12, 0.25) SD units) and total fat mass (0.17 (95% CI 0.12, 0.23) SD units), after adjustment for age and sex (and height, height squared for total fat mass). These associations were not attenuated by adjustment for the confounding factors that were measured. Maternal smoking was also associated with lean mass, and to a lesser extent, truncal fat mass. Associations with partner's smoking were in the same direction but weaker than those of the mother's for all outcomes. Conclusions: Maternal smoking at any time during pregnancy is associated with higher offspring total fat mass at mean age 9.9 years. However, as the associations with partner smoking were only a little weaker than those with maternal smoking, confounding by social factors rather than a direct effect of maternal smoking is a possible explanation. PMID:17189557

  8. TNF inhibitors increase fat mass in inflammatory rheumatic disease: a systematic review with meta-analysis.

    PubMed

    Marouen, Sarah; Barnetche, Thomas; Combe, Bernard; Morel, Jacques; Daïen, Claire I

    2017-01-01

    To assess body composition of patients with inflammatory rheumatic disease and the effect of TNF inhibitors on it. This was systematic review with meta-analysis of studies consulted on PubMed, Cochrane Library and EMBASE and assessing body composition in patients with rheumatoid arthritis or spondyloarthritis. We compared i) patients with healthy controls and ii) body components before and after TNF inhibitors. Among the 703 articles reviewed, 19 met the inclusion criteria. In patients with rheumatoid arthritis, a significant increase in fat mass (+1.85 kg, p=0.02), adiposity (+3.53%, p<0.00001) and android mass (+1.7 kg, p<0.00001) and a significant decrease in lean mass (-3.03 kg, p=0.01), were observed. In patients with spondyloarthritis, a significant but modest increase in fat mass (+0.69 kg, p=0.03) and a significant decrease in lean mass (-3.74 kg, p=0.03) were observed. Nine studies assessed impact of TNF inhibitors on body composition, with an increase of fat mass in the short and long term in all studies. Data on lean mass were controversial. Two studies found an increase in visceral or android mass under TNF inhibitors. Patients with inflammatory rheumatic disease have a significant decrease in lean mass and increase in fat mass. The use of TNF inhibitors is associated with a further increase in fat mass including android fat, which could potentially have cardiovascular consequences.

  9. Estimating lean mass over a wide range of body composition: a calibration of deuterium dilution in the arctic ground squirrel.

    PubMed

    Lee, Trixie N; Fridinger, Robert W; Barnes, Brian M; Loren Buck, C; O'Brien, Diane M

    2011-12-15

    Calculating body water through isotope dilution has become a useful way to nondestructively estimate body composition in many species. The most accurate estimates using this method require calibration against proximate chemical analysis of body composition for individual species, but no studies to our knowledge have calibrated this method on a hibernating mammal that seasonally undergoes dramatic changes in body composition. We use deuterium oxide to estimate total body water in captive arctic ground squirrels, Urocitellus parryii, and compare two approaches of calculating lean mass from total body water, both calibrated against lean mass based on proximate analysis. The first method uses a single tissue hydration constant to calculate lean mass from total body water; the second method uses a predictive equation to calculate lean mass from total body water and body mass. We found that the predictive equation performs better over the large range of body composition common to this species. Distillation of blood samples did not affect lean mass estimates from either calculation method. These findings indicate that isotope dilution using a predictive equation should work well as an alternative to destructive methods in other small mammals that undergo radical changes in body composition across their annual cycle. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Photoperiod regulates lean mass accretion, but not adiposity, in growing F344 rats fed a high fat diet.

    PubMed

    Ross, Alexander W; Russell, Laura; Helfer, Gisela; Thomson, Lynn M; Dalby, Matthew J; Morgan, Peter J

    2015-01-01

    In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.

  11. Smoking during pregnancy and offspring fat and lean mass in childhood.

    PubMed

    Leary, Sam D; Smith, George Davey; Rogers, Imogen S; Reilly, John J; Wells, Jonathan C K; Ness, Andy R

    2006-12-01

    Maternal smoking during pregnancy has been shown to be associated with obesity in the offspring, but findings have been based mainly on BMI, which is derived from height and weight. This study examined the association between maternal and partner smoking during pregnancy and offspring total fat, truncal fat, and lean mass in childhood. Analysis was based on 5689 white singletons born in 1991-1992 and enrolled in the Avon Longitudinal Study of Parents and Children, with maternal smoking data recorded for at least one trimester in pregnancy and their own body composition assessed by DXA at mean age 9.9 years. Smoking at any time during pregnancy was associated with higher offspring BMI [0.18 (95% confidence interval, 0.12 to 0.25) standard deviation units] and total fat mass [0.17 (95% confidence interval, 0.12 to 0.23) standard deviation units], after adjustment for age, sex, height, and height squared for total fat mass. These associations were not attenuated by adjustment for the confounding factors that were measured. Maternal smoking was also associated with lean mass and, to a lesser extent, truncal fat mass. Associations with partner's smoking were in the same direction but weaker than those of the mother's for all outcomes. Maternal smoking at any time during pregnancy is associated with higher offspring total fat mass at mean age 9.9 years. However, as the associations with partner smoking were only a little weaker than those with maternal smoking, confounding by social factors rather than a direct effect of maternal smoking is a possible explanation.

  12. Insulin and bone health in young adults: The mediator role of lean mass

    PubMed Central

    Pozuelo-Carrascosa, Diana P.; Álvarez-Bueno, Celia; Ferri-Morales, Asunción; Miota Ibarra, Jose; Notario-Pacheco, Blanca; Martínez-Vizcaíno, Vicente

    2017-01-01

    Background The positive relationship between lean mass (LM) and bone health is well known, but a positive association between insulin and LM has also been described. Insulin has some anabolic properties on bone through the stimulation of osteoblast differentiation, yet the role of LM as a confounder or mediator in this relationship remains uncertain. Objective To examine whether the association between insulin levels and bone health is mediated by LM. Methods A cross-sectional study was conducted at the Castilla La Mancha University (Spain) involving 466 young adults (113 young men; 19.5±2.3 years). LM and total-body bone mineral content (BMC) were measured by dual energy x-ray absorptiometry, and insulin was measured in fasting serum samples. Results Young adults with high total LM had higher values of total-body BMC than their peers after controlling for age and sex, this relationship persisted after adjusting for insulin levels (p<0.001). In mediation analyses, insulin levels were positively associated with total-body BMC (b = 0.05; p<0.001) and total LM acted as an intermediate variable, attenuating the association between insulin levels and total-body BMC (b = -31.98; p>0.05) as indicated by Sobel test values for indirect effect (z = 4.43; p<0.001). Conclusions LM plays an important role in the relationship between insulin levels and bone health, in such a way that while increases in LM have a positive influence on bone health, they are also negatively associated with insulin levels. PMID:28323845

  13. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.

    PubMed

    Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E

    2011-05-01

    Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.

  14. Measurement of total RBC volume relative to lean body mass for diagnosis of polycythemia.

    PubMed

    Berlin, N I; Lewis, S M

    2000-12-01

    An elevated total RBC volume (TRCV) in milliliters per kilogram of body weight has been an essential criterion for determining whether a person is polycythemic. This may be misleading in obese subjects as the TRCV per kilogram of fat is only one-tenth that of the TRCV of the lean body mass (LBM). Various formulas based on surface area have been used to account for this difference, but they are not always reliable. Direct measurement of TRCV per kilogram of lean body mass was obtained originally in studies in which body composition was determined by the combined body density and total body water measurement method. This is impractical as a routine procedure, but simple-to-use instruments are now available for direct measurement of a person's body composition and percentage of fat by impedance technology. Thus, the TRCV can be obtained by a direct measurement that discounts the effects of fat, and a graph has been designed to normalize the TRCV to milliliters per kilogram of LBM. The TRCV for men and women has been established as 36 mL/kg LBM; when it is more than 43 mL/kg LBM, a diagnosis of polychthemia can be made with confidence.

  15. Effects of Whole-Body Vibration Training on Bone-Free Lean Body Mass and Muscle Strength in Young Adults

    PubMed Central

    Osawa, Yusuke; Oguma, Yuko; Onishi, Shohei

    2011-01-01

    Resistance training with whole-body vibration (WBV) is becoming increasingly popular as an alternative to conventional resistance training or as supplementary training. Despite its growing popularity, the specific effects of WBV training on muscle morphology, strength, and endurance are not well understood, particularly in young adults. The aim of this study was to determine the effects of WBV training on bone-free lean body mass (BFLBM), and maximal muscle strength and endurance in healthy, untrained, young individuals. Eighteen healthy men and women (21-39 years) were randomly assigned to either a body-weight exercise with WBV (VT) group or a control exercise group without WBV (CON). Participants performed eight exercises per 40- min session on a vibration platform (VT group, frequency = 30-40 Hz; amplitude = 2 mm) twice weekly for 12 weeks. Anthropometry, total and regional BFLBM (trunks, legs, and arms) measured by dual- energy X-ray absorptiometry, and muscle strength and endurance measured by maximal isometric lumbar extension strength, maximal isokinetic knee extension and flexion strength, and the number of sit- ups performed were recorded and compared. Two-way repeated-measures ANOVA revealed no significant changes between the groups in any of the measured variables. We conclude that 12 weeks of body weight vibration exercise compared to body weight exercise alone does not provide meaningful changes to BFLBM or muscle performance in healthy young adults. Key points A randomized controlled trial was conducted to investigate the effects of body-weight exercise combined with whole-body vibration on bone-free lean body mass and maximal muscle strength and endurance in healthy young individuals. Body-weight exercises for lower extremities and trunk muscles were performed twice weekly for 12 weeks. Participants in the exercise with whole-body vibration group increased the vibration frequency from 30, 35, to 40 Hz at a constant amplitude of 2 mm during the trial

  16. Measurement error of DXA: interpretation of fat and lean mass changes in obese and non-obese children.

    PubMed

    Wosje, Karen S; Knipstein, Brittany L; Kalkwarf, Heidi J

    2006-01-01

    Information on reproducibility of dual-energy X-ray absorptiometry (DXA) measurements is essential because DXA is frequently used by clinicians and researchers to assess body composition changes. We estimated measurement error and absolute and relative smallest detectable differences (SDDs) for fat, lean, and bone mass in children. The SDD is the change necessary to be confident that the change is not a consequence of measurement error. Duplicate whole body DXA (Hologic QDR 4500A, Hologic Inc., Waltham, MA) scans were obtained on 32 obese and 34 non-obese children ages 6-19 yr. Absolute (kg) and relative (coefficient of variation) measurement error and SDD were calculated. Absolute SDDs for fat and lean were higher for obese (1.39 and 1.30 kg, respectively) than for non-obese children (0.42 and 0.47 kg, respectively). The %SDD for fat was lower for obese (3.58%) than non-obese children (5.24%), but for lean the %SDD was higher for obese (2.60%) than non-obese children (1.32%). The SDDs for bone mass were similar for obese and non-obese children. An obese child must lose or gain more absolute fat and lean mass than a non-obese child to be confident that the change is not a reflection of measurement error. Overall, SDD values for fat, lean, and bone mass are low.

  17. Strength and Function Response to Clinical Interventions of Older Women Categorized by Weakness and Low Lean Mass Using Classifications From the Foundation for the National Institute of Health Sarcopenia Project

    PubMed Central

    Fragala, Maren S.; Dam, Thuy-Tien L.; Barber, Vanessa; Judge, James O.; Studenski, Stephanie A.; Cawthon, Peggy M.; McLean, Robert R.; Harris, Tamara B.; Ferrucci, Luigi; Guralnik, Jack M.; Kiel, Douglas P.; Kritchevsky, Stephen B.; Shardell, Michelle D.; Vassileva, Maria T.

    2015-01-01

    Background. The Foundation for the National Institutes of Health Sarcopenia Project developed data-driven cut-points for clinically meaningful weakness and low lean body mass. This analysis describes strength and function response to interventions based on these classifications. Methods. In data from four intervention studies, 378 postmenopausal women with baseline and 6-month data were evaluated for change in grip strength, appendicular lean mass corrected for body mass index, leg strength and power, and short physical performance battery (SPPB). Clinical interventions included hormones, exercise, and nutritional supplementation. Differences in outcomes were evaluated between (i) those with and without weakness and (ii) those with weakness and low lean mass or with one but not the other. We stratified analyses by slowness (walking speed ≤ 0.8 m/s) and by treatment assignment. Results. The women (72±7 years; body mass index of 26±5kg/m2) were weak (33%), had low lean mass (14%), or both (6%). Those with weakness increased grip strength, lost less leg power, and gained SPPB score (p < .05) compared with nonweak participants. Stratified analyses were similar for grip strength and SPPB. With lean mass in the analysis, individuals with weakness had larger gains in grip strength and SPPB scores regardless of low lean mass (p < .01). Conclusions. Older women with clinically meaningful muscle weakness increased grip strength and SPPB, regardless of the presence of low lean mass following treatment with interventions for frailty. Thus, results suggest that muscle weakness, as defined by the Foundation for the National Institutes of Health Sarcopenia Project, appears to be a treatable symptom. PMID:25135999

  18. Twins Bed Rest Project: LBNP/Exercise Minimizes Changes in Lean Leg Mass, Strength and Endurance

    NASA Technical Reports Server (NTRS)

    Amorim, Fabiano T.; Schneider, Suzanne M.; Lee, Stuart M. C.; Boda, Wanda L.; Watenpaugh, Donald E.; Hargens, Alan R.

    2006-01-01

    Decreases in muscle strength and endurance frequently are observed in non-weightbearing conditions such as bed rest (BR), spaceflight or limb immobilization. Purpose: Ow purpose was to determine if supine treadmill exercise against simulated gravity, by application of lower body negative pressure (LBNP), prevents loss of lean leg mass, strength and endurance during 30 d of 6deg head-down bed rest (BR). Methods: Fifteen pairs of monozygous twins (8 male, 7 female pairs; 26+/-4 yrs; 170+/-12 cm; 62.6+/-11.3 kg; mean+/-SD) were subjects in the present study. One sibling of each pair of twins was randomly assigned to either an exercise (EX) or non-exercise (CON) group. The EX twin walked/jogged on a vertical treadmill within LBNP chamber 6 d/wk using a 40-min interval exercise protocol at 40-80% of pre-BR VO(sub 2peak). LBNP was adjusted individually for each subject such that footward force was between 1.0 and 1.2 times body weight (-53+/-5 mmHg LBNP). The CON twin performed no exercise during BR. Subjects performed isokinetic knee (60 and 120deg/s) and ankle (60deg/s) testing to assess strength and endurance (End) before and after BR. They also had their lean leg mass (L(sub mass)) evaluated by DEXA before and after BR. Results: Changes in peak torque (T(sub pk)) were smaller for flexion (flex) than for extension (ext) after BR and did not differ between groups. The CON group had larger decreases (P<0.05) in L(sub mass), knee and ankle ext T(sub pk), and knee ext End.

  19. Assessment and definition of lean body mass deficiency in the elderly.

    PubMed

    Müller, M J; Geisler, C; Pourhassan, M; Glüer, C-C; Bosy-Westphal, A

    2014-11-01

    Although the effect of age on body composition has been intensively discussed during the past 20 years, we do not have a uniform definition of sarcopenia. A suitable definition of low, lean body mass should be based on magnetic resonance imaging (MRI) estimates of muscle mass. Using recent MRI data of a population of 446 healthy free-living Caucasian volunteers (247 females, 199 males) age 18-78 years, a low skeletal muscle mass and sarcopenia were defined as a skeletal muscle mass >1 and >2 s.d. below the mean value obeserved in younger adults at age 18-39 years. The cutoffs for low muscle mass according to the skeletal muscle index (skeletal muscle mass/(height)(2)) or the appendicular skeletal muscle mass index (skeletal muscle mass of the limbs/(height)(2)) were 6.75 or 4.36 kg/m(2) for females and 8.67 or 5.54 kg/m(2) for males, respectively. On the basis of these cutoffs, prevalences of sarcopenia in the group of adults at >60 years are calculated to be 29% in females and 19.0% in males. Faced with different sarcopenic phenotypes (that is, sarcopenia related to frailty and osteopenia; sarcopenic obesity related to metabolic risks; cachexia related to wasting diseases), future definitions of sarcopenia should be extended to the relations between (i) muscle mass and adipose tissue and (ii) muscle mass and bone mass. Suitable cutoffs should be based on the associations between estimates of body compositions and metabolic risks (for axample, insulin resistance), inflammation and muscle function (that is, muscle strength).

  20. Serum betaine is inversely associated with low lean mass mainly in men in a Chinese middle-aged and elderly community-dwelling population.

    PubMed

    Huang, Bi-Xia; Zhu, Ying-Ying; Tan, Xu-Ying; Lan, Qiu-Ye; Li, Chun-Lei; Chen, Yu-Ming; Zhu, Hui-Lian

    2016-06-01

    Previous studies have demonstrated that betaine supplements increase lean body mass in livestock and improve muscle performance in human beings, but evidence for its effect on human lean mass is limited. Our study assessed the association of circulating betaine with lean mass and its composition in Chinese adults. A community-based study was conducted on 1996 Guangzhou residents (weight/mass: 1381/615) aged 50-75 years between 2008 and 2010. An interviewer-administered questionnaire was used to collect general baseline information. Fasting serum betaine was assessed using HPLC-MS. A total of 1590 participants completed the body composition analysis performed using dual-energy X-ray absorptiometry during a mean of 3·2 years of follow-up. After adjustment for age, regression analyses demonstrated a positive association of serum betaine with percentage of lean mass (LM%) of the entire body, trunk and limbs in men (all P<0·05) and LM% of the trunk in women (P=0·016). Each sd increase in serum betaine was associated with increases in LM% of 0·609 (whole body), 0·811 (trunk), 0·422 (limbs), 0·632 (arms) and 0·346 (legs) in men and 0·350 (trunk) in women. Multiple logistic regression analysis revealed that the prevalence of lower LM% decreased by 17 % (whole body) and 14 % (trunk) in women and 23 % (whole body), 28 % (trunk), 22 % (arms) and 26 % (percentage skeletal muscle index) in men with each sd increment in serum betaine. Elevated circulating betaine was associated with a higher LM% and lower prevalence of lower LM% in middle-aged and elderly Chinese adults, particularly men.

  1. Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback.

    PubMed

    Hunt, Michael A; Simic, Milena; Hinman, Rana S; Bennell, Kim L; Wrigley, Tim V

    2011-03-15

    The purpose of this feasibility study was to examine changes in frontal plane knee and hip walking biomechanics following a gait retraining strategy focused on increasing lateral trunk lean and to quantify reports of difficulty and joint discomfort when performing such a gait modification. After undergoing a baseline analysis of normal walking, 9 young, healthy participants were trained to modify their gait to exhibit small (4°), medium (8°), and large (12°) amounts of lateral trunk lean. Training was guided by the use of real-time biofeedback of the actual trunk lean angle. Peak frontal plane external knee and hip joint moments were compared across conditions. Participants were asked to report the degree of difficulty and the presence of any joint discomfort for each amount of trunk lean modification. Small (4°), medium (8°), and large (12°) amounts of lateral trunk lean reduced the peak external knee adduction moment (KAM) by 7%, 21%, and 25%, respectively, though the peak KAM was only significantly less in the medium and large conditions (p<0.001). Increased trunk lean also significantly reduced the peak external hip adduction moments (p<0.001). All participants reported at least some difficulty performing the exaggerated trunk lean pattern and three participants reported ipsilateral knee, hip, and/or lower spine discomfort. Results from this study indicate that a gait pattern with increased lateral trunk lean can effectively reduce frontal plane joint moments. Though these findings have implications for pathological populations, learning this gait pattern was associated with some difficulty and joint discomfort.

  2. Frailty status can predict further lean body mass decline in older adults.

    PubMed

    Jung, Hee-Won; Kim, Sun-Wook; Lim, Jae-Young; Kim, Ki-Woong; Jang, Hak Chul; Kim, Cheol-Ho; Kim, Kwang-il

    2014-11-01

    To assess whether frailty is a risk factor for skeletal muscle mass decline in community-dwelling elderly people. Prospective observational cohort study. Seongnam, Gyeongi Province, Korea. Community-dwelling Koreans aged 65 and older (n = 341). Bioimpedance analysis (BIA) was used to measure body composition at baseline and 5 years later. Laboratory examination and comprehensive geriatric assessment were performed at both times. Lean mass index (LMI) was defined as total body lean mass/height(2). A decrease of more than 5% in the LMI was considered to be significant. Frailty status was defined using the Cardiovascular Health Study criteria. LMI decline occurred in 196 (54.1%) subjects during the follow-up period (5.0 ± 0.7 years). Baseline LMI was highest in robust (17.6 ± 1.8 kg/m(2), n = 126), lower prefrail (17.0 ± 1.7 kg/m(2), n = 185), and lowest in frail (16.7 ± 1.3 kg/m(2), n = 30) subjects (P < .001). Frailty status was associated with LMI decline at 5-year follow-up (robust 0.81 ± 0.78 kg/m(2), prefrail 1.00 ± 0.92 kg/m(2), frail 1.35 ± 0.85 kg/m(2), P < .001). This effect of frailty on LMI decline persisted after adjusting for covariables (P = .02). The risk of significant LMI decline was 2.9 times as great in frail elderly adults as in those who were robust even after adjusting for covariates (95% confidence interval = 1.01-8.55). Frailty status was found to be independently associated with subsequent LMI decline in community-dwelling older adults. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  3. The Level of Serum Cholesterol is Negatively Associated with Lean Body Mass in Korean non-Diabetic Cancer Patients.

    PubMed

    Han, Ji Eun; Lee, Jun Yeup; Bu, So Young

    2016-04-01

    Due to poor nutrition and abnormal energy metabolism, cancer patients typically experience the loss of muscle mass. Although the diabetic conditions or dyslipidemia have been reported as a causal link of cancer but the consequence of such conditions in relation to gain or loss of skeletal muscle mass in cancer patients has not been well documented. The purpose of this study was to investigate the relationship of lean body mass and systemic parameters related to lipid metabolism in non-diabetic cancer patients using data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2011. As results the level of serum total cholesterol (total-C) was negatively associated with both total lean body mass and appendicular lean body mass in cancer patients after adjustment for sex, physical activity, energy intake and comorbidity. The associations between consumption of dietary factors (energy, carbohydrate, protein and fat) and lean body mass were disappeared after adjusting comorbidities of cancer patients. Multivariate-adjusted linear regression analysis by quartiles of serum total-C showed that higher quartile group of total-C had significantly lower percent of lean body mass than reference group in cancer patients. The data indicate that serum lipid status can be the potential estimate of loss of skeletal muscle mass in cancer patients and be referenced in nutrition care of cancer patients under the onset of cachexia or parenteral/enteral nutrition. This data need to be confirmed with large pool of subjects and should be specified by stage of cancer or the site of cancer in future studies.

  4. The Level of Serum Cholesterol is Negatively Associated with Lean Body Mass in Korean non-Diabetic Cancer Patients

    PubMed Central

    2016-01-01

    Due to poor nutrition and abnormal energy metabolism, cancer patients typically experience the loss of muscle mass. Although the diabetic conditions or dyslipidemia have been reported as a causal link of cancer but the consequence of such conditions in relation to gain or loss of skeletal muscle mass in cancer patients has not been well documented. The purpose of this study was to investigate the relationship of lean body mass and systemic parameters related to lipid metabolism in non-diabetic cancer patients using data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2011. As results the level of serum total cholesterol (total-C) was negatively associated with both total lean body mass and appendicular lean body mass in cancer patients after adjustment for sex, physical activity, energy intake and comorbidity. The associations between consumption of dietary factors (energy, carbohydrate, protein and fat) and lean body mass were disappeared after adjusting comorbidities of cancer patients. Multivariate-adjusted linear regression analysis by quartiles of serum total-C showed that higher quartile group of total-C had significantly lower percent of lean body mass than reference group in cancer patients. The data indicate that serum lipid status can be the potential estimate of loss of skeletal muscle mass in cancer patients and be referenced in nutrition care of cancer patients under the onset of cachexia or parenteral/enteral nutrition. This data need to be confirmed with large pool of subjects and should be specified by stage of cancer or the site of cancer in future studies. PMID:27152302

  5. Increasing Therapist Productivity: Using Lean Principles in the Rehabilitation Department of an Academic Medical Center.

    PubMed

    Johnson, Diana; Snedeker, Kristie; Swoboda, Michael; Zalieckas, Cheryl; Dorsey, Rachel; Nohe, Cassandra; Smith, Paige; Roche, Renuka

    2015-12-15

    The Department of Rehabilitation Services, within the University of Maryland Medical Center's 650-bed academic medical center, was experiencing difficulty in meeting productivity standards. Therapists in the outpatient division believed they were not spending enough time performing billable patient care activities. Therapists in the inpatient division had difficulty keeping pace with the volume of incoming referrals. Collectively, these issues caused dissatisfaction among referral sources and frustration among the staff within the rehabilitation department. The department undertook a phased approach to address these issues that included examining the evidence, using Lean process improvement principles, and employing transformational leadership strategies to drive improvements in productivity and efficiency. The lessons learned support the importance of having meaningful metrics appropriate for the patient population served, the use of Lean as an effective tool for improving productivity in rehabilitation departments, the impact of engaging staff at the grassroots level, and the importance of having commitment from leaders. The study findings have implications for not only rehabilitation and hospital leadership, but CEOs and managers of any business who need to eliminate waste or increase staff productivity.

  6. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

    PubMed Central

    Bell, Kirsten E.; Snijders, Tim; Zulyniak, Michael; Kumbhare, Dinesh; Parise, Gianni; Chabowski, Adrian

    2017-01-01

    Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training. Trial Registration: ClinicalTrials.gov NCT02281331 PMID:28719669

  7. Lean mass as a predictor of bone density and microarchitecture in adult obese individuals with metabolic syndrome.

    PubMed

    Madeira, Eduardo; Mafort, Thiago Thomaz; Madeira, Miguel; Guedes, Erika Paniago; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss

    2014-02-01

    The effects of obesity and metabolic syndrome (MS) on bone health are controversial. Furthermore, the relationship between body composition and bone quality has not yet been determined in this context. The aim of this study was to investigate the correlations between body composition and bone mineral density (BMD) and bone microstructure in obese individuals with MS. This cross-sectional study assessed 50 obese individuals with MS with respect to their body composition and BMD, both assessed using dual X-ray absorptiometry, and bone microarchitecture, assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal tibia and radius. Several HR-pQCT measurements exhibited statistically significant correlations with lean mass. Lean mass was positively correlated with parameters of better bone quality (r: 0.316-0.470) and negatively correlated with parameters of greater bone fragility (r: -0.460 to -0.310). Positive correlations were also observed between lean mass and BMD of the total femur and radius 33%. Fat mass was not significantly correlated with BMD or any HR-pQCT measurements. Our data suggest that lean mass might be a predictor of bone health in obese individuals with MS. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  9. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  10. Influence of eicosapentaenoic acid supplementation on lean body mass in cancer cachexia.

    PubMed

    Murphy, R A; Yeung, E; Mazurak, V C; Mourtzakis, M

    2011-11-08

    Cancer cachexia is characterised by a progressive loss of muscle, resulting in functional impairment and shorter survival. Eicosapentaenoic acid, an n-3 polyunsaturated fatty acid found in fish, has been studied for its role as an anti-cachexia therapy. Initial results of eicosapentaenoic supplementation in advanced cancer were promising with improvements in lean body mass (LBM), appetite and quality of life. However, subsequent larger phase III clinical trials reported minimal benefits of supplementation. Recently, several studies have used different study designs, which may provide insight on the effectiveness of eicosapentaenoic in cancer cachexia and also on potential sources of divergent results in previous trials. This review examines the potential benefit of eicosapentaenoic supplementation on LBM and discusses limitations with current studies to identify methods which may aid in progressing the research of future clinical trials.

  11. Can Lean Manufacturing Change the Aerospace Defense Industry

    DTIC Science & Technology

    1994-04-01

    In times of decreasing orders, increasing overhead costs and fewer customers, lean manufacturing techniques may allow the aerospace defense industry...industry has shown lean manufacturing techniques can substantially reduce costs, cut development time, and produce a better product than mass production. The...Program, and the Lean Aircraft Initiative. European defense companies are also implementing the principles of lean manufacturing with results well worth noting.

  12. Effect of hormone therapy on lean body mass, falls, and fractures: Six-year results from the Women’s Health Initiative Hormone Trials

    PubMed Central

    Bea, Jennifer W.; Zhao, Qiuhong; Cauley, Jane A.; LaCroix, Andrea Z.; Bassford, Tamsen; Lewis, Cora E.; Jackson, Rebecca D.; Tylavsky, Frances A.; Chen, Zhao

    2010-01-01

    Objective Loss of lean body mass with aging may contribute to falls and fractures. The objective of this analysis was to determine if taking postmenopausal hormone therapy (HT: estrogen plus progestogen therapy, EPT or estrogen therapy alone, ET) favorably affects age-related changes in lean body mass and if these changes partially account for decreased falls or fractures with HT. Methods Participants randomly assigned to either EPT (n=543) or control (n=471) and ET (n= 453) or control (n= 474) and receiving dual-energy X-ray absorptiometry (DXA) scans to estimate body composition during the Women’s Health Initiative (WHI) were evaluated. Falls and fracture occurrence were obtained by annual self-report. Fractures were confirmed by clinical chart review. Results At 6yrs post-randomization, lean body mass was not different between HT and control groups. Although lean body mass positively influenced BMD, independent of HT status, the preserved lean body mass observed in the HT arms in the first 3 years did not significantly contribute to models evaluating HT influence on falls and fractures between years 3 and 6. Women taking at least 80% of their medication in the HT arms demonstrated fewer falls compared to placebo; this difference was not attributable to change in lean body mass. Conclusions Despite early preservation of lean body mass with HT (3years), HT did not ameliorate long-term (6 years) loss in lean body mass with aging. PMID:20689466

  13. Using Lean-Based Systems Engineering to Increase Capacity in the Emergency Department

    PubMed Central

    White, Benjamin A.; Chang, Yuchiao; Grabowski, Beth G.; Brown, David F.M.

    2014-01-01

    Introduction While emergency department (ED) crowding has myriad causes and negative downstream effects, applying systems engineering science and targeting throughput remains a potential solution to increase functional capacity. However, the most effective techniques for broad application in the ED remain unclear. We examined the hypothesis that Lean-based reorganization of Fast Track process flow would improve length of stay (LOS), percent of patients discharged within one hour, and room use, without added expense. Methods This study was a prospective, controlled, before-and-after analysis of Fast Track process improvements in a Level 1 tertiary care academic medical center with >95,000 annual patient visits. We included all adult patients seen during the study periods of 6/2010–10/2010 and 6/2011–10/2011, and data were collected from an electronic tracking system. We used concurrent patients seen in another care area used as a control group. The intervention consisted of a simple reorganization of patient flow through existing rooms, based in systems engineering science and modeling, including queuing theory, demand-capacity matching, and Lean methodologies. No modifications to staffing or physical space were made. Primary outcomes included LOS of discharged patients, percent of patients discharged within one hour, and time in exam room. We compared LOS and exam room time using Wilcoxon rank sum tests, and chi-square tests for percent of patients discharged within one hour. Results Following the intervention, median LOS among discharged patients was reduced by 15 minutes (158 to 143 min, 95%CI 12 to 19 min, p<0.0001). The number of patients discharged in <1 hr increased by 2.8% (from 6.9% to 9.7%, 95%CI 2.1% to 3.5%, p<0.0001), and median exam room time decreased by 34 minutes (90 to 56 min, 95%CI 31 to 38 min, p<0.0001). In comparison, the control group had no change in LOS (265 to 267 min) or proportion of patients discharged in <1 hr (2.9% to 2.9%), and an

  14. Using lean-based systems engineering to increase capacity in the emergency department.

    PubMed

    White, Benjamin A; Chang, Yuchiao; Grabowski, Beth G; Brown, David F M

    2014-11-01

    While emergency department (ED) crowding has myriad causes and negative downstream effects, applying systems engineering science and targeting throughput remains a potential solution to increase functional capacity. However, the most effective techniques for broad application in the ED remain unclear. We examined the hypothesis that Lean-based reorganization of Fast Track process flow would improve length of stay (LOS), percent of patients discharged within one hour, and room use, without added expense. This study was a prospective, controlled, before-and-after analysis of Fast Track process improvements in a Level 1 tertiary care academic medical center with >95,000 annual patient visits. We included all adult patients seen during the study periods of 6/2010-10/2010 and 6/2011-10/2011, and data were collected from an electronic tracking system. We used concurrent patients seen in another care area used as a control group. The intervention consisted of a simple reorganization of patient flow through existing rooms, based in systems engineering science and modeling, including queuing theory, demand-capacity matching, and Lean methodologies. No modifications to staffing or physical space were made. Primary outcomes included LOS of discharged patients, percent of patients discharged within one hour, and time in exam room. We compared LOS and exam room time using Wilcoxon rank sum tests, and chi-square tests for percent of patients discharged within one hour. Following the intervention, median LOS among discharged patients was reduced by 15 minutes (158 to 143 min, 95%CI 12 to 19 min, p<0.0001). The number of patients discharged in <1 hr increased by 2.8% (from 6.9% to 9.7%, 95%CI 2.1% to 3.5%, p<0.0001), and median exam room time decreased by 34 minutes (90 to 56 min, 95%CI 31 to 38 min, p<0.0001). In comparison, the control group had no change in LOS (265 to 267 min) or proportion of patients discharged in <1 hr (2.9% to 2.9%), and an increase in exam room time (28

  15. Associations of size at birth and dual-energy X-ray absorptiometry measures of lean and fat mass at 9 to 10 y of age.

    PubMed

    Rogers, Imogen S; Ness, Andy R; Steer, Colin D; Wells, Jonathan C K; Emmett, Pauline M; Reilly, John R; Tobias, Jon; Smith, George Davey

    2006-10-01

    Birth weight has been positively associated with risk of overweight in later life. However, little information exists on how weight and length at birth are associated with subsequent lean and total body fat. We investigated the association between weight and length at birth and body composition and fat distribution in childhood. Body composition was measured by using dual-energy X-ray absorptiometry in 9-10-y-old subjects (n = 3006 boys and 3080 girls). Weight and length at birth were measured or taken from hospital records. Birth weight was positively associated with both lean body mass (LBM) and total body fat at 9-10 y of age in both sexes. LBM rose by 320 g per 1-SD increase in birth weight (P < 0.001), and total body fat rose by 2.5% (P = 0.001), but birth weight was unassociated with the fat-to-lean mass ratio (FLR). Ponderal index (PI) at birth (ie, weight/length3) was positively associated with LBM, total body fat, and the FLR in both sexes; the FLR increased by 2.7% in boys (P = 0.021) and by 5.0% in girls per 1-SD increase in PI (P < 0.001). Weight and length at birth did not predict central adiposity; although trunk fat had a strong positive association with PI at birth, this association disappeared after adjustment for total body fat. Higher PI at birth is associated with both higher fat and lean mass in childhood but also with an increase in the FLR. PI at birth is a better predictor of subsequent adiposity than is birth weight.

  16. Lean mass explains the association between muscular fitness and bone outcomes in 13-year-old boys.

    PubMed

    Ubago-Guisado, Esther; Vlachopoulos, Dimitris; Ferreira de Moraes, Augusto César; Torres-Costoso, Ana; Wilkinson, Kelly; Metcalf, Brad; Sánchez-Sánchez, Javier; Gallardo, Leonor; Gracia-Marco, Luis

    2017-10-01

    This study investigated the associations between fitness indices and bone outcomes in young males. Data were collected between autumn and winter 2014-2015 on 121 males with a mean age of 13.1 ± 0.1 years: 41 swimmers, 37 footballers, 29 cyclists and 14 nonathletes. Participants were recruited from athletic clubs and schools across South West England. Lean mass, areal bone mineral density and hip structural estimates were measured using dual-energy X-ray absorptiometry. The relationships between bone outcomes and the vertical jump, standing long jump and the 20-m shuttle run test were analysed using three regression models: model 1 was adjusted by age and stature, model 2 added vigorous physical activity and model 3 then added lean mass. The boys' performance in the vertical jump and standing long jump was positively associated with the majority of bone outcomes in models 1 and 2, but most of these disappeared in model 3. The 20-m shuttle run test was positively associated with most bone outcomes in all three models. Lean mass played a key role in the association between muscular fitness and bone outcomes. Vigorous physical activity did not explain the associations between fitness and bone outcomes, but lean mass did. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men.

    PubMed

    Hoffman, Jay R; Stout, Jeffrey R; Williams, David R; Wells, Adam J; Fragala, Maren S; Mangine, Gerald T; Gonzalez, Adam M; Emerson, Nadia S; McCormack, William P; Scanlon, Tyler C; Purpura, Martin; Jäger, Ralf

    2012-10-05

    Phosphatidic acid (PA) has been reported to activate the mammalian target of rapamycin (mTOR) signaling pathway and is thought to enhance the anabolic effects of resistance training. The purpose of this pilot study was to examine if oral phosphatidic acid administration can enhance strength, muscle thickness and lean tissue accruement during an 8-week resistance training program. Sixteen resistance-trained men were randomly assigned to a group that either consumed 750 mg of PA (n = 7, 23.1 ± 4.4 y; 176.7 ± 6.7 cm; 86.5 ± 21.2 kg) or a placebo (PL, n = 9, 22.5 ± 2.0 y; 179.8 ± 5.4 cm; 89.4 ± 13.6 kg) group. During each testing session subjects were assessed for strength (one repetition maximum [1-RM] bench press and squat) and body composition. Muscle thickness and pennation angle were also measured in the vastus lateralis of the subject's dominant leg. Subjects ingesting PA demonstrated a 12.7% increase in squat strength and a 2.6% increase in LBM, while subjects consuming PL showed a 9.3% improvement in squat strength and a 0.1% change in LBM. Although parametric analysis was unable to demonstrate significant differences, magnitude based inferences indicated that the Δ change in 1-RM squat showed a likely benefit from PA on increasing lower body strength and a very likely benefit for increasing lean body mass (LBM). Results of this study suggest that a combination of a daily 750 mg PA ingestion, combined with a 4-day per week resistance training program for 8-weeks appears to have a likely benefit on strength improvement, and a very likely benefit on lean tissue accruement in young, resistance trained individuals.

  18. Influence of lean and fat mass on bone mineral density and on urinary stone risk factors in healthy women

    PubMed Central

    2013-01-01

    Background The role of body composition (lean mass and fat mass) on urine chemistries and bone quality is still debated. Our aim was therefore to determine the effect of lean mass and fat mass on urine composition and bone mineral density (BMD) in a cohort of healthy females. Materials and methods 78 female volunteers (mean age 46 ± 6 years) were enrolled at the Stone Clinic of Parma University Hospital and subdued to 24-hour urine collection for lithogenic risk profile, DEXA, and 3-day dietary diary. We defined two mathematical indexes derived from body composition measurement (index of lean mass-ILM, and index of fat mass-IFM) and the cohort was split using the median value of each index, obtaining groups differing only for lean or fat mass. We then analyzed differences in urine composition, dietary intakes and BMD. Results The women with high values of ILM had significantly higher excretion of creatinine (991 ± 194 vs 1138 ± 191 mg/day, p = 0.001), potassium (47 ± 13 vs 60 ± 18 mEq/day, p < 0.001), phosphorus (520 ± 174 vs 665 ± 186 mg/day, p < 0.001), magnesium (66 ± 20 vs 85 ± 26 mg/day, p < 0.001), citrate (620 ± 178 vs 807 ± 323 mg/day, p = 0.002) and oxalate (21 ± 7 vs 27 ± 11 mg/day, p = 0.015) and a significantly better BMD values in limbs than other women with low values of ILM. The women with high values of IFM had similar urine composition to other women with low values of IFM, but significantly better BMD in axial sites. No differences in dietary habits were found in both analyses. Conclusions Lean mass seems to significantly influence urine composition both in terms of lithogenesis promoters and inhibitors, while fat mass does not. Lean mass influences bone quality only in limb skeleton, while fat mass influences bone quality only in axial sites. PMID:24099643

  19. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations.

  20. QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior.

    PubMed

    Okamoto, Kitaro; Yamasaki, Miwako; Takao, Keizo; Soya, Shingo; Iwasaki, Monica; Sasaki, Koh; Magoori, Kenta; Sakakibara, Iori; Miyakawa, Tsuyoshi; Mieda, Michihiro; Watanabe, Masahiko; Sakai, Juro; Yanagisawa, Masashi; Sakurai, Takeshi

    2016-01-01

    How the hypothalamus transmits hunger information to other brain regions to govern whole brain function to orchestrate feeding behavior has remained largely unknown. Our present study suggests the importance of a recently found lateral hypothalamic neuropeptide, QRFP, in this signaling. Qrfp-/- mice were hypophagic and lean, and exhibited increased anxiety-like behavior, and were hypoactive in novel circumstances as compared with wild type littermates. They also showed decreased wakefulness time in the early hours of the dark period. Histological studies suggested that QRFP neurons receive rich innervations from neurons in the arcuate nucleus which is a primary region for sensing the body's metabolic state by detecting levels of leptin, ghrelin and glucose. These observations suggest that QRFP is an important mediator that acts as a downstream mediator of the arcuate nucleus and regulates feeding behavior, mood, wakefulness and activity.

  1. QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior

    PubMed Central

    Okamoto, Kitaro; Yamasaki, Miwako; Takao, Keizo; Soya, Shingo; Iwasaki, Monica; Sasaki, Koh; Magoori, Kenta; Sakakibara, Iori; Miyakawa, Tsuyoshi; Mieda, Michihiro; Watanabe, Masahiko; Sakai, Juro; Yanagisawa, Masashi; Sakurai, Takeshi

    2016-01-01

    How the hypothalamus transmits hunger information to other brain regions to govern whole brain function to orchestrate feeding behavior has remained largely unknown. Our present study suggests the importance of a recently found lateral hypothalamic neuropeptide, QRFP, in this signaling. Qrfp-/- mice were hypophagic and lean, and exhibited increased anxiety-like behavior, and were hypoactive in novel circumstances as compared with wild type littermates. They also showed decreased wakefulness time in the early hours of the dark period. Histological studies suggested that QRFP neurons receive rich innervations from neurons in the arcuate nucleus which is a primary region for sensing the body’s metabolic state by detecting levels of leptin, ghrelin and glucose. These observations suggest that QRFP is an important mediator that acts as a downstream mediator of the arcuate nucleus and regulates feeding behavior, mood, wakefulness and activity. PMID:27835635

  2. Distribution of fat, non-osseous lean and bone mineral mass in international Rugby Union and Rugby Sevens players.

    PubMed

    Higham, D G; Pyne, D B; Anson, J M; Dziedzic, C E; Slater, G J

    2014-06-01

    Differences in the body composition of international Rugby Union and Rugby Sevens players, and between players of different positions are poorly understood. The purpose of this study was to examine differences in the quantity and regional distribution of fat, non-osseous lean and bone mineral mass between playing units in Rugby Union and Rugby Sevens. Male Rugby Union (n=21 forwards, 17 backs) and Rugby Sevens (n=11 forwards, 16 backs) players from the Australian national squads were measured using dual-energy X-ray absorptiometry. The digital image of each player was partitioned into anatomical regions including the arms, legs, trunk, and android and gynoid regions. Compared with backs, forwards in each squad were heavier and exhibited higher absolute regional fat (Union 43-67%; ±~17%, range of % differences; ±~95% confidence limits (CL); Sevens 20-26%; ±~29%), non-osseous lean (Union 14-22%; ±~5.8%; Sevens 6.9-8.4%; ±~6.6%) and bone mineral (Union 12-26%; ±~7.2%; Sevens 5.0-11%; ±~7.2%) mass. When tissue mass was expressed relative to regional mass, differences between Rugby Sevens forwards and backs were mostly unclear. Rugby Union forwards had higher relative fat mass (1.7-4.7%; ±~1.9%, range of differences; ±~95% CL) and lower relative non-osseous lean mass (-4.2 to -1.8%; ±~1.8%) than backs in all body regions. Competing in Rugby Union or Rugby Sevens characterized the distribution of fat and non-osseous lean mass to a greater extent than a player's positional group, whereas the distribution of bone mineral mass was associated more with a player's position. Differences in the quantity and distribution of tissues appear to be related to positional roles and specific demands of competition in Rugby Union and Rugby Sevens. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    NASA Technical Reports Server (NTRS)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4

  4. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    NASA Technical Reports Server (NTRS)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4

  5. Short report: Relationship between quality protein, lean mass and bone health.

    PubMed

    Loenneke, Jeremy P; Balapur, Abhishek; Thrower, Austin D; Syler, Georganne; Timlin, Maureen; Pujol, Thomas J

    2010-01-01

    Quality protein intake, and distribution of that protein, could play an important role with lean mass (LM), bone mineral density (BMD) and bone mineral content (BMC). Research has demonstrated that muscle protein synthesis is maximally stimulated at approximately 10 g of essential amino acids (EAA)/meal. This study sought to determine the relationship between the amount of quality protein consumed and the amount of times the approximately 10 g EAA threshold was reached at a meal, with respect to LM, BMD and BMC. Twenty-seven subjects participated in this study. EAA intake was determined from a 3-day food record, and amino acid profiling was determined using a computer program (USDA Database, release 22). LM, BMD and BMC were measured using dual-energy X-ray absorptiometry. Quality protein was defined as the ratio of EAA to total dietary protein. Data were analyzed using Pearson partial coefficient correlations, controlling for body mass, with an α-level of 0.05. Quality protein consumed in a 24-hour period and the amount of times reaching the EAA threshold per day was positively associated with LM, BMD and BMC, and had an inverse relationship with body fat percentage. Both quality protein intake and frequency are positively associated with favorable body composition and bone health. Copyright © 2010 S. Karger AG, Basel.

  6. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-free Female's Lean Body and Bone Mass.

    PubMed

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-03-02

    To achieve the criterion appearance prior to competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  7. Effects of testosterone on lean mass gain in elderly men: systematic review with meta-analysis of controlled and randomized studies.

    PubMed

    Neto, Walter Krause; Gama, Eliane Florencio; Rocha, Leandro Yanase; Ramos, Carla Cristina; Taets, Wagner; Scapini, Katia Bilhar; Ferreira, Janaina B; Rodrigues, Bruno; Caperuto, Érico

    2015-02-01

    The objective of this study was to evaluate the effects of steroid anabolic androgenic hormones use on lean mass gain in elderly men through a systematic review with a meta-analysis of randomized controlled studies. We systematically searched PubMed database until 4th October 2013. We included randomized placebo-controlled trials (RCT) that studied testosterone replacement therapy in men over 60 years of age, with total testosterone levels ≤550 ng/dl, observing gains in weight, lean mass tissue and fat mass as outcome. We excluded duplicated studies, studies which mixed men and women, and studies using weak androgens such as dehydroepiandrosterone or androstenedione. The initial search yielded 2681 articles, of which 26 were selected for full text analysis. In the end, 11 studies were included. However, 3 studies were not included in the meta-analysis. Meta-analysis showed that mean weight increased (lean mass), ranging from 1.65 (95 % CI, 1.61-1.69) to 6.20 (95 % CI, 5.22-7.18) kg, although it was heterogeneous (I (2) = 98 %). Effect estimate was 3.59 [2.38-4.81]. Androgen therapy decreased fat mass; effect estimate was -1.78 [-2.57, -0.99] that analysis had also a high level of heterogeneity (I (2) = 81 %). The results suggest that testosterone replacement therapy is able to increase muscle mass in elderly men and that is affected by the time that the treatment is carried out and the method of administration of the drug.

  8. Osteoarthritis of the Distal Interphalangeal and First Carpometacarpal Joints is Associated with High Bone Mass in Women and Small Bone Size and Low Lean Mass in Men

    PubMed Central

    von Schewelov, Thord; Magnusson, Håkan; Cöster, Maria; Karlsson, Caroline; Rosengren, Björn E

    2015-01-01

    Objective: To determine if primary hand osteoarthritis (OA) is associated with abnormal bone and anthropometric traits. Methods: We used DXA to measure total body bone mineral density (BMD), femoral neck width (bone size) and total body lean and fat mass in 39 subjects with hand OA (primary DIP and/or CMC I) and 164 controls. Data are presented as mean Z-scores or Odds Ratios (OR) with 95% confidence intervals. Results: Women with hand OA had (compared to controls) higher BMD (0.5(0.1,0.9)) but similar bone size (-0.3(-0.8,0.2)), lean mass (0.3(-0.3,0.9)), fat mass (-0.1(-0.6,0.5)) and BMI (0.0(-0.6,0.6)). Men with hand OA had (compared to controls) similar BMD (-0.1(-0.7,0.6)), smaller bone size (-0.5(-1.1,-0.01)), lower lean mass (-0.6(-1.1,-0.04)), and similar fat mass (-0.2(-0.7,0.4)) and BMI -0.1(-0.6,0.6). In women, each SD higher BMD was associated with an OR of 1.8 (1.03, 3.3) for having hand OA. In men each SD smaller bone size was associated with an OR of 1.8 (1.02, 3.1) and each SD lower proportion of lean body mass with an OR of 1.9 (1.1, 3.3) for having hand OA. Conclusion: Women with primary DIP finger joint and/or CMC I joint OA have a phenotype with higher BMD while men with the disease have a smaller bone size and lower lean body mass. PMID:26401163

  9. Unilateral chronic insufficiency of anterior cruciate ligament decreases bone mineral content and lean mass of the injured lower extremity.

    PubMed

    Takata, Shinjiro; Abbaspour, Aziz; Kashihara, Michiharu; Nakao, Shigetaka; Yasui, Natsuo

    2007-08-01

    We studied the effects of unilateral chronic anterior cruciate ligament (ACL) injury on bone size, bone mineral content (BMC), bone mineral density (BMD), soft tissue composition and muscle strength of the injured lower extremity in Japanese 21 men and 12 women aged 15 to 39 years. Bone area, BMD, BMC, lean mass and fat mass of lower extremity were measured using dual energy X-ray absorptiometry. The isometric and isokinetic muscle strength was assessed by an isokinetic machine.BMC, lean mass, circumference of the thigh and circumference of the lower leg of the injured lower extremity were significantly smaller than those of the intact lower extremity (p=0.0002, p<0.0001, p<0.0001, p=0.0131). In contrast, fat mass and %Fat of the injured lower extremity was significantly greater than that of the intact lower extremity (p=0.0301, p<0.0001). Bone area and BMD did not produce significant difference. These findings suggest that chronic insufficiency of ACL decreases BMC and lean mass of the injured lower extremity.

  10. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial.

    PubMed

    Daly, Robin M; O'Connell, Stella L; Mundell, Niamh L; Grimes, Carley A; Dunstan, David W; Nowson, Caryl A

    2014-04-01

    Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability. We assessed the effects of progressive resistance training (PRT) combined with a protein-enriched diet facilitated through lean red meat on lean tissue mass (LTM), muscle size, strength and function, circulating inflammatory markers, blood pressure, and lipids in elderly women. In a 4-mo cluster randomized controlled trial, 100 women aged 60-90 y who were residing in 15 retirement villages were allocated to receive PRT with lean red meat (∼160 g cooked) to be consumed 6 d/wk [resistance training plus lean red meat (RT+Meat) group; n = 53] or control PRT [1 serving pasta or rice/d; control resistance training (CRT) group; n = 47)]. All women undertook PRT 2 times/wk and received 1000 IU vitamin D3/d. The mean (± SD) protein intake was greater in the RT+Meat group than in the CRT group throughout the study (1.3 ± 0.3 compared with 1.1 ± 0.3 g · kg⁻¹ · d⁻¹, respectively; P < 0.05). The RT+Meat group experienced greater gains in total body LTM (0.45 kg; 95% CI: 0.07, 0.84 kg), leg LTM (0.22 kg; 95% CI: 0.02, 0.42 kg), and muscle strength (18%; 95% CI: 0.03, 0.34) than did the CRT group (all P < 0.05). The RT+Meat group also experienced a 10% greater increase in serum insulin-like growth factor I (P < 0.05) and a 16% greater reduction in the proinflammatory marker interleukin-6 (IL-6) (P < 0.05) after 4 mo. There were no between-group differences for the change in blood lipids or blood pressure. A protein-enriched diet equivalent to ∼1.3 g · kg⁻¹ · d⁻¹ achieved through lean red meat is safe and effective for enhancing the effects of PRT on LTM and muscle strength and reducing circulating IL-6 concentrations in elderly women. This trial was registered at the Australian Clinical Trials Registry as ACTRN12609000223235.

  11. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation.

    PubMed

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-09-15

    Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. The prediction of lean body mass and fat mass from arm anthropometry at diagnosis in children with cancer.

    PubMed

    Webber, Colin; Halton, Jacqueline; Walker, Scott; Young, Andrea; Barr, Ronald D

    2013-10-01

    Maintenance of adequate nutrition is important in the care of children with cancer. In clinical practice, determination of nutritional status can be accomplished with measurement of body composition by dual-energy x-ray absorptiometry (DXA). However, DXA is seldom available in low-income countries where most children with cancer live. This study sought to provide predictive equations for lean body mass and fat mass, measured by DXA, on the basis of simple arm anthropometry providing measures of mid-upper arm circumference and triceps skin-fold thickness in a population (N=99) of children diagnosed with cancer. Such equations were derived successfully with the inclusion of absolute body weight, the body weight Z-score, and the predicted whole-body bone mineral content on the basis of age and sex. Attempted validation in a small sample (N=7) of children who completed therapy for acute lymphoblastic leukemia revealed disparities reflective of the prevalence of obesity in such survivors. Further validation must be undertaken in large samples of children with a variety of malignant diseases to assess the robustness of the equations predictive of body composition.

  13. The relationship between pedometer-determined physical activity, body mass index and lean body mass index in children.

    PubMed

    Duncan, Michael J; Nevill, Alan; Woodfield, Lorayne; Al-Nakeeb, Yahya

    2010-10-01

    To cross-sectionally assess weekend to weekday variation of physical activity in British children and to consider the role of Body Mass Index (BMI, W/H(2)) and Lean Body Mass Index (LBMI, H(2)/W) when examining this issue. A total of 496 children aged 8-14 years, were measured for height and weight and the activity levels were analysed using pedometers to measure mean step counts for 4 consecutive days (2 weekdays, 2 weekend days). Boys had significantly lower BMI than girls. Higher values for average weekend steps were associated with lower BMI values. BMI values were; however, found to be positively skewed but when the analysis was repeated using LBMI, data was normally distributed and the conclusions remained the same. Weekday steps are higher than weekend steps for children irrespective of gender or weight status. Mean steps taken during weekend days are significantly associated with reduced BMI in children. These findings may be questioned because BMI is highly skewed and not normally distributed. However, LBMI provides a suitable alternative that is normally distributed and can be used to compare the relationship between weight status and physical activity.

  14. Evaluating Lean in healthcare.

    PubMed

    Burgess, Nicola; Radnor, Zoe

    2013-01-01

    The purpose of this paper is to present findings relating to how Lean is implemented in English hospitals. Lean implementation snapshots in English hospitals were conducted by content analysing all annual reports and web sites over two time periods, giving a thorough analysis of Lean's status in English healthcare. The article identifies divergent approaches to Lean implementation in English hospitals. These approaches are classified into a typology to facilitate an evaluation of how Lean is implemented. The findings suggest that implementation tends to be isolated rather than system-wide. A second dataset conveys Lean implementation trajectory across the time period. These data signal Lean's increasing use by English hospitals and shows progression towards an increasingly systemic approach. Data were collected using content analysis methods, which relies on how "Lean" methods were articulated within the annual report and/or on the organisation's web site, which indicates approaches taken by hospital staff implementing Lean. This research is the first to examine more closely "how" Lean is implemented in English hospitals. The emergent typology could prove relevant to other public sector organizations and service organisations more generally. The research also presents a first step to understanding Lean thinking in the English NHS. This article empirically analyses Lean implementation in English hospitals. It identifies divergent approaches that allow inferences about how far Lean is implemented in an organisation. Data represent a baseline for further analysis so that Lean implementation can be tracked.

  15. Plasma Transthyretin as a Biomarker of Lean Body Mass and Catabolic States12

    PubMed Central

    Ingenbleek, Yves; Bernstein, Larry H

    2015-01-01

    Plasma transthyretin (TTR) is a plasma protein secreted by the liver that circulates bound to retinol-binding protein 4 (RBP4) and its retinol ligand. TTR is the sole plasma protein that reveals from birth to old age evolutionary patterns that are closely superimposable to those of lean body mass (LBM) and thus works as the best surrogate analyte of LBM. Any alteration in energy-to-protein balance impairs the accretion of LBM reserves and causes early depression of TTR production. In acute inflammatory states, cytokines induce urinary leakage of nitrogenous catabolites, deplete LBM stores, and cause an abrupt decrease in TTR and RBP4 concentrations. As a result, thyroxine and retinol ligands are released in free form, creating a second frontline that strengthens that primarily initiated by cytokines. Malnutrition and inflammation thus keep in check TTR and RBP4 secretion by using distinct and unrelated physiologic pathways, but they operate in concert to downregulate LBM stores. The biomarker complex integrates these opposite mechanisms at any time and thereby constitutes an ideally suited tool to determine residual LBM resources still available for metabolic responses, hence predicting outcomes of the most interwoven disease conditions. PMID:26374179

  16. Nutritional influences over the life course on lean body mass of individuals in developing countries.

    PubMed

    Kulkarni, Bharati; Hills, Andrew P; Byrne, Nuala M

    2014-03-01

    The double burden of childhood undernutrition and adult-onset adiposity in transitioning societies poses a significant public health challenge. The development of suboptimal lean body mass (LBM) could partly explain the link between these two forms of malnutrition. This review examines the evidence on both the role of nutrition in “developmental programming” of LBM and the nutritional influences that affect LBM throughout the life course. Studies from developing countries assessing the relationship of early nutrition with later LBM provide important insights. Overall, the evidence is consistent in suggesting a positive association of early nutritional status (indicated by birth weight and growth during first 2 years) with LBM in later life. Evidence on the impact of maternal nutritional supplementation during pregnancy on later LBM is inconsistent. In addition, the role of nutrients (protein, zinc, calcium, vitamin D) that can affect LBM throughout the life course is described. Promoting optimal intakes of these important nutrients throughout the life course is important for reducing childhood undernutrition as well as for improving the LBM of adults.

  17. Review of clinically accessible methods to determine lean body mass for normalization of standardized uptake values.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van De Wiele, Christophe; Gheysens, Olivier; Pottel, Hans

    2016-03-01

    With the routine use of 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scans, metabolic activity of tumors can be quantitatively assessed through calculation of SUVs. One possible normalization parameter for the standardized uptake value (SUV) is lean body mass (LBM), which is generally calculated through predictive equations based on height and body weight. (Semi-)direct measurements of LBM could provide more accurate results in cancer populations than predictive equations based on healthy populations. In this context, four methods to determine LBM are reviewed: bioelectrical impedance analysis, dual-energy X-ray absorptiometry. CT, and magnetic resonance imaging. These methods were selected based on clinical accessibility and are compared in terms of methodology, precision and accuracy. By assessing each method's specific advantages and limitations, a well-considered choice of method can hopefully lead to more accurate SUVLBM values, hence more accurate quantitative assessment of 18F-FDG PET images.

  18. Simulation of lean NOx trap performance with microkinetic chemistry and without mass transfer.

    SciTech Connect

    Larson, Rich; Daw, C. Stuart; Pihl, Josh A.; Chakravarthy, V. Kalyana

    2011-08-01

    A microkinetic chemical reaction mechanism capable of describing both the storage and regeneration processes in a fully formulated lean NO{sub x} trap (LNT) is presented. The mechanism includes steps occurring on the precious metal, barium oxide (NO{sub x} storage), and cerium oxide (oxygen storage) sites of the catalyst. The complete reaction set is used in conjunction with a transient plug flow reactor code to simulate not only conventional storage/regeneration cycles with a CO/H{sub 2} reductant, but also steady flow temperature sweep experiments that were previously analyzed with just a precious metal mechanism and a steady state code. The results show that NO{sub x} storage is not negligible during some of the temperature ramps, necessitating a re-evaluation of the precious metal kinetic parameters. The parameters for the entire mechanism are inferred by finding the best overall fit to the complete set of experiments. Rigorous thermodynamic consistency is enforced for parallel reaction pathways and with respect to known data for all of the gas phase species involved. It is found that, with a few minor exceptions, all of the basic experimental observations can be reproduced with these purely kinetic simulations, i.e., without including mass-transfer limitations. In addition to accounting for normal cycling behavior, the final mechanism should provide a starting point for the description of further LNT phenomena such as desulfation and the role of alternative reductants.

  19. Physical Activity Across Adulthood in Relation to Fat and Lean Body Mass in Early Old Age: Findings From the Medical Research Council National Survey of Health and Development, 1946–2010

    PubMed Central

    Bann, David; Kuh, Diana; Wills, Andrew K.; Adams, Judith; Brage, Soren; Cooper, Rachel

    2014-01-01

    Fat and lean body mass have important implications for health and physical functioning in older age, and physical activity is purported to be an important modifiable determinant. However, our evidence-based understanding of its role is limited. We examined the associations of physical activity, assessed both by self-report (using data on leisure time physical activity (LTPA) collected on 4 occasions over a 28-year period) and objectively (using 5-day heart rate and movement monitoring), with fat and lean mass at ages 60–64 years in 1,162 British participants from the Medical Research Council National Survey of Health and Development in 1946–2010. Higher objectively assessed physical activity energy expenditure (PAEE) at ages 60–64 years was associated with lower fat mass and android (abdominal):gynoid (hip) fat ratio (mean differences in fat mass per 1–standard deviation increase in PAEE were −0.79 kg/m1.2 in men (95% confidence interval: −1.08, −0.50) and −1.79 kg/m1.2 (95% confidence interval: −2.15, −1.42) in women). After adjustment for fat mass, higher PAEE was associated with higher appendicular lean mass. Both light and moderate-to-vigorous intensities of activity were associated with fat mass, and the latter was associated with lean mass. More frequent LTPA across adulthood was associated with lower fat mass (in women only) and higher appendicular lean mass (in both sexes, after adjustment for fat mass). These results support the promotion of LTPA across adulthood, as well as both light and moderate-to-vigorous intensities of activity among older adults. PMID:24722997

  20. Physical activity across adulthood in relation to fat and lean body mass in early old age: findings from the Medical Research Council National Survey of Health and Development, 1946-2010.

    PubMed

    Bann, David; Kuh, Diana; Wills, Andrew K; Adams, Judith; Brage, Soren; Cooper, Rachel

    2014-05-15

    Fat and lean body mass have important implications for health and physical functioning in older age, and physical activity is purported to be an important modifiable determinant. However, our evidence-based understanding of its role is limited. We examined the associations of physical activity, assessed both by self-report (using data on leisure time physical activity (LTPA) collected on 4 occasions over a 28-year period) and objectively (using 5-day heart rate and movement monitoring), with fat and lean mass at ages 60-64 years in 1,162 British participants from the Medical Research Council National Survey of Health and Development in 1946-2010. Higher objectively assessed physical activity energy expenditure (PAEE) at ages 60-64 years was associated with lower fat mass and android (abdominal):gynoid (hip) fat ratio (mean differences in fat mass per 1-standard deviation increase in PAEE were -0.79 kg/m(1.2) in men (95% confidence interval: -1.08, -0.50) and -1.79 kg/m(1.2) (95% confidence interval: -2.15, -1.42) in women). After adjustment for fat mass, higher PAEE was associated with higher appendicular lean mass. Both light and moderate-to-vigorous intensities of activity were associated with fat mass, and the latter was associated with lean mass. More frequent LTPA across adulthood was associated with lower fat mass (in women only) and higher appendicular lean mass (in both sexes, after adjustment for fat mass). These results support the promotion of LTPA across adulthood, as well as both light and moderate-to-vigorous intensities of activity among older adults.

  1. Body Fat, Body Fat Distribution, Lean Body Mass and Atrial Fibrillation and Flutter. A Danish Cohort Study

    PubMed Central

    Frost, Lars; Benjamin, Emelia J.; Fenger-Grøn, Morten; Pedersen, Asger; Tjønneland, Anne; Overvad, Kim

    2014-01-01

    Objective It is recognized that higher height and weight are associated with higher risk of atrial fibrillation or flutter (AF) but it is unclear whether risk of AF is related to body fat, body fat location, or lean body mass. Design and Methods We studied the Danish population-based prospective cohort Diet, Cancer and Health conducted among 55 273 men and women 50-64 years of age at recruitment. We investigated the associations between bioelectrical impedance derived measures of body composition and combinations of anthropometric measures of body fat distribution and risk of an incident record of AF in the Danish Registry of Patients. Results During follow-up (median 13.5 years) AF developed in 1 669 men and 912 women. Higher body fat at any measured location was associated with higher risk of AF. The adjusted hazard ratio (HR) per 1 sex-specific standard deviation (SD) increment in body fat mass was 1.29 (95% confidence interval [CI], 1.24-1.33). Higher lean body mass was also associated with a higher risk of AF. The adjusted HR for 1 sex-specific SD increment was 1.40 (95% CI, 1.35-1.45). Conclusion Higher body fat and higher lean body mass were both associated with higher risk of AF. PMID:24436019

  2. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation

    PubMed Central

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-01-01

    Abstract Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. Key points Five days of bed rest resulted in a reduction in leg lean mass and strength in older adults. After bed rest, older (but not younger) adults had reduced amino acid

  3. Lean Body Mass as a Predictive Value of Hypertension in Young Adults, in Ankara, Turkey

    PubMed Central

    VAZIRI, Yashar; BULDUK, Sidika; SHADMAN, Zhaleh; BULDUK, Emre Ozgur; HEDAYATI, Mehdi; KOC, Haluk; ER, Fatmanur; ERDOGAN, Ceren Suveren

    2015-01-01

    Background: The aim of this study was to assess the predictive capacity of body composition estimated by bioelectrical impedance analysis (BIA) to identify abnormal blood pressure in physical education and sport teaching students in the city of Ankara. Methods: Data for this cross-sectional study were obtained in the city of Ankara in 2014. A total of 133 students aged 20–35 yr participated in this study. Anthropometric measurements were measured. Body composition was assessed by BIA. Physical activity level (PAL) and usual dietary intake were assessed. Pre-hypertension and hypertension were defined, respectively, as BP ≥120 and/or 80, and ≥140 and /or 90 mmHg. Results: More overweight students showed abnormal BP especially SBP (P=0.005 and 0.002, respectively). Age adjusted regression showed significant association between arm circumference (β= 0.176, P 0.044), mid arm muscle circumference (MAMC) (β= 0.235, P 0.007), lean body mass (LBM) (β= 0.238, P 0.006), basal metabolism rate (BMR) (β= 0.219, P 0.012) and SBP and, also, MAMC (β= 0.201, P 0.022), LBM (β= 0.203, P 0.021), BMR (β= 0.189, P 0.030) and DBP. Fat intake was associated with DBP (β= 0.14, P =0.040). Multivariate regression models adjusted for age, BMI, WC and fat intake/kg body weight showed positive association of SBP with MAMC, BMR and LBM (P<0.05). Conclusion: The relationship between blood pressure and body composition in young adults may be associated to LBM and MAMC. LBM or MAMC in this population may be indirect indicators of heart muscle mass and heart pumping power. PMID:26811815

  4. Correction of Hypothyroidism Leads to Change in Lean Body Mass without Altering Insulin Resistance.

    PubMed

    Sirigiri, Sangeetha; Vaikkakara, Suresh; Sachan, Alok; Srinivasarao, P V L N; Epuri, Sunil; Anantarapu, Sailaja; Mukka, Arun; Chokkapu, Srinivasa Rao; Venkatanarasu, Ashok; Poojari, Ravi

    2016-12-01

    Hypothyroidism is associated with insulin resistance, dyslipidemia, and abnormal body composition. This study assessed changes in body composition and insulin resistance after thyroxine (T4) replacement in overt hypothyroidism. In this prospective longitudinal study carried out in a tertiary care center, adult nondiabetic patients with overt hypothyroidism were rendered euthyroid on T4. Anthropometry including skinfold thickness (SFT) at the triceps and subscapularis was recorded. Patients underwent testing for fasting plasma glucose, creatinine, serum insulin, T4, thyrotropin (TSH) and body composition analysis by dual-energy X-ray absorptiometry (DEXA) both before and at 2 months after restoration to the euthyroid state. Twenty-seven patients (20 female and 7 male) aged 35.3 ± 11.0 years (min-max: 17-59 years) with overt hypothyroidism were recruited. Serum T4 at the time of recruitment was 48.9 ± 24.6 nmol/l (normal range = 64.4-142 nmol/l). All patients had TSH ≥50 µIU/l. Following treatment, there was a mean body weight reduction of 1.7 kg (p = 0.01). Waist circumference as well as triceps and subscapularis SFT decreased significantly (p < 0.001). There was no change in fat mass (FM), percentage of fat (%FM) or bone mineral content in any of the specified regions or in the body as a whole. In contrast, mean lean body mass (LBM) decreased significantly by 0.8 kg (p < 0.01) in the trunk and 1.3 kg (p < 0.01) in the whole body. Insulin resistance and level of glycemia were not affected by treatment with T4. LBM decreases significantly without affecting FM after correction of hypothyroidism. Insulin resistance was not influenced by T4 treatment.

  5. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat

    PubMed Central

    2010-01-01

    Background The aim of the present study was to compare the effects of 10 weeks resistance training in combination with either a regular diet (Ex) or a low carbohydrate, ketogenic diet (Lc+Ex) in overweight women on body weight and body composition. Methods 18 untrained women between 20 and 40 years with BMI ≥ 25 kg*m-2 were randomly assigned into the Ex or Lc+Ex group. Both groups performed 60-100 min of varied resistance exercise twice weekly. Dietary estimates were based on two 4-day weighed records. Body composition was estimated using Dual Energy X-ray Absorptiometry. Fasting blood samples were analyzed for total-, HDL- and LDL-cholesterol, triacylglycerols, and glucose. Results 16 subjects were included in the analyses. Percentage of energy (En%) from carbohydrates, fat and protein was 6, 66, and 22 respectively in the (Lc+Ex) group and 41, 34, 17 in the Ex group. Mean weight change (pre-post) was -5.6 ± 2.6 kg in Lc+Ex; (p < 0.001) and 0.8 ± 1.5 kg in Ex; (p = 0.175). The Lc+Ex group lost 5.6 ± 2.9 kg of fat mass (p = 0.001) with no significant change in lean body mass (LBM), while the Ex group gained 1.6 ± 1.8 kg of LBM (p = 0.045) with no significant change in fat mass (p = 0.059). Fasting blood lipids and blood glucose were not significantly affected by the interventions. Conclusion Resistance exercise in combination with a ketogenic diet may reduce body fat without significantly changing LBM, while resistance exercise on a regular diet may increase LBM in without significantly affecting fat mass. Fasting blood lipids do not seem to be negatively influenced by the combination of resistance exercise and a low carbohydrate diet. PMID:20196854

  6. Gene-based genome-wide association study identified 19p13.3 for lean body mass

    PubMed Central

    Ran, Shu; Zhang, Lei; Liu, Lu; Feng, An-Ping; Pei, Yu-Fang; Zhang, Lei; Han, Ying-Ying; Lin, Yong; Li, Xiao; Kong, Wei-Wen; You, Xin-Yi; Zhao, Wen; Tian, Qing; Shen, Hui; Zhang, Yong-Hong; Deng, Hong-Wen

    2017-01-01

    Lean body mass (LBM) is a complex trait for human health. To identify genomic loci underlying LBM, we performed a gene-based genome-wide association study of lean mass index (LMI) in 1000 unrelated Caucasian subjects, and replicated in 2283 unrelated Caucasians subjects. Gene-based association analyses highlighted the significant associations of three genes UQCR, TCF3 and MBD3 in one single locus 19p13.3 (discovery p = 6.10 × 10−5, 1.65 × 10−4 and 1.10 × 10−4; replication p = 2.21 × 10−3, 1.84 × 10−3 and 6.95 × 10−3; combined p = 2.26 × 10−6, 4.86 × 10−6 and 1.15 × 10−5, respectively). These results, together with the known functional relevance of the three genes to LMI, suggested that the 19p13.3 region containing UQCR, TCF3 and MBD3 genes was a novel locus underlying lean mass variation. PMID:28322352

  7. A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass

    PubMed Central

    Treyzon, Leo; Chen, Steve; Hong, Kurt; Yan, Eric; Carpenter, Catherine L; Thames, Gail; Bowerman, Susan; Wang, He-Jing; Elashoff, Robert; Li, Zhaoping

    2008-01-01

    Background While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Methods Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Results Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Conclusion Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and

  8. Higher Protein Intake Is Associated with Higher Lean Mass and Quadriceps Muscle Strength in Adult Men and Women12

    PubMed Central

    Sahni, Shivani; Mangano, Kelsey M; Hannan, Marian T; Kiel, Douglas P; McLean, Robert R

    2015-01-01

    Background: The impact of dietary protein intake on lower extremity lean mass and strength in community-dwelling adult Americans is not fully understood. Objectives: The objective was to determine the associations between total protein (TP), animal protein (AP), and plant protein (PP) intakes and lean mass of the legs and quadriceps muscle strength. We further examined whether the associations with quadriceps strength may be explained by lean mass of the legs. Methods: This cross-sectional study included men (n = 1166) and women (n = 1509) from the Framingham Offspring Cohort in Massachusetts. Protein intake in grams per day was measured in either 1995–1998 or 1998–2001. Leg lean mass and isometric quadriceps strength, both in kilograms, were measured in 1996–2001. Multilinear regression models estimated adjusted least squares means of each of the muscle measures by quartile categories of protein intake, adjusting for relevant confounders and covariates. Results: Mean age was 59 ± 9 y (range: 29–86 y) and TP intake was 80 ± 27 g/d in men and 76 ± 26 g/d in women. In men and women, leg lean mass was higher in participants in the highest quartiles of TP and AP intake compared with those in the lowest quartiles of intake [least squares means (kg): TP—17.6 vs. 17.1 in men, P-trend: 0.005, and 11.7 vs. 11.4 in women, P-trend: 0.006; AP—17.6 vs. 17.1 in men, P-trend: 0.002, and 11.7 vs. 11.4 in women, P-trend: 0.003]. PP intake was not associated with lean mass in either sex. In men and women, quadriceps strength was higher in participants in the highest quartile of PP intake compared with those in the lowest quartile [least squares means (kg): 22.9 vs. 21.7 in men, P-trend: 0.01, and 19.0 vs. 18.2 in women, P-trend: 0.01]; this association was no longer significant after adjustment for fruit and vegetable intake (P-trend: 0.06 in men and 0.10 in women). Although no significant association was observed for AP intake in either sex, nonsignificant protective

  9. Increased body condition score through increased lean muscle, but not fat deposition, is associated with reduced reproductive response to oestrus induction in beef cows.

    PubMed

    Guzmán, A; Gonzalez-Padilla, E; Garcés-Yepez, P; Rosete-Fernández, J V; Calderón-Robles, R C; Whittier, W D; Keisler, D H; Gutierrez, C G

    2016-10-01

    Energy reserve, estimated as body condition score (BCS), is the major determinant of the re-initiation of ovarian activity in postpartum cows. Leptin, IGF-I and insulin are positively related to BCS and are putative mediators between BCS and reproductive function. However, when BCS and body composition dissociates, concentrations of these metabolic hormones are altered. We hypothesized that increasing lean muscle tissue, but not fat tissue, would diminish the reproductive response to oestrus induction treatments. Thirty lactating beef cows with BCS of 3.10±1.21 and 75.94±12 days postpartum were divided in two groups. Control cows (n=15) were supplemented with 10.20 kg of concentrate daily for 60 days. Treated cows (n=15) were supplemented equally, and received a β-adrenergic receptor agonist (β-AA; 0.15 mg/kg BW) to achieve accretion of lean tissue mass and not fat tissue mass. Twelve days after ending concentrate supplementation/β-AA treatment, cows received a progestin implant to induce oestrus. Cows displaying oestrus were inseminated during the following 60 days, and maintained with a fertile bull for a further 21 days. Cows in both groups gained weight during the supplementation period (Daily weight gain: Control=0.75 kg v. β-AA=0.89 kg). Cows treated with β-AA had a larger increase in BCS (i.e. change in BCS: control=1 point (score 4.13) v. β-AA=2 points (score 5.06; P0.05) did not differ between groups. However, the number of cows displaying oestrus (control 13/15 v. β-AA 8/15; P<0.05) and the percentage cycling (control 6/8 v. β-AA 3/10; P=0.07) after progestin treatment and the pregnancy percentage at the end of the breeding period (control 13/15 v. β-AA 8/15; P<0.05) were lower in β-AA than control cows. In summary, the increase BCS through muscle tissue accretion, but not through fat tissue accretion, resulted in a lower response to oestrus induction, lower percentage of cycling animals and lower pregnancy percentage after progestin treatment

  10. Relationship between body mass index, fat mass and lean mass with SF-36 quality of life scores in a group of fibromyalgia patients.

    PubMed

    Arranz, Laura; Canela, Miguel Angel; Rafecas, Magda

    2012-11-01

    Patients suffering from fibromyalgia (FM) had widespread musculoskeletal pain and stiffness, fatigue, sleep disorders, cognitive impairment and other symptoms, which seriously affects their quality of life (QoL), making it difficult to perform normal activities. Moreover, FM has been associated with a higher prevalence of overweight and obesity than in the general population. Weight reduction has been beneficial in both FM and other rheumatic patients. Obesity and overweight have been pointed as playing a relevant role in FM symptoms; however, it is necessary to find out more about this relationship. The objective of this study was to evaluate the relationship between body mass index (BMI), fat mass (fM) and lean mass (lM) with quality of life in a group of FM patients. 103 women, with a mean age of 53.74 ± 7.81, and members of different FM patient associations from Spain participated in our study. Some anthropometric measures were taken like weight, height, BMI, body fat mass and lean mass. FM patients QoL was assessed by the Short-Form Health Survey, SF-36 questionnaire. Statistical reports were based on mean, standard deviation and correlation, but significance was tested by nonparametric methods. BMI, fM and lM correlated differently with the specific SF-36 scores. BMI had a high negative correlation with emotional role, fM with bodily pain and lM almost with all scores but specially with emotional role, vitality and physical role. The outcome of this study reveals some interesting relationships, which need to be further investigated to improve the management of FM patients.

  11. Body Mass Index Trajectories in Relation to Change in Lean Mass and Physical Function: The Health, Aging and Body Composition Study.

    PubMed

    Reinders, Ilse; Murphy, Rachel A; Martin, Kathryn R; Brouwer, Ingeborg A; Visser, Marjolein; White, Daniel K; Newman, Anne B; Houston, Denise K; Kanaya, Alka M; Nagin, Daniel S; Harris, Tamara B

    2015-08-01

    To examine body mass index (BMI) trajectories with change in lean mass and physical function in old age. Prospective cohort study. Health, Aging and Body Composition Study. Black and white men (n = 482) and women (n = 516) aged 73.1 ± 2.7 and initially free of disability. A group-based trajectory model was used to determine BMI trajectories, the path a person's BMI followed over 9 years. Lean mass, gait speed, grip strength, and knee extension strength were assessed at baseline and after 9 years, and relative changes were calculated. Multivariable linear regression was used to determine associations between trajectories and relative change in lean mass and physical function. Four BMI trajectories were identified for men and four for women. Although all demonstrated a decline in BMI, the rate of decline differed according to trajectory for women only. Men in Trajectory 4 (mean BMI at baseline 33.9 ± 2.3 kg/m(2) ) declined more than those in Trajectory 1 (mean BMI at baseline 22.9 ± 1.6 kg/m(2) ) in gait speed (-9.91%, 95% confidence interval (CI) = -15.15% to -4.67%) and leg strength (-8.63%, 95% CI = -15.62% to -1.64%). Women in Trajectory 4 (mean BMI at baseline 34.9 ± 3.0 kg/m(2) ) had greater losses than those in Trajectory 1 (mean BMI at baseline 20.5 ± 1.6 kg/m(2) ) in lean mass in the arms (-3.19%, 95% CI = -6.16% to -0.23%). No other associations were observed. Obese men had the highest risk of decline in physical function despite similar weight loss between trajectories, whereas overweight and obese women who lost the most weight had the greatest risk of lean mass loss. The weight at which a person enters old age is informative for predicting loss in lean mass and physical function, illustrating the importance of monitoring weight. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  12. Dietary Variety and Decline in Lean Mass and Physical Performance in Community-Dwelling Older Japanese: A 4-year Follow-Up Study.

    PubMed

    Yokoyama, Y; Nishi, M; Murayama, H; Amano, H; Taniguchi, Y; Nofuji, Y; Narita, M; Matsuo, E; Seino, S; Kawano, Y; Shinkai, S

    2017-01-01

    To examine associations of dietary variety with changes in lean mass and physical performance during a 4-year period in an elderly Japanese population. Four-year prospective study. The Hatoyama Cohort Study and Kusatsu Longitudinal Study, Japan. 935 community-dwelling Japanese aged 65 years or older. Dietary variety was assessed using a 10-item food frequency questionnaire. Body composition was determined by multifrequency bioelectrical impedance analysis, and physical performance (grip strength and usual gait speed) was measured in surveys at baseline and 4 years later. Longitudinal analysis included only participants who were originally in the upper three quartiles of lean body mass, appendicular lean mass, grip strength, and usual gait speed. The outcome measures were decline in lean body mass, appendicular lean mass, grip strength, and usual gait speed, defined as a decrease to the lowest baseline quartile level at the 4-year follow-up survey. Associations of dietary variety with the outcome measures were examined by logistic regression analysis adjusted for potential confounders. In the fully adjusted model, the odds ratios for decline in grip strength and usual gait speed were 0.43 (95% confidence interval, 0.19-0.99) and 0.43 (confidence interval, 0.19-0.99), respectively, for participants in the highest category of dietary variety score as compared with those in the lowest category. Dietary variety was not significantly associated with changes in lean body mass or appendicular lean mass. Among older adults, greater dietary variety may help maintain physical performance, such as grip strength and usual gait speed, but not lean mass.

  13. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study

    PubMed Central

    Frestedt, Joy L; Zenk, John L; Kuskowski, Michael A; Ward, Loren S; Bastian, Eric D

    2008-01-01

    Background This study evaluated a specialized whey fraction (Prolibra™, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. Methods This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. Results Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. Conclusion Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control

  14. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study.

    PubMed

    Frestedt, Joy L; Zenk, John L; Kuskowski, Michael A; Ward, Loren S; Bastian, Eric D

    2008-03-27

    This study evaluated a specialized whey fraction (Prolibratrade mark, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control beverage. Because subjects

  15. Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest

    NASA Technical Reports Server (NTRS)

    Krebs, Jean M.; Evans, Harlan; Kuo, Mike C.; Schneider, Victor S.; Leblanc, Adrian D.

    1990-01-01

    The nature of the body composition changes due to inactivity was examined together with the question of whether these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first six weeks and remained in continuous bed rest for the last five weeks of the study. Six male volunteers (age 24-61 years) were selected for body composition measurements. Nine different male volunteers (age 21-50 years) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the five weeks of continuous bed rest with the previous six weeks of ambulation, it was observed that there was no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).

  16. Using Lean Six Sigma Methodology to Improve a Mass Immunizations Process at the United States Naval Academy.

    PubMed

    Ha, Chrysanthy; McCoy, Donald A; Taylor, Christopher B; Kirk, Kayla D; Fry, Robert S; Modi, Jitendrakumar R

    2016-06-01

    Lean Six Sigma (LSS) is a process improvement methodology developed in the manufacturing industry to increase process efficiency while maintaining product quality. The efficacy of LSS application to the health care setting has not been adequately studied. This article presents a quality improvement project at the U.S. Naval Academy that uses LSS to improve the mass immunizations process for Midshipmen during in-processing. The process was standardized to give all vaccinations at one station instead of giving a different vaccination at each station. After project implementation, the average immunizations lead time decreased by 79% and staffing decreased by 10%. The process was shown to be in control with a capability index of 1.18 and performance index of 1.10, resulting in a defect rate of 0.04%. This project demonstrates that the LSS methodology can be applied successfully to the health care setting to make sustainable process improvements if used correctly and completely. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  17. Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest

    NASA Technical Reports Server (NTRS)

    Krebs, Jean M.; Evans, Harlan; Kuo, Mike C.; Schneider, Victor S.; Leblanc, Adrian D.

    1990-01-01

    The nature of the body composition changes due to inactivity was examined together with the question of whether these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first six weeks and remained in continuous bed rest for the last five weeks of the study. Six male volunteers (age 24-61 years) were selected for body composition measurements. Nine different male volunteers (age 21-50 years) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the five weeks of continuous bed rest with the previous six weeks of ambulation, it was observed that there was no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).

  18. Improved Net Protein Balance, Lean Mass, and Gene Expression Changes With Oxandrolone Treatment in the Severely Burned

    PubMed Central

    Wolf, Steven E.; Thomas, Steven J.; Dasu, Mohan R.; Ferrando, Arny A.; Chinkes, David L.; Wolfe, Robert R.; Herndon, David N.

    2003-01-01

    Objective To determine the effects of the anabolic agent oxandrolone on muscle protein and gene expression in severely burned children. Summary Background Data The authors previously showed that oxandrolone increased net muscle protein synthesis in emaciated burned patients receiving delayed treatment for severe burns. They hypothesized that similar effects would be seen in those treated early after burn. Methods Thirty-two severely burned children were enrolled in a prospective randomized trial. Subjects underwent studies to assess leg protein net balance 5 days after the first excision and grafting procedure. Immediately after these studies, treatment with placebo (n = 18) or 0.1 mg/kg oxandrolone (n = 14) twice a day was started. One week after this, another net balance study was performed in each subject. Body weights and total body potassium counting were used to determine body compositional changes. Muscle biopsies were taken 1 week after treatment in oxandrolone subjects to examine gene expression changes with gene array (12,600 genes). Results Protein net balance did not change in the placebo group, while oxandrolone-treated subjects had a significant improvement. Body weights and fat free mass significantly decreased in the placebo group, while no changes were found in the oxandrolone-treated subjects. Expression changes were seen in 14 genes in the oxandrolone group compared to placebo. Some of these included myosin light chain (+2.7-fold change), tubulin (+2.3), calmodulin (−2.3), and protein phosphatase I inhibitor (−2.8). Conclusions Oxandrolone improves protein net balance and lean mass in the severely burned. These changes are associated with increased gene expression for functional muscle proteins. PMID:12796576

  19. Lean body mass gain in patients with head and neck squamous cell cancer treated perioperatively with a protein- and energy-dense nutritional supplement containing eicosapentaenoic acid.

    PubMed

    Weed, Harrison G; Ferguson, Maree L; Gaff, Robin L; Hustead, Deborah S; Nelson, Jeffrey L; Voss, Anne C

    2011-07-01

    Cancer-associated weight loss may be mediated by an inflammatory response to cancer. Eicosapentaenoic acid (EPA) may suppress this response. Beginning no later than 2 weeks before surgery, patients with head and neck cancer and with weight loss, who were undergoing major resection with curative intent consumed a protein- and energy-dense nutritional supplement containing EPA from fish oil, in addition to usual diet or tube feed. Thirty-one subjects consumed an average of 1.8 containers/day before surgery and 1.5/day during hospitalization (per container: 300 kilocalories, 16 grams (g) protein, 1.08 g EPA). Seventy percent of subjects maintained or gained weight before hospital admission. Mean weight gain was 0.71 kg at admission and 0.66 kg at discharge. At discharge lean body mass increased by 3.20 kg (p < .001) and fat decreased by 3.19 kg (p < .001). An EPA-containing protein- and energy-dense nutritional supplement may help increase perioperative lean body mass in patients with head and neck cancer-related weight loss. Copyright © 2010 Wiley Periodicals, Inc.

  20. Exercise Is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats

    PubMed Central

    Mika, Agnieszka; Van Treuren, Will; González, Antonio; Herrera, Jonathan J.; Knight, Rob; Fleshner, Monika

    2015-01-01

    The mammalian intestine harbors a complex microbial ecosystem that influences many aspects of host physiology. Exposure to specific microbes early in development affects host metabolism, immune function, and behavior across the lifespan. Just as the physiology of the developing organism undergoes a period of plasticity, the developing microbial ecosystem is characterized by instability and may also be more sensitive to change. Early life thus presents a window of opportunity for manipulations that produce adaptive changes in microbial composition. Recent insights have revealed that increasing physical activity can increase the abundance of beneficial microbial species. We therefore investigated whether six weeks of wheel running initiated in the juvenile period (postnatal day 24) would produce more robust and stable changes in microbial communities versus exercise initiated in adulthood (postnatal day 70) in male F344 rats. 16S rRNA gene sequencing was used to characterize the microbial composition of juvenile versus adult runners and their sedentary counterparts across multiple time points during exercise and following exercise cessation. Alpha diversity measures revealed that the microbial communities of young runners were less even and diverse, a community structure that reflects volatility and malleability. Juvenile onset exercise altered several phyla and, notably, increased Bacteroidetes and decreased Firmicutes, a configuration associated with leanness. At the genus level of taxonomy, exercise altered more genera in juveniles than in the adults and produced patterns associated with adaptive metabolic consequences. Given the potential of these changes to contribute to a lean phenotype, we examined body composition in juvenile versus adult runners. Interestingly, exercise produced persistent increases in lean body mass in juvenile but not adult runners. Taken together, these results indicate that the impact of exercise on gut microbiota composition as well as

  1. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic

  2. Short-term dietary energy restriction reduces lean body mass but not performance in physically active men and women.

    PubMed

    Zachwieja, J J; Ezell, D M; Cline, A D; Ricketts, J C; Vicknair, P C; Schorle, S M; Ryan, D H

    2001-05-01

    We studied the effect of moderate, short-term energy restriction on physical performance in physically fit men (n = 13) and women (n = 11) in a controlled clinical research setting with a metabolic kitchen, exercise testing laboratory and training facility. The experiment consisted of a 10 d baseline period followed by either 2 wk of dietary energy restriction (750 kcal/d; n = 16) or energy balance (control; n = 8). During this 24 day study, exercise energy expenditure averaged 465 +/- 5.7 kcal/d in all subjects and was accomplished through treadmill running at a self-selected pace. Body weight was maintained in the control group (-0.36 +/- 0.24kg), but energy restriction resulted in weight loss of -1.29 +/- 0.16 kg (p < 0.001). There was a trend for lean body mass to decline more in the energy restriction group (p = 0.093), accounting for 61% of the weight loss, and urinary nitrogen excretion also tended to be higher in the energy restriction vs. control group (i.e., 13.2 +/- 1.1 vs. 11.2 +/- 1.0g/d; p = 0.089). Muscle strength (leg & shoulder press; 1 repetition maximum) was maintained or increased during the energy restriction period. Muscle endurance, assessed by leg squats to fatigue, and 5 mile run time improved following two weeks of energy restriction or balance. Anaerobic capacity (Wingate Test) increased slightly in the restriction (+ 368 +/- 219 joules) but declined in the control group 649 +/- 288 joules; p<0.05). We conclude that short-term (2 weeks) moderate energy restriction (approximately 750 kcal/d) results in weight loss but does not impair performance in physically fit young men and women.

  3. Can Bioimpedance Measurements of Lean and Fat Tissue Mass Replace Subjective Global Assessments in Peritoneal Dialysis Patients?

    PubMed

    Paudel, Klara; Visser, Annemarie; Burke, Sinead; Samad, Nasreen; Fan, Stanley L

    2015-11-01

    Malnutrition and protein energy wasting (PEW) determined by Subjective Global Assessment (SGA) is associated with increased mortality. There is an inverse relationship between body mass and overhydration in dialysis patients. Is the predictive accuracy of SGA (for death) independent of hydration status? Can bioimpedance spectroscopy analysis of lean tissue index (LTI) and fat tissue index (FTI) accurately identify dialysis patients with protein energy wasting and increased mortality? We report an observational study of 455 peritoneal dialysis (PD) patients. We found that 96 patients (21%) were malnourished (SGA score between 1 and 5), and 192 (42%) had LTI values below 10th centile (age, gender adjusted). FTI was significantly lower in the SGA-defined malnourished cohort. By contrast, there was an inverse relationship between LTI and FTI. Malnourished (by SGA) patients were significantly more overhydrated (P < .0001), but SGA remained highly predictive of survival in multivariate analysis that included hydration status (hazard ratio: 3.12, 95% confidence interval 1.86-5.23, P < .0001). Obesity (patients with the highest 20% FTI) predicted survival (hazard ratio of death was 0.47, 95% confidence interval 0.16-0.85, P < .02) on univariate but not multivariate analysis. We have confirmed that SGA is an accurate predictor of mortality in PD patients, and its predictive value is independent of the hydration status. Predictive power of SGA was not affected when LTI and FTI were included in multivariate analysis. Patients with low LTI were different from patients with low SGA (associated with high FTI). Sensitivity and specificity of Body Composition Monitor to diagnose patients with low SGA readings were poor (area under the curve for receiver operator characteristics analysis 0.66). The phenomenon of reverse epidemiology (high FTI predicting a survival advantage) was found in our PD cohort. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier

  4. Influence of lean body-mass index versus that of fat mass index on blood pressure of gujarati school going adolescents.

    PubMed

    Verma, Vivek; Sinah, S K

    2014-01-01

    There are so many studies associating blood pressure in children and adolescents with body fatness i.e. stating that high body fat is associated with high blood pressure in children and adolescents. The purpose of this study was to determine that which portion of the body mass index, fat or fat free mass index is more influencing the blood pressure in Gujarati Indian adolescents. 733 schoolchildren of 10-18 years of both genders were chosen for this study. The body fat percentage and blood pressure were measured and on the basis of body mass and fat mass, fat free mass index and various other indices were calculated. The association of fat mass index and fat free mass index with blood pressure was computed using correlations. The relationship of BMI with mean blood pressure of boys (R = .326) was more strong than that in girls (R = .149). The blood pressure was having more strong positive correlation with lean body mass index than that with fat mass index in all subjects (R = 0.230 versus R = 0.184), boys (R = 0.285 versus R = 0.242), & girls (R = 0.179 versus R = -0.081). Fat free mass index has more strong association with blood pressure than fat mass index in the adolescent population irrespective of gender. However as far as prevention of hypertension is concerned, reducing body fat (rather than only body weight) may remain an important measure to prevent hypertension as body fat mass is reducible while lean body mass may not be reducible and, in long term, obesity itself can lead to hypertension by various mechanisms.

  5. Influence of increased body mass and body composition on cycling anaerobic power.

    PubMed

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew; Brown, Lee E

    2015-01-01

    Recent evidence suggests that not only body fat (BF) but high lean body mass (HLBM) adversely affects aerobic performance and may reduce aerobic endurance performance as well. However, the influence of body composition on anaerobic performance remains controversial. This study aimed to examine the effects of increased body mass (BM) and body composition on cycling anaerobic power. Peak power (PP) and mean power (MP) measurements were conducted in 2 groups of men with similar total BM but different body compositions resulting from (a) high level of BF [HBF group] or (b) high level of lean body mass [HLBM group] and in a control group. Peak power and MP were calculated in absolute values, relative to BM and lean body mass (LBM), and using allometric scaling. Absolute PP and MP were significantly higher in the HLBM group compared with the control and HBF groups. However, PP and MP relative to BM and using allometric scaling were similar in the HLBM and control groups, yet significantly higher than in the HBF group. There were no significant differences between groups in PP and MP when presented relative to LBM. Therefore, it seems that it is not BM but rather body composition that affects PP. Increased BM, resulting from increased LBM, does not adversely affect cycling anaerobic power, but a BM increase resulting from an increase in BF may adversely affect PP. Therefore, coaches and athletes should avoid excess BF to maximize cycling anaerobic power.

  6. Correlation and Prediction of Dynamic Human Isolated Joint Strength from Lean Body Mass

    DTIC Science & Technology

    1992-06-01

    for all subjects for all axes of the joints. Our model was based on measurements of 14 subjects. These subjects were all healthy young adults ...Exer Sport Sci Rev vol. 3, pp. 249-274, 1975. 3. Hosier, W.W. and Morrow, J.R.: Arm and Leg Strength Compared Between Young Women and Men After...and execution. Parameters: body fat and weight. { type definitions for CoeffTable data structure see lean.h. Decription of force table data

  7. Differences in Adipose Tissue and Lean Mass Distribution in Patients with Collagen VI Related Myopathies Are Associated with Disease Severity and Physical Ability

    PubMed Central

    Rodríguez, M. A.; Del Rio Barquero, Luís M.; Ortez, Carlos I.; Jou, Cristina; Vigo, Meritxell; Medina, Julita; Febrer, Anna; Ramon-Krauel, Marta; Diaz-Manera, Jorge; Olive, Montse; González-Mera, Laura; Nascimento, Andres; Jimenez-Mallebrera, Cecilia

    2017-01-01

    Mutations in human collagen VI genes cause a spectrum of musculoskeletal conditions in children and adults collectively termed collagen VI-related myopathies (COL6-RM) characterized by a varying degree of muscle weakness and joint contractures and which include Ullrich Congenital Muscular Dystrophy (UCMD) and Bethlem Myopathy (BM). Given that collagen VI is one of the most abundant extracellular matrix proteins in adipose tissue and its emerging role in energy metabolism we hypothesized that collagen VI deficiency might be associated with alterations in adipose tissue distribution and adipokines serum profile. We analyzed body composition by means of dual-energy X-ray absorptiometry in 30 pediatric and adult COL6-RM myopathy patients representing a range of severities (UCMD, intermediate-COL6-RM, and BM). We found a distinctive pattern of regional adipose tissue accumulation which was more evident in children at the most severe end of the spectrum. In particular, the accumulation of fat in the android region was a distinguishing feature of UCMD patients. In parallel, there was a decrease in lean mass compatible with a state of sarcopenia, particularly in ambulant children with an intermediate phenotype. All children and adult patients that were sarcopenic were also obese. These changes were significantly more pronounced in children with collagen VI deficiency than in children with Duchenne Muscular Dystrophy of the same ambulatory status. High molecular weight adiponectin and leptin were significantly increased in sera from children in the intermediate and BM group. Correlation analysis showed that the parameters of fat mass were negatively associated with motor function according to several validated outcome measures. In contrast, lean mass parameters correlated positively with physical performance and quality of life. Leptin and adiponectin circulating levels correlated positively with fat mass parameters and negatively with lean mass and thus may be relevant to

  8. Apparatus to measure relativistic mass increase

    NASA Astrophysics Data System (ADS)

    Luetzelschwab, John W.

    2003-09-01

    An apparatus that uses readily available material to measure the relativistic mass increase of beta particles from a radioactive 204Tl source is described. Although the most accurate analysis uses curve fitting or a Kurie plot, students may just use the raw data and a simple calculation to verify the relativistic mass increase.

  9. NMR-based metabolic profiling in healthy individuals overfed different types of fat: links to changes in liver fat accumulation and lean tissue mass

    PubMed Central

    Elmsjö, A; Rosqvist, F; Engskog, M K R; Haglöf, J; Kullberg, J; Iggman, D; Johansson, L; Ahlström, H; Arvidsson, T; Risérus, U; Pettersson, C

    2015-01-01

    Background: Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA) and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible relationships between plasma metabolites and body fat accumulation. Methods: In a randomized study (LIPOGAIN study), n=39 healthy individuals were overfed with muffins containing SFA or PUFA. Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate metabolites with fat accumulation. Results: We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified as important contributors to group classification between SFA and PUFA (P<0.05). Furthermore, the fat depots (total body fat, visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)>0.5) all with two or more metabolites (for example, branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies. Conclusion: A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass during overeating needs further investigation. PMID:26479316

  10. NMR-based metabolic profiling in healthy individuals overfed different types of fat: links to changes in liver fat accumulation and lean tissue mass.

    PubMed

    Elmsjö, A; Rosqvist, F; Engskog, M K R; Haglöf, J; Kullberg, J; Iggman, D; Johansson, L; Ahlström, H; Arvidsson, T; Risérus, U; Pettersson, C

    2015-10-19

    Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA) and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible relationships between plasma metabolites and body fat accumulation. In a randomized study (LIPOGAIN study), n=39 healthy individuals were overfed with muffins containing SFA or PUFA. Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate metabolites with fat accumulation. We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified as important contributors to group classification between SFA and PUFA (P<0.05). Furthermore, the fat depots (total body fat, visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)>0.5) all with two or more metabolites (for example, branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies. A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass during overeating needs further investigation.

  11. Prediction of limb lean tissue mass from bioimpedance spectroscopy in persons with chronic spinal cord injury

    PubMed Central

    Cirnigliaro, Christopher M.; La Fountaine, Michael F.; Emmons, Racine; Kirshblum, Steven C.; Asselin, Pierre; Spungen, Ann M.; Bauman, William A.

    2013-01-01

    Background Bioimpedance spectroscopy (BIS) is a non-invasive, simple, and inexpensive modality that uses 256 frequencies to determine the extracellular volume impedance (ECVRe) and intracellular volume impedance (ICVRi) in the total body and regional compartments. As such, it may have utility as a surrogate measure to assess lean tissue mass (LTM). Objective To compare the relationship between LTM from dual-energy X-ray absorptiometry (DXA) and BIS impedance values in spinal cord injury (SCI) and able-bodied (AB) control subjects using a cross-sectional research design. Methods In 60 subjects (30 AB and 30 SCI), a total body DXA scan was used to obtain total body and leg LTM. BIS was performed to measure the impedance quotient of the ECVRe and ICVRi in the total body and limbs. Results BIS-derived ECVRe yielded a model for LTM in paraplegia, tetraplegia, and control for the right leg (RL) (R2 = 0.75, standard errors of estimation (SEE) = 1.02 kg, P < 0.0001; R2 = 0.65, SEE = 0.91 kg, P = 0.0006; and R2 = 0.54, SEE = 1.31 kg, P < 0.0001, respectively) and left leg (LL) (R2 = 0.76, SEE = 1.06 kg, P < 0.0001; R2 = 0.64, SEE = 0.83 kg, P = 0.0006; and R2 = 0.54, SEE = 1.34 kg, P < 0.0001, respectively). The ICVRi was similarly predictive of LTM in paraplegia, tetraplegia, and AB controls for the RL (R2 = 0.85, SEE = 1.31 kg, P < 0.0001; R2 = 0.52, SEE = 0.95 kg, P = 0.003; and R2 = 0.398, SEE = 1.46 kg, P = 0.0003, respectively) and LL (R2 = 0.62, SEE = 1.32 kg, P = 0.0003; R2 = 0.57, SEE = 0.91 kg, P = 0.002; and R2 = 0.42, SEE = 1.31 kg, P = 0.0001, respectively). Conclusion Findings demonstrate that the BIS-derived impedance quotients for ECVRe and ICVRi may be used as surrogate markers to track changes in leg LTM in persons with SCI. PMID:23941792

  12. The Effect of Increasing Mass upon Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Hagan, Donald

    2007-01-01

    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  13. [Overweight and obesity in young adults: relevance of job-related changes of exercise on fat, lean body and body mass in students].

    PubMed

    Kemmler, Wolfgang; Kohl, Matthias; Bebenek, Michael; von Stengel, Simon

    2015-03-01

    Early adulthood is related to changes in lifestyle that negatively affect body weight and health. The aim of the study was to determine the effect of exercise changes on the development of weight and body composition in college students.Sixty-one randomly selected dental (ZMS) and 53 sport students (SLS) were accompanied over 5 years. Body mass, fat and lean body mass (LBM) were determined via DXA-technique. Exercise and physical activity were assessed by questionnaires and interviews.All exercise indices significantly increased in the SLS and significantly decreased in the ZMS. Physical activity slightly increased in both groups. Both cohorts comparably gained body mass, however, the increase in the SLS group can be attributed to LBM-changes with minor changes of fat-mass (2.4 % ± 3.3 % vs. 0.1 ± 1.0 %) whereas ZMS gained fat and LBM in a proportion of 2:1.Maintenance/increase of exercise compensate the negative effects of lifestyle changes on body composition during young adulthood.

  14. Changes in insulin‐like growth factor‐I and ‐II associated with fat but not lean mass in early old age

    PubMed Central

    Holly, Jeff M.P.; Lashen, Hany; Hardy, Rebecca; Adams, Judith; Kuh, Diana; Ben‐Shlomo, Yoav

    2015-01-01

    Objective To test the hypothesis that insulin‐like growth factors‐I and II (IGF‐I and II) decline during late midlife and that greater declines are related to higher fat mass and lower lean mass. Methods A total of 1,542 men and women in a British birth cohort study had IGF‐I and II measured by immunoassay of blood samples at age 53 and/or 60‐64 years. Fat mass, android:gynoid fat ratio, and appendicular lean mass were measured at 60‐64 years using dual‐energy X‐ray absorptiometry (DXA). Associations between changes in IGF‐I or II and body composition outcomes were examined using conditional change linear regression models. Results Mean IGF‐I and IGF‐II concentrations were lower at 60‐64 than at 53 years, by 12.8% for IGF‐I and by 12.5% for IGF‐II. Larger declines in either IGF‐I or II were associated with higher fat mass at 60‐64 years. Although higher IGF‐I at 53 years was associated with higher lean mass, there was little evidence linking changes in IGF‐I or II to lean mass. Conclusions The findings suggest that IGF‐I and II concentrations decline with age, and greater declines are associated with higher fat mass levels. These results provide some evidence for the suggested roles of IGF‐I and II in regulating fat mass but not lean mass in older age. PMID:25645314

  15. Changes in insulin-like growth factor-I and -II associated with fat but not lean mass in early old age.

    PubMed

    Bann, David; Holly, Jeff M P; Lashen, Hany; Hardy, Rebecca; Adams, Judith; Kuh, Diana; Ong, Ken K; Ben-Shlomo, Yoav

    2015-03-01

    To test the hypothesis that insulin-like growth factors-I and II (IGF-I and II) decline during late midlife and that greater declines are related to higher fat mass and lower lean mass. A total of 1,542 men and women in a British birth cohort study had IGF-I and II measured by immunoassay of blood samples at age 53 and/or 60-64 years. Fat mass, android:gynoid fat ratio, and appendicular lean mass were measured at 60-64 years using dual-energy X-ray absorptiometry (DXA). Associations between changes in IGF-I or II and body composition outcomes were examined using conditional change linear regression models. Mean IGF-I and IGF-II concentrations were lower at 60-64 than at 53 years, by 12.8% for IGF-I and by 12.5% for IGF-II. Larger declines in either IGF-I or II were associated with higher fat mass at 60-64 years. Although higher IGF-I at 53 years was associated with higher lean mass, there was little evidence linking changes in IGF-I or II to lean mass. The findings suggest that IGF-I and II concentrations decline with age, and greater declines are associated with higher fat mass levels. These results provide some evidence for the suggested roles of IGF-I and II in regulating fat mass but not lean mass in older age. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  16. Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males

    PubMed Central

    2013-01-01

    Background Xpand® 2X is a proprietary blend comprised of branched chain amino acids, creatine monohydrate, beta-alanine (CarnoSyn®), quercetin, coenzymated B-vitamins, alanyl-glutamine (Sustamine®), and natural nitrate sources from pomegranate and beet root extracts purported to enhance the neuromuscular adaptations of resistance training. However to date, no long-term studies have been conducted with this supplement. The purpose of this study was to investigate the effects of a multi-ingredient performance supplement (MIPS) on skeletal muscle hypertrophy, lean body mass and lower body strength in resistance-trained males. Methods Twenty resistance-trained males (21.3 ± 1.9 years) were randomly assigned to consume a MIPS or a placebo of equal weight and volume (food-grade orange flavors and sweeteners) in a double-blind manner, 30 minutes prior to exercise. All subjects participated in an 8-week, 3-day per week, periodized, resistance-training program that was split-focused on multi-joint movements such as leg press, bench press, and bent-over rows. Ultrasonography measured muscle thickness of the quadriceps, dual-energy X-ray absorptiometry (DEXA) determined lean body mass, and strength of the bench press and leg press were determined at weeks 0, 4, and 8 of the study. Data were analyzed with a 2 × 3 repeated measures ANOVA with LSD post hoc tests utilized to locate differences. Results There was a significant group-by-time interaction in which the MIPS supplementation resulted in a significant (p < 0.01) increase in strength of the bench press (18.4% vs. 9.6%) compared with placebo after 4 and 8 weeks of training. There were no significant group by time interactions between MIPS supplementation nor the placebo in leg press strength (p = .08). MIPS supplementation also resulted in a significant increase in lean body mass (7.8% vs. 3.6%) and quadriceps muscle thickness (11.8% vs. 4.5%) compared with placebo (group*time, p <0.01). Conclusions

  17. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  18. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women

    PubMed Central

    Casale, Maria; von Hurst, Pamela R.; Beck, Kathryn L.; Shultz, Sarah; Kruger, Marlena C.; O’Brien, Wendy; Conlon, Cathryn A.; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm2), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16–45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm2. Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  19. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women.

    PubMed

    Casale, Maria; von Hurst, Pamela R; Beck, Kathryn L; Shultz, Sarah; Kruger, Marlena C; O'Brien, Wendy; Conlon, Cathryn A; Kruger, Rozanne

    2016-07-30

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm²), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16-45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm². Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue.

  20. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial.

    PubMed

    Longland, Thomas M; Oikawa, Sara Y; Mitchell, Cameron J; Devries, Michaela C; Phillips, Stuart M

    2016-03-01

    A dietary protein intake higher than the Recommended Dietary Allowance during an energy deficit helps to preserve lean body mass (LBM), particularly when combined with exercise. The purpose of this study was to conduct a proof-of-principle trial to test whether manipulation of dietary protein intake during a marked energy deficit in addition to intense exercise training would affect changes in body composition. We used a single-blind, randomized, parallel-group prospective trial. During a 4-wk period, we provided hypoenergetic (~40% reduction compared with requirements) diets providing 33 ± 1 kcal/kg LBM to young men who were randomly assigned (n = 20/group) to consume either a lower-protein (1.2 g · kg(-1) · d(-1)) control diet (CON) or a higher-protein (2.4 g · kg(-1) · d(-1)) diet (PRO). All subjects performed resistance exercise training combined with high-intensity interval training for 6 d/wk. A 4-compartment model assessment of body composition was made pre- and postintervention. As a result of the intervention, LBM increased (P < 0.05) in the PRO group (1.2 ± 1.0 kg) and to a greater extent (P < 0.05) compared with the CON group (0.1 ± 1.0 kg). The PRO group had a greater loss of fat mass than did the CON group (PRO: -4.8 ± 1.6 kg; CON: -3.5 ± 1.4kg; P < 0.05). All measures of exercise performance improved similarly in the PRO and CON groups as a result of the intervention with no effect of protein supplementation. Changes in serum cortisol during the intervention were associated with changes in body fat (r = 0.39, P = 0.01) and LBM (r = -0.34, P = 0.03). Our results showed that, during a marked energy deficit, consumption of a diet containing 2.4 g protein · kg(-1) · d(-1) was more effective than consumption of a diet containing 1.2 g protein · kg(-1) · d(-1) in promoting increases in LBM and losses of fat mass when combined with a high volume of resistance and anaerobic exercise. Changes in serum cortisol were associated with changes in body

  1. Increased fat mass and high incidence of overweight despite low body mass index in patients with Spinal Muscular Atrophy

    PubMed Central

    Sproule, Douglas M.; Montes, Jacqueline; Montgomery, Megan; Battista, Vanessa; Koenigsberger, Dorcas; Shen, Wei; Punyanitya, Mark; De Vivo, Darryl C.; Kaufmann, Petra

    2009-01-01

    Body composition is sparsely described in spinal muscular atrophy (SMA). Body (BMI, mass/height in m2), fat-free (FFMI, lean mass/height in m2) and fat (FMI, fat mass/height in m2) mass indexes were estimated in 25 children (ages 5–18) with SMA (2 type I, 13 type II, 10 type III) using dual-energy radiograph absorptiometry and anthropometric data referenced to gender and age-matched healthy children (NHANES III, New York Pediatric Rosetta Body Project). BMI was ≥ 50th percentile in 11 (44%) and ≥ 85th in 5 (20%). FFMI was reduced (p<0.005) and FMI was increased (P<0.005) in the overall study cohort. FMI was ≥ 50th, ≥ 85th and 95th percentiles in 19 (76%), 10 (40%) and 5 (20%) subjects, respectively. Using a receiver operator characteristic curve, BMI above 75th, 50th and 3rd percentiles maximized sensitivity and specificity for FMI ≥ 95th, ≥ 85th and ≥ 50th percentiles, respectively. Children with SMA have reduced lean and increased fat mass compared to healthy children. Obesity is a potentially important modifiable source of morbidity in SMA. PMID:19427208

  2. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass.

    PubMed

    Fernando, Shannon M; Rao, Pengcheng; Niel, Lee; Chatterjee, Diptendu; Stagljar, Marijana; Monks, D Ashley

    2010-07-01

    Testosterone and other androgens are thought to increase lean body mass and reduce fat body mass in men by activating the androgen receptor. However, the clinical potential of androgens for improving body composition is hampered by our limited understanding of the tissues and cells that promote such changes. Here we show that selective overexpression of androgen receptor in muscle cells (myocytes) of transgenic male rats both increases lean mass percentage and reduces fat mass. Similar changes in body composition are observed in human skeletal actin promoter driving expression of androgen receptor (HSA-AR) transgenic mice and result from acute testosterone treatment of transgenic female HSA-AR rats. These shifts in body composition in HSA-AR transgenic male rats are associated with hypertrophy of type IIb myofibers and decreased size of adipocytes. Metabolic analyses of transgenic males show higher activity of mitochondrial enzymes in skeletal muscle and increased O(2) consumption by the rats. These results indicate that androgen signaling in myocytes not only increases muscle mass but also reduces fat body mass, likely via increases in oxidative metabolism.

  3. Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans

    PubMed Central

    Bergouignan, Audrey; Gozansky, Wendolyn S.; Barry, Daniel W.; Leitner, Wayne; MacLean, Paul S.; Hill, James O.; Draznin, Boris; Melanson, Edward L.

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity. PMID:22253914

  4. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans.

    PubMed

    Bergouignan, Audrey; Gozansky, Wendolyn S; Barry, Daniel W; Leitner, Wayne; MacLean, Paul S; Hill, James O; Draznin, Boris; Melanson, Edward L

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m², age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m², 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity.

  5. Postural Stability When Leaning from Perceived Upright

    NASA Technical Reports Server (NTRS)

    Vanya, Robert D.; Grounds, John F.; Wood, Scott J.

    2011-01-01

    The transition between quiet stance and gait requires the volitional movement of one?s center of mass (COM) toward a limit of stability (LOS). The goal of this study was to measure the effect of leaning from perceived upright on postural stability when voluntarily maintaining fixed stance positions and during perturbations of the support surface. The COM was derived from force plate data in 12 healthy subjects while standing with feet positioned so that lateral base of support was equal to foot length. For all conditions, arms were folded and subjects were instructed to lean without bending at the hips or lifting their feet. The LOS was determined during maximal voluntary leans with eyes open and closed. The COM was then displayed on a monitor located in front of the subject. Subjects were visually guided to lean toward a target position, maintain this position for 10s, return to upright, and then repeat the same targeted lean maneuver with eyes closed. Targets were randomly presented at 2? in 8 directions and between 2-6? in these same directions according to the asymmetric LOS. Subjects were then verbally guided to lean between 2? back and 4? forward prior to a perturbation of the support surface in either a forward or backward direction. The average LOS was 5.8? forward, 2.9? back, and 4.8? in left/right directions, with no significant difference between eyes open and closed. Center of pressure (COP) velocity increased as subjects maintained fixed stance positions farther from upright, with increased variability during eyes closed conditions. The time to stability and COP path length increased as subjects leaned opposite to the direction of the support surface perturbations. We conclude that postural stability is compromised as subjects lean away from perceived upright, except for perturbations that induce sway in the direction opposite the lean. The asymmetric LOS relative to perceived upright favors postural stability for COM movements in the forward direction.

  6. Healthcare Lean.

    PubMed

    Long, John C

    2003-01-01

    Lean Thinking is an integrated approach to designing, doing and improving the work of people that have come together to produce and deliver goods, services and information. Healthcare Lean is based on the Toyota production system and applies concepts and techniques of Lean Thinking to hospitals and physician practices.

  7. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet

    PubMed Central

    Bertinato, Jesse; Lavergne, Christopher; Rahimi, Sophia; Rachid, Hiba; Vu, Nina A.; Plouffe, Louise J.; Swist, Eleonora

    2016-01-01

    The physical and biochemical changes resulting from moderately low magnesium (Mg) intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone) or resistance (OR, obese-resistant) were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg) or normal (NMg, 0.516 ± 0.007 g/kg) Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05) in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume), and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca) concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet. PMID:27136580

  8. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jochimsen, Thies H.; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama

    2015-06-01

    This study explores the possibility of using simultaneous positron emission tomography—magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of 18F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41  ± 10% which is comparable to the reduction by the PET-CT method (35  ± 10%). The reduction of the predictive LBM method was 29  ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.

  9. Spatial and quantitative datasets of the pancreatic β-cell mass distribution in lean and obese mice

    PubMed Central

    Parween, Saba; Eriksson, Maria; Nord, Christoffer; Kostromina, Elena; Ahlgren, Ulf

    2017-01-01

    A detailed understanding of pancreatic β-cell mass distribution is a key element to fully appreciate the pathophysiology of models of diabetes and metabolic stress. Commonly, such assessments have been performed by stereological approaches that rely on the extrapolation of two-dimensional data and provide very limited topological information. We present ex vivo optical tomographic data sets of the full β-cell mass distribution in cohorts of obese ob/ob mice and their lean controls, together with information about individual islet β-cell volumes, their three-dimensional coordinates and shape throughout the volume of the pancreas between 4 and 52 weeks of age. These data sets offer the currently most comprehensive public record of the β-cell mass distribution in the mouse. As such, they may serve as a quantitative and topological reference for the planning of a variety of in vivo or ex vivo experiments including computational modelling and statistical analyses. By shedding light on intra- and inter-lobular variations in β-cell mass distribution, they further provide a powerful tool for the planning of stereological sampling assessments. PMID:28291266

  10. High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects.

    PubMed

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia.

  11. Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens.

    PubMed

    Ji, Bo; Middleton, Jesse L; Ernest, Ben; Saxton, Arnold M; Lamont, Susan J; Campagna, Shawn R; Voy, Brynn H

    2014-05-01

    Domestic broiler chickens rapidly accumulate fat and are naturally hyperglycemic and insulin resistant, making them an attractive model for studies of human obesity. We previously demonstrated that short-term (5 h) fasting rapidly upregulates pathways of fatty acid oxidation in broiler chickens and proposed that activation of these pathways may promote leanness. The objective of the current study was to characterize adipose tissue from relatively lean and fatty lines of chickens and determine if heritable leanness in chickens is associated with activation of some of the same pathways induced by fasting. We compared adipose gene expression and metabolite profiles in white adipose tissue of lean Leghorn and Fayoumi breeds to those of fattier commercial broiler chickens. Both lipolysis and expression of genes involved in fatty acid oxidation were upregulated in lean chickens compared with broilers. Although there were strong similarities between the lean lines compared with broilers, distinct expression signatures were also found between Fayoumi and Leghorn, including differences in adipogenic genes. Similarities between genetically lean and fasted chickens suggest that fatty acid oxidation in white adipose tissue is adaptively coupled to lipolysis and plays a role in heritable differences in fatness. Unique signatures of leanness in Fayoumi and Leghorn lines highlight distinct pathways that may provide insight into the basis for leanness in humans. Collectively, our results provide a number of future directions through which to fully exploit chickens as unique models for the study of human obesity and adipose metabolism.

  12. A lean Six Sigma team increases hand hygiene compliance and reduces hospital-acquired MRSA infections by 51%.

    PubMed

    Carboneau, Clark; Benge, Eddie; Jaco, Mary T; Robinson, Mary

    2010-01-01

    A low hand hygiene compliance rate by healthcare workers increases hospital-acquired infections to patients. At Presbyterian Healthcare Services in Albuquerque, New Mexico a Lean Six Sigma team identified the reasons for noncompliance were multifaceted. The team followed the DMAIC process and completed the methodology in 12 months. They implemented multiple solutions in the three areas: Education, Culture, and Environment. Based on methicillin-resistant Staphylococcus aureus (MRSA) mortality research the team's results included an estimated 2.5 lives saved by reducing MRSA infections by 51%. Subsequently this 51% decrease in MRSA saved the hospital US$276,500. For those readers tasked with increasing hand hygiene compliance this article will provide the knowledge and insight needed to overcome multifaceted barriers to noncompliance.

  13. Effect of supervised, periodized exercise training vs. self-directed training on lean body mass and other fitness variables in health club members.

    PubMed

    Storer, Thomas W; Dolezal, Brett A; Berenc, Matthew N; Timmins, John E; Cooper, Christopher B

    2014-07-01

    Conventional wisdom suggests that exercise training with a personal trainer (PTr) is more beneficial for improving health-related fitness than training alone. However, there are no published data that confirm whether fitness club members who exercise with a PTr in the fitness club setting obtain superior results compared with self-directed training. We hypothesized that club members randomized to receive an evidence-based training program would accrue greater improvements in lean body mass (LBM) and other fitness measures than members randomized to self-training. Men, aged 30-44 years, who were members of a single Southern California fitness club were randomized to exercise with a PTr administering a nonlinear periodized training program (TRAINED, N = 17) or to self-directed training (SELF, N = 17); both groups trained 3 days per week for 12 weeks. Lean body mass was determined by dual-energy x-ray absorptiometry. Secondary outcomes included muscle strength 1 repetition maximum (1RM), leg power (vertical jump), and aerobic capacity (V[Combining Dot Above]O2max). TRAINED individuals increased LBM by 1.3 (0.4) kg, mean (SEM) vs. no change in SELF, p = 0.029. Similarly, significantly greater improvements were seen for TRAINED vs. SELF in chest press strength (42 vs. 19%; p = 0.003), peak leg power (6 vs. 0.6%; p < 0.0001), and V[Combining Dot Above]O2max (7 vs. -0.3%; p = 0.01). Leg press strength improved 38 and 25% in TRAINED and SELF, respectively (p = 0.14). We have demonstrated for the first time in a fitness club setting that members whose training is directed by well-qualified PTrs administering evidence-based training regimens achieve significantly greater improvements in LBM and other dimensions of fitness than members who direct their own training.

  14. Comparison of DEXA and QMR for assessing fat and lean body mass in adult rats.

    PubMed

    Miller, Colette N; Kauffman, Tricia G; Cooney, Paula T; Ramseur, Keshia R; Brown, Lynda M

    2011-04-18

    There are several techniques used to measure body composition in experimental models including dual energy X-ray absorptiometry (DEXA) and quantitative magnetic resonance (QMR). DEXA/QMR data have been compared in mice, but have not been compared previously in rats. The goal of this study was to compare DEXA and QMR data in rats. We used rats that varied by sex, diet, and age, in addition we compared dissected samples containing subcutaneous (pelt) or visceral fat (carcass). The data means were compared by focusing on the differences between DEXA/QMR data using a series of scatter plots without assuming that either method is more accurate as suggested by Bland and Altman. DEXA/QMR data did not agree sufficiently in carcass or pelt FM or in pelt LBM. The variation observed within these groups suggests that DEXA and QMR measurements are not comparable. Carcass LBM in young rats did yield comparable data once the data for middle-aged rats was removed. The variation in our data may be a result of different direct and indirect measures that DEXA and QMR technologies use to quantify FM and LBM. DEXA measures FM and estimates fat-free mass. In contrast, QMR uses separate equations of magnetic resonance to measure FM, LBM, total body water and free water. We found that QMR overestimated body mass in our middle-aged rats, and this increased the variation between methods. Our goal was to evaluate the precision of DEXA/QMR data in rats to determine if they agree sufficiently to allow direct comparison of data between methods. However DEXA and QMR did not yield the same estimates of FM or LBM for the majority of our samples.

  15. Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes.

    PubMed

    Madeira, M S; Lopes, P A; Costa, P; Coelho, D; Alfaia, C M; Prates, J A M

    2017-05-02

    The present study aims to assess the effects of pig's genotype (lean v. fatty) and dietary protein level (control v. reduced) on intramuscular fat (IMF) content, fatty acid composition and fibre profile of psoas major, a representative red muscle in pig's carcass scarcely studied relative to white longissimus lumborum. The experiment was conducted on 40 intact male pigs (20 Alentejana purebred and 20 Large White×Landrace×Pietrain crossbred) from 60 to 93 kg of live weight. Pigs were divided and allocated to four dietary groups: control protein diet equilibrated for lysine (17.5% of CP and 0.7% of lysine) and reduced protein diet (RPD) not equilibrated for lysine (13.1% of crude protein and 0.4% of lysine) within a 2×2 factorial arrangement (two genotypes and two diets). Alentejana purebred had higher IMF content (15.7%) and monounsaturated fatty acids (MUFA) (8.9%), whereas crossbred pigs had higher PM weight (46.3%) and polyunsaturated fatty acids (PUFA) (20.1%). The genotype also affected colour with higher lightness (15.1%) and yellowness (33.8%) and lower redness (9.9%) scores in crossbred pigs. In line with this, fatty pigs displayed more oxidative fibres (29.5%), whilst lean pigs had more glycolytic (54.4%). Relative to fatty acids, RPD increased MUFA (5.2%) and SFA (3.2%) but decreased PUFA (14.8%). Ultimately, RPD increased IMF content (15.7%) in the red muscle under study, with no impact on glycolytic to oxidative fibre type transformation.

  16. A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome.

    PubMed

    González-Agüero, Alejandro; Vicente-Rodríguez, Germán; Gómez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A; Casajús, José A

    2012-06-01

    To determine whether the bone mass of young people with Down syndrome may increase, following a 21-week conditioning training programme including plyometric jumps. Twenty-eight participants with Down syndrome (13 females, 15 males) aged 10 to 19 years were divided into exercise (DS-E; n=14; eight females, six males mean age 13y 8mo, SD 2y 6mo) and non-exercise (DS-NE; n=14; five females, nine males mean age 15y 5mo, SD 2y 6mo) groups. Total and regional (hip and lumbar spine [L1-L4]) bone mineral content (BMC) and total lean mass were assessed by dual energy X-ray absorptiometry at baseline and after a 25-minute training session performed twice a week. Repeated-measures analyses of variation were applied to test differences between pre- and posttraining values for BMC and total lean mass. Differences between increments were studied with the Student's t-test. Linear regression models were fitted to test independent relationships. After the intervention, higher increments in total and hip BMC, and total lean mass, were observed in the DS-E group (all p<0.05). A time × exercise interaction was found for total lean mass (p<0.05). The increment in total lean mass, height, and Tanner stage accounted for almost for 60% in the increment in total BMC in the DS-NE group (p<0.05). Twenty-one weeks of training have a positive effect on the acquisition of bone mass in young people with Down syndrome. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  17. Exercise Preserves Lean Mass and Performance during Severe Energy Deficit: The Role of Exercise Volume and Dietary Protein Content

    PubMed Central

    Calbet, Jose A. L.; Ponce-González, Jesús G.; Calle-Herrero, Jaime de La; Perez-Suarez, Ismael; Martin-Rincon, Marcos; Santana, Alfredo; Morales-Alamo, David; Holmberg, Hans-Christer

    2017-01-01

    The loss of fat-free mass (FFM) caused by very-low-calorie diets (VLCD) can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (~23 MJ deficit/day). Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE), followed by 4 days of caloric restriction and exercise (CRE) and then 3 days on a control diet combined with reduced exercise (CD). During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8) or sucrose (SU, n = 7). FFM was reduced after CRE (P < 0.001), with the legs and the exercised arm losing proportionally less FFM than the control arm [57% (P < 0.05) and 29% (P = 0.05), respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak), was reduced after CRE by 15 and 12%, respectively (P < 0.05), and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group (P < 0.05). Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT), serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA (r = −0.54 to −0.71, respectively, P < 0.05). C/FT tended to be higher in the PRO than the SU group following CRE (P = 0.06). In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater cortisol

  18. Raised FGF-21 and Triglycerides Accompany Increased Energy Intake Driven by Protein Leverage in Lean, Healthy Individuals: A Randomised Trial

    PubMed Central

    Gosby, Alison K.; Lau, Namson S.; Tam, Charmaine S.; Iglesias, Miguel A.; Morrison, Christopher D.; Caterson, Ian D.; Brand-Miller, Jennie; Conigrave, Arthur D.; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    A dominant appetite for protein drives increased energy intake in humans when the proportion of protein in the diet is reduced down to approximately 10% of total energy. Compensatory feeding for protein is apparent over a 1–2 d period but the mechanisms driving this regulation are not fully understood. Fibroblast growth factor-21 (FGF-21) has been identified as a candidate protein signal as levels increase in the circulation when dietary protein is low. The aim of this randomised controlled trial was to assess whether changes in percent dietary protein over a 4 d ad libitum experimental period in lean, healthy participants influenced energy intake, metabolic health, circulating FGF-21 and appetite regulating hormones including ghrelin, glucagon like peptide-1 and cholecystokinin. Twenty-two lean, healthy participants were fed ad libitum diets containing 10, 15 and 25% protein, over three, 4 d controlled, in-house experimental periods. Reduced dietary protein intake from 25% to 10% over a period of 4 d was associated with 14% increased energy intake (p = 0.02) as previously reported, and a 6-fold increase in fasting circulating plasma FGF-21 levels (p<0.0001), a 1.5-fold increase in serum triglycerides (p<0.0001), and a 0.9-fold decrease in serum total cholesterol (p = 0.02). Serum HDL cholesterol was reduced with a reduction in dietary protein from 15% to 10% (p = 0.01) over 4 d but not from 25% to 10% (p = 0.1) and the change from baseline was not different between diets. Plasma fasting insulin levels following the 4 d study period were significantly lower following the 25% ad libitum study period compared to the 15% protein period (p = 0.014) but not the 10% protein period (p = 0.2). Variability in interstitial glucose during each study period increased with a decrease in dietary protein from 25% to 15% and 10% (p = 0.001 and p = 0.04, respectively). Ghrelin, glucagon-like peptide-1 and cholecystokinin were unchanged. Increases in energy intake, plasma FGF-21

  19. Role of lean body mass for estimation of glomerular filtration rate in patients with chronic kidney disease with various body mass indices.

    PubMed

    Ozmen, Sehmus; Kaplan, Mehmet Ali; Kaya, Halil; Akin, Davut; Danis, Ramazan; Kizilkan, Berfin; Yazanel, Orhan

    2009-01-01

    Glomerular filtration rate (GFR) is the main tool used to diagnose, treat and follow up renal diseases. Age, gender, ethnicity and obesity all affect the relationship between serum creatinine, muscle mass/body weight and GFR. This study aimed to investigate the role of lean body mass for GFR estimation in patients with chronic kidney disease (CKD) with various body mass indices. In total, 110 Caucasian adult subjects with CKD referred for GFR measurement by (99m)Tc-DTPA renography were enrolled in the study. The patients were categorized according to body mass index values: <18.5 kg/m(2) (underweight), 18.5-24.9 kg/m(2) (normal), 25-29.9 kg/m(2) (overweight) and >30 kg/m(2) (obese). Lean body mass (LBM) and fat mass were measured by leg-to-leg bioimpedance. Predictive factors were identified by linear regression analysis in each group. GFR measured by DTPA, creatinine clearance, Cockcroft and Gault, and Modification of Diet in Renal Disease (four-variable) equations was 37+/-27, 42+/-30, 42+/-27, and 49+/-35 ml/min/1.73 m(2), respectively. The predictive role of 1/SCr, age, serum albumin, amount of proteinuria, LBM and fat mass was investigated all groups. None of the factors was significant in underweight and healthy weight groups except for 1/serum creatinine (SCr). LBM/SCr was an independent predictive factor for both overweight and obese groups. 1/SCr accounted for 96.2% of the variability in measured GFR for underweight subjects but only 58.1% of the variability in GFR of obese subjects. The formulae derived from SCr should be used cautiously in overweight and obese subjects. LBM measured by bioimpedance was an independent predictive factor of GFR in obese/overweight subjects and added clinically important diagnostic value to 1/SCr. It needs to be investigated as a parameter in further studies attempting to develop formulae for estimating GFR in larger obese and overweight populations.

  20. Relationships between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women.

    PubMed

    Fahs, Christopher A; Thiebaud, Robert S; Rossow, Lindy M; Loenneke, Jeremy P; Bemben, Debra A; Bemben, Michael G

    2017-08-16

    Relationships between muscular strength and arterial stiffness as well as between muscle mass and arterial stiffness have been observed suggesting a link between the neuromuscular system and vascular health. However, the relationship between central arterial stiffness and absolute and relative strength along with muscle mass has not been investigated in both sexes across a broad age range. The purpose of this study was to examine the relationship between central arterial stiffness and absolute and relative strength as well as between central arterial stiffness and lean body mass (LBM) in men and women across a broad age range. LBM, central arterial stiffness and strength were measured on 36 men and 35 women between the ages of 18 and 75 years. Strength was measured on five machine resistance exercises and summed as one measure of overall strength (absolute strength). Relative strength was calculated as total strength divided by LBM (relative strength). Central arterial stiffness was inversely related to both absolute (r = -0·230; P = 0·029) and relative strength (r = -0·484; P < 0·001) but not LBM (r = 0·097; P = 0·213). The relationship between central arterial stiffness and relative strength was attenuated but still present when controlling for either age, per cent body fat, LBM or mean arterial pressure. These results suggest that, across a wide age range, the expression of relative muscular strength has a stronger relationship with central arterial stiffness compared to either LBM or absolute strength. This suggests that muscle function more than muscle mass may be coupled with vascular health. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice.

    PubMed

    Nilsson, Jessica; Ericsson, Madelene; Joibari, Masoumeh Motamedi; Anderson, Fredrick; Carlsson, Leif; Nilsson, Stefan K; Sjödin, Anna; Burén, Jonas

    2016-01-01

    Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the

  2. Increasing muscle mass improves vascular function in obese (db/db) mice.

    PubMed

    Qiu, Shuiqing; Mintz, James D; Salet, Christina D; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J; Stepp, David W

    2014-06-25

    A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l-NG-nitroarginine methyl ester (l-NAME). Prostacyclin (PGI2)- and endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down-regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l-NAME. Increasing muscle mass by genetic deletion of myostatin improves NO-, but not PGI2- or EDHF

  3. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children.

    PubMed

    Cole, Z A; Harvey, N C; Kim, M; Ntani, G; Robinson, S M; Inskip, H M; Godfrey, K M; Cooper, C; Dennison, E M

    2012-02-01

    Recent studies have shown that obesity is associated with an increased risk of fracture in both adults and children. It has been suggested that, despite greater bone size, obese individuals may have reduced true volumetric density; however this is difficult to assess using two dimensional techniques such as DXA. We evaluated the relationship between fat mass, and bone size and density, in a population cohort of children in whom DXA and pQCT measurements had been acquired. We recruited 530 children at 6 years old from the Southampton Women's Survey. The children underwent measurement of bone mass at the whole body, lumbar spine and hip, together with body composition, by DXA (Hologic Discovery, Hologic Inc., Bedford, MA, USA). In addition 132 of these children underwent pQCT measurements at the tibia (Stratec XCT2000, Stratec Biomedical Systems, Birkenfeld, Germany). Significant positive associations were observed between total fat mass and both bone area (BA) and bone mineral content (BMC) at the whole body minus head, lumbar spine and hip sites (all p<0.0001). When true volumetric density was assessed using pQCT data from the tibia, fat mass (adjusted for lean mass) was negatively associated with both trabecular and cortical density (β=-14.6 mg/mm(3) per sd, p=0.003; β=-7.7 mg/mm(3) per sd, p=0.02 respectively). These results suggest that fat mass is negatively associated with volumetric bone density at 6 years old, independent of lean mass, despite positive associations with bone size. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P<0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity. PMID:21767445

  5. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats.

    PubMed

    Parnell, Jill A; Reimer, Raylene A

    2012-02-01

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P < 0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity.

  6. Associations of lean and fat mass measures with whole body bone mineral content and bone mineral density in female adolescent weightlifters and swimmers.

    PubMed

    Koşar, Şükran Nazan

    2016-01-01

    Body composition and sport participation have been associated with bone mass. The purpose of this study was to determine the associations of lean and fat mass measures with whole body bone mineral content (BMC) and bone mineral density (BMD) in female adolescent weightlifters, swimmers and non-athletic counterparts. This study included a total of 25 female adolescents (mean age: 15.3±1.1 years). Body composition and bone mass were measured by dual-energy X-ray absorptiometry. In most of the studied variables weight lifters had higher values compared to swimmers and non-athletes (p < 0.05). No significant difference was observed between swimmers and non-athletes (p > 0.05). Lean and fat mass measures were positively associated with BMC and BMD for the total participants (p < 0.05) while the associations differed when the study groups were analysed separately. In conclusion, both lean and fat mass measures were strongly related to BMC and BMD in female adolescents while these associations differed in swimmers, weightlifters and non-athletes.

  7. Gender differences in ventricular remodeling and function in college athletes, insights from lean body mass scaling and deformation imaging.

    PubMed

    Giraldeau, Geneviève; Kobayashi, Yukari; Finocchiaro, Gherardo; Wheeler, Matthew; Perez, Marco; Kuznetsova, Tatiana; Lord, Rachel; George, Keith P; Oxborough, David; Schnittger, Ingela; Froelicher, Victor; Liang, David; Ashley, Euan; Haddad, François

    2015-11-15

    Several studies suggest gender differences in ventricular dimensions in athletes. Few studies have, however, made comparisons of data indexed for lean body mass (LBM) using allometry. Ninety Caucasian college athletes (mixed sports) who were matched for age, ethnicity, and sport total cardiovascular demands underwent dual-energy x-ray absorptiometry scan for quantification of LBM. Athletes underwent comprehensive assessment of left and right ventricular and atrial structure and function using 2-dimensional echocardiography and deformation imaging using the TomTec analysis system. The mean age of the study population was 18.9 ± 1.9 years. Female athletes (n = 45) had a greater fat free percentage (19.4 ± 3.7%) compared to male athletes (11.5 ± 3.7%). When scaled to body surface area, male had on average 19 ± 3% (p <0.001) greater left ventricular (LV) mass; in contrast, when scaled to LBM, there was no significant difference in indexed LV mass -1.4 ± 3.0% (p = 0.63). Similarly, when allometrically scaled to LBM, there was no significant gender-based difference in LV or left atrial volumes. Although female athletes had mildly higher LV ejection fraction and LV global longitudinal strain in absolute value, systolic strain rate and allometrically indexed stroke volume were not different between genders (1.5 ± 3.6% [p = 0.63] and 0.0 ± 3.7% [p = 0.93], respectively). There were no differences in any of the functional atrial indexes including strain or strain rate parameters. In conclusion, gender-related differences in ventricular dimensions or function (stroke volume) appear less marked, if not absent, when indexing using LBM allometrically. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Increased Body Mass Index Associated with Increased Risky Sexual Behaviors

    PubMed Central

    Gordon, Lonna P.; Diaz, Angela; Soghomonian, Christine; Nucci-Sack, Anne T.; Weiss, Jocelyn M.; Strickler, Howard D.; Burk, Robert D.; Schlecht, Nicolas F.; Ochner, Christopher N.

    2015-01-01

    Study Objective The increasing prevalence of adolescent obesity has led to consideration of the potential effect of obesity on risky sexual behaviors. The current study examined whether body mass index (BMI) was related to age at sexual debut, type of sexual behavior, partner number, and condom use in a population of adolescent women at high risk for obesity and risky sexual behaviors. Study Design Cross-sectional examination of 860 sexually active, predominantly minority, adolescent women who received medical care at an urban health center from 2007 – 2013. Intervention Self-reported age at sexual debut, types of sexual intercourse, number of partners and condom use was compared to clinically – assessed BMI. Results Body mass index was positively associated with number of sexual partners (p = 0.001) and history of attempted anal intercourse (p = 0.002). An inverse association was observed with age at first anal intercourse (p = 0.040). Conclusions In this sample of adolescent women, increased BMI was associated with riskier sexual practices at a younger age. This study suggests that overweight and obese adolescents are a vulnerable population who may need targeted sexual health counseling. PMID:26358938

  9. Neonatal Body Composition: Measuring Lean Mass as a Tool to Guide Nutrition Management in the Neonate.

    PubMed

    Rice, Melissa S; Valentine, Christina J

    2015-10-01

    Neonatal nutrition adequacy is often determined by infant weight gain. The aim of this review is to summarize what is currently known about neonatal body composition and the use of body composition as a measure for adequate neonatal nutrition. Unlike traditional anthropometric measures of height and weight, body composition measurements account for fat vs nonfat mass gains. This provides a more accurate picture of neonatal composition of weight gain. Providing adequate neonatal nutrition in the form of quantity and composition can be a challenge, especially when considering the delicate balance of providing adequate nutrition to preterm infants for catch-up growth. Monitoring weight gain as fat mass and nonfat mass while documenting dietary intake of fat, protein, and carbohydrate in formulas may help provide the medical community the tools to provide optimal nutrition for catch-up growth and for improved neurodevelopmental outcomes. Tracking body composition in term and preterm infants may also provide critical future information concerning the nutritional state of infants who go on to develop future disease such as obesity, hypertension, and hyperlipidemia as adolescents or adults. © 2015 American Society for Parenteral and Enteral Nutrition.

  10. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial.

    PubMed

    Ng Tang Fui, Mark; Prendergast, Luke A; Dupuis, Philippe; Raval, Manjri; Strauss, Boyd J; Zajac, Jeffrey D; Grossmann, Mathis

    2016-10-07

    Whether testosterone treatment has benefits on body composition over and above caloric restriction in men is unknown. We hypothesised that testosterone treatment augments diet-induced loss of fat mass and prevents loss of muscle mass. We conducted a randomised double-blind, parallel, placebo controlled trial at a tertiary referral centre. A total of 100 obese men (body mass index ≥ 30 kg/m(2)) with a total testosterone level of or below 12 nmol/L and a median age of 53 years (interquartile range 47-60) receiving 10 weeks of a very low energy diet (VLED) followed by 46 weeks of weight maintenance were randomly assigned at baseline to 56 weeks of 10-weekly intramuscular testosterone undecanoate (n = 49, cases) or matching placebo (n = 51, controls). The main outcome measures were the between-group difference in fat and lean mass by dual-energy X-ray absorptiometry, and visceral fat area (computed tomography). A total of 82 men completed the study. At study end, compared to controls, cases had greater reductions in fat mass, with a mean adjusted between-group difference (MAD) of -2.9 kg (-5.7 to -0.2; P = 0.04), and in visceral fat (MAD -2678 mm(2); -5180 to -176; P = 0.04). Although both groups lost the same lean mass following VLED (cases -3.9 kg (-5.3 to -2.6); controls -4.8 kg (-6.2 to -3.5), P = 0.36), cases regained lean mass (3.3 kg (1.9 to 4.7), P < 0.001) during weight maintenance, in contrast to controls (0.8 kg (-0.7 to 2.3), P = 0.29) so that, at study end, cases had an attenuated reduction in lean mass compared to controls (MAD 3.4 kg (1.3 to 5.5), P = 0.002). While dieting men receiving placebo lost both fat and lean mass, the weight loss with testosterone treatment was almost exclusively due to loss of body fat. clinicaltrials.gov, identifier NCT01616732 , registration date: June 8, 2012.

  11. Weight and Lean Body Mass Change with Antiretroviral Initiation and Impact on Bone Mineral Density: AIDS Clinical Trials Group Study A5224s

    PubMed Central

    Erlandson, Kristine Mace; Kitch, Douglas; Tierney, Camlin; Sax, Paul E.; Daar, Eric S.; Tebas, Pablo; Melbourne, Kathleen; Ha, Belinda; Jahed, Nasreen C.; Mccomsey, Grace A.

    2014-01-01

    Objective To compare the effect initiating different antiretroviral therapy (ART) regimens have on weight, body mass index (BMI), and lean body mass (LBM) and explore how changes in body composition are associated with bone mineral density (BMD). Methods A5224s was a substudy of A5202, a prospective trial of 1857 ART-naïve participants randomized to blinded abacavir-lamivudine (ABC/3TC) or tenofovir DF-emtricitabine (TDF/FTC) with open-label efavirenz (EFV) or atazanavir-ritonavir (ATV/r). All subjects underwent dual-energy absorptiometry (DXA) and abdominal CT for body composition. Analyses used 2-sample t-tests and linear regression. Results A5224s included 269 subjects: 85% male, 47% white non-Hispanic, median age 38 years, HIV-1 RNA 4.6 log10 copies/mL, and CD4 233 cells/µL. Overall, significant gains occurred in weight, BMI, and LBM at 96 weeks post randomization (all p<0.001). Assignment to ATV/r (vs EFV) resulted in significantly greater weight (mean difference 3.35 kg) and BMI gain (0.88 kg/m2; both p=0.02), but not LBM (0.67 kg; p=0.15), while ABC/3TC and TDF/FTC were not significantly different (p≥0.10). In multivariable analysis, only lower baseline CD4 count and higher HIV-1 RNA were associated with greater increase in weight, BMI, or LBM. In multivariable analyses, increased LBM was associated with an increased hip BMD. Conclusions ABC/3TC vs. TDF/FTC did not differ in change in weight, BMI, or LBM; ATV/r vs. EFV resulted in greater weight and BMI gain but not LBM. A positive association between increased LBM and increased hip BMD should be further investigated through prospective interventional studies to verify the impact of increased LBM on hip BMD. PMID:24384588

  12. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons.

    PubMed

    Sergi, Giuseppe; De Rui, Marina; Stubbs, Brendon; Veronese, Nicola; Manzato, Enzo

    2016-08-27

    The assessment of body composition has important applications in the evaluation of nutritional status and estimating potential health risks. Bioelectrical impedance analysis (BIA) is a valid method for the assessment of body composition. BIA is an alternative to more invasive and expensive methods like dual-energy X-ray absorptiometry, computerized tomography, and magnetic resonance imaging. Bioelectrical impedance analysis is an easy-to-use and low-cost method for the estimation of fat-free mass (FFM) in physiological and pathological conditions. The reliability of BIA measurements is influenced by various factors related to the instrument itself, including electrodes, operator, subject, and environment. BIA assumptions beyond its use for body composition are the human body is empirically composed of cylinders, FFM contains virtually all the water and conducting electrolytes in the body, and its hydration is constant. FFM can be predicted by BIA through equations developed using reference methods. Several BIA prediction equations exist for the estimation of FFM, skeletal muscle mass (SMM), or appendicular SMM. The BIA prediction models differ according to the characteristics of the sample in which they have been derived and validated in addition to the parameters included in the multiple regression analysis. In choosing BIA equations, it is important to consider the characteristics of the sample in which it has been developed and validated, since, for example, age- and ethnicity-related differences could sensitively affect BIA estimates.

  13. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest.

    PubMed

    Schneider, Suzanne M; Lee, Stuart M C; Feiveson, Alan H; Watenpaugh, Donald E; Macias, Brandon R; Hargens, Alan R

    2016-08-01

    Leg muscle mass and strength are decreased during reduced activity and non-weight-bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full-body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40-min interval exercise protocol performed against LBNPEX 6 days week(-1) would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head-down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non-exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre- to post-BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre- to post-BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre-BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. [Validity of 5 bioelectric impedance equations for the estimation of lean body mass in women].

    PubMed

    Coltorti, A; Scalfi, L; Borrelli, R; Contaldo, F; Diaz, E

    1991-01-01

    Fat free mass (FFM) predicted by five bioelectrical impedance (BIA) available formulae (Segal et al., Lukaski et al., Kushner et al., Deurenberg et al., manufacturer's predictive equation) was compared with densitometrically-determined FFM (as a reference method) in two groups of young women with different anthropometric characteristics. In the farmers (very short and light individuals), none of the studied formulae was able to accurately predict FFM: this latter was overestimated in subjects with low and underestimated in those with high FFM. In the other group (INCAP employees), only values predicted by Lukaski formula were in perfect agreement with FFM, showing no bias depending on FFM changes. In conclusion, the available BIA formulae seem to be specific for population from which they were derived and could not be used on samples from other populations if not cross-validated.

  15. Body mass index as discriminator of the lean mass deficit and excess body fat in institutionalized elderly people.

    PubMed

    Barbosa, Maria Helena; Bolina, Alisson F; Luiz, Raíssa B; de Oliveira, Karoline F; Virtuoso, Jair S; Rodrigues, Rosalina A P; Silva, Larissa C; da Cunha, Daniel F; De Mattia, Ana Lúcia; Barichello, Elizabeth

    2015-01-01

    The objective of this study was to identify the discriminating criterion for body mass index (BMI) in the prediction of low fat free mass and high body fat percentage according to sex among older people. Observational analytical study with cross-sectional design was used for this study. All institutionalized older people from the city of Uberaba (Minas Gerais, Brazil) who fit within the inclusion and exclusion criteria were approached. Sixty-five institutionalized older people were evaluated after signing a Free and Informed Consent Form. Descriptive and inferential statistical procedures were employed for the analysis, using Student's t-test and multiple linear regression. Receiver Operating Characteristic (ROC) curves were constructed to determine the BMI (kg/m(2)) cut-off points. The study complied with all the ethical norms for research involving human beings. In comparing the anthropometric measurements obtained via bioimpedance, elder male had higher mean height and body water volume than females. However, women had higher mean triceps skinfold and fat free mass than men. The BMI cut-off points, as discriminators of low fat free mass percentage and high body fat percentage in women, were ≤22.4 kg/m(2) and >26.6 kg/m(2), respectively; while for men they were ≤19.2 kg/m(2) and >23.8 kg/m(2). The results of this study indicate the need for multicenter studies aimed at suggesting BMI cut-off points for institutionalized older people, taking into account specific sex characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The relative power output and relative lean body mass of World and Olympic male and female champions with implications for gender equity.

    PubMed

    Stefani, Raymond T

    2006-12-01

    A uniform measure of the gender-related differential performance of female and male Olympic and World champions is proposed: relative power output applied to the environment. Laws of physics are employed to derive equations for estimating relative power output. In previous controlled laboratory studies, equally trained male and female athletes were shown to have a relative power output not significantly different from relative lean body mass. As to the estimated power output for 32 Olympic and World championship events contested between 1976 and 2004, eight in running, four in speed skating, three in jumping, twelve in swimming and five in rowing: 100% of the 32 event mean percentage differences in power output and 96% of the 411 event percentage differences in power output are within one standard deviation of the appropriate lean body mass percentage difference, consistent with equality of training. For 1952-1972, significantly higher percentage differences in power output are estimated in running and swimming compared with 1976-2004, consistent with women being less well trained than men during that earlier period. It is noted that efforts in recent years to provide equality of opportunity for female athletes coincide with equalization of estimated relative power output in competition with the relative lean body mass.

  17. Aerobic power and lean mass are indicators of competitive sprint performance among elite female cross-country skiers.

    PubMed

    Carlsson, Tomas; Tonkonogi, Michail; Carlsson, Magnus

    2016-01-01

    The purpose of this study was to establish the optimal allometric models to predict International Ski Federation's ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake ( [Formula: see text]) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine [Formula: see text] (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects' FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers' FISsprint based on [Formula: see text], LM, and body mass. The subjects' test and performance data were as follows: [Formula: see text], 4.0±0.3 L min(-1); LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: [Formula: see text] and 6.95 × 10(10) · LM(-5.25); these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on [Formula: see text] and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose [Formula: see text] differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher [Formula: see text] or LM. It is recommended that coaches use the absolute expression of these variables

  18. Aerobic power and lean mass are indicators of competitive sprint performance among elite female cross-country skiers

    PubMed Central

    Carlsson, Tomas; Tonkonogi, Michail; Carlsson, Magnus

    2016-01-01

    The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake ( V˙O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V˙O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V˙O2max, LM, and body mass. The subjects’ test and performance data were as follows: V˙O2max, 4.0±0.3 L min−1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105⋅V˙O2max−6.00 and 6.95 × 1010 · LM−5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V˙O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V˙O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V˙O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations

  19. Low birth weight may increase body fat mass in adult women with polycystic ovarian syndrome

    PubMed Central

    Minooee, Sonia; Ramezani Tehrani, Fahimeh; Mirmiran, Parvin; Azizi, Fereidoun

    2016-01-01

    Background: Women engaged with polycystic ovarian syndrome (PCOS), as the commonest endocrine disorder, are known to have a specific type of adiposity. Birth weight is among different contributors reported to be responsible for this diversity. Objective: We aimed to compare the relation between birth weight and body fat mass (BFM)/ body lean mass (BLM) in PCOS and their age and body mass index (BMI) matched normal controls. Materials and Methods: In this case-control study, a total number of 70 reproductive aged women, diagnosed with PCOS and 70 age- BMI matched healthy women without hirsutism and/or ovulatory dysfunction were recruited., control group had no polycystic ovaries in ultrasonographic scans. A detailed history of birth weight was taken and was divided into the following categories: <2,500 (low birth weight, LBW) and 2,500-4,000 (normal birth weight; NBW). Results: Results showed that LBW prevalence was higher in women with PCOS than in controls (19.3% (27) vs. 15.7% (22)). Also body fat and lean mass (BFM, BLM) have increased in adult women with PCOS who were born underweight compared to their normal (19.8±9.05 vs. 12.9±4.5, p=0.001 and 48.9±6.9 vs. 43.2±5.8, p=0.004 respectively). Conclusion: Fetal birth weight influences on the adulthood obesity, BFM and BLM. This impact is different among women with and without PCOS. PMID:27326419

  20. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population.

    PubMed

    McDonald, Cameron Keith; Ankarfeldt, Mikkel Z; Capra, Sandra; Bauer, Judy; Raymond, Kyle; Heitmann, Berit Lilienthal

    2016-05-01

    Higher protein intake, and particularly higher leucine intake, is associated with attenuated loss of lean body mass (LBM) over time in older individuals. Dietary leucine is thought to be a key mediator of anabolism. This study aimed to assess this relationship over 6 years among younger and older adult Danes. Dietary leucine intake was assessed at baseline and after 6 years in men and women, aged 35-65 years, participating in the Danish cohort of the WHO-MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) study (n 368). Changes in LBM over the 6 years were measured by bioelectrical impedance using equations developed for this Danish population. The association between leucine and LBM changes was examined using multivariate linear regression and ANCOVA analyses adjusted for potential confounders. After adjustment for baseline LBM, sex, age, energy intake and physical activity, leucine intake was associated with LBM change in those older than 65 years (n 79), with no effect seen in those younger than 65 years. Older participants in the highest quartile of leucine intake (7·1 g/d) experienced LBM maintenance, whereas lower intakes were associated with LBM loss over 6 years (for trend: β=0·434, P=0·03). Sensitivity analysis indicated no effect modification of sex or the presence of CVD. Greater leucine intake in conjunction with adequate total protein intake was associated with long-term LBM retention in a healthy older Danish population. This study corroborates findings from laboratory investigations in relation to protein and leucine intakes and LBM change. A more diverse and larger sample is needed for confirmation of these results.

  1. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults.

    PubMed

    Bosy-Westphal, A; Schautz, B; Lagerpusch, M; Pourhassan, M; Braun, W; Goele, K; Heller, M; Glüer, C-C; Müller, M J

    2013-10-01

    Although weight cycling is frequent in obese patients, the adverse consequences on body composition and an increased propensity to weight gain remain controversial. We investigated the effect of intentional weight loss and spontaneous regain on fat distribution, the composition of lean mass and resting energy expenditure (REE). Weight regainers (≥ 30% of loss, n=27) and weight-stable subjects (within <± 20% of weight change, n=20) were selected from 103 overweight and obese subjects (body mass index 28-43 kg m(-2), 24-45 years) who passed a 13-week low-calorie diet intervention. REE and body composition (by densitometry and whole-body magnetic resonance imaging) were examined at baseline, after weight loss and at 6 months of follow-up. Mean weight loss was -12.3 ± 3.3 kg in weight-stable subjects and -9.0 ± 4.3 kg in weight regainers (P<0.01). Weight regain was incomplete, accounting for 83 and 42% of weight loss in women and men. Regain in total fat and different adipose tissue depots was in proportion to weight regain except for a higher regain in adipose tissue of the extremities in women and a lower regain in extremity and visceral adipose tissue in men. In both genders, regain in skeletal muscle of the trunk lagged behind skeletal muscle regain at the extremities. In contrast to weight-stable subjects, weight regainers showed a reduced REE adjusted for changes in organ and tissue masses after weight loss (P<0.001). Weight regain did not adversely affect body fat distribution. Weight loss-associated adaptations in REE may impair weight loss and contribute to weight regain.

  2. Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained men

    PubMed Central

    2010-01-01

    Background The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performance™ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training. Methods Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set a priori at p ≤ 0.05. Results When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12

  3. Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained men.

    PubMed

    Schmitz, Stephen M; Hofheins, Jennifer E; Lemieux, Robert

    2010-12-16

    The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performance™ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training. Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set a priori at p ≤ 0.05. When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12.06 ± 0.53 kg [9

  4. Muscle function and omega-3 fatty acids in the prediction of lean body mass after breast cancer treatment.

    PubMed

    McDonald, Cameron; Bauer, Judy; Capra, Sandra; Waterhouse, Mary

    2013-01-01

    Decreased lean body mass (LBM) is common in breast cancer survivors yet currently there is a lack of information regarding the determinants of LBM after treatment, in particular, the effect of physical activity and dietary factors, such as long-chain omega-3 fatty acids (LCn-3) on LBM and LBM function. This cross-sectional study explored associations of LBM and function with LCn-3 intake, dietary intake, inflammation, quality of life (QOL) and physical fitness in breast cancer survivors to improve clinical considerations when addressing body composition change. Forty-nine women who had completed treatment (surgery, radiation and/or chemotherapy) were assessed for body composition (BODPOD), LCn-3 content of erythrocytes, C-reactive protein (CRP), QOL, dietary intake, objective physical activity, 1-min push-ups, 1-min sit-stand, sub-maximal treadmill (TM) test, and handgrip strength. After adjustment for age, LBM was associated with push-ups (r = 0.343, p = 0.000), stage reached on treadmill (StageTM) (r = 0.302, 0.001), % time spent ≥ moderate activity (Mod + Vig) (r = 0.228, p = 0.024). No associations were seen between anthropometric values and any treatment, diagnostic and demographical variables. Body mass, push-ups and StageTM accounted for 76.4% of the variability in LBM (adjusted r-square: 0.764, p = 0.000). After adjustment docosahexanoic acid (DHA) was positively associated with push-ups (β=0.399, p = 0.001), eicosapentanoic acid (EPA) was negatively associated with squats (r = -0.268, p = 0.041), with no other significant interactions found between LCn-3 and physical activity for LBM or LBM function. This is the first investigation to report that a higher weight adjusted LBM is associated with higher estimated aerobic fitness and ability to perform push-ups in breast cancer survivors. Potential LCn-3 and physical activity interactions on LBM require further exploration.

  5. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial.

    PubMed

    Dalton, James T; Barnette, Kester G; Bohl, Casey E; Hancock, Michael L; Rodriguez, Domingo; Dodson, Shontelle T; Morton, Ronald A; Steiner, Mitchell S

    2011-09-01

    BACKGROUND: Cachexia, also known as muscle wasting, is a complex metabolic condition characterized by loss of skeletal muscle and a decline in physical function. Muscle wasting is associated with cancer, sarcopenia, chronic obstructive pulmonary disease, end-stage renal disease, and other chronic conditions and results in significant morbidity and mortality. GTx-024 (enobosarm) is a nonsteroidal selective androgen receptor modulator (SARM) that has tissue-selective anabolic effects in muscle and bone, while sparing other androgenic tissue related to hair growth in women and prostate effects in men. GTx-024 has demonstrated promising pharmacologic effects in preclinical studies and favorable safety and pharmacokinetic profiles in phase I investigation. METHODS: A 12-week double-blind, placebo-controlled phase II clinical trial was conducted to evaluate GTx-024 in 120 healthy elderly men (>60 years of age) and postmenopausal women. The primary endpoint was total lean body mass assessed by dual energy X-ray absorptiometry, and secondary endpoints included physical function, body weight, insulin resistance, and safety. RESULTS: GTx-024 treatment resulted in dose-dependent increases in total lean body mass that were statistically significant (P < 0.001, 3 mg vs. placebo) and clinically meaningful. There were also significant improvements in physical function (P = 0.013, 3 mg vs. placebo) and insulin resistance (P = 0.013, 3 mg vs. placebo). The incidence of adverse events was similar between treatment groups. CONCLUSION: GTx-024 showed a dose-dependent improvement in total lean body mass and physical function and was well tolerated. GTx-024 may be useful in the prevention and/or treatment of muscle wasting associated with cancer and other chronic diseases.

  6. Association of protein intake with the change of lean mass among elderly women: The Osteoporosis Risk Factor and Prevention - Fracture Prevention Study (OSTPRE-FPS).

    PubMed

    Isanejad, Masoud; Mursu, Jaakko; Sirola, Joonas; Kröger, Heikki; Rikkonen, Toni; Tuppurainen, Marjo; Erkkilä, Arja T

    2015-01-01

    Low protein intake can lead to declined lean mass (LM) in elderly. We examined the associations of total protein (TP), animal protein (AP) and plant protein (PP) intakes with LM. The association of TP intake with LM change was further evaluated according to weight change status. This cross-sectional and prospective cohort study included 554 women aged 68 (sd 1·9) years from the Osteoporosis Risk Factor and Prevention - Fracture Prevention Study (OSTPRE-FPS). The intervention group (n 270) received daily cholecalciferol (800 IU; 20 μg) and Ca (1000 mg) for 3 years while the control group received neither supplementation nor placebo (n 282). Participants filled out a questionnaire on lifestyle factors and a 3-d food record in 2002 and underwent dual-energy X-ray absorptiometry for body composition measurements at baseline and 3 years. Multiple linear regressions evaluated the association between protein intake and LM, adjusting for relevant covariates. At the baseline TP and AP intakes were positively associated with LM and trunk LM, TP was associated also with appendicular LM (aLM). Follow-up results showed that in the total population and the intervention group, higher TP and AP were associated with increased LM and aLM (P ≤ 0·050). No such associations were observed in the control group. PP intake was also associated with aLM change in the total population. Overall, the associations were independent of fat mass. Further, among weight maintainers, TP intake was positively associated with LM, aLM and trunk LM changes (P ≤ 0·020). In conclusion, dietary TP, especially AP, intake may be a modifiable risk factor for sarcopenia by preserving LM in the elderly.

  7. The myokine irisin increases cortical bone mass

    PubMed Central

    Colaianni, Graziana; Cuscito, Concetta; Mongelli, Teresa; Pignataro, Paolo; Buccoliero, Cinzia; Liu, Peng; Lu, Ping; Sartini, Loris; Di Comite, Mariasevera; Mori, Giorgio; Di Benedetto, Adriana; Brunetti, Giacomina; Yuen, Tony; Sun, Li; Reseland, Janne E.; Colucci, Silvia; New, Maria I.; Zaidi, Mone; Cinti, Saverio; Grano, Maria

    2015-01-01

    It is unclear how physical activity stimulates new bone synthesis. We explored whether irisin, a newly discovered myokine released upon physical activity, displays anabolic actions on the skeleton. Young male mice were injected with vehicle or recombinant irisin (r-irisin) at a low cumulative weekly dose of 100 µg kg−1. We observed significant increases in cortical bone mass and strength, notably in cortical tissue mineral density, periosteal circumference, polar moment of inertia, and bending strength. This anabolic action was mediated primarily through the stimulation of bone formation, but with parallel notable reductions in osteoclast numbers. The trabecular compartment of the same bones was spared, as were vertebrae from the same mice. Higher irisin doses (3,500 µg kg−1 per week) cause browning of adipose tissue; this was not seen with low-dose r-irisin. Expectedly, low-dose r-irisin modulated the skeletal genes, Opn and Sost, but not Ucp1 or Pparγ expression in white adipose tissue. In bone marrow stromal cell cultures, r-irisin rapidly phosphorylated Erk, and up-regulated Atf4, Runx2, Osx, Lrp5, β-catenin, Alp, and Col1a1; this is consistent with a direct receptor-mediated action to stimulate osteogenesis. We also noted that, although the irisin precursor Fndc5 was expressed abundantly in skeletal muscle, other sites, such as bone and brain, also expressed Fndc5, albeit at low levels. Furthermore, muscle fibers from r-irisin–injected mice displayed enhanced Fndc5 positivity, and irisin induced Fdnc5 mRNA expression in cultured myoblasts. Our data therefore highlight a previously unknown action of the myokine irisin, which may be the molecular entity responsible for muscle–bone connectivity. PMID:26374841

  8. Dietary l-leucine supplementation of lactating rats results in a tendency to increase lean/fat ratio associated to lower orexigenic neuropeptide expression in hypothalamus.

    PubMed

    López, N; Sánchez, J; Picó, C; Palou, A; Serra, F

    2010-07-01

    The aim of this study was to assess the effects of dietary leucine supplementation in lactating dams, particularly on energy homeostasis through signaling mechanisms in the central nervous system. Dams were fed ad libitum with standard diet during pregnancy (control dams) or supplemented with 2% leucine (leucine-supplemented dams) from delivery onwards. Food intake, body weight and composition were periodically recorded. Hypothalamus was collected at the end of lactation, and the expression of neuropeptide Y (NPY), agouti-related protein (AgRP) pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), insulin receptor (InsR), ghrelin receptor (GSHR), melanocortin receptor (MCR4), leptin receptor (Ob-Rb) and suppressor of cytokine signaling 3 (SOCS3) were analyzed. Dietary leucine supplementation to lactating rats increased plasma leucine by 56%, modulated body composition and contributed to a tendency of higher ratio of lean/fat mass content of dams during lactation, without affecting food intake, thermogenesis capacity or body or tissue/organs weights. No differences in body weight of offspring from control and leucine-supplemented dams were found. The expression of orexigenic peptides (NPY and AgRP) decreased in leucine-dams, whereas the expression of anorexigenic peptides (POMC and CART), the hypothalamic receptors of insulin, ghrelin, melanocortin and leptin and SOCS3 did not change by leucine supplementation. In conclusion, increased leucine intake during lactation may contribute to a healthier profile of body composition in dams, without compromising the growth and development of the progeny by a mechanism associated with lower expression of orexigenic neuropeptides in hypothalamus.

  9. An isocaloric increase of eating episodes in the morning contributes to decrease energy intake at lunch in lean men.

    PubMed

    Allirot, Xavier; Saulais, Laure; Seyssel, Kevin; Graeppi-Dulac, Julia; Roth, Hubert; Charrié, Anne; Drai, Jocelyne; Goudable, Joelle; Blond, Emilie; Disse, Emmanuel; Laville, Martine

    2013-02-17

    The effects of increasing eating frequency on human health are unclear. This study used an integrated approach to assess the short-term consequences on appetite and metabolism. Twenty normal-weight men participated in: (i) two sessions consisting of a breakfast consumed in one eating episode at T0 (F1), or in four isocaloric eating episodes at T0, T60, T120, and T180 min (F4), and followed by an ecological ad libitum buffet meal (T240) designed in an experimental restaurant. Intakes were assessed for the whole buffet meal and for each temporal quarter of the meal. (ii) two sessions consisting of the same two breakfasts F1 and F4 in a Clinical Investigation Centre. Blood sampling was performed to study the kinetics of ghrelin, glucagon-like peptide-1 (GLP-1), glucose, insulin, triglycerides and non-esterified fatty acids (NEFA). Substrate oxidation was measured by indirect calorimetry. During each of the 4 sessions, participants rated their appetite throughout the experiment. After F4, at T240 min, GLP-1 concentration was higher (P=0.006) while ghrelin concentration and hunger ratings were lower (P<0.001). We showed a trend for subjects to consume less energy (-88±61 kcal, P=0.08) at the buffet after F4, explained by a decrease in lipid intake (P=0.04). Marked differences in consumption were observed during the last temporal quarter of the meal for total energy and lipid intake (P=0.03). Mixed models highlighted differences between F1 and F4 for the kinetics of glucose, insulin and NEFA (P<0.001). The area under the curve was lower for insulin (P<0.001) and NEFA in F4 (P=0.03). Diet induced thermogenesis was reduced in F4 (P<0.05). This study demonstrated the beneficial short-term effect of increasing eating frequency on appetite in lean men considering subjective, physiological and behavioral data. However, the loss of the inter-prandial fast was associated with an inhibition of lipolysis, reflected by NEFA profiles, and a decrease in energy expenditure. Copyright

  10. Central obesity and not age increases skeletal muscle lipids, without influencing lean body mass and strength.

    PubMed

    de la Maza, María Pía; Hirsch, Sandra; Jara, Natalia; Leiva, Laura; Barrera, Gladys; Silva, Claudio; Pañella, Loreto; Henríquez, Sandra; Bunout, Daniel

    2014-09-12

    Introducción/Objetivos: medir la infiltracion grasa en el musculo esqueletico, su asociacion con resistencia a la insulina (RI) y con masa y funcion muscular, en hombres chilenos de diferente edad y composicion corporal. Nuestra hipotesis era que habria mas acumulacion de grasa en el tejido muscular entre las personas de mayor edad y peso, lo cual deterioraria la sensibilidad a la insulina (SI) y afectaria negativamente la masa y la funcion muscular, ambas caracteristicas del proceso de envejecimiento. Métodos: se estudiaron hombres sanos (38 < 55 anos y 18 > 65 anos), que fueron sometidos a mediciones antropometricas, evaluacion de la composicion corporal mediante densitometria radiologica (DEXA), espectroscopia de resonancia nuclear magnetica en el musculo tibial anterior para medir lipidos intra (LIM) y extramiocelulares (LEM), fuerza de mano y cuadriceps, test de 12 minutos y bioquimica serica (glicemia, hemoglobina, lipoproteinas, creatinina y proteina C reactiva ultrasensible en ayunas, ademas de glucosa e insulina post carga de glucosa para evaluar SI). La actividad fisica se estimo mediante actigrafia. Resultados: 23 hombres eran eutroficos, 26 tenian sobrepeso y 7 eran obesos, todos eran sedentarios segun el registro actigrafico, independiente de la edad. Tanto LIM como LEM resultaron mas altos entre los hombres con sobrepeso / obesidad. La grasa abdominal se asocio negativamente con la SI y se correlaciono positivamente con la acumulacion de grasa en el musculo (tanto LIM como LEM), pero no con la edad. Como era de esperar, las personas mayores tenian menor masa magra y fuerza, pero no mas tejido adiposo ni lipidos intramiocelulares, aunque eran mas intolerantes a la glucosa. Conclusiones: La obesidad central se asocio con infiltracion de grasa intramuscular y con RI. Esta distribucion adiposa no se relaciono con edad ni con sarcopenia asociada al envejecimiento. Las personas mayores resultaron mas intolerantes a la glucosa, explicable por una disminucion de la secrecion de insulina mas que por RI relacionada con mayor adiposidad.

  11. Resistance exercise increase lean body mass and improves basal and hepatic insulin sensitivity in obese adolescents

    USDA-ARS?s Scientific Manuscript database

    Little is known about the metabolic effects of resistance exercise, for instance, weight lifting. We studied whether a resistance exercise program improves insulin sensitivity and glucose metabolism in sedentary obese adolescents. Elevn obese subjects (15.7 +/- 0.4 year; 35.4 +/- 0.8 kg/m2; 41.3 +/-...

  12. Impact of age on aortic wave reflection responses to metaboreflex activation and its relationship with leg lean mass in post-menopausal women.

    PubMed

    Figueroa, Arturo; Jaime, Salvador J; Johnson, Sarah A; Alvarez-Alvarado, Stacey; Campbell, Jeremiah C; Feresin, Rafaela G; Elam, Marcus L; Arjmandi, Bahram H

    2015-10-01

    Wave reflection (augmentation pressure [AP] and index [AIx]) is greater in older women than men. Resting AP is a better wave reflection index than AIx in older adults. The negative relationship between wave reflection and lean mass (LM) has been inconsistent. We investigated the impact of age and LM on aortic hemodynamic responses to metaboreflex activation in post-menopausal women. Post-menopausal women, younger and older (n=20 per group) than 60 years, performed 2-min isometric handgrip at 30% of maximal force followed by 3-min post-exercise muscle ischemia (PEMI). We measured carotid-femoral pulse wave velocity (cfPWV) and femoral-ankle PWV (faPWV) at rest, and aortic systolic blood pressure (aSBP), pulse pressure (aPP), AP, AIx, and AIx-adjusted for heart rate (AIx@75) at rest and during PEMI using tonometry. Arm and leg LM were measured by DEXA. Resting cfPWV, aSBP, and aPP were higher, while AIx@75 and leg LM were lower in older than younger women. aSBP and aPP increased similarly during PEMI in both groups. Increases in AP (P<0.05), AIx (P<0.05), and AIx@75 (P<0.01) during PEMI were greater in older than younger women. From these responses, only AP during PEMI was correlated (P<0.05) positively with aSBP and aPP responses, and negatively with leg LM. Resting faPWV, but not cfPWV, was correlated (P<0.01) with AP, aSBP, and aPP during PEMI. Therefore, PEMI induces greater wave reflection responses in older than younger post-menopausal women. Our findings suggest that the increased AP response to PEMI is related to leg arterial stiffness and muscle loss in older women. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The effect of unilateral and bilateral strength training on the bilateral deficit and lean tissue mass in post-menopausal women.

    PubMed

    Janzen, Cora L; Chilibeck, Philip D; Davison, K Shawn

    2006-06-01

    Some have observed maximal strength of simultaneous bilateral homologous limb contraction is less than the sum of strengths of right and left limbs contracting alone; a phenomenon referred to as the bilateral deficit (BLD). There is controversy on whether there is a BLD for all exercises. We assessed whether a BLD occurs across different exercises (leg press, knee extension, and lat pull-down), whether the BLD could be altered with unilateral or bilateral training, and whether unilateral versus bilateral training was more beneficial for increasing lean tissue mass (LTM). Post-menopausal women (approximately 57 years) were randomized to bilateral (n=14) and unilateral (n=12) training, or non-training control (n=24) groups. Bilateral training involved seven exercises performed with bilateral contractions (two sets, 3 days week-1, 26 weeks). Unilateral training involved the same exercises performed with one limb at a time. A BLD was found for leg press and lat pull-down, but not for knee extension. Bilateral training decreased the BLD; whereas unilateral training had minimal effect on the BLD. The unilateral-training group had a greater increase in lower-body LTM compared to the control group (P<0.05); however, there were no differences between unilateral and bilateral training groups. Both training groups had greater increases in LTM of the upper- and whole-body compared to the control group. We conclude that the BLD is apparent for some exercises (i.e., the leg press and lat pull-down) but not others (i.e., knee extension). Bilateral training reduces the BLD; whereas unilateral training has minimal effect on the BLD.

  14. Thermic effect of food in lean and obese men.

    PubMed Central

    D'Alessio, D A; Kavle, E C; Mozzoli, M A; Smalley, K J; Polansky, M; Kendrick, Z V; Owen, L R; Bushman, M C; Boden, G; Owen, O E

    1988-01-01

    A systemic reappraisal of the thermic effect of food was done in lean and obese males randomly fed mixed meals containing 0, 8, 16, 24, and 32 kcal/kg fat-free mass. Densitometric analysis was used to measure body composition. Preprandial and postprandial energy expenditures were measured by indirect calorimetry. The data show that the thermic effect of food was linearly correlated with caloric intake, and that the magnitude and duration of augmented postprandial thermogenesis increased linearly with caloric consumption. Postprandial energy expenditures over resting metabolic requirements were indistinguishable when comparing lean and obese men for a given caloric intake. Individuals, however, had distinct and consistent thermic responses to progressively greater caloric challenges. These unique thermic profiles to food ingestion were also independent of leanness or obesity. We conclude that the thermic effect of food increases linearly with caloric intake, and is independent of leanness and obesity. Images PMID:3384951

  15. Low Lean Mass With and Without Obesity, and Mortality: Results From the 1999-2004 National Health and Nutrition Examination Survey.

    PubMed

    Batsis, John A; Mackenzie, Todd A; Emeny, Rebecca T; Lopez-Jimenez, Francisco; Bartels, Stephen J

    2017-10-01

    The Foundation for the NIH Sarcopenia Project validated cutpoints for appendicular lean mass. We ascertained the relationship between low lean mass (LLM), obesity, and mortality and identified predictors in this subgroup. A total of 4,984 subjects aged 60 years and older were identified from the National Health and Nutrition Examination Survey 1999-2004 linked to the National Death Index. LLM was defined using reduced appendicular lean mass (men < 19.75 kg; females < 15.02 kg). Obesity was defined using dual-energy x-ray absorptiometry body fat (males ≥ 25%; females ≥ 35%). LLM with obesity was defined using criteria for both LLM and obesity. Proportional hazard models determined mortality risk for LLM and LLM with obesity, separately (referent = no LLM and no LLM with obesity, respectively). Mean age was 71.1 ± 0.19 years (56.5% female). Median follow-up was 102 months (interquartile range: 78, 124) with 1,901 deaths (35.0%). Prevalence of LLM with obesity was 33.5% in females and 12.6% in males. In those with LLM, overall mortality risk was 1.49 (1.27, 1.73) in males and 1.19 (1.02, 1.40) in females. Mortality risk in LLM with obesity was 1.31 (1.11, 1.55) and 0.99 (0.85, 1.16) in males and females, respectively. Age, diabetes, history of stroke, congestive heart failure, cancer, and kidney disease were predictive of death. Risk of death is higher in subjects with LLM than with LLM and obesity. Having advanced age, diabetes, stroke, heart failure, cancer, and renal disease predict a worse prognosis in both classifications.

  16. Lean Stability augmentation study

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.

  17. Lean tissue mass and energy expenditure are retained in hypogonadal men with spinal cord injury after discontinuation of testosterone replacement therapy.

    PubMed

    Bauman, William A; La Fountaine, Michael F; Cirnigliaro, Christopher M; Kirshblum, Steven C; Spungen, Ann M

    2015-01-01

    To determine whether favorable changes to lean tissue mass (LTM), resting energy expenditure (REE), and testosterone (T) that occurred with 12 months of physiological testosterone replacement therapy (TRT) were retained 6 months after discontinuing treatment. Prospective, open-label, controlled drug intervention trial. Metropolitan area hospitals. Eugonadal (n = 11) and hypogonadal (n = 13) men with chronic spinal cord injury (SCI). Hypogonadal subjects received a 5 or 10 mg transdermal T patch daily for 12 months, with adjustment of the dose to normalize the serum T concentration; TRT was discontinued after 12 months (TRT-12M) and subjects were followed for an additional 6 months and re-evaluated (Post-TRT). Total body dual energy X-ray absorptiometry and blood draws were performed at baseline (BL) prior to TRT, TRT-12M, and Post-TRT. Eugonadal subjects did not receive treatment and were evaluated at comparable time points. There were no significant differences between groups prior to TRT at BL for any of the study endpoints. In the hypogonadal group, a significant increase in LTM was observed from BL to TRT-12M (50.2 ± 7.4 vs. 52.9 ± 6.8 kg, P < 0.01), which persisted Post-TRT compared to BL (52.2 ± 7.8 kg, P < 0.05). The increase in REE from BL to TRT-12M (1283 ± 246 vs. 1410 ± 250 kcal/day) was also retained at Post-TRT (1393 ± 220 kcal/day). These sustained improvements in LTM and REE after termination of anabolic hormonal therapy may be associated with persistent beneficial effects on health and physical function of hypogonadal men with chronic SCI.

  18. Structured Syncope Care Pathways Based on Lean Six Sigma Methodology Optimises Resource Use with Shorter Time to Diagnosis and Increased Diagnostic Yield

    PubMed Central

    Martens, Leon; Goode, Grahame; Wold, Johan F. H.; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    Aims To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Methods Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. Results With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Conclusions Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield. PMID:24927475

  19. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    PubMed

    Martens, Leon; Goode, Grahame; Wold, Johan F H; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  20. Lean healthcare.

    PubMed

    Weinstock, Donna

    2008-01-01

    As healthcare organizations look for new and improved ways to reduce costs and still offer quality healthcare, many are turning to the Toyota Production System of doing business. Rather than focusing on cutting personnel and assets, "lean healthcare" looks to improve patient satisfaction through improved actions and processes.

  1. Mobilization of mercury from lean tissues during simulated migratory fasting in a model songbird.

    PubMed

    Seewagen, Chad L; Cristol, Daniel A; Gerson, Alexander R

    2016-05-12

    The pollutant methylmercury accumulates within lean tissues of birds and other animals. Migrating birds catabolize substantial amounts of lean tissue during flight which may mobilize methylmercury and increase circulating levels of this neurotoxin. As a model for a migrating songbird, we fasted zebra finches (Taeniopygia guttata) that had been dosed with 0.0, 0.1, and 0.6 parts per million (ppm) dietary methylmercury and measured changes in blood total mercury concentrations (THg) in relation to reductions in lean mass. Birds lost 6-16% of their lean mass during the fast, and THg increased an average of 12% and 11% in the 0.1 and 0.6 ppm treatments, respectively. Trace amounts of THg in the 0.0 ppm control group also increased as a result of fasting, but remained extremely low. THg increased 0.4 ppm for each gram of lean mass catabolized in the higher dose birds. Our findings indicate that methylmercury is mobilized from lean tissues during protein catabolism and results in acute increases in circulating concentrations. This is a previously undocumented potential threat to wild migratory birds, which may experience greater surges in circulating methylmercury than demonstrated here as a result of their greater reductions in lean mass.

  2. Mobilization of mercury from lean tissues during simulated migratory fasting in a model songbird

    PubMed Central

    Seewagen, Chad L.; Cristol, Daniel A.; Gerson, Alexander R.

    2016-01-01

    The pollutant methylmercury accumulates within lean tissues of birds and other animals. Migrating birds catabolize substantial amounts of lean tissue during flight which may mobilize methylmercury and increase circulating levels of this neurotoxin. As a model for a migrating songbird, we fasted zebra finches (Taeniopygia guttata) that had been dosed with 0.0, 0.1, and 0.6 parts per million (ppm) dietary methylmercury and measured changes in blood total mercury concentrations (THg) in relation to reductions in lean mass. Birds lost 6–16% of their lean mass during the fast, and THg increased an average of 12% and 11% in the 0.1 and 0.6 ppm treatments, respectively. Trace amounts of THg in the 0.0 ppm control group also increased as a result of fasting, but remained extremely low. THg increased 0.4 ppm for each gram of lean mass catabolized in the higher dose birds. Our findings indicate that methylmercury is mobilized from lean tissues during protein catabolism and results in acute increases in circulating concentrations. This is a previously undocumented potential threat to wild migratory birds, which may experience greater surges in circulating methylmercury than demonstrated here as a result of their greater reductions in lean mass. PMID:27173605

  3. In healthy elderly postmenopausal women variations in BMD and BMC at various skeletal sites are associated with differences in weight and lean body mass rather than by variations in habitual physical activity, strength or VO2max.

    PubMed

    Schöffl, I; Kemmler, W; Kladny, B; Vonstengel, S; Kalender, W A; Engelke, K

    2008-01-01

    The objective of this study was an integrated cross-sectional investigation for answering the question whether differences in bone mineral density in elderly postmenopausal women are associated with differences in habitual physical activity and unspecific exercise levels. Two hundred and ninety nine elderly women (69-/+3 years), without diseases or medication affecting bone metabolism were investigated. The influence of weight, body composition and physical activity on BMD was measured at multiple sites using different techniques (DXA, QCT, and QUS). Physical activity and exercise level were assessed by questionnaire, maximum strength of the legs and aerobic capacity. Variations in physical activity or habitual exercise had no effect on bone. The only significant univariate relation between strength/VO(2)max and BMD/BMC that remained after adjusting for confounding variables was between arm BMD (DXA) and hand-grip strength. The most important variable for explaining BMD was weight and for cortical BMC of the femur (QCT) lean body mass. Weight and lean body mass emerge as predominant predictors of BMD in normal elderly women, whereas the isolated effect of habitual physical activity, unspecific exercise participation, and muscle strength on bone parameters is negligible. Thus, an increase in the amount of habitual physical activity will probably have no beneficial impact on bone.

  4. The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs.

    PubMed

    Chang, Fei; Fang, Rui; Wang, Meng; Zhao, Xin; Chang, Wen; Zhang, Zaihu; Li, Ning; Meng, Qingyong

    2017-02-01

    Follistatin (FST), which was first found in the follicles of cattle and pigs, has been shown to be an essential regulator for muscle development. Mice that were genetically engineered to overexpress Fst specifically in muscle had at least twice the amount of skeletal muscle mass as controls; these findings are similar to earlier results obtained in myostatin-knockout mice. However, the role of follistatin in skeletal muscle development has yet to be clarified in livestock. Here, we describe transgenic Duroc pigs that exogenously express Fst specifically in muscle tissue. The transgenic pigs exhibited an increased proportion of skeletal muscle and a reduced proportion of body fat that were similar to those reported in myostatin-null cattle. The lean percentage of lean meat was significantly higher in the F1 generation of TG pigs (72.95 ± 1.0 %) than in WT pigs (69.18 ± 0.97 %) (N = 16, P < 0.05). Myofiber hypertrophy was also observed in the longissimus dorsi of transgenic pigs, possibly contributing to the increased skeletal muscle mass. Western blot analysis showed a significantly reduced level of Smad2 phosphorylation and an increased level of Akt(S473) phosphorylation in the skeletal muscle tissue of the transgenic pigs. Moreover, no cardiac muscle hypertrophy or reproductive abnormality was observed. These findings indicate that muscle-specific Fst overexpression in pigs enhances skeletal muscle growth, at least partly due to myofiber hypertrophy and providing a promising approach to increase muscle mass in pigs and other livestock.

  5. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults.

    PubMed

    Deutz, Nicolaas E P; Pereira, Suzette L; Hays, Nicholas P; Oliver, Jeffery S; Edens, Neile K; Evans, Chris M; Wolfe, Robert R

    2013-10-01

    Loss of muscle mass due to prolonged bed rest decreases functional capacity and increases hospital morbidity and mortality in older adults. To determine if HMB, a leucine metabolite, is capable of attenuating muscle decline in healthy older adults during complete bed rest. A randomized, controlled, double-blinded, parallel-group design study was carried out in 24 healthy (SPPB ≥ 9) older adult subjects (20 women, 4 men), confined to complete bed rest for ten days, followed by resistance training rehabilitation for eight weeks. Subjects in the experimental group were treated with HMB (calcium salt, 1.5 g twice daily - total 3 g/day). Control subjects were treated with an inactive placebo powder. Treatments were provided starting 5 days prior to bed rest till the end rehabilitation phase. DXA was used to measure body composition. Nineteen eligible older adults (BMI: 21-33; age: 60-76 year) were evaluable at the end of the bed rest period (Control n = 8; Ca-HMB n = 11). Bed rest caused a significant decrease in total lean body mass (LBM) (2.05 ± 0.66 kg; p = 0.02, paired t-test) in the Control group. With the exclusion of one subject, treatment with HMB prevented the decline in LBM over bed rest -0.17 ± 0.19 kg; p = 0.23, paired t-test). There was a statistically significant difference between treatment groups for change in LBM over bed rest (p = 0.02, ANOVA). Sub-analysis on female subjects (Control = 7, HMB = 8) also revealed a significant difference in change in LBM over bed rest between treatment groups (p = 0.04, ANOVA). However, differences in function parameters could not be observed, probably due to the sample size of the study. In healthy older adults, HMB supplementation preserves muscle mass during 10 days of bed rest. These results need to be confirmed in a larger trial. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial.

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon

    2013-01-01

    The primary aim of this study was to determine the effect of 12 months of whole-body electromyostimulation (WB-EMS) exercise on appendicular muscle mass and abdominal fat mass in subjects specifically at risk for sarcopenia and abdominal obesity, but unable or unwilling to exercise conventionally. Forty-six lean, nonsportive (<60 minutes of exercise per week), elderly women (aged 75 ± 4 years) with abdominal obesity according to International Diabetes Federation criteria were randomly assigned to either a WB-EMS group (n=23) which performed 18 minutes of intermittent, bipolar WB-EMS (85 Hz) three sessions in 14 days or an "active" control group (n=23). Whole-body and regional body composition was assessed by dual energy X-ray absorptiometry to determine appendicular muscle mass, upper leg muscle mass, abdominal fat mass, and upper leg fat mass. Maximum strength of the leg extensors was determined isometrically by force plates. After 12 months, significant intergroup differences were detected for the primary end-points of appendicular muscle mass (0.5% ± 2.0% for the WB-EMS group versus -0.8% ± 2.0% for the control group, P=0.025) and abdominal fat mass (-1.2% ± 5.9% for the WB-EMS group versus 2.4% ± 5.8% for the control group, P=0.038). Further, upper leg lean muscle mass changed favorably in the WB-EMS group (0.5% ± 2.5% versus -0.9% ± 1.9%, in the control group, P=0.033), while effects for upper leg fat mass were borderline nonsignificant (-0.8% ± 3.5% for the WB-EMS group versus 1.0% ± 2.6% for the control group, P=0.050). With respect to functional parameters, the effects for leg extensor strength were again significant, with more favorable changes in the WB-EMS group (9.1% ± 11.2% versus 1.0% ± 8.1% in the control group, P=0.010). In summary, WB-EMS showed positive effects on the parameters of sarcopenia and regional fat accumulation. Further, considering the good acceptance of this technology by this nonsportive elderly cohort at risk for

  7. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial

    PubMed Central

    Kemmler, Wolfgang; von Stengel, Simon

    2013-01-01

    Background The primary aim of this study was to determine the effect of 12 months of whole-body electromyostimulation (WB-EMS) exercise on appendicular muscle mass and abdominal fat mass in subjects specifically at risk for sarcopenia and abdominal obesity, but unable or unwilling to exercise conventionally. Methods Forty-six lean, nonsportive (<60 minutes of exercise per week), elderly women (aged 75 ± 4 years) with abdominal obesity according to International Diabetes Federation criteria were randomly assigned to either a WB-EMS group (n=23) which performed 18 minutes of intermittent, bipolar WB-EMS (85 Hz) three sessions in 14 days or an “active” control group (n=23). Whole-body and regional body composition was assessed by dual energy X-ray absorptiometry to determine appendicular muscle mass, upper leg muscle mass, abdominal fat mass, and upper leg fat mass. Maximum strength of the leg extensors was determined isometrically by force plates. Results After 12 months, significant intergroup differences were detected for the primary end-points of appendicular muscle mass (0.5% ± 2.0% for the WB-EMS group versus −0.8% ± 2.0% for the control group, P=0.025) and abdominal fat mass (−1.2% ± 5.9% for the WB-EMS group versus 2.4% ± 5.8% for the control group, P=0.038). Further, upper leg lean muscle mass changed favorably in the WB-EMS group (0.5% ± 2.5% versus −0.9% ± 1.9%, in the control group, P=0.033), while effects for upper leg fat mass were borderline nonsignificant (−0.8% ± 3.5% for the WB-EMS group versus 1.0% ± 2.6% for the control group, P=0.050). With respect to functional parameters, the effects for leg extensor strength were again significant, with more favorable changes in the WB-EMS group (9.1% ± 11.2% versus 1.0% ± 8.1% in the control group, P=0.010). Conclusion In summary, WB-EMS showed positive effects on the parameters of sarcopenia and regional fat accumulation. Further, considering the good acceptance of this technology by

  8. Rethinking Lean Service

    NASA Astrophysics Data System (ADS)

    Seddon, John; O'Donovan, Brendan; Zokaei, Keivan

    Ever since Levitt's influential Harvard Business Review article 'Production-Line Approach to Service' was published in 1972, it has been common for services to be treated like production lines in both the academic literature and more widely in management practice. The belief that achieving economies of scale will reduce unit costs is a common feature of management decision-making. As technological advancement has produced ever more sophisticated IT and telephony, it has become increasingly easier for firms to standardise and off-shore services. The development of the 'lean' literature has only helped to emphasise the same underlying management assumptions: by managing cost and workers' activity, organisational performance is expected to improve. This chapter argues that through misinterpretation of the core paradigm 'lean' has become subsumed into the 'business as usual' of conventional service management. As a result, 'lean' has become synonymous with 'process efficiency' and the opportunity for significant performance improvement - as exemplified by Toyota - has been missed.

  9. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind.

  10. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial123

    PubMed Central

    de Souza, Russell J; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R

    2012-01-01

    Background: Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. Objective: We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. Design: In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). Results: At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ∼40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Conclusion: Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT

  11. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial.

    PubMed

    de Souza, Russell J; Bray, George A; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R

    2012-03-01

    Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ~40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT00072995.

  12. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.

    PubMed

    Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G

    2013-01-04

    Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load.

  13. Effects of lorcaserin on fat and lean mass loss in obese and overweight patients without and with type 2 diabetes mellitus: the BLOSSOM and BLOOM-DM studies.

    PubMed

    Apovian, C; Palmer, K; Fain, R; Perdomo, C; Rubino, D

    2016-09-01

    Body composition was determined using dual-energy X-ray absorptiometry (DXA) in a subset of patients without (BLOSSOM) and with (BLOOM-DM) type 2 diabetes who received diet and exercise counselling along with either lorcaserin 10 mg twice daily or placebo. DXA scans were performed on study day 1 (baseline), week 24 and week 52. Baseline demographics of the subpopulations (without diabetes, n = 189; with diabetes, n = 63) were similar between studies and representative of their study populations. At week 52, patients without diabetes on lorcaserin lost significantly more fat mass relative to those on placebo (-12.06% vs -5.93%; p = 0.008). In patients with diabetes, fat mass was also decreased with lorcaserin relative to placebo (-9.87% vs -1.65%; p < 0.05). More fat mass was lost in the trunk region with lorcaserin compared with placebo (without diabetes: -3.31% vs -2.05%; with diabetes: -3.65% vs -0.36%). Weight loss with lorcaserin was associated with a greater degree of fat mass loss than lean mass loss, and most of the fat mass lost for patients without and with diabetes was from the central region of the body. © 2016 John Wiley & Sons Ltd.

  14. Lean NAFLD: An Underrecognized Outlier.

    PubMed

    Wattacheril, Julia; Sanyal, Arun J

    2016-06-01

    Nonalcoholic fatty liver disease (NAFLD) is commonly diagnosed in obese or overweight individuals. However, lean individuals with NAFLD are not rare but represent one significant end of the phenotypic spectrum of NAFLD. Although initial observations between obese and lean NAFLD reveal some metabolic parallels, these associations vary widely given differences in study populations and metabolic parameters assessed. The role of body composition in risk assessment is significant and incompletely assessed during most clinical encounters. Recent multinational investigation reveals an increased mortality in lean individuals with NASH. Many aspects of lean NAFLD need further exploration including epidemiology, clinical risk assessment, histologic changes unique to lean NAFLD, genetic and pathophysiologic mechanisms predisposing at risk individuals, natural history and treatment strategies in this underrecognized population.

  15. Effects of vitamin D3 supplementation on lean mass, muscle strength and bone mineral density during weight loss: A double-blind randomized controlled trial

    PubMed Central

    Mason, Caitlin; Tapsoba, Jean De Dieu; Duggan, Catherine; Imayama, Ikuyo; Wang, Ching-Yun; Korde, Larissa; McTiernan, Anne

    2016-01-01

    Objectives To compare 12 months of vitamin D3 supplementation versus placebo on lean mass, bone mineral density and muscle strength in overweight or obese postmenopausal women completing a structured weight-loss program. Design Double-blind, placebo-controlled randomized clinical trial. Setting Fred Hutchinson Cancer Research Center, Seattle, WA. Participants 218 postmenopausal (50-75 y) women, BMI ≥25 kg/m2, with serum 25-hydroxyvitamin D (25(OH)D) concentrations ≥10 −<32 ng/mL (i.e. insufficient). Intervention 2000 IU/day oral vitamin D3 or placebo in combination with a lifestyle-based weight loss intervention consisting of 500-1000 kcal/day reduction and 225 mins/week of moderate-to-vigorous intensity aerobic exercise. Measurements Serum 25(OH)D, body composition and muscle strength were measured pre-randomization (baseline) and at 12 months. Mean changes were compared between groups (intent-to-treat) using generalized estimating equations. Results Change in 25(OH)D was significantly different between vitamin D and placebo groups at 12 months (+13.6 vs −1.3 ng/mL, p<0.0001); however, no differences in change in lean mass (Vit D:−0.8 kg vs P:−1.1 kg, p=0.53), bone mineral density of the spine (Vit D:−0.01 g/cm2 vs P:0.0 g/cm2, p=0.82) or right femoral neck (both −0.01 g/cm2, p=0.49) were detected between groups. Leg strength decreased significantly in the vitamin D group compared to placebo (Vit D:−2.6 lbs vs P:+1.8 lbs, p=0.03). Among women randomized to vitamin D, achieving repletion (25(OH)D ≥32 ng/mL) did not alter results. Conclusion Vitamin D3 supplementation during weight-loss decreased leg strength but did not alter changes in lean mass or bone mineral density compared to placebo among postmenopausal women with vitamin D insufficiency. PMID:27060050

  16. Tissue Selective Androgen Receptor Modulators (SARMs) Increase Pelvic Floor Muscle Mass in Ovariectomized Mice.

    PubMed

    Ponnusamy, Suriyan; Sullivan, Ryan D; Thiyagarajan, Thirumagal; Tillmann, Heather; Getzenberg, Robert H; Narayanan, Ramesh

    2017-03-01

    Stress urinary incontinence (SUI), a prevalent condition, is represented by an involuntary leakage of urine that results, at least in part, from weakened or damaged pelvic floor muscles and is triggered by physical stress. Current treatment options are limited with no oral therapies available. The pelvic floor is rich in androgen receptor and molecules with anabolic activity including selective androgen receptor modulators (SARMs) may serve as therapeutic options for individuals with SUI. In this study, two SARMs (GTx-024 and GTx-027) were evaluated in a post-menopausal animal model in order to determine their effect on pelvic floor muscles. Female C57BL/6 mice were ovariectomized and their pelvic muscles allowed to regress. The animals were then treated with vehicle or doses of GTx-024 or GTx-027. Animal total body weight, lean body mass, and pelvic floor muscle weights were measured along with the expression of genes associated with muscle catabolism. Treatment with the SARMs resulted in a restoration of the pelvic muscles to the sham-operated weight. Coordinately, the induction of genes associated with muscle catabolism was inhibited. Although a trend was observed towards an increase in total lean body mass in the SARM-treated groups, no significant differences were detected. Treatment of an ovariectomized mouse model with SARMs resulted in an increase in pelvic floor muscles, which may translate to an improvement of symptoms associated with SUI and serves as the basis for evaluating their clinical use. J. Cell. Biochem. 118: 640-646, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Decreasing Turnaround Time and Increasing Patient Satisfaction in a Safety Net Hospital-Based Pediatrics Clinic Using Lean Six Sigma Methodologies.

    PubMed

    Jayasinha, Yasangi

    2016-01-01

    Increasingly, health care quality indicators are focusing on patient-centeredness as an indicator of performance. The National Quality Forum lists assessment of patient experience, often conducted using patient surveys, as a top priority. We developed a patient-reported time stamp data collection tool that was used to collect cycle times in a safety net hospital-based outpatient pediatrics clinic. Data were collected using patient-reported survey to obtain cycle times in Pediatric clinic, as well as qualitative and quantitative patient satisfaction data. Several rapid-cycle improvements were performed using Lean Six Sigma methodologies to reduce cycle time by eliminating waste and revise unnecessary processes to improve operational effectiveness and patient and staff satisfaction. A total of 94 surveys were collected and revealed average cycle time of 113 minutes. Our measured patient satisfaction rating was 87%. Discharge and check-in processes were identified as the least efficient and were targeted for intervention. Following implementation, the overall cycle time was decreased from 113 to 90 minutes. Patient satisfaction ratings increased from 87% to 95%. We demonstrate that using Lean Six Sigma tools can be invaluable to clinical restructuring and redesign and results in measurable, improved outcomes in care delivery.

  18. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training.

    PubMed

    Franco, Frederico Sc; Costa, Neuza Mb; Ferreira, Susana A; Carneiro-Junior, Miguel A; Natali, Antônio J

    2011-03-01

    The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM) composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Male Wistar rats were randomly divided into 8 groups: Sedentary (S) or Exercised (E) [placebo (Pl), creatine (Cr), caffeine (Caf) or creatine plus caffeine (CrCaf)]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW) for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days) or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals), 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Exercised animals presented a lower carcass weight (10.9%; P = 0.01), as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05). There were no significant differences among the groups (P > 0.05) for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P < 0.05). A higher percentage of protein was observed in the groups EPl and ECaf when compared to the groups SPl and SCaf (P < 0.001). The percentage of fat in the carcass decreased (P < 0.001), while those of water and protein increased (P < 0.05) in exercised animals, compared to sedentary animals. Caffeine groups presented reduced percentage of fat when compared to creatine supplemented groups (P < 0.05). High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine

  19. Higher Protein Intake Does Not Improve Lean Mass Gain When Compared with RDA Recommendation in Postmenopausal Women Following Resistance Exercise Protocol: A Randomized Clinical Trial.

    PubMed

    Rossato, Luana T; Nahas, Paula C; de Branco, Flávia M S; Martins, Fernanda M; Souza, Aletéia P; Carneiro, Marcelo A S; Orsatti, Fábio L; de Oliveira, Erick P

    2017-09-12

    The aim of this study was to evaluate the effect of a higher protein intake on lean body mass (LBM) gain in postmenopausal women practicing resistance exercise and compare it to the Recommended Dietary Allowance (RDA) recommendation. Twenty-three postmenopausal women (63.2 ± 7.8 years) were randomized into two groups. The group with higher protein intake (n = 11) (HP) received a dietary plan with ~1.2 g·kg(-1)·day(-1) of protein, while the normal protein (NP) group (n = 12) was instructed to ingest ~0.8 g·kg(-1)·day(-1) of protein (RDA recommendation). Both groups performed the same resistance training protocol, 3 times a week, with progression of the number of sets (from 1 to 6 sets) and 8-12 repetitions. The intervention occurred over 10 weeks. Body composition evaluation was performed by dual-energy X-ray absorptiometry. The diet was evaluated by nine 24-h food recall summaries over the course of the study. During the intervention period, the HP group presented a higher protein (1.18 ± 0.3 vs. 0.87 ± 0.2 g·kg(-1)·day(-1), p = 0.008) and leucine (6.0 ± 1.4 vs. 4.3 ± 0.9 g/day, p < 0.001) intake than the NP group, respectively. At the end of the intervention, there were increases in LBM both in HP (37.1 ± 6.2 to 38.4 ± 6.5 kg, p = 0.004) and in NP (37.6 ± 6.2 to 38.8 ± 6.4 kg, p < 0.001), with no differences between the groups (p = 0.572). In conclusion, increased protein intake did not promote higher LBM gain when compared to RDA recommendation in postmenopausal women performing resistance exercise during 10 weeks. This trial was registered at ClinicalTrials.gov as NCT03024125.

  20. Modeling the Motion of an Increasing Mass System

    ERIC Educational Resources Information Center

    Kunkel, William; Harrington, Randal

    2010-01-01

    Problems on the dynamics of changing mass systems often call for the more general form of Newton's second law Fnet = dp/dt. These problems usually involve situations where the mass of the system decreases, such as in rocket propulsion. In contrast, this experiment examines a system where the mass "increases" at a constant rate and the net force…

  1. Modeling the Motion of an Increasing Mass System

    ERIC Educational Resources Information Center

    Kunkel, William; Harrington, Randal

    2010-01-01

    Problems on the dynamics of changing mass systems often call for the more general form of Newton's second law Fnet = dp/dt. These problems usually involve situations where the mass of the system decreases, such as in rocket propulsion. In contrast, this experiment examines a system where the mass "increases" at a constant rate and the net force…

  2. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study

    PubMed Central

    Kümmel, Jakob; Mulder, Edwin; Gollhofer, Albert; Frings-Meuthen, Petra; Gruber, Markus

    2017-01-01

    Purpose Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance. Methods 23 male participants (29±6 years, 181±6 cm, 77±7 kg) were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT), and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12) or the control group (CTRL, n = 11). A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5–6 sessions per week. Results Peak force for the reactive hops (3.6±0.4 kN) as well as jump height (35±4 cm) and peak power (3.1±0.2 kW) for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03). Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect p<0.001). Conclusion Participants tolerated the near-daily high-intensity jump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day. PMID:28081223

  3. Nutritional Status, Body Surface, and Low Lean Body Mass/Body Mass Index Are Related to Dose Reduction and Severe Gastrointestinal Toxicity Induced by Afatinib in Patients With Non-Small Cell Lung Cancer

    PubMed Central

    De la Torre-Vallejo, Martha; López-Macías, Diego; Orta, David; Turcott, Jenny; Macedo-Pérez, Eleazar-Omar; Sánchez-Lara, Karla; Ramírez-Tirado, Laura-Alejandra; Baracos, Vickie E.

    2015-01-01

    Background. The main reason for dose reduction of afatinib is gastrointestinal toxicity (GT). In a phase II study, we analyzed anthropometrical, nutritional, and biochemical factors associated with GT induced by afatinib. Materials and Methods. Patients diagnosed with non-small cell lung cancer who progressed to prior chemotherapy received 40 mg of afatinib. Malnutrition was determined by Subjective Global Assessment, and lean body mass (LBM) was determined by computed tomography scan analysis using a pre-established Hounsfield unit threshold. Toxicity was obtained during four cycles by Common Terminology Criteria for Adverse Events. Results. Eighty-four patients were enrolled. Afatinib was administered as the second, third, and fourth line of treatment in 54.8%, 38.1%, and 7.12% of patients, respectively. Severe diarrhea, mucositis, and overall severe GT were present in 38.9%, 28.8%, and 57.5%, respectively. Of the patients, 50% developed dose-limiting toxicity (DLT). Patients with malnutrition have higher risk for severe GT. Patients with lower LBM and body mass index developed more DLT (71.4% vs. 18.8%). Conclusion. Malnutrition is associated with a higher risk of severe GT induced by afatinib. Determination of nutritional status and body composition are helpful in identifying patients at higher risk of severe GT and could allow initiating treatment with lower doses according to tolerance. Implications for Practice: Body composition analysis, specifically lean body mass quantification, and nutritional status assessment are significant clinical variables to take into account when assessing oncological patients. This study on patients with non-small cell lung cancer treated with afatinib showed the important impact that malnutrition and low lean body mass have on the risk for developing dose-limiting toxicity and severe gastrointestinal toxicity. Still more research needs to be done to explore dose adjustment according to lean body mass, especially in drugs that

  4. Effect of vitamin D supplementation and isokinetic training on muscle strength, explosive strength, lean body mass and gait in severely burned children: A randomized controlled trial.

    PubMed

    Ebid, Anwar Abdelgayed; El-Shamy, Shamekh Mohamed; Amer, Maysa Abbas

    2017-03-01

    To determine the effects of vitamin D (VD) supplementation and isokinetic training on muscle strength, explosive strength (counter movement jump) (ES), lean body mass (LBM) and gait parameters in severe pediatric burn. Forty-eight burned children with circumferential lower extremity burns covering 40-55% of the total body surface area (TBSA), aged 10-16 years (Mean±SD 13.01±1.75), were randomized into the standard of care (n=16), isokinetic (n=17) and VD (n=15) groups. Unburned children (n=20) served as matched controls. All burned children received 12 weeks of routine physical therapy program (RPTP). In addition, the isokinetic group received isokinetic training for the quadriceps dominant limb 3 times per week at angular velocity 150°/s, and the VD group received the isokinetic training plus an oral daily dose of vitamin D3 1000 IU (Cholecalciferol). The primary measures, assessed at baseline and 12 weeks, included quadriceps strength by isokinetic dynamometer, ES, LBM by dual-energy X-ray absorptiometry (DEXA) and gait parameters by GAITRite system. The VD and isokinetic groups showed significant improvement in quadriceps strength, ES, LBM and gait parameters compared with the standard of care, and VD group show significant improvement in the VD level as compared with the other groups. The outcome measures (and percent of improvement where applicable) for the VD, isokinetic and standard of care are as follows: quadriceps strength, 85.25±0.93Nm (85%), 64.25±0.93 (36%) and 51.88±1.31Nm (12%); stride length, 94.00±2.69 (7%), 110.60±2.87 (25%) and 139.56±2.57 (60%); step length, 67.26±2.45 (72%), 55.25±2.49 (43%) and 43.76±1.34 (18%); velocity, 133.94±1.65 (82%), 99.94±1.65 (35%) and 80.11±1.91 (9%); and cadence, 140.63±1.36 (68%), 132.63±1.36 (58%) and 90.35±1.32 (9%), VD level 43.33±7.48 (75%), 24.77±7.38 (5%) and 25.63±8.39 (4%) respectively. VD supplementation combined with exercise training significantly increased muscle strength, ES, LBM

  5. Increased mass over the Tibetan Plateau: From lakes or glaciers?

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Yao, Tandong; Xie, Hongjie; Kang, Shichang; Lei, Yanbin

    2013-05-01

    mass balance in the Inner Tibet Plateau (ITP) derived from the Gravity Recovery and Climate Experiment (GRACE) showed a positive rate that was attributed to the glacier mass gain, whereas glaciers in the region, from other field-based studies, showed an overall mass loss. In this study, we examine lake's water level and mass changes in the Tibetan Plateau (TP) and suggest that the increased mass measured by GRACE was predominately due to the increased water mass in lakes. For the 200 lakes in the TP with 4 to 7 years of ICESat data available, the mean lake level and total mass change rates were +0.14 m/yr and +4.95 Gt/yr, respectively. Compared those in the TP, 118 lakes in the ITP showed higher change rates (+0.20 m/yr and +4.28 Gt/yr), accounting for 59% area and 86% mass increase of the 200 lakes. The lake's mass increase rate in the ITP explains the 61% increased mass (~7 Gt/yr) derived from GRACE [Jacob et al., 2012], while it only accounts for 53% of the total lake area in the ITP.

  6. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study

    PubMed Central

    2016-01-01

    Introduction. The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods. Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis. Results. SpA patients presented with significantly lower appendicular lean body mass (LBM) (p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients (p = 0.03) with a parallel trend for specific strength (p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers (p = 0.04), but no difference in CSA type I fibers. Conclusions. Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA. PMID:27672678

  7. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study.

    PubMed

    Røren Nordén, Kristine; Dagfinrud, Hanne; Løvstad, Amund; Raastad, Truls

    Introduction. The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods. Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis. Results. SpA patients presented with significantly lower appendicular lean body mass (LBM) (p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients (p = 0.03) with a parallel trend for specific strength (p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers (p = 0.04), but no difference in CSA type I fibers. Conclusions. Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.

  8. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training.

    PubMed

    Kreider, R B; Klesges, R; Harmon, K; Grindstaff, P; Ramsey, L; Bullen, D; Wood, L; Li, Y; Almada, A

    1996-09-01

    This study examined the effects of ingesting nutritional supplements designed to promote lean tissue accretion on body composition alterations during resistance training. Twenty-eight resistance-trained males blindly supplemented their diets with maltodextrin (M), Gainers Fuel 1000 (GF), or Phosphagain (P). No significant differences were observed in absolute or relative total body water among groups. Energy intake and body weight significantly increased in all groups combined throughout the study with no group or interaction differences observed. Dual energy x-ray absorptiometry-determined body mass significantly increased in each group throughout the study with significantly greater gains observed in the GF and P groups. Lean tissue mass (excluding bone) gain was significantly greater in the P group, while fat mass and percent body fat were significantly increased in the GF group. Results indicate that total body weight significantly increased in each group and that P supplementation resulted in significantly greater gains in lean tissue mass during resistance training.

  9. A Comparison of Fat and Lean Body Mass Index to BMI for the Identification of Metabolic Syndrome in Children and Adolescents

    PubMed Central

    Leonard, Mary B.; Shults, Justine; Zemel, Babette S.

    2014-01-01

    Context: The use of body mass index (BMI) to assess risk for cardiometabolic disease in the pediatric population may be limited by a failure to differentiate between fat and lean body mass. Objectives: The objectives of the study were to identify biologically based criteria for the definition of obesity using fat (FMI) and lean body mass index (LBMI) and to compare the ability of FMI and LBMI to BMI to identify the presence of metabolic syndrome (MetSyn). Design: This was a cross-sectional study using National Health and Nutrition Examination Survey 1999–2006 data. Participants: A total of 3004 participants aged 12–20 years with dual-energy X-ray absorptiometry body composition and fasting laboratory data participated in the study. Main Outcome Measures: Adjusted odds ratios for MetSyn according to FMI and LBMI status and area under the curve for the identification of MetSyn were measured. Results: Receiver-operating characteristic curve analyses identified the 80th percentile for FMI and the 74th percentile for LBMI as the optimal cut points for the identification of MetSyn. There was no difference in the area under the curve for FMI [0.867; 95% confidence interval (CI) 0.838–0.891] vs BMI (0.868; 95% CI 0.837–0.894) Z-scores for MetSyn discrimination. Separate multivariate regression models identified odds ratios for the identification of MetSyn of 6.2 (95% CI 3.3–11.5) for BMI-Z, 6.4 (95% CI 3.7–11.1) for FMI-Z, and 4.6 (95% CI 3.0–7.1) for LBMI-Z. Models containing both FMI-Z and LBMI-Z revealed that greater LBMI-Z was associated with greater odds of low high-density lipoprotein (1.5; 95% CI 1.2–1.9), high blood pressure (1.8; 95% CI 1.1–2.9), and insulin resistance (1.8; 95% CI 1.4–2.5), independent of FMI-Z. Conclusions: The use of FMI and LBMI does not improve upon BMI for the identification of MetSyn in the pediatric population. Unexpectedly, higher LBMI was associated with greater odds of multiple cardiometabolic risk factors

  10. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2016-01-01

    Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated

  11. Defect reduction through Lean methodology

    NASA Astrophysics Data System (ADS)

    Purdy, Kathleen; Kindt, Louis; Densmore, Jim; Benson, Craig; Zhou, Nancy; Leonard, John; Whiteside, Cynthia; Nolan, Robert; Shanks, David

    2010-09-01

    Lean manufacturing is a systematic method of identifying and eliminating waste. Use of Lean manufacturing techniques at the IBM photomask manufacturing facility has increased efficiency and productivity of the photomask process. Tools, such as, value stream mapping, 5S and structured problem solving are widely used today. In this paper we describe a step-by-step Lean technique used to systematically decrease defects resulting in reduced material costs, inspection costs and cycle time. The method used consists of an 8-step approach commonly referred to as the 8D problem solving process. This process allowed us to identify both prominent issues as well as more subtle problems requiring in depth investigation. The methodology used is flexible and can be applied to numerous situations. Advantages to Lean methodology are also discussed.

  12. Dietary Restraint Partially Mediates the Relationship between Impulsivity and Binge Eating Only in Lean Individuals: The Importance of Accounting for Body Mass in Studies of Restraint.

    PubMed

    Coffino, Jaime A; Orloff, Natalia C; Hormes, Julia M

    2016-01-01

    Binge eating is characteristic of eating and weight-related disorders such as binge eating disorder, bulimia nervosa, and obesity. In light of data suggest impulsivity is associated with overeating specifically in restrained eaters, this study sought to elucidate the exact nature of the associations between these variables, hypothesizing that the relationship between impulsivity and binge eating is mediated by restrained eating. We further hypothesized that the role of dietary restraint as a mediator would be moderated by body mass index (BMI). Study participants (n = 506, 50.6% female) were categorized based on self-reported BMI as under- and normal-weight (BMI < 25, 65.8%, n = 333) or overweight and obese (BMI ≥ 25, 34.2%, n = 173) and completed the "restrained eating" subscale of the Dutch Eating Behavior Questionnaire, the "impulse control difficulties" subscale of the Difficulties with Emotion Regulation Scale, and the Binge Eating Scale. Findings provide initial evidence for the hypothesized moderated mediation model, with dietary restraint partially mediating the relationship between impulsivity and binge eating severity only in lean respondents. In respondents with overweight or obesity, impulsivity was significantly correlated with binge eating severity, but not with dietary restraint. Findings inform our conceptualization of dietary restraint as a possible risk factor for binge eating and highlight the importance of accounting for body mass in research on the impact of dietary restraint on eating behaviors.

  13. Dietary Restraint Partially Mediates the Relationship between Impulsivity and Binge Eating Only in Lean Individuals: The Importance of Accounting for Body Mass in Studies of Restraint

    PubMed Central

    Coffino, Jaime A.; Orloff, Natalia C.; Hormes, Julia M.

    2016-01-01

    Binge eating is characteristic of eating and weight-related disorders such as binge eating disorder, bulimia nervosa, and obesity. In light of data suggest impulsivity is associated with overeating specifically in restrained eaters, this study sought to elucidate the exact nature of the associations between these variables, hypothesizing that the relationship between impulsivity and binge eating is mediated by restrained eating. We further hypothesized that the role of dietary restraint as a mediator would be moderated by body mass index (BMI). Study participants (n = 506, 50.6% female) were categorized based on self-reported BMI as under- and normal-weight (BMI < 25, 65.8%, n = 333) or overweight and obese (BMI ≥ 25, 34.2%, n = 173) and completed the “restrained eating” subscale of the Dutch Eating Behavior Questionnaire, the “impulse control difficulties” subscale of the Difficulties with Emotion Regulation Scale, and the Binge Eating Scale. Findings provide initial evidence for the hypothesized moderated mediation model, with dietary restraint partially mediating the relationship between impulsivity and binge eating severity only in lean respondents. In respondents with overweight or obesity, impulsivity was significantly correlated with binge eating severity, but not with dietary restraint. Findings inform our conceptualization of dietary restraint as a possible risk factor for binge eating and highlight the importance of accounting for body mass in research on the impact of dietary restraint on eating behaviors. PMID:27757092

  14. Assessment of fat and lean mass by quantitative magnetic resonance: a future technology of body composition research?

    PubMed

    Bosy-Westphal, Anja; Müller, Manfred J

    2015-09-01

    For the assessment of energy balance or monitoring of therapeutic interventions, there is a need for noninvasive and highly precise methods of body composition analysis that are able to accurately measure small changes in fat and fat-free mass (FFM). The use of quantitative magnetic resonance (QMR) for measurement of body composition has long been established in animal studies. There are, however, only a few human studies that examine the validity of this method. These studies have consistently shown a high precision of QMR and only a small underestimation of fat mass by QMR when compared with a 4-compartment model as a reference. An underestimation of fat mass by QMR is also supported by the comparison between measured energy balance (as a difference between energy intake and energy expenditure) and energy balance predicted from changes in fat mass and FFM. Fewer calories were lost and gained as fat mass compared with the value expected from measured energy balance. Current evidence in healthy humans has shown that QMR is a valid and precise method for noninvasive measurement of body composition. Contrary to standard reference methods, such as densitometry and dual X-ray absorptiometry, QMR results are independent of FFM hydration. However, despite a high accuracy and a low minimal detectable change, underestimation of fat mass by QMR is possible and limits the use of this method for quantification of energy balance.

  15. Lean meat and heart health.

    PubMed

    Li, Duo; Siriamornpun, Sirithon; Wahlqvist, Mark L; Mann, Neil J; Sinclair, Andrew J

    2005-01-01

    The general health message to the public about meat consumption is both confusing and misleading. It is stated that meat is not good for health because meat is rich in fat and cholesterol and high intakes are associated with increased blood cholesterol levels and coronary heart disease (CHD). This paper reviewed 54 studies from the literature in relation to red meat consumption and CHD risk factors. Substantial evidence from recent studies shows that lean red meat trimmed of visible fat does not raise total blood cholesterol and LDL-cholesterol levels. Dietary intake of total and saturated fat mainly comes from fast foods, snack foods, oils, spreads, other processed foods and the visible fat of meat, rather than lean meat. In fact, lean red meat is low in saturated fat, and if consumed in a diet low in SFA is associated with reductions in LDL-cholesterol in both healthy and hypercholesterolemia subjects. Lean red meat consumption has no effect on in vivo and ex vivo production of thromboxane and prostacyclin or the activity of haemostatic factors. Lean red meat is also a good source of protein, omega-3 fatty acids, vitamin B12, niacin, zinc and iron. In conclusion, lean red meat, trimmed of visible fat, which is consumed in a diet low in saturated fat does not increase cardiovascular risk factors (plasma cholesterol levels or thrombotic risk factors).

  16. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population.

    PubMed

    Andoh, Akira; Nishida, Atsushi; Takahashi, Kenichiro; Inatomi, Osamu; Imaeda, Hirotsugu; Bamba, Shigeki; Kito, Katsuyuki; Sugimoto, Mitsushige; Kobayashi, Toshio

    2016-07-01

    Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3-V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeq(TM)II system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m(2), respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people.

  17. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population

    PubMed Central

    Andoh, Akira; Nishida, Atsushi; Takahashi, Kenichiro; Inatomi, Osamu; Imaeda, Hirotsugu; Bamba, Shigeki; Kito, Katsuyuki; Sugimoto, Mitsushige; Kobayashi, Toshio

    2016-01-01

    Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3–V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeqTMII system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m2, respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people. PMID:27499582

  18. Poor muscle quality rather than reduced lean body mass is responsible for the lower serum creatinine level in hemodialysis patients with diabetes mellitus.

    PubMed

    Inaba, M; Kurajoh, M; Okuno, S; Imanishi, Y; Yamada, S; Mori, K; Ishimura, E; Yamakawa, T; Nishizawa, Y

    2010-10-01

    The serum creatinine level is significantly lower in well-nourished hemodialysis patients with diabetes mellitus (DM) than in their non-DM counterparts, despite the presence of anuria in these patients. The factors associated with this finding have not been determined. We evaluated the association of serum creatinine with handgrip strength (HGS) and lean body mass index (LMI) in a cross-sectional study of 102 DM and 208 non-DM hemodialysis patients to determine if poorer muscle quality in DM patients could explain the reduced level of serum creatinine. All the DM patients were well-nourished. Grip dynamometry and dual-energy X-ray absorptiometry (DXA) were used to measure HGS and LMI, respectively. The DM patients had a significantly lower serum creatinine level and HGS compared to the non-DM patients, but whole-body LMI and LMI of the upper limbs did not differ between the two groups of patients. The DM patients had significantly lower serum creatinine/whole-body LMI, serum creatinine/arm LMI, HGS/whole-body LMI, and HGS/arm LMI ratios. The serum creatinine level was significantly correlated with HGS and with whole-body and upper limb LMI in both groups of patients. However, regression analyses of LMI with serum creatinine and HGS gave significantly shallower slopes for the DM patients compared to the non-DM patients. This suggests that the muscle strength generated per unit of muscle mass, which is reflected well by the serum creatinine level, is significantly reduced in DM hemodialysis patients. Therefore, our results show that the significantly lower serum creatinine levels in DM hemodialysis patients compared to non-DM hemodialysis patients may be explained by poor muscle quality rather than by reduced muscle mass or malnutrition.

  19. Appendicular lean mass does not mediate the significant association between vitamin D status and functional outcome in hip-fracture women.

    PubMed

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2011-02-01

    To investigate whether muscle mass mediates the significant association between vitamin D status and functional recovery after hip fracture in women. Observational study. Rehabilitation hospital in Italy. We investigated white women (N=280) of 305 who were consecutively admitted to a rehabilitation hospital because of their first fracture of the hip. Not applicable. To assess muscle mass, we measured appendicular lean mass (aLM) by dual-energy x-ray absorptiometry (DXA), 21.2±6.2 (mean ± SD) days after hip fracture occurrence in the 280 women. On the same day, we assessed serum levels of 25-hydroxyvitamin D and parathyroid hormone (PTH). Ability to function in activities of daily living was evaluated by the Barthel Index both before and after acute inpatient rehabilitation. After adjustment for 8 confounders, including age, cognitive impairment, pressure ulcers, neurologic impairment, infections, fracture type, Barthel Index score at admission to rehabilitation, and aLM/height(2) (aLM/ht(2)), 25-hydroxyvitamin D levels were significantly associated both with Barthel Index scores after rehabilitation (P=.003) and their changes during rehabilitation (P=.008). Similar results were obtained when the 25-hydroxyvitamin D/PTH ratio was substituted for 25-hydroxyvitamin D levels. Conversely, aLM/ht(2) was not significantly correlated with Barthel Index scores and their changes during rehabilitation. Furthermore, we found no significant associations between either 25-hydroxyvitamin D levels or the 25-hydroxyvitamin D/PTH ratio and aLM/ht(2). The significant association between 25-hydroxyvitamin D levels (and 25-hydroxyvitamin D/PTH ratio) and the ability to function in women with hip fractures was not mediated by aLM assessed by DXA. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Dim light at night increases body mass of female mice.

    PubMed

    Aubrecht, Taryn G; Jenkins, Richelle; Nelson, Randy J

    2015-05-01

    During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.

  1. Dim Light at Night Increases Body Mass of Female Mice

    PubMed Central

    Aubrecht, Taryn G.; Jenkins, Richelle; Nelson, Randy J.

    2016-01-01

    During the past century the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16h light at ~150 lux/8h dark at ~0 lux) cycle or to light/dim light at night (dLAN; 16h light at ~150 lux/8h dim light at ~5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism. PMID:25431079

  2. A Lean Six Sigma quality improvement project to increase discharge paperwork completeness for admission to a comprehensive integrated inpatient rehabilitation program.

    PubMed

    Neufeld, Nathan J; Hoyer, Erik H; Cabahug, Philippines; González-Fernández, Marlís; Mehta, Megha; Walker, N Colbey; Powers, Richard L; Mayer, R Samuel

    2013-01-01

    Lean Six Sigma (LSS) process analysis can be used to increase completeness of discharge summary reports used as a critical communication tool when a patient transitions between levels of care. The authors used the LSS methodology as an intervention to improve systems process. Over the course of the project, 8 required elements were analyzed in the discharge paperwork. The authors analyzed the discharge paperwork of patients (42 patients preintervention and 143 patients postintervention) of a comprehensive integrated inpatient rehabilitation program (CIIRP). Prior to this LSS project, 61.8% of required discharge elements were present. The intervention improved the completeness to 94.2% of the required elements. The percentage of charts that were 100% complete increased from 11.9% to 67.8%. LSS is a well-established process improvement methodology that can be used to make significant improvements in complex health care workflow issues. Specifically, the completeness of discharge documentation required for transition of care to CIIRP can be improved.

  3. Lean Body Mass Associated with Upper Body Strength in Healthy Older Adults While Higher Body Fat Limits Lower Extremity Performance and Endurance.

    PubMed

    Charlton, Karen; Batterham, Marijka; Langford, Kelly; Lateo, Jenna; Brock, Erin; Walton, Karen; Lyons-Wall, Philippa; Eisenhauer, Katie; Green, Nick; McLean, Cameron

    2015-08-26

    Impaired strength adversely influences an older person's ability to perform activities of daily living. A cross-sectional study of 117 independently living men and women (age = 73.4 ± 9.4 year; body mass index (BMI) = 27.6 ± 4.8 kg/m²) aimed to assess the association between body composition and: (1) upper body strength (handgrip strength, HGS); (2) lower extremity performance (timed up and go (TUG) and sit to stand test (STS)); and (3) endurance (6-minute walk (SMWT). Body composition (% fat; lean body mass (LBM)) was assessed using bioelectrical impedance. Habitual physical activity was measured using the Minnesota Leisure Time Physical Activity Questionnaire (MLTPA) and dietary macronutrient intake, assessed using 24 h recalls and 3-day food records. Regression analyses included the covariates, protein intake (g/kg), MLTPA, age and sex. For natural logarithm (Ln) of right HGS, LBM (p < 0.001) and % body fat (p < 0.005) were significant (r² = 46.5%; p < 0.000). For left LnHGS, LBM (p < 0.000), age (p = 0.036), protein intake (p = 0.015) and LnMLTPA (p = 0.015) were significant (r² = 0.535; p < 0.000). For SMW, % body fat, age and LnMLTPA were significant (r² = 0.346; p < 0.000). For STS, % body fat and age were significant (r² = 0.251; p < 0.000). LBM is a strong predictor of upper body strength while higher % body fat and lower physical activity are associated with poorer outcomes on tests of lower extremity performance.

  4. Lean Body Mass Associated with Upper Body Strength in Healthy Older Adults While Higher Body Fat Limits Lower Extremity Performance and Endurance

    PubMed Central

    Charlton, Karen; Batterham, Marijka; Langford, Kelly; Lateo, Jenna; Brock, Erin; Walton, Karen; Lyons-Wall, Philippa; Eisenhauer, Katie; Green, Nick; McLean, Cameron

    2015-01-01

    Impaired strength adversely influences an older person’s ability to perform activities of daily living. A cross-sectional study of 117 independently living men and women (age = 73.4 ± 9.4 year; body mass index (BMI) = 27.6 ± 4.8 kg/m2) aimed to assess the association between body composition and: (1) upper body strength (handgrip strength, HGS); (2) lower extremity performance (timed up and go (TUG) and sit to stand test (STS)); and (3) endurance (6-minute walk (SMWT). Body composition (% fat; lean body mass (LBM)) was assessed using bioelectrical impedance. Habitual physical activity was measured using the Minnesota Leisure Time Physical Activity Questionnaire (MLTPA) and dietary macronutrient intake, assessed using 24 h recalls and 3-day food records. Regression analyses included the covariates, protein intake (g/kg), MLTPA, age and sex. For natural logarithm (Ln) of right HGS, LBM (p < 0.001) and % body fat (p < 0.005) were significant (r2 = 46.5%; p < 0.000). For left LnHGS, LBM (p < 0.000), age (p = 0.036), protein intake (p = 0.015) and LnMLTPA (p = 0.015) were significant (r2 = 0.535; p < 0.000). For SMW, % body fat, age and LnMLTPA were significant (r2 = 0.346; p < 0.000). For STS, % body fat and age were significant (r2 = 0.251; p < 0.000). LBM is a strong predictor of upper body strength while higher % body fat and lower physical activity are associated with poorer outcomes on tests of lower extremity performance. PMID:26343709

  5. Trunk lean mass and its association with 4 different measures of thoracic kyphosis in older community dwelling persons

    PubMed Central

    Yamamoto, J.; Bergstrom, J.; Davis, A.; Wing, D.; Schousboe, J. T.; Nichols, J. F.

    2017-01-01

    Background The causes of age-related hyperkyphosis (HK) include osteoporosis, but only 1/3 of those most severely affected have vertebral fractures, suggesting that there are other important, and potentially modifiable causes. We hypothesized that muscle mass and quality may be important determinants of kyphosis in older persons. Methods We recruited 72 persons >65 years to participate in a prospective study designed to evaluate kyphosis and fall risk. At the baseline visit, participants had their body composition measures completed using Dual Energy X-ray Absorptiometry (DXA). They had kyphosis measured in either the standing [S] or lying [L] position: 1) Cobb angle from DXA [L]; 2) Debrunner kyphometer [S]; 3) architect’s flexicurve ruler [S]; and 4) blocks method [L]. Multivariable linear/logistic regression analyses were done to assess the association between each body composition and 4 kyphosis measures. Results Women (n = 52) were an average age of 76.8 (SD 6.7) and men 80.5 (SD 7.8) years. They reported overall good/excellent health (93%), the average body mass index was 25.3 (SD 4.6) and 35% reported a fall in the past year. Using published cut-offs, about 20–30% were determined to have HK. For the standing assessments of kyphosis only, after adjusting for age, sex, weight and hip BMD, persons with lower TLM were more likely to be hyperkyphotic. Conclusions Lower TLM is associated with HK in older persons. The results were stronger when standing measures of kyphosis were used, suggesting that the effects of muscle on thoracic kyphosis are best appreciated under spinal loading conditions. PMID:28369088

  6. Does a laparoscopic approach attenuate the body weight loss and lean body mass loss observed in open distal gastrectomy for gastric cancer? a single-institution exploratory analysis of the JCOG 0912 phase III trial.

    PubMed

    Aoyama, Toru; Sato, Tsutomu; Hayashi, Tsutomu; Yamada, Takanobu; Cho, Haruhiko; Ogata, Takashi; Oba, Koji; Yoshikawa, Takaki

    2017-06-16

    Laparoscopy-assisted distal gastrectomy (LADG) for gastric cancer may prevent the loss of body weight and lean body mass resulting from reduced surgical stress in comparison to open distal gastrectomy (ODG). A multicenter phase III trial conducted by the Japan Clinical Oncology Group (JCOG0912 trial) was performed to confirm the non-inferiority of LADG to ODG for stage I gastric cancer in terms of relapse-free survival. This study was performed as a single-institution exploratory analysis using the data of the patients from our hospital who were enrolled in the JCOG0912 phase III trial. Body weight and lean body mass were evaluated using a bioelectrical impedance analyzer within 1 week before and at 1 week, 1 month, and 3 months after surgery. One-hundred six patients were randomized to undergo ODG (54 patients) or LADG (51 patients). Body weight loss at 1 week, 1 month, and 3 months was -3.0%, -4.9%, and -5.4%, respectively, in the ODG group and -2.7%, -4.3%, and -5.7%, respectively, in the LADG group; the differences were not statistically significant (p = 0.330, 0.166, and 0.656, respectively). Lean body mass loss at 1 week, 1 month, and 3 months was -2.8%, -4.1%, and -2.3%, respectively, in the ODG group and -2.7%, -2.9%, and -3.0%, respectively, in the LADG group; the differences were not statistically significant (p = 0.610, 0.413, and 0.925, respectively). The laparoscopic approach did not attenuate the loss of body weight and lean body mass in comparison to patients who underwent open distal gastrectomy for gastric cancer.

  7. Controlled mass pollination in loblolly pine to increase genetic gains

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  8. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  9. Lean blowoff detection sensor

    SciTech Connect

    Thornton, Jimmy; Straub, Douglas L.; Chorpening, Benjamin T.; Huckaby, David

    2007-04-03

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  10. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4.

    PubMed

    Stice, Eric; Yokum, Sonja; Bohon, Cara; Marti, Nate; Smolen, Andrew

    2010-05-01

    To determine whether responsivity of reward circuitry to food predicts future increases in body mass and whether polymorphisms in DRD2 and DRD4 moderate these relations. The functional magnetic resonance imaging (fMRI) paradigm investigated blood oxygen level dependent activation in response to imagined intake of palatable foods, unpalatable foods, and glasses of water shown in pictures. DNA was extracted from saliva samples using standard salting-out and solvent precipitation methods. Forty-four adolescent female high school students ranging from lean to obese. Future increases in body mass index (BMI). Weaker activation of the frontal operculum, lateral orbitofrontal cortex, and striatum in response to imagined intake of palatable foods, versus imagined intake of unpalatable foods or water, predicted future increases in body mass for those with the DRD2 TaqIA A1 allele or the DRD4-7R allele. Data also suggest that for those lacking these alleles, greater responsivity of these food reward regions predicted future increases in body mass. This novel prospective fMRI study indicates that responsivity of reward circuitry to food increases risk for future weight gain, but that genes that impact dopamine signaling capacity moderate the predictive effects, suggesting two qualitatively distinct pathways to unhealthy weight gain based on genetic risk. 2010 Elsevier Inc. All rights reserved.

  11. Leanness in postnatally nutritionally programmed rats is associated with increased sensitivity to leptin and a melanocortin receptor agonist and decreased sensitivity to neuropeptide Y.

    PubMed

    Stocker, C J; Wargent, E T; Martin-Gronert, M S; Cripps, R L; O'Dowd, J F; Zaibi, M S; Cottrell, E C; Mercer, J G; Duncan, J S; Cawthorne, M A; Ozanne, S E; Arch, J R S

    2012-08-01

    Pups of normally nourished dams that are cross-fostered after birth to dams fed a low-protein (8% by weight) diet (postnatal low protein (PLP)) grow slower during the suckling period and remain small and lean throughout adulthood. At weaning, they have increased expression in the arcuate nucleus (ARC) of the hypothalamus of the orexigenic neuropeptide Y (NPY) and decreased expression of pro-opiomelanocortin, the precursor of anorexigenic melanocortins. We investigated, using third ventricle administration, whether 3-month-old male PLP rats display altered sensitivity to leptin with respect to food intake, NPY and the melanocortin 3/4-receptor agonist MTII, and using in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR, whether the differences observed were associated with changes in the hypothalamic expression of NPY or the leptin receptor, NPY receptors and melanocortin receptors. PLP rats were smaller and had reduced percentage body fat content and plasma leptin concentration compared with control rats. Leptin (5 μg) reduced food intake over 0-48 h more in PLP than control rats (P<0.05). Submaximal doses of NPY increased the food intake less in PLP rats than in controls, whereas submaximal doses of MTII reduced the food intake more in PLP rats. Maximal responses did not differ between PLP and control rats. Leptin and melanocortin-3 receptor (MC3R) expression were increased in both ARC and ventromedial hypothalamic nuclei in PLP animals compared with the controls. MC4R, NPY Y1R, Y5R and NPY expression were unchanged. Postnatal undernourishment results in food intake in adult rats being more sensitive to reduction by leptin and melanocortins, and less sensitive to stimulation by NPY. We propose that this contributes to increased leptin sensitivity and resistance to obesity. Increased expression of ObRb and MC3R may partly explain these findings but other downstream mechanisms must also be involved.

  12. Lean Tissue Imaging

    PubMed Central

    Heymsfield, Steven B.

    2014-01-01

    Body composition refers to the amount of fat and lean tissues in our body; it is a science that looks beyond a unit of body weight, accounting for the proportion of different tissues and its relationship to health. Although body weight and body mass index are well-known indexes of health status, most researchers agree that they are rather inaccurate measures, especially for elderly individuals and those patients with specific clinical conditions. The emerging use of imaging techniques such as dual energy x-ray absorptiometry, computerized tomography, magnetic resonance imaging, and ultrasound imaging in the clinical setting have highlighted the importance of lean soft tissue (LST) as an independent predictor of morbidity and mortality. It is clear from emerging studies that body composition health will be vital in treatment decisions, prognostic outcomes, and quality of life in several nonclinical and clinical states. This review explores the methodologies and the emerging value of imaging techniques in the assessment of body composition, focusing on the value of LST to predict nutrition status. PMID:25239112

  13. Increasing sensitivity of masses cued on both views by CAD

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Maitz, Glen; Leader, Joseph K.; Gur, David

    2006-03-01

    Although CAD schemes can detect a high percentage of subtle cancers depicted on "prior" and false-negative cases, radiologists frequently discard most of CAD-cued subtle masses in the clinical environment. As a result of the relatively high false-positive detection rate and the fact that a large number of subtle masses are typically cued only on one view cause radiologists to rely less on (and often ignore) CAD-cued masses. In this study, we present a multi-view based method to increase the number of actual masses that are cued by the CAD scheme on both (ipso-lateral) views and at the same time limiting the overall "case-based" false-positive detection rate. The new scheme includes a traditional single-image based CAD scheme and a multi-view processing module. An image database from 435 examinations (or a total of 1,740 images) consisting 235 examinations depicting a verified malignant mass each and 200 negative examinations was used in this study. The single-image based CAD scheme with a fixed operating threshold (i.e. 0.55) was applied to all images. For each CAD identified region (i.e. with detection score >= 0.55), the multi-view processing module defined a matched strip on the corresponding ipso-lateral image and identified all "matched" regions located inside the strip (including those with detection score < 0.55). All matched regions are cued on both views and unmatched regions were discarded. CAD scheme initially detected 172 true masses and 576 false-positive regions. Of the 172 masses, 90 were detected on two views (52%) and 82 were detected only on one view. Of the 576 false-positive detections, only 72 pairs (14%) were considered "matched" and 432 were not, resulting in 504 case-based ("independent") cues. Case-based sensitivity and false-positive rate of the CAD scheme were 73.2% and 1.16 per case. When only matched region pairs were cued, 160 masses (68.1%) and 308 false-positive detections (0.71 per case) were identified on two views. Reducing the

  14. Investigating the Initial Mass Function with Increased Redshift

    NASA Astrophysics Data System (ADS)

    Rowland, Danielle; Finkelstein, Steven L.; Stevans, Matthew L.; Tristan, Isaiah

    2017-01-01

    The stellar initial mass function (IMF) is generally assumed to be universal but there are several factors that could alter it; one being that lower metallicities at higher redshift could lead to an increased production of higher mass stars. Understanding the IMF is crucial because inferred stellar population properties of galaxies from integrated photometry is heavily dependent on the assumed IMF. We present the initial findings of an investigation using the 3D-HST survey catalog to search for variations of the IMF for galaxies with redshift 0.7 < z < 1.5. We calculate the ratio of H-alpha luminosity to the UV luminosity, which probes the ratio of ionizing to non-ionizing UV light, which is dependent on the slope of the upper mass portion of the IMF. While the majority of our galaxies are consistent with having stars distributed according to a Saltpeter IMF (albeit with a range of star-formation histories resulting in significant scatter in the H-alpha/UV luminosity ratio), we do find eight galaxies with a luminosity ratio that is significantly higher than that expected for a Salpeter IMF. This increase in the expected amount of ionized photons could be caused by several factors that we will address, including but not limited to, Active Galactic Nuclei, varying star formation histories, or an increased production of high mass stars.

  15. An Increase in the Mass of Planetary Systems around Lower-mass Stars

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0-2.8 R⨁) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R⨁) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass-radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M⨁ in F stars to 5 M⨁ in G and K stars to 7 M⨁ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  16. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    SciTech Connect

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R{sub ⨁}) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R{sub ⨁}) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M{sub ⨁} in F stars to 5 M{sub ⨁} in G and K stars to 7 M{sub ⨁} in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  17. Effects of a pre-workout supplement on lean mass, muscular performance, subjective workout experience and biomarkers of safety.

    PubMed

    Kedia, A William; Hofheins, Jennifer E; Habowski, Scott M; Ferrando, Arny A; Gothard, M David; Lopez, Hector L

    2014-01-01

    In this prospective, randomized, double-blind, trial conducted in two parts, we examined the effects of a multi-ingredient pre-exercise workout supplement blend of creatine, betaine and a dendrobium extract (MMP) on safety, performance, and body composition in healthy men and women undergoing a supervised program of resistance exercise. Part 1 was an acute hemodynamic safety study wherein forty young, healthy men and women (26.2 ± 5.3 years, 70.4 ± 3.3 inches, 83.7 ± 14.9 kg, 26.0 ± 3.2 kg●m(-2)) ingest one dose of either the MMP or comparator in a randomized, double-blind, comparator controlled, crossover fashion before having their resting heart rate, blood, ECG and comprehensive blood chemistry and blood counts completed. Systolic (SBP) and diastolic (DBP) blood pressures were generally raised (3.0-5.4 mm Hg, p<0.01) following supplementation with MPP whereas in the comparator group SBP was marginally reduced by 0.3 to 1.2 mm Hg, p>0.05 at all time points) and DBP was increased (3.0 - 3.9 mm Hg, p<0.05 at all time points). No changes in EKG-corrected QT interval were observed, and no serious adverse events were reported. Part 2 was a six-week training study wherein forty-three young, healthy men and women (24.3 ± 2.9 years, 70.5 ± 3.1 inches, 83.8 ± 9.6 kg, 26.1 ± 2.7 kg●m(-2)) supplemented with daily pre-workout doses of either the MPP or a comparator in a randomized, double-blind, comparator-controlled fashion while following a standardized resistance training program for six weeks. MPP and the comparator were isocaloric and delivered the same amount of caffeine. Significant improvements in visual analog scale (VAS) scores for energy (p<0.024) and concentration (p<0.041) were found along with consistently higher levels of focus accompanied by less fatigue when MPP was consumed in comparison to comparator during upper body muscular strength-endurance tests at weeks 3 and 6. MPP supplementation for 6 weeks did not improve dual-energy x

  18. Effects of a Pre-workout Supplement on Lean Mass, Muscular Performance, Subjective Workout Experience and Biomarkers of Safety

    PubMed Central

    Kedia, A. William; Hofheins, Jennifer E.; Habowski, Scott M.; Ferrando, Arny A.; Gothard, M. David; Lopez, Hector L.

    2014-01-01

    In this prospective, randomized, double-blind, trial conducted in two parts, we examined the effects of a multi-ingredient pre-exercise workout supplement blend of creatine, betaine and a dendrobium extract (MMP) on safety, performance, and body composition in healthy men and women undergoing a supervised program of resistance exercise. Part 1 was an acute hemodynamic safety study wherein forty young, healthy men and women (26.2 ± 5.3 years, 70.4 ± 3.3 inches, 83.7 ± 14.9 kg, 26.0 ± 3.2 kg●m-2) ingest one dose of either the MMP or comparator in a randomized, double-blind, comparator controlled, crossover fashion before having their resting heart rate, blood, ECG and comprehensive blood chemistry and blood counts completed. Systolic (SBP) and diastolic (DBP) blood pressures were generally raised (3.0-5.4 mm Hg, p<0.01) following supplementation with MPP whereas in the comparator group SBP was marginally reduced by 0.3 to 1.2 mm Hg, p>0.05 at all time points) and DBP was increased (3.0 - 3.9 mm Hg, p<0.05 at all time points). No changes in EKG-corrected QT interval were observed, and no serious adverse events were reported. Part 2 was a six-week training study wherein forty-three young, healthy men and women (24.3 ± 2.9 years, 70.5 ± 3.1 inches, 83.8 ± 9.6 kg, 26.1 ± 2.7 kg●m-2) supplemented with daily pre-workout doses of either the MPP or a comparator in a randomized, double-blind, comparator-controlled fashion while following a standardized resistance training program for six weeks. MPP and the comparator were isocaloric and delivered the same amount of caffeine. Significant improvements in visual analog scale (VAS) scores for energy (p<0.024) and concentration (p<0.041) were found along with consistently higher levels of focus accompanied by less fatigue when MPP was consumed in comparison to comparator during upper body muscular strength-endurance tests at weeks 3 and 6. MPP supplementation for 6 weeks did not improve dual-energy x-ray absorptiometry

  19. Caloric Restriction in Lean and Obese Strains of Laboratory ...

    EPA Pesticide Factsheets

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were caloricallyrestricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage offluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats wasdecreased with CR. Overall health of the CR LE group was significantly improved compared with t

  20. Effect of Maximum Cruise-power Operation at Ultra-lean Mixture and Increased Spark Advance on the Mechanical Condition of Cylinder Components

    NASA Technical Reports Server (NTRS)

    Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.

    1945-01-01

    A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.

  1. Increased body mass of ducks wintering in California's Central Valley

    USGS Publications Warehouse

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  2. Follicle-stimulating hormone increases bone mass in female mice.

    PubMed

    Allan, Charles M; Kalak, Robert; Dunstan, Colin R; McTavish, Kirsten J; Zhou, Hong; Handelsman, David J; Seibel, Markus J

    2010-12-28

    Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.

  3. Nutritional Status, Body Surface, and Low Lean Body Mass/Body Mass Index Are Related to Dose Reduction and Severe Gastrointestinal Toxicity Induced by Afatinib in Patients With Non-Small Cell Lung Cancer.

    PubMed

    Arrieta, Oscar; De la Torre-Vallejo, Martha; López-Macías, Diego; Orta, David; Turcott, Jenny; Macedo-Pérez, Eleazar-Omar; Sánchez-Lara, Karla; Ramírez-Tirado, Laura-Alejandra; Baracos, Vickie E

    2015-08-01

    The main reason for dose reduction of afatinib is gastrointestinal toxicity (GT). In a phase II study, we analyzed anthropometrical, nutritional, and biochemical factors associated with GT induced by afatinib. Patients diagnosed with non-small cell lung cancer who progressed to prior chemotherapy received 40 mg of afatinib. Malnutrition was determined by Subjective Global Assessment, and lean body mass (LBM) was determined by computed tomography scan analysis using a pre-established Hounsfield unit threshold. Toxicity was obtained during four cycles by Common Terminology Criteria for Adverse Events. Eighty-four patients were enrolled. Afatinib was administered as the second, third, and fourth line of treatment in 54.8%, 38.1%, and 7.12% of patients, respectively. Severe diarrhea, mucositis, and overall severe GT were present in 38.9%, 28.8%, and 57.5%, respectively. Of the patients, 50% developed dose-limiting toxicity (DLT). Patients with malnutrition have higher risk for severe GT. Patients with lower LBM and body mass index developed more DLT (71.4% vs. 18.8%). Malnutrition is associated with a higher risk of severe GT induced by afatinib. Determination of nutritional status and body composition are helpful in identifying patients at higher risk of severe GT and could allow initiating treatment with lower doses according to tolerance. ©AlphaMed Press.

  4. Teaching Special Decisions in a Lean Accounting Environment

    ERIC Educational Resources Information Center

    Haskin, Daniel

    2010-01-01

    Lean accounting has become increasingly important as more and more companies adopt the lean enterprise model or some variation of it. Cost and managerial accounting textbooks continue to use, almost exclusively, models based on standard overhead absorption, which if used in a lean environment will not accurately reflect the benefits from the…

  5. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity.

    PubMed

    Gómez-Ambrosi, J; Silva, C; Galofré, J C; Escalada, J; Santos, S; Millán, D; Vila, N; Ibañez, P; Gil, M J; Valentí, V; Rotellar, F; Ramírez, B; Salvador, J; Frühbeck, G

    2012-02-01

    Body mass index (BMI) is widely used as a measure of overweight and obesity, but underestimates the prevalence of both conditions, defined as an excess of body fat. We assessed the degree of misclassification on the diagnosis of obesity using BMI as compared with direct body fat percentage (BF%) determination and compared the cardiovascular and metabolic risk of non-obese and obese BMI-classified subjects with similar BF%. We performed a cross-sectional study. A total of 6123 (924 lean, 1637 overweight and 3562 obese classified according to BMI) Caucasian subjects (69% females), aged 18-80 years. BMI, BF% determined by air displacement plethysmography and well-established blood markers of insulin sensitivity, lipid profile and cardiovascular risk were measured. We found that 29% of subjects classified as lean and 80% of individuals classified as overweight according to BMI had a BF% within the obesity range. Importantly, the levels of cardiometabolic risk factors, such as C-reactive protein, were higher in lean and overweight BMI-classified subjects with BF% within the obesity range (men 4.3 ± 9.2, women 4.9 ± 19.5 mg l(-1)) as well as in obese BMI-classified individuals (men 4.2 ± 5.5, women 5.1 ± 13.2 mg l(-1)) compared with lean volunteers with normal body fat amounts (men 0.9 ± 0.5, women 2.1 ± 2.6 mg l(-1); P<0.001 for both genders). Given the elevated concentrations of cardiometabolic risk factors reported herein in non-obese individuals according to BMI but obese based on body fat, the inclusion of body composition measurements together with morbidity evaluation in the routine medical practice both for the diagnosis and the decision-making for instauration of the most appropriate treatment of obesity is desirable.

  6. Effect of acute ozone exposure on the lung metabolomes of obese and lean mice

    PubMed Central

    Kasahara, David Itiro; Cho, Youngji; Bell, Lauren Nicole; Gunst, Philip Ross; Karoly, Edward D.; Shore, Stephanie Ann

    2017-01-01

    Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone. PMID:28704544

  7. Adipose Tissue Lipolysis Is Upregulated in Lean and Obese Men During Acute Resistance Exercise

    PubMed Central

    Chatzinikolaou, Athanasios; Fatouros, Ioannis; Petridou, Anatoli; Jamurtas, Athanasios; Avloniti, Alexandra; Douroudos, Ioannis; Mastorakos, George; Lazaropoulou, Christina; Papassotiriou, Ioannis; Tournis, Symeon; Mitrakou, Asimina; Mougios, Vassilis

    2008-01-01

    OBJECTIVE—To investigate the effect of acute resistance exercise on adipose tissue triacylglycerol lipase activity (TGLA) in lean and obese men. RESEARCH DESIGN AND METHODS—Nine lean and eight obese men performed 30 min of circuit resistance exercise. Adipose tissue and blood were sampled during exercise for TGLA, metabolite, and hormone determinations. Respiratory exchange ratio (RER) was measured throughout exercise. RESULTS—Energy expenditure of exercise relative to body mass was higher in the lean and RER was higher in the obese men, suggesting lower fat oxidation. TGLA increased 18-fold at 5 min of exercise in the lean men and 16-fold at 10 min of exercise in the obese men. The delayed lipolytic activation in the obese men was reflected in serum nonesterified fatty acid and glycerol concentrations. Plasma insulin increased in the obese but did not change in the lean men. CONCLUSIONS—Resistance exercise upregulated adipose tissue lipolysis and enhanced energy expenditure in lean and obese men, with a delayed lipolytic activation in the obese men. PMID:18375413

  8. Effect of acute ozone exposure on the lung metabolomes of obese and lean mice.

    PubMed

    Mathews, Joel Andrew; Kasahara, David Itiro; Cho, Youngji; Bell, Lauren Nicole; Gunst, Philip Ross; Karoly, Edward D; Shore, Stephanie Ann

    2017-01-01

    Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.

  9. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  10. Increases in body mass index following initiation of methadone treatment.

    PubMed

    Fenn, Jennifer M; Laurent, Jennifer S; Sigmon, Stacey C

    2015-04-01

    Despite the clear efficacy of methadone for opioid dependence, one less desirable phenomenon associated with methadone may be weight gain. We examined changes in body mass index (BMI) among patients entering methadone treatment. A retrospective chart review was conducted for 96 patients enrolled in an outpatient methadone clinic for ≥ 6 months. The primary outcome of BMI was assessed at intake and a subsequent physical examination approximately 1.8 ± 0.95 years later. Demographic, drug use and treatment characteristics were also examined. There was a significant increase in BMI following intake (p<0.001). Mean BMIs increased from 27.2 ± 6.8 to 30.1 ± 7.7 kg/m(2), translating to a 17.8-pound increase (10% increase in body weight) in the overall patient sample. Gender was the strongest predictor of BMI changes (p < 0.001), with significantly greater BMI increases in females than males (5.2 vs. 1.7 kg/m(2), respectively). This translates to a 28-pound (17.5%) increase in females vs. a 12-pound (6.4%) increase in males. In summary, methadone treatment enrollment was associated with clinically significant weight gain, particularly among female patients. This study highlights the importance of efforts to help patients mitigate weight gain during treatment, particularly considering the significant health and economic consequences of obesity for individuals and society more generally.

  11. Association of Low Lean Mass With Frailty and Physical Performance: A Comparison Between Two Operational Definitions of Sarcopenia-Data From the Berlin Aging Study II (BASE-II).

    PubMed

    Spira, Dominik; Buchmann, Nikolaus; Nikolov, Jivko; Demuth, Ilja; Steinhagen-Thiessen, Elisabeth; Eckardt, Rahel; Norman, Kristina

    2015-06-01

    For prevention and treatment of sarcopenia, defined as a decline in lean mass, reliable diagnostic criteria and cutpoints reflecting a clinically relevant threshold are indispensable. As of yet, various parameters have been proposed but no gold standard exists. The aim of this study was to compare cutpoints of appendicular lean mass related to body mass index (ALMBMI) or height (ALM/height(2)) regarding their association with self-reported physical limitations and frailty status in a sample of community-dwelling older adults. A total of 1,343 participants from the Berlin Aging Study II were included. ALM index was assessed with dual-energy X-ray absorptiometry. Limitations in physical performance were assessed via questionnaire and frailty status was defined according to the Fried criteria. In a risk factor-adjusted analysis, participants with an ALMBMI below the cutpoints had 1.4-2.8 times higher odds of difficulties in several domains of physical activity (p = .031 to p < .0001) compared with participants with normal ALMBMI. In participants with low ALM/height(2), no associations with physical limitations were found. Moreover, the odds of being prefrail/frail were statistically significant for the low ALMBMI group only (odds ratio = 2.403, 95% confidence interval: 1.671-3.454, p < .0001) and not for the low ALM/height(2) group. This study showed striking differences between the two operational criteria ALM/height(2) and ALMBMI concerning their association with physical limitations and prefrailty/frailty. The low ALMBMI cutpoints seem suitable to detect patients at risk for negative outcomes such as frailty who might benefit from interventions targeted at improving lean mass. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Use of Adjuvant Nutrition to Preserve and Increase Lean Body Mass in AIDS Patients with Muscle Wasting.

    SciTech Connect

    2000-01-03

    The studies conducted under this CRADA were aimed at determining if nutritional supplementation with HMb, in combination with glutamine and arginine can ameliorate the AIDS-associated wasting syndrome and in turn improve the clinical course of the disease.

  13. Increased Bone Mass in Mice Lacking the Adipokine Apelin

    PubMed Central

    Wattanachanya, Lalita; Lu, Wei-Dar; Kundu, Ramendra K.; Wang, Liping; Abbott, Marcia J.; O'Carroll, Dylan; Quertermous, Thomas

    2013-01-01

    Adipose tissue plays an important role in skeletal homeostasis, and there is interest in identifying adipokines that influence bone mass. One such adipokine may be apelin, a ligand for the Gi-G protein-coupled receptor APJ, which has been reported to enhance mitogenesis and suppress apoptosis in MC3T3-E1 cells and primary human osteoblasts (OBs). However, it is unclear whether apelin plays a physiological role in regulating skeletal homeostasis in vivo. In this study, we compared the skeletal phenotypes of apelin knockout (APKO) and wild-type mice and investigated the direct effects of apelin on bone cells in vitro. The increased fractional cancellous bone volume at the distal femur was observed in APKO mice of both genders at 12 weeks of age and persisted until the age of 20. Cortical bone perimeter at the femoral midshaft was significantly increased in males and females at both time points. Dynamic histomorphometry revealed that APKO mice had increased rates of bone formation and mineral apposition, with evidences of accelerated OB proliferation and differentiation, without significant alteration in osteoclast activity. An in vitro study showed that apelin increased proliferation of primary mouse OBs as well as suppressed apoptosis in a dose-dependent manner with the maximum effect at 5nM. However, it had no effect on the formation of mineralized nodules. We did not observed significantly altered in osteoclast parameters in vitro. Taken together, the increased bone mass in mice lacking apelin suggested complex direct and paracrine/endocrine effects of apelin on bone, possibly via modulating insulin sensitivity. These results indicate that apelin functions as a physiologically significant antianabolic factor in bone in vivo. PMID:23584856

  14. Muscle Mass and Weight Gain Nutritional Supplements

    NASA Astrophysics Data System (ADS)

    Campbell, Bill

    There are numerous sports supplements available that claim to increase lean body mass. However, for these sports supplements to exert any favorable changes in lean body mass, they must influence those factors regulating skeletal muscle hypertrophy (i.e., satellite cell activity, gene transcription, protein translation). If a given sports supplement does favorably influence one of these regulatory factors, the result is a positive net protein balance (in which protein synthesis exceeds protein breakdown). Sports supplement categories aimed at eliciting a positive net protein balance include anabolic hormone enhancers, nutrient timing pre- and postexercise workout supplements, anticatabolic supplements, and nitric oxide boosters. Of all the sports supplements available, only a few have been subject to multiple clinical trials with repeated favorable outcomes relative to increasing lean body mass. This chapter focuses on these supplements and others that have a sound theoretical rationale in relation to increasing lean body mass.

  15. Increasing Body Mass Index Is Inversely Related to Groin Hernias.

    PubMed

    Ravanbakhsh, Samine; Batech, Michael; Tejirian, Talar

    2015-10-01

    Few studies describe the relationship between obesity and groin hernias. Our objective was to investigate the correlation between body mass index (BMI) and groin hernias in a large population. Patients with the diagnosis of inguinal or femoral hernia with and without incarceration or strangulation were identified using the Kaiser Permanente Southern California regional database including 14 hospitals over a 7-year period. Patients were stratified by BMI. There were 47,950 patients with a diagnosis of a groin hernia--a prevalence of 2.28 per cent. Relative to normal BMI (20-24.9 kg/m(2)), lower BMI was associated with an increased risk for hernia diagnosis. With increasing BMI, the risk of incarceration or strangulation increased. Additionally, increasing age, male gender, white race, history of hernia, tobacco use history, alcohol use, and higher comorbidity index increased the chance of a groin hernia diagnosis. Complications were higher for women, patients with comorbidities, black race, and alcohol users. Our study is the largest to date correlating obesity and groin hernias in a diverse United States population. Obesity (BMI ≥ 30 kg/m(2)) is associated with a lower risk of groin hernia diagnosis, but an increased risk of complications. This inverse relationship may be due to limitations of physical exam in obese patients.

  16. Increased Body Mass Index may lead to Hyperferritinemia Irrespective of Body Iron Stores

    PubMed Central

    Alam, Faiza; Memon, Abdul Shakoor; Fatima, Syeda Sadia

    2015-01-01

    Objective: Obesity causes subclinical inflammation which results in the secretion of various bioactive peptides that are key players in metabolic regulation of iron homeostasis. We sought to establish correlation of one such peptide (ferritin) with marker of subclinical inflammation (CRP) in various BMI. Methods: Total 150 subjects between the ages of 20-60 years were included in the cross-sectional study conducted at Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi, Pakistan. Body Mass Index (BMI) was calculated by weight (kg) /height (m2). The given values were used as reference for Group A: normal weight (18.0-22.9 kg/m2), Group B: overweight (23.0-24.9 kg/m2), Group C: obese (>25.0 kg/m2) according to South Asian criteria. Serum Iron, Total Iron Binding Capacity, serum Transferrin Saturation, serum Ferritin and C-reactive protein were measured by commercially available kits. ANNOVA with Tukey’s minimum significant difference and Spearman Rho correlation were used considering p<0.05 significant. Results: The results identified an increased serum Ferritin and CRP in obese versus lean subjects (p < 0.001). BMI showed significantly positive correlation with serum CRP (r = 0.815; p-value < 0.01) and Ferritin (r = 0.584; p-value < 0.01). However, serum Iron levels and Transferrin saturation decreased in obese versus normal weight individuals (p < 0.001). Conclusion: This integrated new data reveals that individuals with high BMI had high levels of Serum Ferritin despite low levels of iron with high levels of C- reactive protein. This might be caused due to inflammatory conditions prevailing in the presence of increased adipose tissue. PMID:26870128

  17. Low lean tissue mass is an independent risk factor for mortality in patients with stages 4 and 5 non-dialysis chronic kidney disease

    PubMed Central

    Abad, Soraya; Macías, Nicolás; Aragoncillo, Inés; Santos, Alba; Galán, Isabel; Cedeño, Santiago; Manuel López-Gómez, Juan

    2017-01-01

    Abstract Background: Mortality in patients with stages 4 and 5 chronic kidney disease (CKD) is higher than in the general population. Body composition predicts mortality. Our objective was to evaluate the effect of body composition on mortality in patients with stages 4 and 5 non-dialysis CKD. Methods: We performed a prospective study of 356 patients with stages 4 and 5 non-dialysis CKD. At baseline, we recorded general characteristics, history of cardiovascular events, body composition, serum inflammatory markers, nutrition and cardiac biomarkers. Body composition was analysed using bioimpedance spectroscopy. We recorded the lean tissue index (LTI), fat tissue index (FTI) and overhydration (OH). During a median (range) follow-up of 22 (3–49) months, we recorded mortality, cardiovascular events and progress to renal replacement therapy. Results: At baseline, mean (± standard deviation) age was 67 ± 13 years (men 64%; diabetes 36%). Mean body mass index was 28.2 ± 12.8 kg/m2, the FTI was 12.3 ± 5.6 kg/m2, the LTI was 15.7 ± 3.4 kg/m2 and median (interquartile range) OH was 0.6 (−0.4 to 1.5) L. Sixty-four (18%) patients died during follow-up. The univariate Cox analysis showed an association between mortality and age, low LTI, high Charlson comorbidity index, previous cardiovascular events, OH, low albumin and prealbumin levels, and high C-reactive protein levels. Kaplan–Meier analysis revealed higher survival in patients with a higher LTI (log-rank, 9.47; P = 0.002). The multivariate Cox analysis confirmed an association between mortality and low LTI (P = 0.031), previous cardiovascular events (P = 0.003) and high Charlson comorbidity index (P = 0.01). We did not find any association between body composition and cardiovascular events or renal replacement therapy. Conclusions: A low LTI is an independent factor for mortality in patients with stages 4 and 5 CKD. PMID:28396734

  18. Higher Intake of PUFAs Is Associated with Lower Total and Visceral Adiposity and Higher Lean Mass in a Racially Diverse Sample of Children123

    PubMed Central

    Cardel, Michelle; Lemas, Dominick J; Jackson, Kristina Harris; Friedman, Jacob E; Fernández, José R

    2015-01-01

    Background: Polyunsaturated fatty acids (PUFAs) are associated with protection from obesity-related phenotypes in adults; however, the relation between reported intake of PUFAs with body-composition outcomes in children remains unknown. Objective: Our objective was to examine how self-reported intakes of PUFAs, including total, n–6 (ω-6), and n–3 (ω-3) PUFAs and ratios of n–6 to n–3 PUFAs and PUFAs to saturated fatty acids (SFAs), are associated with measures of adiposity and lean mass (LM) in children. We hypothesized that higher self-reported intakes of PUFAs and the ratio of PUFAs to SFAs would be positively associated with LM and negatively associated with total adiposity. Methods: Body composition and dietary intake were measured in a racially diverse sample of 311 children (39% European American, 34% African American, and 27% Hispanic American) aged 7–12 y. Body composition and abdominal fat distribution were measured by dual-energy X-ray absorptiometry and computed tomography scans, respectively. Self-reported dietary intakes (including total PUFAs, n–3 PUFAs, n–6 PUFAs, and SFAs) were assessed by using two 24-h recalls. Independent-sample t tests and multiple linear regression analyses were conducted. Results: Total PUFA intake was positively associated with LM (P = 0.049) and negatively associated with percentage of body fat (%BF; P = 0.033) and intra-abdominal adipose tissue (IAAT; P = 0.022). A higher ratio of PUFAs to SFAs was associated with higher LM (P = 0.030) and lower %BF (P = 0.028) and IAAT (P = 0.048). Intakes of n–3 and n–6 PUFAs were positively associated with LM (P = 0.017 and P = 0.021, respectively), and the ratio of n–6 to n–3 PUFAs was negatively associated with IAAT (P = 0.014). All results were independent of biological, environmental, and genetic covariates. Conclusions: Our results show that a higher self-reported intake of PUFAs and a higher ratio of PUFAs to SFAs are positively associated with LM and

  19. Lean and Information Technology Toolkit

    EPA Pesticide Factsheets

    The Lean and Information Technology Toolkit is a how-to guide which provides resources to environmental agencies to help them use Lean Startup, Lean process improvement, and Agile tools to streamline and automate processes.

  20. Fat mass increase in 7-year-old children: more bone area but lower bone mineral density.

    PubMed

    Hrafnkelsson, Hannes; Sigurdsson, Gunnar; Magnusson, Kristjan Th; Sigurdsson, Emil L; Johannsson, Erlingur

    2013-07-01

    The main aims of this study were, to evaluate what effect a change in fat mass (FM) and lean body mass (LBM) has on bone parameters over 2 years' time, in 7-year-old school children and to see what effect fitness had on bone parameters in these children. A repeated-measures design study was conducted where children born in 1999 from six elementary schools in Reykjavik, Iceland were measured twice. All children attending second grade in these six schools were invited to participate. Three hundred twenty-one children were invited, 211 underwent dual-energy X-ray absorptiometry (DXA) scans at the age of seven, and 164 (78 %) of the 211 had DXA scans again 2 years later. Increase in both FM and LBM was associated with increased total body bone mineral content (BMC) and bone area (BA). An increase in FM was more strongly positively associated with BA while an increase in LBM was more strongly associated with an increase in BMC. An increase in FM was negatively associated with change in bone mineral density (BMD), but an increase in LBM was positively associated with change in BMD. Fitness was positively associated with bone parameters when weight, height and sex were accounted for. The present results suggest that an increase in fat mass over 2 years is associated with an increase in BA and BMC, but a decrease in BMD in the whole body. An increase in LBM accrual, on the other hand, is positively associated with all bone parameters in the body. Fitness is associated with both BMC and BMD but not BA.

  1. Early-stage primary school children attending a school in the Malawian School Feeding Program (SFP) have better reversal learning and lean muscle mass growth than those attending a non-SFP school.

    PubMed

    Nkhoma, Owen W W; Duffy, Maresa E; Cory-Slechta, Deborah A; Davidson, Philip W; McSorley, Emeir M; Strain, J J; O'Brien, Gerard M

    2013-08-01

    In developing countries, schoolchildren encounter a number of challenges, including failure to complete school, poor health and nutrition, and poor academic performance. Implementation of school feeding programs (SFPs) in less developed countries is increasing and yet there is mixed evidence regarding their positive effects on nutrition, education, and cognition at the population level. This study evaluated cognitive and anthropometric outcomes in entry-level primary school children in Malawi with the aim of generating evidence for the ongoing debate about SFPs in Malawi and other developing countries. A total of 226 schoolchildren aged 6-8 y in 2 rural Malawian public primary schools were followed for one school year. Children attending one school (SFP school) received a daily ration of corn-soy blend porridge, while those attending the other (non-SFP school) did not. Baseline and post-baseline outcomes included the Cambridge Neurological Test Automated Battery cognitive tests of paired associate learning, rapid visual information processing and intra-extra dimensional shift, and anthropometric measurements of weight, height, and mid-upper arm circumference (MUAC). At follow-up, the SFP subcohort had a greater reduction than the non-SFP subcohort in the number of intra-extra predimensional shift errors made (mean 18.5 and 24.9, respectively; P-interaction = 0.02) and also showed an increase in MUAC (from 16.3 to 17.0; P-interaction <0.0001). The results indicate that the SFP in Malawi is associated with an improvement in reversal learning and catch-up growth in lean muscle mass in children in the SFP school compared with children in the non-SFP school. These findings suggest that the Malawian SFP, if well managed and ration sizes are sustained, may have the potential to improve nutritional and cognitive indicators of the most disadvantaged children.

  2. Early-Stage Primary School Children Attending a School in the Malawian School Feeding Program (SFP) Have Better Reversal Learning and Lean Muscle Mass Growth Than Those Attending a Non-SFP School12

    PubMed Central

    Nkhoma, Owen W. W.; Duffy, Maresa E.; Cory-Slechta, Deborah A.; Davidson, Philip W.; McSorley, Emeir M.; Strain, J. J.; O’Brien, Gerard M.

    2013-01-01

    In developing countries, schoolchildren encounter a number of challenges, including failure to complete school, poor health and nutrition, and poor academic performance. Implementation of school feeding programs (SFPs) in less developed countries is increasing and yet there is mixed evidence regarding their positive effects on nutrition, education, and cognition at the population level. This study evaluated cognitive and anthropometric outcomes in entry-level primary school children in Malawi with the aim of generating evidence for the ongoing debate about SFPs in Malawi and other developing countries. A total of 226 schoolchildren aged 6–8 y in 2 rural Malawian public primary schools were followed for one school year. Children attending one school (SFP school) received a daily ration of corn-soy blend porridge, while those attending the other (non-SFP school) did not. Baseline and post-baseline outcomes included the Cambridge Neurological Test Automated Battery cognitive tests of paired associate learning, rapid visual information processing and intra-extra dimensional shift, and anthropometric measurements of weight, height, and mid-upper arm circumference (MUAC). At follow-up, the SFP subcohort had a greater reduction than the non-SFP subcohort in the number of intra-extra predimensional shift errors made (mean 18.5 and 24.9, respectively; P-interaction = 0.02) and also showed an increase in MUAC (from 16.3 to 17.0; P-interaction <0.0001). The results indicate that the SFP in Malawi is associated with an improvement in reversal learning and catch-up growth in lean muscle mass in children in the SFP school compared with children in the non-SFP school. These findings suggest that the Malawian SFP, if well managed and ration sizes are sustained, may have the potential to improve nutritional and cognitive indicators of the most disadvantaged children. PMID:23803471

  3. lean-ISD.

    ERIC Educational Resources Information Center

    Wallace, Guy W.

    2001-01-01

    Explains lean instructional systems design/development (ISD) as it relates to curriculum architecture design, based on Japan's lean production system. Discusses performance-based systems; ISD models; processes for organizational training and development; curriculum architecture to support job performance; and modular curriculum development. (LRW)

  4. lean-ISD.

    ERIC Educational Resources Information Center

    Wallace, Guy W.

    2001-01-01

    Explains lean instructional systems design/development (ISD) as it relates to curriculum architecture design, based on Japan's lean production system. Discusses performance-based systems; ISD models; processes for organizational training and development; curriculum architecture to support job performance; and modular curriculum development. (LRW)

  5. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    USDA-ARS?s Scientific Manuscript database

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  6. Has Lean improved organizational decision making?

    PubMed

    Simons, Pascale; Benders, Jos; Bergs, Jochen; Marneffe, Wim; Vandijck, Dominique

    2016-06-13

    Purpose - Sustainable improvement is likely to be hampered by ambiguous objectives and uncertain cause-effect relations in care processes (the organization's decision-making context). Lean management can improve implementation results because it decreases ambiguity and uncertainties. But does it succeed? Many quality improvement (QI) initiatives are appropriate improvement strategies in organizational contexts characterized by low ambiguity and uncertainty. However, most care settings do not fit this context. The purpose of this paper is to investigate whether a Lean-inspired change program changed the organization's decision-making context, making it more amenable for QI initiatives. Design/methodology/approach - In 2014, 12 professionals from a Dutch radiotherapy institute were interviewed regarding their perceptions of a Lean program in their organization and the perceived ambiguous objectives and uncertain cause-effect relations in their clinical processes. A survey (25 questions), addressing the same concepts, was conducted among the interviewees in 2011 and 2014. The structured interviews were analyzed using a deductive approach. Quantitative data were analyzed using appropriate statistics. Findings - Interviewees experienced improved shared visions and the number of uncertain cause-effect relations decreased. Overall, more positive (99) than negative Lean effects (18) were expressed. The surveys revealed enhanced process predictability and standardization, and improved shared visions. Practical implications - Lean implementation has shown to lead to greater transparency and increased shared visions. Originality/value - Lean management decreased ambiguous objectives and reduced uncertainties in clinical process cause-effect relations. Therefore, decision making benefitted from Lean increasing QI's sustainability.

  7. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  8. Cationic Xylene Tag for Increasing Sensitivity in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Poguang; Zhang, Qi; Yao, Yuanyuan; Giese, Roger W.

    2015-06-01

    N-(2-(Bromomethyl)benzyl)-N,N-diethylethanaminium bromide, that we designate as CAX-B (cationic xylyl-bromide), is presented as a derivatization reagent for increasing sensitivity in mass spectrometry. Because of its aryl bromomethyl moiety, CAX-B readily labels compounds having an active hydrogen. In part, a CAX-tagged analyte (CAX-analyte) can be very sensitive especially in a tandem mass spectrometer (both ESI and MALDI). This is because of facile formation of an analyte-characteristic first product ion (as a xylyl-based cation) from favorable loss of triethylamine as a neutral from the precursor ion. This loss is enhanced both by resonance stabilization of the xylyl cation, and by anchimeric assistance from the ortho hetero atom of the attached analyte. High intensity of a first product ion opens up the opportunity for a CAX-analyte to be additionally sensitive when it is prone to a secondary neutral loss from the analyte part. For example, we have derivatized and detected 160 amol of thymidine by CAX-tagging/LC-MALDI-TOF/TOF-MS in this way, where the two neutral losses are triethylamine and deoxyribose. Other analytes detected at the amol level as CAX derivatives (as diluted standards) include estradiol and some nucleobases. The tendency for analytes with multiple active hydrogens to label just once with CAX (an advantage) is illustrated by the conversion of bisphenol A to a single product even when excess CAX-B is present. A family of analogous reagents with a variety of reactivity groups is anticipated as a consequence of replacing the bromine atom of CAX-B with various functional groups.

  9. The human side of lean teams.

    PubMed

    Wackerbarth, Sarah B; Strawser-Srinath, Jamie R; Conigliaro, Joseph C

    2015-05-01

    Organizations use lean principles to increase quality and decrease costs. Lean projects require an understanding of systems-wide processes and utilize interdisciplinary teams. Most lean tools are straightforward, and the biggest barrier to successful implementation is often development of the team aspect of the lean approach. The purpose of this article is to share challenges experienced by a lean team charged with improving a hospital discharge process. Reflection on the experience provides an opportunity to highlight lessons from The Team Handbook by Peter Scholtes and colleagues. To improve the likelihood that process improvement initiatives, including lean projects, will be successful, organizations should consider providing training in organizational change principles and team building. The authors' lean team learned these lessons the hard way. Despite the challenges, the team successfully implemented changes throughout the organization that have had a positive impact. Training to understand the psychology of change might have decreased the resistance faced in implementing these changes. © 2014 by the American College of Medical Quality.

  10. Osteopontin deficiency increases bone fragility but preserves bone mass.

    PubMed

    Thurner, Philipp J; Chen, Carol G; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W; Ritchie, Robert O; Alliston, Tamara

    2010-06-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  11. Osteopontin Deficiency Increases Bone Fragility but Preserves Bone Mass

    PubMed Central

    Thurner, Philipp J.; Chen, Carol G.; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W.; Ritchie, Robert O.; Alliston, Tamara

    2010-01-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin-deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  12. Evaluation of gait-related variables in lean and obese dogs at a trot.

    PubMed

    Brady, Robert B; Sidiropoulos, Alexis N; Bennett, Hunter J; Rider, Patrick M; Marcellin-Little, Denis J; Devita, Paul

    2013-05-01

    To assess differences in sagittal plane joint kinematics and ground reaction forces between lean and obese adult dogs of similar sizes at 2 trotting velocities. 16 adult dogs. Dogs with body condition score (BCS) of 8 or 9 (obese dogs; n = 8) and dogs with BCS of 4 or 5 (lean dogs; 8) on a 9-point scale were evaluated. Sagittal plane joint kinematic and ground reaction force data were obtained from dogs trotting at 1.8 and 2.5 m/s with a 3-D motion capture system, a force platform, and 12 infrared markers placed on bony landmarks. Mean stride lengths for forelimbs and hind limbs at both velocities were shorter in obese than in lean dogs. Stance phase range of motion (ROM) was greater in obese dogs than in lean dogs for shoulder (28.2° vs 20.6°), elbow (23.6° vs 16.4°), hip (27.2° vs 22.9°), and tarsal (38.9° vs 27.9°) joints at both velocities. Swing phase ROM was greater in obese dogs than in lean dogs for elbow (61.2° vs 53.7°) and hip (34.4° vs 29.8°) joints. Increased velocity was associated with increased stance ROM in elbow joints and increased stance and swing ROM in hip joints of obese dogs. Obese dogs exerted greater peak vertical and horizontal ground reaction forces than did lean dogs. Body mass and peak vertical ground reaction force were significantly correlated. Greater ROM detected during the stance phase and greater ground reaction forces in the gait of obese dogs, compared with lean dogs, may cause greater compressive forces within joints and could influence the development of osteoarthritis.

  13. Lean six sigma in healthcare.

    PubMed

    de Koning, Henk; Verver, John P S; van den Heuvel, Jaap; Bisgaard, Soren; Does, Ronald J M M

    2006-01-01

    Healthcare, as with any other service operation, requires systematic innovation efforts to remain competitive, cost efficient, and up-to-date. This article outlines a methodology and presents examples to illustrate how principles of Lean Thinking and Six Sigma can be combined to provide an effective framework for producing systematic innovation efforts in healthcare. Controlling healthcare cost increases, improving quality, and providing better healthcare are some of the benefits of this approach.

  14. Lean Government Methods Guide

    EPA Pesticide Factsheets

    This Guide focuses primarily on Lean production, which is an organizational improvement philosophy and set of methods that originated in manufacturing but has been expanded to government and service sectors.

  15. Lean in healthcare: A comprehensive review.

    PubMed

    D'Andreamatteo, Antonio; Ianni, Luca; Lega, Federico; Sargiacomo, Massimo

    2015-09-01

    Lean seems to be the next revolution for a better, improved, value-based healhcare. In the last 15 years Lean has been increasingly adapted and adopted in healthcare. Accordingly, Lean healthcare has been developing into a major strand of research since the early 2000s. The aim of this work is to present a comprehensive overview of the main issues highlighted by research on implementation of Lean in a complex contest such as the healthcare one. Comprehensive literature review was conducted in order to identify empirical and theoretical articles published up to September 2013. Thematic analysis was performed in order to extract and synthesis data. 243 articles were selected for analysis. Lean is best understood as a means to increase productivity. Hospital is the more explored setting, with emergency and surgery as the pioneer departments. USA appears to be the leading country for number of applications. The theoretical works have been focused mainly on barriers, challenges and success factors. Sustainability, framework for measurement and critical appraisal remain underestimated themes. Evaluations of "system wide approach" are still low in number. Even though Lean results appear to be promising, findings so far do not allow to draw a final word on its positive impacts or challenges when introduced in the healthcare sector. Scholars are called to explore further the potentiality and the weaknesses of Lean, above all as for the magnitude of investments required and for the engagement of the whole organization it represents increasingly strategic choice, whilst health professionals, managers and policy makers could and should learn from research how to play a pivotal role for a more effective implementation of lean in different health contexts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Lean body mass by Dual Energy X-ray Absorptiometry (DEXA) and by urine and dialysate creatinine recovery in CAPD and pre-dialysis patients compared to normal subjects.

    PubMed

    Nielsen, P K; Ladefoged, J; Olgaard, K

    1994-01-01

    The urinary creatinine excretion rate is a function of the muscle mass which, in normal subjects, is shown to be correlated with lean body mass. Dual Energy X-ray Absorptiometry (DEXA) has been shown to correlate well with other methods for the measurement of body composition. The purpose of the present study was to compare estimates of lean body mass (LBM) by DEXA scan with urine and dialysate creatinine recovery in uremic patients and in normal subjects. We included 63 normal subjects with a creatinine clearance of 60-120 mL/min, 30 uremic predialysis patients with creatinine clearance below 30 mL/min, and 20 continuous ambulatory peritoneal dialysis (CAPD) patients. LBM was measured by DEXA scan on the same day as urine collection and was estimated from creatinine recovery with and without correction for extrarenal creatinine clearance. Results from the normal subjects showed no difference in estimates of LBM by the different methods but, in predialysis and CAPD patients, a significant difference between methods of estimating LBM was found, even when correction for extrarenal clearance in uremic patients was performed. In normal subjects: DEXA 43.6 kg versus creatinine excretion 43.2 kg (NS). In predialysis patients: DEXA 47.8 kg versus 37.6 kg (p < 0.001) corrected 44.8 kg (p < 0.05). In CAPD patients: DEXA 47.2 kg versus 32 kg (p < 0.001) corrected 42.6 kg (p < 0.05). In conclusion, the urine and dialysate creatinine excretion is an inaccurate estimate of LBM, but reflects the muscle mass and, in that respect, is an important tool in the nutritional evaluation of uremic patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Pultrusion dies -- From massive and power hungry to lean and smart

    SciTech Connect

    Awa, T.W.; Price, H.L.

    1996-11-01

    A lean and smart pultrusion die is proposed. The concept arose from a thermal analysis which showed that present dies involve large heat losses balancing large power inputs with temperature excursions being damped by high die mass. As power costs increase and control costs decrease, pultrusion dies may evolve toward low mass, highly insulated dies with a computer for monitoring and control purposes as well as for heat transfer estimates.

  18. Brief: Lean drilling - Introducing the application of automotive lean manufacturing techniques to well construction

    SciTech Connect

    Wardt, J.P. de

    1995-02-01

    The automotive industry has advanced from craft production through mass production to lean production, which combines the advantages of craft and mass production while avoiding the high cost of the former and the rigidity of the latter. The application of lean production created the most developed form of customer/supplier relationships and achieved the highest productivity and quality in the industry. Studies have shown that productivity exceeds mass production by as much as 50% and that the associated highest level of quality is free. This outstanding result was not achieved through automation but through development and adoption of new organizational concepts. The drilling industry today most closely resembles the automotive craft production of the past; mass production has not been adopted owing mainly to the nonrepetitive nature of drilling activities. Studies have concluded that lean manufacturing can replace both mass and craft production in all areas of industrial activity. Consequently, lean manufacturing has the potential to be applied to drilling or, more appropriately, well construction. This paper describes the key elements of lean manufacturing and presents an analogy with the well-construction industry that provides the necessary insight for the well-construction industry to adopt them. The results achieved in the automotive industry show that major cost savings and improvements in quality can be achieved in the well-construction industry through this application.

  19. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older.

    PubMed

    Kim, M; Kim, H

    2013-04-01

    We aimed to examine the accuracy of segmental multi-frequency bioelectrical impedance analysis (SMF-BIA) for the assessment of whole-body and appendicular fat mass (FM) and lean soft tissue mass (LM) in frail older women, using dual-energy X-ray absorptiometry (DXA) as a reference method. All 129 community-dwelling Japanese frail older women with a mean age of 80.9 years (range, 75-89 years) from the Frailty Intervention Trial were recruited. The agreements between SMF-BIA and DXA for whole-body and appendicular body composition were assessed using simple linear regression and Bland-Altman analysis. High coefficients of determination (R(2)) for whole-body FM (R(2)=0.94, s.e. of estimate (SEE)=1.2 kg), whole-body LM (R(2)=0.85, SEE=1.4 kg), and appendicular FM (R(2)=0.82, SEE=1.1 kg) were observed between SMF-BIA and DXA. The R(2) coefficient for appendicular LM was moderate (R(2)=0.76, SEE=0.8 kg). Bland-Altman plots demonstrated that there was systematic (constant) bias (that is, DXA minus SMF-BIA) with overestimation of whole-body FM (bias=-1.2 kg, 95% confidence interval (CI)=-1.5 to -0.1) and underestimation of whole-body LM (bias=2.1 kg, 95% CI=1.8-2.3) by SMF-BIA. Similar, the appendicular measurements also demonstrated systematic bias with overestimation of appendicular FM (bias=-0.3 kg, 95% CI=-0.5 to -0.1) and underestimation of whole-body LM (bias=1.5 kg, 95% CI=1.4-1.7) by SMF-BIA. In addition, the individual level accuracy demonstrated a non-proportional bias for whole-body LM (r=0.08, P=0.338) and appendicular FM (r=0.07, P=0.413). SMF-BIA had acceptable accuracy for the estimation of whole-body and appendicular FM and LM in frail older women, although SMF-BIA underestimated LM and overestimated FM relative to DXA.

  20. Lean healthcare from a change management perspective.

    PubMed

    van Rossum, Lisa; Aij, Kjeld Harald; Simons, Frederique Elisabeth; van der Eng, Niels; Ten Have, Wouter Dirk

    2016-05-16

    Purpose - Lean healthcare is used in a growing number of hospitals to increase efficiency and quality of care. However, healthcare organizations encounter problems with the implementation of change initiatives due to an implementation gap: the gap between strategy and execution. From a change management perspective, the purpose of this paper is to increase scientific knowledge regarding factors that diminish the implementation gap and make the transition from the "toolbox lean" toward an actual transformation to lean healthcare. Design/methodology/approach - A cross-sectional study was executed in an operating theatre of a Dutch University Medical Centre. Transformational leadership was expected to ensure the required top-down commitment, whereas team leadership creates the required active, bottom-up behavior of employees. Furthermore, professional and functional silos and a hierarchical structure were expected to impede the workforce flexibility in adapting organizational elements and optimize the entire process flow. Findings - The correlation and regression analyses showed positive relations between the transformational leadership and team leadership styles and lean healthcare implementation. The results also indicated a strong relation between workforce flexibility and the implementation of lean healthcare. Originality/value - With the use of a recently developed change management model, the Change Competence Model, the authors suggest leadership and workforce flexibility to be part of an organization's change capacity as crucial success factor for a sustainable transformation to lean healthcare.

  1. The lean service machine.

    PubMed

    Swank, Cynthia Karen

    2003-10-01

    Jefferson Pilot Financial, a life insurance and annuities firm, like many U.S. service companies at the end of the 1990s was looking for new ways to grow. Its top managers recognized that JPF needed to differentiate itself in the eyes of its customers, the independent life-insurance advisers who sell and service policies. To establish itself as these advisers' preferred partner, it set out to reduce the turnaround time on policy applications, simplify the submission process, and reduce errors. JPF's managers looked to the "lean production" practices that U.S. manufacturers adopted in response to competition from Japanese companies. Lean production is built around the concept of continuous-flow processing--a departure from traditional production systems, in which large batches are processed at each step. JPF appointed a "lean team" to reengineer its New Business unit's operations, beginning with the creation of a "model cell"--a fully functioning microcosm of JPF's entire process. This approach allowed managers to experiment and smooth out the kinks while working toward an optimal design. The team applied lean-manufacturing practices, including placing linked processes near one another, balancing employees' workloads, posting performance results, and measuring performance and productivity from the customer's perspective. Customer-focused metrics helped erode the employees' "My work is all that matters" mind-set. The results were so impressive that JPF is rolling out similar systems across many of its operations. To convince employees of the value of lean production, the lean team introduced a simulation in which teams compete to build the best paper airplane based on invented customer specifications. This game drives home lean production's basic principles, establishing a foundation for deep and far-reaching changes in the production system.

  2. Increased snow contribution to Arctic sea ice mass balance

    NASA Astrophysics Data System (ADS)

    Granskog, M. A.; Rösel, A.; Provost, C.; Sennechael, N.; Dodd, P. A.; Martma, T.; Leng, M. J.

    2016-12-01

    Traditionally snow on Arctic sea ice has not been considered as a significant component of the mass balance of the (solid) ice cover, due to the low snow to ice thickness ratio. In contrast, snow contributes significantly to the mass balance of Antarctic sea ice due to thinner seasonal ice and thicker snow cover, similar to Arctic marginal seas, such as the Baltic and Okhotsk seas. Recent observations from the N-ICE2015 campaign, conducted in January-June 2015 in the rather thin ice pack north of Svalbard, imply that with a thinning of the Arctic ice pack, snow turned into ice, either as refrozen snow meltwater at the ice surface (superimposed ice) or snow-ice formed due to flooding of the bottom of the snow pack by seawater, can contribute significantly to Arctic sea ice mass balance. We provide evidence from both sea ice cores (from textural and isotope data) and ice mass balance buoys (IMB) with thermistor chains using a heating cycle to detect different media (air/snow/ice/water). Observations indicate that snow-ice or superimposed ice has formed in fall/winter likely when the ice was thin due to summer melt and heavy snow fall early in the freezing season. IMB records from winter/spring showcase the rapid formation of snow-ice due to flooding by seawater after re-adjustment of isostacy in response to: i) deformation events (likely related to changes in floe size) and ii) bottom ice melt over warmer Atlantic waters north of Svalbard. In summary the new data indicate that snow-ice or superimposed can contribute up to about 30% of total sea ice thickness, unprecedented from any earlier records in the high-Arctic.

  3. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function.

    PubMed

    Murton, Andrew J; Marimuthu, Kanagaraj; Mallinson, Joanne E; Selby, Anna L; Smith, Kenneth; Rennie, Michael J; Greenhaff, Paul L

    2015-09-01

    Obesity is increasing, yet despite the necessity of maintaining muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ± 1.1 kg · m(-2)) and 15 healthy-weight (BMI 23.4 ± 0.3 kg · m(-2)) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under postabsorptive (hypoinsulinemic-euglycemic clamp) and postprandial (hyperinsulinemic hyperaminoacidemic-euglycemic clamp) conditions. Obesity was associated with systemic inflammation, greater leg fat mass, and patterns of mRNA expression consistent with muscle deconditioning, whereas leg lean mass, strength, and work done during maximal exercise were no different. Under postabsorptive conditions, MPS and LPB were equivalent between groups, whereas insulin and amino acid administration increased MPS in only healthy-weight subjects and was associated with lower leg glucose disposal (LGD) (63%) in obese men. Blunting of MPS in the obese men was offset by an apparent decline in LPB, which was absent in healthy-weight subjects. Lower postprandial LGD in obese subjects and blunting of MPS responses to amino acids suggest that obesity in older adults is associated with diminished muscle metabolic quality. This does not, however, appear to be associated with lower leg lean mass or strength. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. EPA Lean Government Initiative: How to Replicate Lean Successes

    EPA Pesticide Factsheets

    This Lean Replication Primer describes how EPA Offices and Regions can identify and adapt successful practices from previous Lean projects to “replicate” their successes and generate further improvements.

  5. Lean methodology: supporting battlefield medical fitness by cutting process waste.

    PubMed

    Huggins, Elaine J

    2010-01-01

    Healthcare has long looked at decreasing risk in communication and patient care processes. Increasing the simplicity in communication and patient care process is a newer concept contained in Lean methodology. Lean is a strategy for achieving improvement in performance through the elimination of steps that use resources without contributing to customer value. This is known as cutting waste or nonvalue added steps. This article outlines how the use of Lean improved a key process that supports battlefield medical fitness.

  6. Can lean save lives?

    PubMed

    Fillingham, David

    2007-01-01

    The purpose of this paper is to show how over the last 18 months Bolton Hospitals NHS Trust have been exploring whether or not lean methodologies, often known as the Toyota Production System, can indeed be applied to healthcare. This paper is a viewpoint. One's early experience is that lean really can save lives. The Toyota Production System is an amazingly successful way of manufacturing cars. It cannot be simply translated unthinkingly into a hospital but lessons can be learned from it and the method can be adapted and developed so that it becomes owned by healthcare staff and focused towards the goal of improved patient care. Working in healthcare is a stressful and difficult thing. Everyone needs a touch of inspiration and encouragement. Applying lean to healthcare in Bolton seems to be achieving just that for those who work there.

  7. Creatinine index as a surrogate of lean body mass derived from urea Kt/V, pre-dialysis serum levels and anthropometric characteristics of haemodialysis patients.

    PubMed

    Canaud, Bernard; Granger Vallée, Alexandre; Molinari, Nicolas; Chenine, Leila; Leray-Moragues, Hélène; Rodriguez, Annie; Chalabi, Lotfi; Morena, Marion; Cristol, Jean-Paul

    2014-01-01

    Protein-energy wasting is common in long-term haemodialysis (HD) patients with chronic kidney disease and is associated with increased morbidity and mortality. The creatinine index (CI) is a simple and useful nutritional parameter reflecting the dietary skeletal muscle protein intake and skeletal muscle mass of the patient. Because of the complexity of creatinine kinetic modeling (CKM) to derive CI, we developed a more simplified formula to estimate CI in HD patients. A large database of 549 HD patients followed over more than 20 years including monthly CKM-derived CI values was used to develop a simple equation based on patient demographics, predialysis serum creatinine values and dialysis dose (spKt/V) using mixed regression models. The equation to estimate CI was developed based on age, gender, pre-dialysis serum creatinine concentrations and spKt/V urea. The equation-derived CI correlated strongly with the measured CI using CKM (correlation coefficient  = 0.79, p-value <0.001). The mean error of CI prediction using the equation was 13.47%. Preliminary examples of few typical HD patients have been used to illustrate the clinical relevance and potential usefulness of CI. The elementary equation used to derive CI using demographic parameters, pre-dialysis serum creatinine concentrations and dialysis dose is a simple and accurate surrogate measure for muscle mass estimation. However, the predictive value of the simplified CI assessment method on mortality deserves further evaluation in large cohorts of HD patients.

  8. Application of lean manufacturing techniques in the Emergency Department.

    PubMed

    Dickson, Eric W; Singh, Sabi; Cheung, Dickson S; Wyatt, Christopher C; Nugent, Andrew S

    2009-08-01

    "Lean" is a set of principles and techniques that drive organizations to continually add value to the product they deliver by enhancing process steps that are necessary, relevant, and valuable while eliminating those that fail to add value. Lean has been used in manufacturing for decades and has been associated with enhanced product quality and overall corporate success. To evaluate whether the adoption of Lean principles by an Emergency Department (ED) improves the value of emergency care delivered. Beginning in December 2005, we implemented a variety of Lean techniques in an effort to enhance patient and staff satisfaction. The implementation followed a six-step process of Lean education, ED observation, patient flow analysis, process redesign, new process testing, and full implementation. Process redesign focused on generating improvement ideas from frontline workers across all departmental units. Value-based and operational outcome measures, including patient satisfaction, expense per patient, ED length of stay (LOS), and patient volume were compared for calendar year 2005 (pre-Lean) and periodically after 2006 (post-Lean). Patient visits increased by 9.23% in 2006. Despite this increase, LOS decreased slightly and patient satisfaction increased significantly without raising the inflation adjusted cost per patient. Lean improved the value of the care we delivered to our patients. Generating and instituting ideas from our frontline providers have been the key to the success of our Lean program. Although Lean represents a fundamental change in the way we think of delivering care, the specific process changes we employed tended to be simple, small procedure modifications specific to our unique people, process, and place. We, therefore, believe that institutions or departments aspiring to adopt Lean should focus on the core principles of Lean rather than on emulating specific process changes made at other institutions.

  9. Chronic injection of pansomatostatin agonist ODT8-SST differentially modulates food intake and decreases body weight gain in lean and diet-induced obese rats

    PubMed Central

    Stengel, Andreas; Coskun, Tamer; Goebel-Stengel, Miriam; Craft, Libbey S.; Alsina-Fernandez, Jorge; Wang, Lixin; Rivier, Jean; Taché, Yvette

    2013-01-01

    The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1 μg/rat) injected or chronically infused (5 μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14 d compared to vehicle (p<0.01). In diet-induced obese (DIO) rats, chronic ODT8-SST increased cumulative 2-week food intake compared to vehicle (+14%, p<0.05) and also blunted body weight change (−11g, p<0.05). ODT8-SST for 14d reduced lean mass (−22g and −25g respectively, p<0.001) and total water (−19g and −22g respectively, p<0.001) in lean and DIO rats and increased fat mass in DIO (+16g, p<0.001) but not lean rats (+1g, p>0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (−27%/24h, p<0.05) and fine movements (−38%, p<0.01) which was associated with an increased positive energy balance compared to vehicle (+50g, p<0.01). Chronic central somatostatin receptor activation in lean rats reduces body weight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions. PMID:21315111

  10. Chronic injection of pansomatostatin agonist ODT8-SST differentially modulates food intake and decreases body weight gain in lean and diet-induced obese rats.

    PubMed

    Stengel, Andreas; Coskun, Tamer; Goebel-Stengel, Miriam; Craft, Libbey S; Alsina-Fernandez, Jorge; Wang, Lixin; Rivier, Jean; Taché, Yvette

    2011-04-11

    The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1μg/rat) injected or chronically infused (5μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14d compared to vehicle (p<0.01). In diet-induced obese (DIO) rats, chronic ODT8-SST increased cumulative 2-week food intake compared to vehicle (+14%, p<0.05) and also blunted body weight change (-11g, p<0.05). ODT8-SST for 14d reduced lean mass (-22g and -25g respectively, p<0.001) and total water (-19g and -22g respectively, p<0.001) in lean and DIO rats and increased fat mass in DIO (+16g, p<0.001) but not lean rats (+1g, p>0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (-27%/24h, p<0.05) and fine movements (-38%, p<0.01) which was associated with an increased positive energy balance compared to vehicle (+50g, p<0.01). Chronic central somatostatin receptor activation in lean rats reduces body weight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions. 2011 Elsevier B.V. All rights reserved.

  11. Quality improvement in basic histotechnology: the lean approach.

    PubMed

    Clark, David

    2016-01-01

    Lean is a comprehensive system of management based on the Toyota production system (TPS), encompassing all the activities of an organization. It focuses management activity on creating value for the end-user by continuously improving operational effectiveness and removing waste. Lean management creates a culture of continuous quality improvement with a strong emphasis on developing the problem-solving capability of staff using the scientific method (Deming's Plan, Do, Check, Act cycle). Lean management systems have been adopted by a number of histopathology departments throughout the world to simultaneously improve quality (reducing errors and shortening turnround times) and lower costs (by increasing efficiency). This article describes the key concepts that make up a lean management system, and how these concepts have been adapted from manufacturing industry and applied to histopathology using a case study of lean implementation and evidence from the literature. It discusses the benefits, limitations, and pitfalls encountered when implementing lean management systems.

  12. Lean in Air Permitting Guide

    EPA Pesticide Factsheets

    The Lean in Air Permitting Guide is designed to help air program managers at public agencies better understand the potential value and results that can be achieved by applying Lean improvement methods to air permitting processes.

  13. The Lean and Environment Toolkit

    EPA Pesticide Factsheets

    This Lean and Environment Toolkit assembles practical experience collected by the U.S. Environmental Protection Agency (EPA) and partner companies and organizations that have experience with coordinating Lean implementation and environmental management.

  14. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    PubMed

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD.

  15. Accelerometer‐determined physical activity, muscle mass, and leg strength in community‐dwelling older adults

    PubMed Central

    Foong, Yi Chao; Chherawala, Nabil; Aitken, Dawn; Winzenberg, Tania; Jones, Graeme

    2015-01-01

    Abstract Introduction The aim of this study was to describe the relationship between accelerometer‐determined physical activity (PA), muscle mass, and lower‐limb strength in community‐dwelling older adults. Methods Six hundred thirty‐six community‐dwelling older adults (66 ± 7 years) were studied. Muscle mass was measured using dual‐energy x‐ray absorptiometry, whilst lower limb strength was measured via dynamometry. We measured minutes/day spent in sedentary, light, moderate, and vigorous intensity activity using Actigraph GT1M accelerometers. Results Participants spent a median of 583(Interquartile ratio (IQR) 522–646), 225(176–271), 27(12–45) and 0(0–0) min in sedentary, light, moderate, and vigorous activity, respectively. PA intensity was positively associated with both lean mass percentage and lower limb strength in a dose–response fashion. Sedentary activity was negatively associated with lean mass percentage, but not lower‐limb strength. There was a positive association between PA and appendicular lean mass in men only. There was an interaction between age and activity; as age increased, the magnitude of the association of PA with lean mass percentage decreased. Those who adhered to the Australian Department of Health PA guidelines (moderate/vigorous PA >/=150 min/week) had greater lean mass percentage, appendicular lean mass, and lower limb strength. Conclusions Using accelerometer technology, both the amount and intensity of accelerometer‐determined PA had an independent, dose–response relationship with lean mass percentage and lower limb strength, with the largest effect for vigorous activity. Time spent in sedentary activity was negatively associated with lean mass percentage, but was not associated with lower limb strength. The magnitude of the association between PA and lean mass percentage decreased with age, suggesting that PA programmes may need to be modified with increasing age. PMID:27239404

  16. Creatinine Index as a Surrogate of Lean Body Mass Derived from Urea Kt/V, Pre-Dialysis Serum Levels and Anthropometric Characteristics of Haemodialysis Patients

    PubMed Central

    Canaud, Bernard; Granger Vallée, Alexandre; Molinari, Nicolas; Chenine, Leila; Leray-Moragues, Hélène; Rodriguez, Annie; Chalabi, Lotfi; Morena, Marion; Cristol, Jean-Paul

    2014-01-01

    Background and Objectives Protein-energy wasting is common in long-term haemodialysis (HD) patients with chronic kidney disease and is associated with increased morbidity and mortality. The creatinine index (CI) is a simple and useful nutritional parameter reflecting the dietary skeletal muscle protein intake and skeletal muscle mass of the patient. Because of the complexity of creatinine kinetic modeling (CKM) to derive CI, we developed a more simplified formula to estimate CI in HD patients. Design, Setting, Participants & Measurements A large database of 549 HD patients followed over more than 20 years including monthly CKM-derived CI values was used to develop a simple equation based on patient demographics, predialysis serum creatinine values and dialysis dose (spKt/V) using mixed regression models. Results The equation to estimate CI was developed based on age, gender, pre-dialysis serum creatinine concentrations and spKt/V urea. The equation-derived CI correlated strongly with the measured CI using CKM (correlation coefficient  = 0.79, p-value <0.001). The mean error of CI prediction using the equation was 13.47%. Preliminary examples of few typical HD patients have been used to illustrate the clinical relevance and potential usefulness of CI. Conclusions The elementary equation used to derive CI using demographic parameters, pre-dialysis serum creatinine concentrations and dialysis dose is a simple and accurate surrogate measure for muscle mass estimation. However, the predictive value of the simplified CI assessment method on mortality deserves further evaluation in large cohorts of HD patients. PMID:24671212

  17. Leaning Tower of PESA

    ERIC Educational Resources Information Center

    Clark, John

    2009-01-01

    There is a certain similarity between the Philosophy of Education Society of Australasia (PESA) and the leaning tower of Pisa. Both have a certain presence on the landscape: the tower has a commanding appearance on the Italian countryside while PESA has left its mark on the academic fabric of Australasia. Both are much loved: Pisa by visiting…

  18. Lean for Education

    ERIC Educational Resources Information Center

    LeMahieu, Paul G.; Nordstrum, Lee E.; Greco, Patricia

    2017-01-01

    Purpose: This paper is one of seven in this volume that aims to elaborate different approaches to quality improvement in education. It delineates a methodology called Lean for Education. Design/methodology/approach: The paper presents the origins, theoretical foundations, core concepts and a case study demonstrating an application in US education,…

  19. Lean for Education

    ERIC Educational Resources Information Center

    LeMahieu, Paul G.; Nordstrum, Lee E.; Greco, Patricia

    2017-01-01

    Purpose: This paper is one of seven in this volume that aims to elaborate different approaches to quality improvement in education. It delineates a methodology called Lean for Education. Design/methodology/approach: The paper presents the origins, theoretical foundations, core concepts and a case study demonstrating an application in US education,…

  20. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  1. Lean Manufacturing Auto Cluster at Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  2. Increasing Sustained Participation in Free Mass Prostate Cancer Screening Clinics

    DTIC Science & Technology

    2006-05-01

    of prostate cancer screening promotion once the church leaders identify men’s health as a priority. The study sample contained 1,882 individuals...content, and herbals such as vitamin E, Selenium, and Lycopene . Overall, the physicians felt that prostate cancer is such a multi-factorial disease...screening clinics. To increase the pool of lower-income African American men in the longitudinal database for study cohort, over sampling was done by

  3. Increased Bone Mass in Female Mice Lacking Mast Cell Chymase

    PubMed Central

    Lind, Thomas; Gustafson, Ann-Marie; Calounova, Gabriela; Hu, Lijuan; Rasmusson, Annica; Jonsson, Kenneth B.; Wernersson, Sara; Åbrink, Magnus; Andersson, Göran; Larsson, Sune; Melhus, Håkan; Pejler, Gunnar

    2016-01-01

    Here we addressed the potential impact of chymase, a mast-cell restricted protease, on mouse bone phenotype. We show that female mice lacking the chymase Mcpt4 acquired a persistent expansion of diaphyseal bone in comparison with wild type controls, reaching a 15% larger diaphyseal cross sectional area at 12 months of age. Mcpt4-/- mice also showed increased levels of a bone anabolic serum marker and higher periosteal bone formation rate. However, they were not protected from experimental osteoporosis, suggesting that chymase regulates normal bone homeostasis rather than the course of osteoporosis. Further, the absence of Mcpt4 resulted in age-dependent upregulation of numerous genes important for bone formation but no effects on osteoclast activity. In spite of the latter, Mcpt4-/- bones had increased cortical porosity and reduced endocortical mineralization. Mast cells were found periosteally and, notably, bone-proximal mast cells in Mcpt4-/- mice were degranulated to a larger extent than in wild type mice. Hence, chymase regulates degranulation of bone mast cells, which could affect the release of mast cell-derived factors influencing bone remodelling. Together, these findings reveal a functional impact of mast cell chymase on bone. Further studies exploring the possibility of using chymase inhibitors as a strategy to increase bone volume may be warranted. PMID:27936149

  4. Lean methodology in health care.

    PubMed

    Kimsey, Diane B

    2010-07-01

    Lean production is a process management philosophy that examines organizational processes from a customer perspective with the goal of limiting the use of resources to those processes that create value for the end customer. Lean manufacturing emphasizes increasing efficiency, decreasing waste, and using methods to decide what matters rather than accepting preexisting practices. A rapid improvement team at Lehigh Valley Health Network, Allentown, Pennsylvania, implemented a plan, do, check, act cycle to determine problems in the central sterile processing department, test solutions, and document improved processes. By using A3 thinking, a consensus building process that graphically depicts the current state, the target state, and the gaps between the two, the team worked to improve efficiency and safety, and to decrease costs. Use of this methodology has increased teamwork, created user-friendly work areas and processes, changed management styles and expectations, increased staff empowerment and involvement, and streamlined the supply chain within the perioperative area. Copyright (c) 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  5. Lean Blow-out Studies in a Swirl Stabilized Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil

    2015-05-01

    Lean blow out characteristics in a swirl stabilized aero gas turbine combustor have been studied using computational fluid dynamics. For CFD analysis, a 22.5° sector of an annular combustor is modeled using unstructured tetrahedral meshes comprising 1.2 × 106 elements. The governing equations are solved using the eddy dissipation combustion model in CFX. The primary combustion zone is analyzed by considering it as a well stirred reactor. The analysis has been carried out for different operating conditions of the reactants entering into the control volume. The results are treated as the base-line or reference values. Combustion lean blow-out limits are further characterized studying the behavior of combustion zone during transient engine operation. The validity of the computational study has been established by experimental study on a full-scale annular combustor in an air flow test facility that is capable of simulating different conditions at combustor inlet. The experimental result is in a good agreement with the analytical predictions. Upon increasing the combustor mass flow, the lean blow out limit increases, i.e., the blow out occurs at higher fuel-air ratios. In addition, when the operating pressure decreases, the lean blow out limit increases, i.e., blow out occurs at higher fuel-air ratios.

  6. Combined amylin-leptin treatment lowers blood pressure and adiposity in lean and obese rats.

    PubMed

    Seth, R; Knight, W D; Overton, J M

    2011-09-01

    To examine the cardiovascular effects of combined amylin (AMN) and leptin (LEP) treatment in lean and obese rats. Rats were instrumented for telemetry and given LEP (300 μg kg(-1) day(-1)), AMN (100 μg kg(-1) day(-1)), AMN+LEP or vehicle (VEH; 0.9% normal saline) via a subcutaneous mini-osmotic pump for 7 days. The VEH group was subdivided into ad libitum fed and pair-fed to the amount of food AMN+LEP animals ate daily. Rats were housed in metabolic chambers for analysis of cardiovascular physiology and metabolism. Male Fisher 344 × Brown Norway (FBNF1; Harlan; age=3-5 months; n=72) rats were placed on standard rodent chow (LEAN, n=41) or moderately high-fat diet (OBESE; n=31) to produce obesity. AMN+LEP potently reduced food intake (LEAN: 57% OBESE: 59%) and abdominal fat mass (LEAN: 56% OBESE: 41%). Pair-fed rats displayed bradycardia and metabolic suppression. In contrast, AMN+LEP increased heart rate and oxygen consumption above levels in LEP or AMN-treated rats. LEP reduced blood pressure in both lean and obese rats but AMN had no effect. LEP-induced reductions in blood pressure were not altered by AMN+LEP treatment. Thus, AMN+LEP treatment decreased food intake, body fat and blood pressure in lean and obese rats. We conclude that the potent anti-adiposity actions of AMN+LEP are due in part to prevention of the bradycardia and metabolic suppression typically observed with negative energy balance. Furthermore, the hypotensive actions of peripheral LEP treatment are observable in spite of the potent AMN+LEP activation of anorexic and thermogenic mechanisms in the central nervous system.

  7. Lean for Government: Eliminating the Seven Wastes

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2012-01-01

    With shrinking budgets and a slow economy, it is becoming increasingly important for all government agencies to become more efficient. Citizens expect and deserve efficient and effective services from federal, state and local government agencies. One of the best methods to improve efficiency and eliminate waste is to institute the business process improvement methodologies known collectively as Lean; however, with reduced budgets, it may not be possible to train everyone in Lean or to engage the services of a trained consultant. It is possible, however, to raise awareness of the "Seven Wastes" of Lean in each employee, and encourage them to identify areas for improvement. Management commitment is vital to the success of these initiatives, and it is also important to develop the right metrics that will track the success of these changes.

  8. A Lean Six Sigma journey in radiology.

    PubMed

    Bucci, Ronald V; Musitano, Anne

    2011-01-01

    The department of radiology at Akron Children's Hospital embarked on a Lean Six Sigma mission as part of a hospital wide initiative to show increased customer satisfaction, reduce employee dissatisfaction and frustration, and decrease costs. Three processes that were addressed were reducing the MRI scheduling back-log, reconciling discrepancies in billing radiology procedures, and implementing a daily management system. Keys to success is that managers provide opportunities to openly communicate between department sections to break down barriers. Executive leaders must be engaged in Lean Six Sigma for the company to be successful.

  9. Lean limit phenomena

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1984-01-01

    The concept of flammability limits in the presence of flame interaction, and the existence of negative flame speeds are discussed. Downstream interaction between two counterflow premixed flames of different stoichiometries are experimentally studied. Various flame configurations are observed and quantified; these include the binary system of two lean or rich flames, the triplet system of a lean and a rich flame separated by a diffusion flame, and single diffusion flames with some degree of premixedness. Extinction limits are determined for methane/air and butane/air mixtures over the entire range of mixture concentrations. The results show that the extent of flame interaction depends on the separation distance between the flames which are functions of the mixtures' concentrations, the stretch rate, and the effective Lewis numbers (Le). In particular, in a positively-stretched flow field Le 1 ( 1) mixtures tend to interact strongly (weakly), while the converse holds for flames in a negatively-stretched flow. Also established was the existence of negative flames whose propagation velocity is in the same general direction as that of the bulk convective flow, being supported by diffusion alone. Their existence demonstrates the tendency of flames to resist extinction, and further emphasizes the possibility of very lean or rich mixtures to undergo combustion.

  10. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    NASA Astrophysics Data System (ADS)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  11. Lean leadership: an ethnographic study.

    PubMed

    Aij, Kjeld Harald; Visse, Merel; Widdershoven, Guy A M

    2015-01-01

    The purpose of this study is to provide a critical analysis of contemporary Lean leadership in the context of a healthcare practice. The Lean leadership model supports professionals with a leading role in implementing Lean. This article presents a case study focusing specifically on leadership behaviours and issues that were experienced, observed and reported in a Dutch university medical centre. This ethnographic case study provides auto-ethnographic accounts based on experiences, participant observation, interviews and document analysis. Characteristics of Lean leadership were identified to establish an understanding of how to achieve successful Lean transformation. This study emphasizes the importance for Lean leaders to go to the gemba, to see the situation for one's own self, empower health-care employees and be modest. All of these are critical attributes in definin