López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D
2007-01-01
We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.
Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.
Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W
2008-07-01
We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.
Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.
Ow, Yan X; Uthicke, Sven; Collier, Catherine J
2016-01-01
Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.
Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification
2016-01-01
Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m-2 s-1) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36–60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454
Simon, Judy; Li, Xiuyuan; Rennenberg, Heinz
2014-01-01
Plant species use different strategies for maximizing growth and fitness under changing environmental conditions. At the ecosystem level, seedlings in particular compete with other vegetation components for light and nitrogen (N), which often constitute growth-limiting resources. In this study, we investigated the effect of light availability on the competition for N between seedlings of European beech and sycamore maple and analysed the consequences of this competition for the composition of N metabolites in fine roots. Our results show different strategies in N acquisition between beech and sycamore maple. Both species responded to reduced light availability by adapting their morphological and physiological traits with a decrease in biomass and net assimilation rate and an increase in specific leaf area and leaf area ratio. For beech seedlings, competition with sycamore maple led to a reduction in organic N uptake capacity. Reduced light availability led to a decrease in ammonium, but an increase in glutamine-N uptake capacity in sycamore maple. However, this response was stronger compared with that of beech and was accompanied by reduced growth. Thus, our results suggest better adaptation of N acquisition to reduced light availability in beech compared with sycamore maple seedlings.
Brenes-Arguedas, T; Roddy, A B; Coley, P D; Kursar, Thomas A
2011-06-01
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-03-01
Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
NASA Astrophysics Data System (ADS)
Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.
2017-07-01
Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.
Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin
2016-04-01
Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Zhang, Ziyan; He, Kate S.; Li, Bo
2015-01-01
Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176
Artificial light alters natural regimes of night-time sky brightness
Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.
2013-01-01
Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.
Overview of the physiological ecology of carbon metabolism in seagrasses.
Touchette; Burkholder
2000-07-30
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3-C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO(2) availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 µE m(-2) s(-1)) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis-irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance I(c)) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of I(k) (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than I(k); and in estimating seagrass productivity from H(sat) (duration of daily light period when light equals or exceeds I(k)) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than I(k). The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high I(c) levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy - remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.
Freitas, B C B; Cassuriaga, A P A; Morais, M G; Costa, J A V
2017-08-01
High concentrations of carbon, which is considered a necessary element, are required for microalgal growth. Therefore, the identification of alternative carbon sources available in large quantities is increasingly important. This study evaluated the effects of light variation and pentose addition on the carbohydrate content and protein profile of Chlorella minutissima grown in a raceway photobioreactor. The kinetic parameters, carbohydrate content, and protein profile of Chlorella minutissima and its theoretical potential for ethanol production were estimated. The highest cellular concentrations were obtained with a light intensity of 33.75µmol.m -2 .s -1 . Arabinose addition combined with a light intensity of 33.75µmol.m -2 .s -1 increased the carbohydrate content by 53.8% and theoretically produced 39.1mL·100g -1 ethanol. All of the assays showed that a lower light availability altered the protein profile. The luminous intensity affects xylose and arabinose assimilation and augments the carbohydrate content in C. minutissima, making this microalga appropriate for bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herbivores and nutrients control grassland plant diversity via light limitation
Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.
2014-01-01
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Herbivores and nutrients control grassland plant diversity via light limitation.
Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H
2014-04-24
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Read, Scott A; Pieterse, Emily C; Alonso-Caneiro, David; Bormann, Rebekah; Hong, Seentinie; Lo, Chai-Hoon; Richer, Rhiannon; Syed, Atif; Tran, Linda
2018-05-29
Ambient light exposure is one environmental factor thought to play a role in the regulation of eye growth and refractive error development, and choroidal thickness changes have also been linked to longer term changes in eye growth. Therefore in this study we aimed to examine the influence of a 1-week period of morning light therapy upon choroidal thickness. Twenty two healthy young adult subjects had a series of macular choroidal thickness measurements collected with spectral domain optical coherence tomography before, and then following a 7-day period of increased daily light exposure. Increased light exposure was delivered through the use of commercially available light therapy glasses, worn for 30 minutes in the morning each day. A significant increase in subfoveal choroidal thickness (mean increase of +5.4 ± 10.3 µm) was found following 7-days of increased daily light exposure (p = 0.02). An increase in choroidal thickness was also observed associated with light therapy across the central 5 mm macular region. This study provides the first evidence in the human eye that daily morning light therapy results in small magnitude but statistically significant increases in choroidal thickness. These changes may have implications for our understanding of the impact of environmental factors upon eye growth.
Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W
2010-07-01
Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.
Structural development of redwood branches and its effects on wood growth.
Kramer, Russell D; Sillett, Stephen C; Carroll, Allyson L
2014-03-01
Redwood branches provide all the carbohydrates for the most carbon-heavy forests on Earth, and recent whole-tree measurements have quantified trunk growth rates associated with complete branch inventories. Providing all of a tree's photosynthetic capacity, branches represent an increasing proportion of total aboveground wood production as trees enlarge. To examine branch development and its effects on wood volume growth, we dissected 31 branches from eight Sequoia sempervirens (D. Don) Endl. and seven Sequoiadendron giganteum Lindl. trees. The cambium-area-to-leaf-area ratio was maintained with size and age but increased with light availability, whereas the heartwood-deposition-area-to-leaf-area ratio increased with size and age but was insensitive to light availability. The proportion of foliage mass arrayed in <1-cm-diameter epicormic shoots increased with decreasing light and was higher in Sequoia (20-60%) than in Sequoiadendron (3-16%). Well-illuminated branches concentrated leaves higher and distally, while shaded branches distributed leaves lower and proximally. In similar light environments, older branches distributed leaves lower and more proximally than younger branches. Branch size, light, species, heartwood area, a heartwood-area-species interaction, and ovulate cone mass predicted 87.5% of the variability in wood volume growth of branches. After accounting for the positive effects of size and light, wood volume growth declined with heartwood area and age. The effect of age was trivial compared to the effect of heartwood area, suggesting that heartwood expansion caused the age-related decline in wood volume growth. Additionally, Sequoiadendron branches of similar size and light environment with more ovulate cones produced less wood, even though these cones were long-lived and photosynthetic, reflecting the energetic cost of seed production. These results contributed to a conceptual model of branch development in which light availability, injury, heartwood content, gravity, and time interact to produce the high degree of branch structural variation evident within redwood crowns.
Fajardo, Alex; Siefert, Andrew
2016-01-01
Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA. PMID:27604280
Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.
Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R
2016-11-01
Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.
Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B
2016-01-01
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL') and high-light ('HL') conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN') and nitrogen-replete batches ('HN'). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.
Ecosystem Predictions with Approximate vs. Exact Light Fields
2009-03-27
and optically shallow waters for which bottom reflectance can substantially increase the irradiance available for photosynthesis and water heating...primary productivity, heating of water, and photochemical reactions. When modeling photosynthesis , which depends on the number of photons oabsorbed, it...irradiance, W m nm , to quantum units,-2 -1 photons s m nm .-1 -2 -1 A wavelength-integrated measure of the total light available for photosynthesis
Catalytic effect of light illumination on bioleaching of chalcopyrite.
Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan
2015-04-01
The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2016-01-01
Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture.
Safety of light emitting diodes in toys.
Higlett, M P; O'Hagan, J B; Khazova, M
2012-03-01
Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.
Faithfull, C L; Mathisen, P; Wenzel, A; Bergström, A K; Vrede, T
2015-03-01
This study demonstrates that clear and humic freshwater pelagic communities respond differently to the same environmental stressors, i.e. nutrient and light availability. Thus, effects on humic communities cannot be generalized from existing knowledge about these environmental stressors on clear water communities. Small humic lakes are the most numerous type of lake in the boreal zone, but little is known about how these lakes will respond to increased inflows of nutrients and terrestrial dissolved organic C (t-DOC) due to climate change and increased human impacts. Therefore, we compared the effects of nutrient addition and light availability on pelagic humic and clear water lake communities in a mesocosm experiment. When nutrients were added, phytoplankton production (PPr) increased in both communities, but pelagic energy mobilization (PEM) and bacterial production (BP) only increased in the humic community. At low light conditions, the addition of nutrients led to increased PPr only in the humic community, suggesting that, in contrast to the clear water community, humic phytoplankton were already adapted to lower ambient light levels. Low light significantly reduced PPr and PEM in the clear water community, but without reducing total zooplankton production, which resulted in a doubling of food web efficiency (FWE = total zooplankton production/PEM). However, total zooplankton production was not correlated with PEM, PPr, BP, PPr:BP or C:nutrient stoichiometry for either community type. Therefore, other factors such as food chain length, food quality, ultra-violet radiation or duration of the experiment, must have determined total zooplankton production and ultimately FWE.
Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability
DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.
2012-01-01
We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borer, Elizabeth T.; et al, et al
Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces tomore » control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.« less
Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob
2008-09-01
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.
Why HID headlights bother older drivers
Mainster, M A; Timberlake, G T
2003-01-01
Driving requires effective coordination of visual, motor, and cognitive skills. Visual skills are pushed to their limit at night by decreased illumination and by disabling glare from oncoming headlights. High intensity discharge (HID) headlamps project light farther down roads, improving their owner’s driving safety by increasing the time available for reaction to potential problems. Glare is proportional to headlamp brightness, however, so increasing headlamp brightness also increases potential glare for oncoming drivers, particularly on curving two lane roads. This problem is worse for older drivers because of their increased intraocular light scattering, glare sensitivity, and photostress recovery time. An analysis of automobile headlights, intraocular stray light, glare, and night driving shows that brightness rather than blueness is the primary reason for the visual problems that HID headlights can cause for older drivers who confront them. The increased light projected by HID headlights is potentially valuable, but serious questions remain regarding how and where it should be projected. PMID:12488274
Osada, Noriyuki
2006-01-01
Based on an allometric reconstruction, the structure and biomass-allocation patterns of branches and current-year shoots were investigated in branches of various heights in the pioneer tree Rhus trichocarpa, to evaluate how crown development is achieved and limited in association with height. Path analysis was conducted to explore the effects of light availability, basal height and size of individual branches on branch structure and growth. Branch angle was affected by basal height, whereas branch mass was influenced primarily by light availability. This result suggests that branch structure is strongly constrained by basal height, and that trees mediate such constraints under different light environments. Previous-year leaf area and light availability showed positive effects on current-year stem mass. In contrast, branch basal height and mass negatively affected current-year stem mass. Moreover, the length of stems of a given diameter decreased with increasing branch height. Therefore the cost of biomass investment for a unit growth in length is greater for branches of larger size and at upper positions. Vertical growth rate in length decreased with increasing height. Height-dependent changes in stem allometry and angle influenced the reduction in vertical growth rate to a similar degree.
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-08-01
Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
De Marchi, Thiago; Schmitt, Vinicius Mazzochi; Danúbia da Silva Fabro, Carla; da Silva, Larissa Lopes; Sene, Juliane; Tairova, Olga; Salvador, Mirian
2017-05-01
Recent studies suggest the prophylactic use of low-powered laser/light has ergogenic effects on athletic performance and postactivity recovery. Manufacturers of high-powered lasers/light devices claim that these can produce the same clinical benefits with increased power and decreased irradiation time; however, research with high-powered lasers is lacking. To evaluate the magnitude of observed phototherapeutic effects with 3 commercially available devices. Randomized double-blind placebo-controlled study. Laboratory. Forty healthy untrained male participants. Participants were randomized into 4 groups: placebo, high-powered continuous laser/light, low-powered continuous laser/light, or low-powered pulsed laser/light (comprising both lasers and light-emitting diodes). A single dose of 180 J or placebo was applied to the quadriceps. Maximum voluntary contraction, delayed-onset muscle soreness (DOMS), and creatine kinase (CK) activity from baseline to 96 hours after the eccentric exercise protocol. Maximum voluntary contraction was maintained in the low-powered pulsed laser/light group compared with placebo and high-powered continuous laser/light groups in all time points (P < .05). Low-powered pulsed laser/light demonstrated less DOMS than all groups at all time points (P < .05). High-powered continuous laser/light did not demonstrate any positive effects on maximum voluntary contraction, CK activity, or DOMS compared with any group at any time point. Creatine kinase activity was decreased in low-powered pulsed laser/light compared with placebo (P < .05) and high-powered continuous laser/light (P < .05) at all time points. High-powered continuous laser/light resulted in increased CK activity compared with placebo from 1 to 24 hours (P < .05). Low-powered pulsed laser/light demonstrated better results than either low-powered continuous laser/light or high-powered continuous laser/light in all outcome measures when compared with placebo. The increase in CK activity using the high-powered continuous laser/light compared with placebo warrants further research to investigate its effect on other factors related to muscle damage.
Aguilar-Chama, Ana; Guevara, Roger
2012-01-01
Heterogeneous distribution of resources in most plant populations results in a mosaic of plant physiological responses tending to maximize plant fitness. This includes plant responses to trophic interactions such as herbivory and mycorrhizal symbiosis which are concurrent in most plants. We explored fitness costs of 50% manual defoliation and mycorrhizal inoculation in Datura stramonium at different light availability and soil fertility environments in a greenhouse experiment. Overall, we showed that non-inoculated and mycorrhiza-inoculated plants did not suffer from 50% manual defoliation in all the tested combinations of light availability and soil fertility treatments, while soil nutrients and light availability predominately affected plant responses to the mycorrhizal inoculation. Fifty percent defoliation had a direct negative effect on reproductive traits whereas mycorrhiza-inoculated plants produced larger flowers than non-inoculated plants when light was not a limiting factor. Although D. stramonium is a facultative selfing species, other investigations had shown clear advantages of cross-pollination in this species; therefore, the effects of mycorrhizal inoculation on flower size observed in this study open new lines of inquiry for our understanding of plant responses to trophic interactions. Also in this study, we detected shifts in the limiting resources affecting plant responses to trophic interactions.
Light use efficiency of California redwood forest understory plants along a moisture gradient.
Santiago, Louis S; Dawson, Todd E
2014-02-01
We investigated photosynthesis of five plant species growing in the understory at three sites (1,170-, 1,600- and 2,100-mm annual moisture inputs), along the geographical range of coastal California redwood forest, to determine whether greater inputs of rain and fog at northern sites enhance photosynthetic utilization of fluctuating light. Measurements of understory light environment and gas exchange were carried out to determine steady state and dynamic photosynthetic responses to light. Leaf area index ranged from 4.84 at the 2,100-mm site to 5.98 at the 1,170-mm site. Maximum rates of net photosynthesis and stomatal conductance (g) did not vary appreciably within species across sites. Photosynthetic induction after a change from low to high light was significantly greater in plants growing in lower light conditions regardless of site. Photosynthetic induction also increased with the rate of g in diffuse light, prior to the increase to saturating light levels. Post-illumination CO2 assimilation was the largest factor contributing to variation in C gain during simulated lightflecks. The duration of post-illumination photosynthetic activity, total CO2 assimilation per light received, and light use efficiency during simulated lightflecks increased significantly with moisture inputs in four out of five species. Increasing leaf N concentration with increasing moisture inputs in three out of five species, coupled with changes in leaf N isotopic composition with the onset of the summer fog season suggest that natural N deposition increases with rain and fog inputs and contributes to greater utilization of fluctuating light availability in coastal California redwood forests.
Guzmán Q, J. Antonio; Cordero, Roberto A.
2016-01-01
Background and Aims Plant design refers to the construction of the plant body or its constituent parts in terms of form and function. Although neighbourhood structure is recognized as a factor that limits plant survival and species coexistence, its relative importance in plant design is not well understood. We conducted field research to analyse how the surrounding environment of neighbourhood structure and related effects on light availability are associated with changes in plant design in two understorey plants (Palicourea padifolia and Psychotria elata) within two successional stages of a cloud forest in Costa Rica. Methods Features of plant neighbourhood physical structure and light availability, estimated using hemispherical photographs, were used as variables that reflect the surrounding environment. Measures of plant biomechanics, allometry, branching and plant slenderness were used as functional plant attributes that reflect plant design. We propose a framework using a partial least squares path model and used it to test this association. Key Results The multidimensional response of plant design of these species suggests that decreases in the height-based factor of safety and increases in mechanical load and developmental stability are influenced by increases in maximum height of neighbours and a distance-dependence interference index more than neighbourhood plant density or neighbour aggregation. Changes in plant branching and slenderness are associated positively with light availability and negatively with canopy cover. Conclusions Although it has been proposed that plant design varies according to plant density and light availability, we found that neighbour size and distance-dependence interference are associated with changes in biomechanics, allometry and branching, and they must be considered as key factors that contribute to the adaptation and coexistence of these plants in this highly diverse forest community. PMID:27245635
Implementing bright light treatment for MSFC payload operations shiftworkers
NASA Technical Reports Server (NTRS)
Hayes, Benita C.; Stewart, Karen T.; Eastman, Charmane I.
1994-01-01
Intense light can phase-shift circadian rhythms and improve performance, sleep, and wellbeing during shiftwork simulations, but to date there have been very few attempts to administer light treatment to real shiftworkers. We have developed procedures for implementing light treatment and have conducted controlled trials of light treatment for MSFC Payload Operations staff during the USML-1 mission. We found that treatment had beneficial effects on fatigue, alertness, self-rated job performance, sleep, mood, and work attendance. Although there are portable bright light boxes commercially available, there is no testing protocol and little performance information available. We measure the illuminance of two candidate boxes for use in this study and found that levels were consistently lower than those advertised by manufacturers. A device was developed to enhance the illuminance output of such units. This device increased the illuminance by at least 60 % and provided additional improvements in visual comfort and overall exposure. Both the design of this device and some suggested procedures for evaluating light devices are presented.
Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions
NASA Astrophysics Data System (ADS)
Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.
2015-12-01
Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.
Means to improve light source productivity: from proof of concept to field implementation
NASA Astrophysics Data System (ADS)
Rausa, E.; Cacouris, T.; Conley, W.; Jackson, M.; Luo, S.; Murthy, S.; Rechtsteiner, G.; Steiner, K.
2016-03-01
Light source technological performance is key to enabling chipmaker yield and production success. Just as important is ensuring that performance is consistent over time to help maintain as high an uptime as possible on litho-cells (scanner and track combination). While it is common to see average tool uptime of over 99% based on service intervention time, we will show that there are opportunities to improve equipment availability through a multifaceted approach that can deliver favorable results and significantly improve on the actual production efficiency of equipment. The majority of chipmakers are putting light source data generated by tools such as Cymer OnLine (COL), OnPulse Plus, and SmartPulse to good use. These data sets, combined with in-depth knowledge of the equipment, makes it possible to draw powerful conclusions that help increase both chip manufacturing consistency as well as equipment productivity. This discussion will focus on the latter, equipment availability, and how data analysis can help increase equipment availability for Cymer customers. There are several types of opportunities for increasing equipment availability, but in general we can focus on two primary categories: 1) scheduled downtime and 2) unscheduled downtime. For equipment that is under control of a larger entity, as the laser is to the scanner, there are additional categories related to either communication errors or better synchronization of events that can maximize overall litho-cell efficiency. In this article we will focus on general availability without highlighting the specific cause of litho-cell (laser, scanner and track). The goal is to increase equipment available time with a primary focus is on opportunities to minimize errors and variabilities.
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2016-01-01
Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture. PMID:27489553
A two-metric proposal to specify the color-rendering properties of light sources for retail lighting
NASA Astrophysics Data System (ADS)
Freyssinier, Jean Paul; Rea, Mark
2010-08-01
Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.
Wu, Bo-Sen; Lefsrud, Mark G
2018-02-01
Light emitting diodes have slowly gained market share as horticultural lighting systems in greenhouses due to their rapid improvement in color performances and light outputs. These advancements have increased the availability of the full spectrum of visible wavelengths and the corresponding irradiance outputs available to plants. However, light emitting diodes owners have limited information on the proper options for personal eyewear protection as the irradiance levels have increased. The objective of this study was to measure the light transmittance performance of 12 eyewear protection including welding goggles, safety goggles, polarized glasses, and sunglasses across the human visible spectrum (380-740 nm) up to an irradiance level of 1500 W·m -2 from high-irradiant light emitting diodes assemblies. Based on the spectral measurements, certain transmitted spectra exhibited spectrum shifts or an alteration in the bimodal distribution which were different than the light emitting diodes spectra, due to the uneven transmittance efficiencies of the glasses. As for the measured transmittance percentages in two experiments, each type of eyewear protection showed distinct transmittance performances, and the performance of the tested eyewear protection was not impacted by irradiance but was dependent on the wavelength. The mean light transmittance was 1.77% for the welding glasses, 13.12% for the polarized glasses, 15.27% for the safety goggles, and 27.65% for the sunglasses. According to these measured results and the spectral weighting exposure limits from the International Electrotechnical Commission 62471 and EU directive 2006/25, consumers and workers using horticultural lighting can select welding goggles or polarized glasses, to limit the possible ocular impact of the high irradiance of monochromatic light in electrical lighting environment. Sunglasses and safety goggles would not be advised as protection, especially if infrared radiation was used.
Westerband, Andrea C; Horvitz, Carol C
2015-08-01
• For tropical forest understory plants, the ability to grow, survive, and reproduce is limited by the availability of light. The extent to which reproduction incurs a survival or growth cost may change with light availability, plant size, and adaptation to shade, and may vary among similar species.• We estimated size-specific rates of growth, survival, and reproduction (vital rates), for two neotropical understory herbs (order Zingiberales) in a premontane tropical rainforest in Costa Rica. During three annual censuses we monitored 1278 plants, measuring leaf area, number of inflorescences, and canopy openness. We fit regression models of all vital rates and evaluated them over a range of light levels. The best fitting models were selected using Akaike's Information Criterion.• All vital rates were significantly influenced by size in both species, but not always by light. Increasing light resulted in higher growth and a higher probability of reproduction in both species, but lower survival in one species. Both species grew at small sizes but shrank at larger sizes. The size at which shrinkage began differed among species and light environments. Vital rates of large individuals were more sensitive to changes in light than small individuals.• Increasing light does not always positively influence vital rates; the extent to which light affects vital rates depends on plant size. Differences among species in their abilities to thrive under different light conditions and thus occupy distinct niches may contribute to the maintenance of species diversity. © 2015 Botanical Society of America, Inc.
New device for monitoring the colors of the night
NASA Astrophysics Data System (ADS)
Spoelstra, Henk
2014-05-01
The introduction of LED lighting in the outdoor environment may increase the amount of blue light in the night sky color spectrum. This can cause more light pollution due to Rayleigh scattering of the shorter wavelengths. Blue light may also have an impact on circadian rhythm of humans due to the suppression of melatonin. At present no long-term data sets of the color spectrum of the night sky are available. In order to facilitate the monitoring of levels and variations in the night sky spectrum, a low cost multi-filter instrument has been developed. Design considerations are described as well as the choice of suitable filters, which are critical - especially in the green wavelength band from 500 to 600 nm. Filters from the optical industry were chosen for this band because available astronomical filters exclude some or all of the low and high-pressure sodium lines from lamps, which are important in light pollution research. Correction factors are calculated to correct for the detector response and filter transmissions. Results at a suburban monitoring station showed that the light levels between 500 and 600 nm are dominant during clear and cloudy skies. The relative contribution of blue light increases with a clear moonless night sky. The change in color spectrum of the night sky under moonlit skies is more complex and is still under study.
Ibáñez, Inés; McCarthy-Neumann, Sarah
2014-02-01
Understanding the dynamics of tree establishment is critical to assess forests' composition, management practices, and current responses to global change. We carried out a field seedling transplant experiment to assess not only the direct effects of resources influencing recruitment of four tree species, but also their indirect and combined effects. Our analysis integrated first growing season demographic data together with estimates of mycorrhizal fungal colonization and resource availability (light, soil moisture, and soil nitrogen). Only by considering both the direct and indirect effects of resources we were able to account for most of the variability observed during seedling recruitment. Contrary to expectations, increasing light levels were not always beneficial for recruitment even in low light habitats, and soil moisture availability benefited seedling growth but not survival. In addition, mycorrhizal fungal colonization was not always favored by high light levels or by increasing soil moisture. Seedling survival for all species was lower in plots with higher arbuscular mycorrhizal fungi, while the association with ectomycorrhizal fungi varied from beneficial to detrimental. When integrating the direct, indirect, and interactive effects of resource availability and mycorrhizal fungal colonization on tree recruitment dynamics we found that species responded in a nonlinear fashion to increasing resource levels, and we also identified thresholds, i.e., shifts in the direction of the response, along the resource gradient. Our integrated assessment considerably outperformed a null model where only direct effects of resources were accounted for. These results illustrate how the combination of direct, indirect, and combined effects of driving variables better represents the complexity of the processes determining tree species recruitment than simple resource availability mechanisms.
David Marshall
2013-01-01
Density management through thinning is the most important tool foresters have to aff ect stand development and stand structure of existing stands. Reducing stand density by thinning increases the growing space and resource availability (e.g., light, water, and nutrients) for the remaining trees. Th is can result in increased average tree growth. More available site...
Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng
2010-08-02
In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..
Mamalis, Andrew; Jagdeo, Jared
2018-05-24
Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.
NASA Astrophysics Data System (ADS)
Pena Mello Brandão, Luciana; Silva Brighenti, Ludmila; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Antônio Rodrigues Barbosa, Francisco; Pujoni, Diego; Fernandes Bezerra-Neto, José
2018-05-01
Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton ( ˜ Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, SR and SUVA254). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and SR) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.
Light at night increases body mass by shifting the time of food intake
Fonken, Laura K.; Workman, Joanna L.; Walton, James C.; Weil, Zachary M.; Morris, John S.; Haim, Abraham; Nelson, Randy J.
2010-01-01
The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans. PMID:20937863
Mullin, Lucy P; Sillett, Stephen C; Koch, George W; Tu, Kevin P; Antoine, Marie E
2009-08-01
This study examined relationships between foliar morphology and gas exchange characteristics as they vary with height within and among crowns of Sequoia sempervirens D. Don trees ranging from 29 to 113 m in height. Shoot mass:area (SMA) ratio increased with height and was less responsive to changes in light availability as height increased, suggesting a transition from light to water relations as the primary determinant of morphology with increasing height. Mass-based rates of maximum photosynthesis (A(max,m)), standardized photosynthesis (A(std,m)) and internal CO(2) conductance (g(i,m)) decreased with height and SMA, while the light compensation point, light saturation point, and mass and area-based rates of dark respiration (R(m)) increased with height and SMA. Among foliage from different heights, much of the variation in standardized photosynthesis was explained by variation in g(i,) consistent with increasing limitation of photosynthesis by internal conductance in foliage with higher SMA. The syndrome of lower internal and stomatal conductance to CO(2) and higher respiration may contribute to reductions in upper crown growth efficiency with increasing height in S. sempervirens trees.
NASA Astrophysics Data System (ADS)
Giuggiola, Arnaud; Ogée, Jérôme; Gessler, Arthur; Rigling, Andreas; Bugmann, Harald; Treydte, Kerstin
2015-04-01
Reductions in stand density foster individual tree growth due to increases of resources such as water, light and nutrients. Detailed knowledge of the short- to long-term physiological response underlying the growth response to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models such as MuSICA to study the physiological processes underlying growth enhancement in a long-term thinning experiment in a xeric Pinus sylvestris forest in Switzerland. This approach allowed for identifying and disentangling changes in stomatal conductance and assimilation rate. Our results indicate that an increase in stomatal conductance outweighs an increase in assimilation, meaning that the observed growth releases in heavy thinned trees at our xeric site are primarily driven by enhanced water availability rather than by the increase in light availability. We conclude that in areas with isohydric species (drought avoiders) that tend to grow close to their physiological limits, thinning is highly recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival rate of individual trees and forests.
Bengtsson, Mia M; Wagner, Karoline; Schwab, Clarissa; Urich, Tim; Battin, Tom J
2018-04-21
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbor an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure-function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or "microbial jungles", where in analogy to forests, diverse and multi-trophic level communities lend stability to ecosystem functioning. This multi-trophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial-driven ecosystems beyond biofilms, including planktonic and soil environments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Disorder-induced losses in photonic crystal waveguides with line defects.
Gerace, Dario; Andreani, Lucio Claudio
2004-08-15
A numerical analysis of extrinsic diffraction losses in two-dimensional photonic crystal slabs with line defects is reported. To model disorder, a Gaussian distribution of hole radii in the triangular lattice of airholes is assumed. The extrinsic losses below the light line increase quadratically with the disorder parameter, decrease slightly with increasing core thickness, and depend weakly on the hole radius. For typical values of the disorder parameter the calculated loss values of guided modes below the light line compare favorably with available experimental results.
Hagen, Nathan; Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.
2012-01-01
The snapshot advantage is a large increase in light collection efficiency available to high-dimensional measurement systems that avoid filtering and scanning. After discussing this advantage in the context of imaging spectrometry, where the greatest effort towards developing snapshot systems has been made, we describe the types of measurements where it is applicable. We then generalize it to the larger context of high-dimensional measurements, where the advantage increases geometrically with measurement dimensionality. PMID:22791926
Corinne E. Block; Jennifer D. Knoepp; Jennifer M. Fraterrigo
2013-01-01
Understanding the main and interactive effects of chronically altered resource availability and disturbance on phosphorus (P) availability is increasingly important in light of the rapid pace at which human activities are altering these processes and potentially introducing P limitation. We measured P pools and fluxes in eighteen mixed forest stands at three elevations...
Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena
2016-06-01
An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skeletal light-scattering accelerates bleaching response in reef-building corals.
Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A
2016-03-21
At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ'(S,m) as one of the key determinants of differential bleaching response.
Phototropic growth in a reef flat acroporid branching coral species.
Kaniewska, Paulina; Campbell, Paul R; Fine, Maoz; Hoegh-Guldberg, Ove
2009-03-01
Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development--the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 micromol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.
'Leaner' lighting's dramatic impact.
Kearney, Steve
2012-04-01
Steve Kearney, business manager for Newey & Eyre - Energy Saving 24/7, a team of 'energy experts' established early last year within one of the UK's leading distributors of electrical supplies, discusses the technologies and simple measures now available to reduce emissions and cut wastage generated by lighting in healthcare facilities, at a time when the NHS, especially, is under increasing pressure to reduce its carbon footprint.
Perkins, R; Williamson, C; Lavaud, J; Mouget, J-L; Campbell, D A
2018-04-16
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m -2 s -1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A - oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
Durgan, David J; Moore, Michael W S; Ha, Ngan P; Egbejimi, Oluwaseun; Fields, Anna; Mbawuike, Uchenna; Egbejimi, Anu; Shaw, Chad A; Bray, Molly S; Nannegari, Vijayalakshmi; Hickson-Bick, Diane L; Heird, William C; Dyck, Jason R B; Chandler, Margaret P; Young, Martin E
2007-10-01
Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.
Response of Antarctic cryoconite microbial communities to light.
Bagshaw, Elizabeth A; Wadham, Jemma L; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J; Fountain, Andrew G; Fitzsimons, Sean; Dubnick, Ashley
2016-06-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. © FEMS 2016.
Response of Antarctic cryoconite microbial communities to light
Bagshaw, Elizabeth A.; Wadham, Jemma L.; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J.; Fountain, Andrew G.; Fitzsimons, Sean; Dubnick, Ashley
2016-01-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. PMID:27095815
Light use efficiency for vegetables production in protected and indoor environments
NASA Astrophysics Data System (ADS)
Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio
2017-01-01
In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.
Coble, Adam P; Cavaleri, Molly A
2015-04-01
Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.
Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J
2015-03-01
Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.
Pérez-Padilla, Angeles; Magalhães, Paula; Pellón, Ricardo
2010-05-01
Activity-based anorexia occurs when food availability is restricted to 1h of the day and a wheel is freely available to the rest of the time. Under such conditions rats run excessively and stop eating even during periods in which food is available. A defining characteristic of the excessive activity is that there is a peak of running in the anticipation of food availability. The present study was designed to test whether the occurrence of the food period at different times of the light phase of the light-dark cycle (from 08:00 to 20:00h) could impede or postpone the normal development of activity anorexia. We compared the effect of presenting the food at a fixed time of the light period with presenting it on a variable schedule. Far from impeding or postponing the development of activity-based anorexia, presenting food at irregular times resulted in a pronounced body-weight loss, a low food intake and an increase in locomotor activity. Animals ran excessively, with a peak at the start of the dark period, and again when lights were turned on in the experimental room (running in the anticipation of food). Both fixed and variable schedules of food availability resulted in the development of activity-based anorexia in rats. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Markou, Giorgos; Muylaert, Koenraad
2016-09-01
Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Materials and Device Designs for Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
O'Brien, Barry Patrick
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
Homebuyer Education: A Doorway to Financial Literacy.
ERIC Educational Resources Information Center
Osteen, Sissy R.; Auberle, Tricia
2002-01-01
Discusses the need for homebuyer education in light of the increasing availability of assistance programs aimed at traditionally underserved groups such as minorities and low income groups. (Contains 10 references.) (JOW)
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.
2016-01-01
Multiple mechanisms could lead to up-regulation of dry-season photosynthesis in Amazon forests, including canopy phenology and illumination geometry. We specifically tested two mechanisms for phenology-driven changes in Amazon forests during dry-season months, and the combined evidence from passive optical and lidar satellite data was incompatible with large net changes in canopy leaf area or leaf reflectance suggested by previous studies. We therefore hypothesized that seasonal changes in the fraction of sunlit and shaded canopies, one aspect of bidirectional reflectance effects in Moderate Resolution Imaging Spectroradiometer (MODIS) data, could alter light availability for dry-season photosynthesis and the photosynthetic capacity of Amazon forests without large net changes in canopy composition. Subsequent work supports the hypothesis that seasonal changes in illumination geometry and diffuse light regulate light saturation in Amazon forests. These studies clarify the physical mechanisms that govern light availability in Amazon forests from seasonal variability in direct and diffuse illumination. Previously, in the debate over light limitation of Amazon forest productivity, seasonal changes in the distribution of light within complex Amazon forest canopies were confounded with dry-season increases in total incoming photosynthetically active radiation. In the accompanying Comment, Saleska et al. do not fully account for this confounding effect of forest structure on photosynthetic capacity.
Improved color metrics in solid-state lighting via utilization of on-chip quantum dots
NASA Astrophysics Data System (ADS)
Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.
2017-02-01
While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.
Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.
Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S
2016-09-23
Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.
Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light
Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.
2016-01-01
Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906
Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian
2016-01-01
Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs. PMID:26959499
Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian
2016-01-01
Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.
Morgan, Jessica I. W.; Pugh, Edward N.
2013-01-01
Purpose. We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. Methods. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. Results. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. Conclusions. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment. PMID:23412087
Morgan, Jessica I W; Pugh, Edward N
2013-03-01
We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment.
Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2011-01-01
Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.
Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects
NASA Astrophysics Data System (ADS)
Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.
2018-02-01
We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.
Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel
2010-06-01
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.
75 FR 9596 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
.... 20100057, Final EIS, NHTSA, 00, Corporate Average Fuel Economy (CAFE) Standards Passenger Car and Light Trucks Model Years 2012-2016, To Reduce National Energy Consumption by Increasing the Fuel Economy of...
Session 21.2 - Measurement of Light at Night
NASA Astrophysics Data System (ADS)
Wainscoat, Richard J.
2016-10-01
The introduction of the mercury vapor lamp for general lighting in the 1930s probably marked the beginning of significant light pollution. Lighting levels have increased slowly, year-to-year, with sky brightness levels increasing only slowly on timescales of a year; no measurement protocols or instruments existed to quantify this increase. However, on timescales of 10-20 years, or on generational timescales, the increases in night sky levels, particularly in urban areas, have been dramatic. Younger people speak with their parents or grandparents who remark how beautiful the sky used to be, and how many stars they could see when they when they were younger. Older people can themselves remember how many stars were visible in the sky when they were younger. Whole generations of children now grow up without ever seeing the Milky Way. Society has not had tools to easily measure sky brightness, and monitoring from space has only recently become available. A subtle increase of 10% sky brightness per year, for example, is not noticeable to the human eye on the time scale of a year, and has been tolerated by society. But such an increase compounds to an increase of a factor 2.6 in 10 years, 6.7 in 20 years, and a factor 45 in 40 years, corresponding to a dramatic increase in sky brightness, an almost complete loss in ability to see faint objects in the night sky, and rendering the sky unusable for most forms of astronomy. The most striking examples are the urban observatories found in many major cities that can no longer be used. Session 2 was primarily focused on measurement of light at night, with an emphasis on measurement of light pollution. It comprised of 6 papers that are summarized below. Over the last decade, our ability to measure light pollution has grown tremendously, and the instrumentation needed to produce reliable quantitative measurements has become much more affordable, and now includes consumer grade digital cameras and even smart phones. During this same time period, light pollution has continued to grow. The widespread changes from mostly high-pressure sodium lighting to LED lighting that are now occurring make continued monitoring and measurement of light pollution particularly important into the future. Complete presentations may be viewed at: http://www.noao.edu/education/IAUGA2015FM21
Bitton, Pierre-Paul; Harant, Ulrike K; Fritsch, Roland; Champ, Connor M; Temple, Shelby E; Michiels, Nico K
2017-03-01
The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.
Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass.
Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.
1997-10-01
Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.
Light acclimation strategies change from summer green to spring ephemeral as wild-leek plants age.
Dion, Pierre-Paul; Brisson, Jacques; Fontaine, Bastien; Lapointe, Line
2016-05-01
Spring-ephemeral forest-herbs emerge early to take advantage of the high-light conditions preceding canopy closure; they complete their life cycle in a few weeks, then senesce as the tree canopy closes. Summer greens acclimate their leaves to shade and thus manage to maintain a net carbon gain throughout summer. Differences in phenology among life stages within a species have been reported in tree saplings, whose leaf activity may extend beyond the period of shade conditions caused by mature trees. Similar phenological acclimation has seldom been studied in forest herbs. We compared wild-leek bulb growth and leaf phenology among plants from seedling to maturity and from under 4 to 60% natural light availability. We also compared leaf chlorophyll content and chl a/b ratio among seedlings and adult plants in a natural population as an indicator of photosynthetic capacity and acclimation to light environment. Overall, younger plants senesced later than mature ones. Increasing light availability delayed senescence in mature plants, while hastening seedling senescence. In natural populations, only seedlings acclimated to the natural reduction in light availability through time. Wild-leek seedlings exhibit a summer-green phenology, whereas mature plants behave as true spring ephemerals. Growth appears to be more source-limited in seedlings than in mature plants. This modulation of phenological strategy, if confirmed in other species, would require a review of the current classification of species as either spring ephemerals, summer greens, wintergreens, or evergreens. © 2016 Botanical Society of America.
Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.
Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A
2016-06-01
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.
Choice, Zanethia D; Frazer, Thomas K; Jacoby, Charles A
2014-04-15
Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8% to 10% of surface irradiance for Halophila engelmannii to 25-27% of surface irradiance for Halodule wrightii. Requirements for all species differed from previous reports generated at other locations. Variations were attributed to morphological and physiological differences, as well as adaptation to light histories at specific locations. In addition, seagrasses were absent from stations with significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a and color. These results confirm the need to address links between increased anthropogenic nutrient loads, eutrophication, reduced light penetration, and loss of seagrasses and the services they provide. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro
A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.
Goyal, Neha; Shah, Kanhaiya; Sharma, Gyan Prakash
2018-06-19
Ricinus communis L. colonizes heterogeneous urban landscapes as monospecific thickets. The ecological understanding on colonization success of R. communis population due to variable light availability is lacking. Therefore, to understand the effect of intrinsic light heterogeneity on species' population dynamics, R. communis populations exposed to variable light availability (low, intermediate, and high) were examined for performance strategies through estimation of key vegetative, eco-physiological, biochemical, and reproductive traits. Considerable variability existed in studied plant traits in response to available light. Individuals inhabiting high-light conditions exhibited high eco-physiological efficiency and reproductive performance that potentially confers population boom. Individuals exposed to low light showed poor performance in terms of eco-physiology and reproduction, which attribute to bust. However, individuals in intermediate light were observed to be indeterminate to light availability, potentially undergoing trait modulations with uncertainty of available light. Heterogeneous light availability potentially drives the boom and bust cycles in R. communis monospecific thickets. Such boom and bust cycles subsequently affect species' dominance, persistence, collapse, and/or resurgence as an aggressive colonizer in contrasting urban environments. The study fosters extensive monitoring of R. communis thickets to probe underlying mechanism(s) affecting expansions and/or collapses of colonizing populations.
Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen
2016-11-01
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.
Zhang, Chunhui; Willis, Charles G; Burghardt, Liana T; Qi, Wei; Liu, Kun; Souza-Filho, Paulo Roberto de Moura; Ma, Zhen; Du, Guozhen
2014-11-01
Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Effect of Pulsing in Low-Level Light Therapy
Hashmi, Javad T.; Huang, Ying-Ying; Sharma, Sulbha K.; Kurup, Divya Balachandran; De Taboada, Luis; Carroll, James D.; Hamblin, Michael R.
2010-01-01
Background and Objective Low level light (or laser) therapy (LLLT) is a rapidly growing modality used in physical therapy, chiropractic, sports medicine and increasingly in mainstream medicine. LLLT is used to increase wound healing and tissue regeneration, to relieve pain and inflammation, to prevent tissue death, to mitigate degeneration in many neurological indications. While some agreement has emerged on the best wavelengths of light and a range of acceptable dosages to be used (irradiance and fluence), there is no agreement on whether continuous wave or pulsed light is best and on what factors govern the pulse parameters to be chosen. Study Design/Materials and Methods The published peer-reviewed literature was reviewed between 1970 and 2010. Results The basic molecular and cellular mechanisms of LLLT are discussed. The type of pulsed light sources available and the parameters that govern their pulse structure are outlined. Studies that have compared continuous wave and pulsed light in both animals and patients are reviewed. Frequencies used in other pulsed modalities used in physical therapy and biomedicine are compared to those used in LLLT. Conclusion There is some evidence that pulsed light does have effects that are different from those of continuous wave light. However further work is needed to define these effects for different disease conditions and pulse structures. PMID:20662021
Effect of pulsing in low-level light therapy.
Hashmi, Javad T; Huang, Ying-Ying; Sharma, Sulbha K; Kurup, Divya Balachandran; De Taboada, Luis; Carroll, James D; Hamblin, Michael R
2010-08-01
Low level light (or laser) therapy (LLLT) is a rapidly growing modality used in physical therapy, chiropractic, sports medicine and increasingly in mainstream medicine. LLLT is used to increase wound healing and tissue regeneration, to relieve pain and inflammation, to prevent tissue death, to mitigate degeneration in many neurological indications. While some agreement has emerged on the best wavelengths of light and a range of acceptable dosages to be used (irradiance and fluence), there is no agreement on whether continuous wave or pulsed light is best and on what factors govern the pulse parameters to be chosen. The published peer-reviewed literature was reviewed between 1970 and 2010. The basic molecular and cellular mechanisms of LLLT are discussed. The type of pulsed light sources available and the parameters that govern their pulse structure are outlined. Studies that have compared continuous wave and pulsed light in both animals and patients are reviewed. Frequencies used in other pulsed modalities used in physical therapy and biomedicine are compared to those used in LLLT. There is some evidence that pulsed light does have effects that are different from those of continuous wave light. However further work is needed to define these effects for different disease conditions and pulse structures. (c) 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jerzykiewicz, M.; Sterken, C.; Kubiak, M.
1988-03-01
Differential uvby observations of the well-known β Cephei star δ Cet, obtained on seven nights in 1981 and on one night in 1982, are presented and analysed. Contrary to a recent report, no variation in the shape of the light curves is found. However, a marginal night-to-night variation of the 1981 amplitudes is noted. It is then demonstrated that the amplitude variation was caused either by a secondary short-period component with an amplitude not exceeding 0m.0016, or by slow drifts in the differential magnitudes. In addition, it is shown that all available epochs of maximum light, except three unreliable ones, can be accounted for by a parabolic ephemeris which implies an increase of the period at a rate of 0.47 ± 0.09 sec/century. However, it is also shown that the epochs of maximum light from 1963 onwards can be satisfactorily represented with a constant period, equal to 0d.16113762 ± 0d.00000002. The available epochs of maximum radial-velocity are then examined. No compelling evidence for a variation of the phase lag between the light and radial-velocity curves is found. From modern radial-velocity data, a phase lag equal to 0.200 ± 0.005 is derived. Finally, it is shown that the available photometric observations are still not sufficient to detect a secular light amplitude change.
NASA Astrophysics Data System (ADS)
Fay, P. A.; Collins, H.; Polley, W.
2016-12-01
Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p < 0.001). Vegetative biomass increased, decreased, or did not respond to CO2 enrichment depending on the species. For the increasing species Sorghastrum nutans (C4 grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p < 0.0001, Schizachyrium scoparius, C4 grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave unchanged the potential for genetic variability and evolutionary change in future generations in response to global change drivers.
NASA Astrophysics Data System (ADS)
Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin
2012-03-01
Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.
Cavatte, Paulo C; Rodríguez-López, Nélson F; Martins, Samuel C V; Mattos, Mariela S; Sanglard, Lílian M V P; Damatta, Fábio M
2012-05-01
In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR.
Light-at-night, circadian disruption and breast cancer: assessment of existing evidence.
Stevens, Richard G
2009-08-01
Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.
Coble, Adam P; Cavaleri, Molly A
2014-02-01
Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.
Roscher, C; Kutsch, W L; Schulze, E-D
2011-01-01
Positive species richness effects on aboveground community productivity in experimental grasslands have been reported to correlate with variable responses of individual species. So far, it is largely unknown whether more complete use of resources at the community level correlates with resource limitation of particular species and may explain their decreasing performance with increasing plant diversity. Using the subordinate grass species Lolium perenne L. as a model, we monitored populations in 82 experimental grasslands of different plant diversity (Jena Experiment) from year 2 to 6 after establishment, and measured ecophysiological leaf traits related to light and nutrient acquisition and use. Population and plant individual sizes of L. perenne decreased with increasing species richness. A decrease in transmitted light with increasing species richness and legume proportion correlated with increasing specific leaf area (SLA). Despite this morphological adaptation to lower light availability, decreasing foliar δ(13) C signatures with increasing species richness and low variation in leaf gas exchange and chlorophyll concentrations suggested a low capacity of L. perenne for adjustment to canopy shade. Leaf nitrogen concentrations and foliar δ(15) N signatures indicated a better N supply in communities with legumes and a shift in the uptake of different N forms with increasing species richness. Leaf blade nitrate and carbohydrate concentrations as indicators of plants nutritional status supported that light limitation with increasing species richness and legume proportions, combined with a N limitation in communities with increasing proportions of non-legumes, correlated with the decreasing performance of L. perenne in communities of increasing plant diversity. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
DUV light source availability improvement via further enhancement of gas management technologies
NASA Astrophysics Data System (ADS)
Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.
2011-04-01
The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.
Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong
2014-01-01
This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability. PMID:25208975
Single bright light exposure decreases sweet taste threshold in healthy volunteers.
Srivastava, Shrikant; Donaldson, Lucy F; Rai, Dheeraj; Melichar, Jan K; Potokar, John
2013-10-01
Bright light exposure can alter circulating serotonin levels, and alteration of available serotonin by acute selective serotonin reuptake inhibition significantly lowers sweet but not salt taste recognition thresholds. We tested the hypothesis that bright light exposure would increase sweet but not salt taste sensitivity in healthy adults. Fourteen healthy volunteers were exposed to bright (10,000 lux) and dim (<20 lux) light for 30 min each, in counterbalanced order. Measures of taste perception (salt and sweet) and mood were determined at baseline, and before and after each light exposure period. Recognition thresholds for sucrose were significantly lower after bright but not dim light exposure. Thresholds for salt were unaffected by either condition. There were no significant changes in taste acuity, intensity or pleasantness for both the taste modalities and on visual analogue scales (VASs) for mood, anxiety, sleepiness and alertness, under either light condition. Brief bright light exposure reduces sweet but not salt taste recognition thresholds in healthy humans.
D.R. Warren; W.S. Keeton; H.A. Bechtold; E.J. Rosi-Marshall
2013-01-01
Light availability strongly influences stream primary production, water temperatures and resource availability at the base of stream food webs. In headwater streams, light is regulated primarily by the riparian forest, but few studies have evaluated the influence of riparian forest stand age and associated structural differences on light availability. In this study, we...
Santos, Leonardo D T; Da Cruz, Leandro R; Dos Santos, Samuel A; Sant'anna-Santos, Bruno F; Dos Santos, Izabela T; De Oliveira, Ariane M; Barros, Rodrigo E; Santos, Márcia V; Faria, Rodrigo M
2015-03-01
Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii and Pueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloides plants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity of N. wightii and P. phaseoloides, no effects on biomass accumulation were observed in response to light.
Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.
2014-01-01
Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context. PMID:25400642
Effects of climate change and UV-B on materials.
Andrady, Anthony L; Hamid, Halim S; Torikai, Ayako
2003-01-01
The outdoor service life of common plastic materials is limited by their susceptibility to solar ultraviolet radiation. Of the solar wavelengths the UV-B component is particularly efficient in bringing about photodamage in synthetic and naturally occurring materials. This is particularly true of plastics, rubber and wood used in the building and agricultural industries. Any depletion in the stratospheric ozone layer and resulting increase in the UV-B component of terrestrial sunlight will therefore tend to decrease the service life of these materials. The extent to which the service life is reduced is, however, difficult to estimate as it depends on several factors. These include the chemical nature of the material, the additives it contains, the type and the amount of light-stabilizers (or protective coatings) used, and the amount of solar exposure it receives. Concomitant climate change is likely to increase the ambient temperature and humidity in some of the same regions likely to receive increased UV-B radiation. These factors, particularly higher temperatures, are also well known to accelerate the rate of photodegradation of materials, and may therefore further limit the service life of materials in these regions. To reliably assess the damage to materials as a consequence of ozone layer depletion, the wavelength sensitivity of the degradation process, dose-response relationships for the material and the effectiveness of available stabilizers need to be quantified. The data needed for the purpose are not readily available at this time for most of the commonly used plastics or wood materials. Wavelength sensitivity of a number of common plastic materials and natural biopolymers are available and generally show the damage (per photon) to decrease exponentially with the wavelength. Despite the relatively higher fraction of UV-A in sunlight, the UV-B content is responsible for a significant part of light-induced damage of materials. The primary approach to mitigation relies on the effectiveness of the existing light stabilizers (such as hindered amine light stabilizers, HALS) used in plastics exposed to harsh solar UV conditions coupled with climate change factors. In developing advanced light-stabilizer technologies, more light-resistant grades of common plastics, or surface protection technologies for wood, the harsh weathering environment created by the simultaneous action of increased UV-B levels due to ozone depletion as well as the relevant climate change factors need to be taken into consideration. Recent literature includes several studies on synergism of HALS-based stabilizers, stabilizer effectiveness in the new m-polyolefins and elucidation of the mechanism of stabilization afforded by titania pigment in vinyl plastics.
Garvey, Mary; Rowan, Neil
2015-06-01
The use of ultraviolet (UV) light for water disinfection has become increasingly popular due to on-going issues with drinking water and public health. Pulsed UV light has proved to be an effective form of inactivating a range of pathogens including parasite species. However, there are limited data available on the use of pulsed UV light for the disinfection of flowing water in the absence or presence of inorganic contaminants commonly found in water sources. Here, we report on the inactivation of test species including Bacillus endospores following pulsed UV treatment as a flow through system. Significant levels of inactivation were obtained for both retention times tested. The presence of inorganic contaminants iron and/or manganese did affect the rate of disinfection, predominantly resulting in an increase in the levels of inactivation at certain UV doses. The findings of this study suggest that pulsed UV light may provide a method of water disinfection as it successfully inactivated bacterial cells and bacterial endospores in the absence and presence of inorganic contaminants.
Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.
Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik
2006-01-01
Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.
Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.
2011-01-01
Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234
Liquid crystal light valve technologies for display applications
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroshi; Takizawa, Kuniharu
2001-11-01
The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.
Teaching meta-analysis using MetaLight.
Thomas, James; Graziosi, Sergio; Higgins, Steve; Coe, Robert; Torgerson, Carole; Newman, Mark
2012-10-18
Meta-analysis is a statistical method for combining the results of primary studies. It is often used in systematic reviews and is increasingly a method and topic that appears in student dissertations. MetaLight is a freely available software application that runs simple meta-analyses and contains specific functionality to facilitate the teaching and learning of meta-analysis. While there are many courses and resources for meta-analysis available and numerous software applications to run meta-analyses, there are few pieces of software which are aimed specifically at helping those teaching and learning meta-analysis. Valuable teaching time can be spent learning the mechanics of a new software application, rather than on the principles and practices of meta-analysis. We discuss ways in which the MetaLight tool can be used to present some of the main issues involved in undertaking and interpreting a meta-analysis. While there are many software tools available for conducting meta-analysis, in the context of a teaching programme such software can require expenditure both in terms of money and in terms of the time it takes to learn how to use it. MetaLight was developed specifically as a tool to facilitate the teaching and learning of meta-analysis and we have presented here some of the ways it might be used in a training situation.
Zuidema, Pieter A.; Martínez-Ramos, Miguel
2009-01-01
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1540-5) contains supplementary material, which is available to authorized users. PMID:20033820
DWDM-PON at 25 GHz channel spacing based on ASE injection seeding.
Kim, Joon-Young; Moon, Sang-Rok; Yoo, Sang-Hwa; Lee, Chang-Hee
2012-12-10
We demonstrate a 25 GHz-channel-spaced DWDM-PON based on ASE injection seeding. A 60 km transmission at 1.25 Gb/s per channel is available with a 2nd generation FEC. The major limiting factor is the optical back reflection induced penalty. Thus a high gain reflective modulator and/or relocation of the seed light increase the transmission length. We demonstrated 90 km transmission with relocated seed light to remote node.
Composition of the low seismic velocity E' layer at the top of Earth's core
NASA Astrophysics Data System (ADS)
Badro, J.; Brodholt, J. P.
2017-12-01
Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer consistent with seismological observations.
NASA Astrophysics Data System (ADS)
Levine, Lanfang; Bisbee, Patricia; Pare, Paul
The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.
Murphy, Jennifer E; Burns, Jean H; Fougère-Danezan, Marie; Drenovsky, Rebecca E
2016-12-01
Functional trait plasticity in resource capture traits has been suggested as an underlying mechanism promoting invasive species establishment and spread. Earlier studies on this mechanism treat invasiveness as a discrete characteristic (i.e., invasive vs. noninvasive) and do not consider the potential impacts of evolutionary history. In the present study, we used a continuous measure of invasiveness and a phylogenetic framework to quantify the relationship between functional trait expression, plasticity, and invasiveness in Rosa. In a manipulative greenhouse experiment, we evaluated how light availability affects functional traits and their plasticity in Rosa sp. and the out-group species, Potentilla recta, which vary in their invasiveness. Across functional traits, we found no significant relationship between plasticity and invasiveness. However, more invasive roses demonstrated an ability to produce a more branched plant architecture, promoting optimal light capture. Invasiveness also was linked with lower photosynthetic and stomatal conductance rates, leading to increased water-use efficiency (WUE) in more invasive roses. Our results suggest that functional trait values, rather than plasticity, promote invasive rose success, counter to earlier predictions about the role of plasticity in invasiveness. Furthermore, our study indicates that invasive roses demonstrate key functional traits, such as increased WUE, to promote their success in the high-light, edge habitats they commonly invade. © 2016 Botanical Society of America.
Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework
Kroes, Thomas; Post, Frits H.; Botha, Charl P.
2012-01-01
The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license. PMID:22768292
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... to the sensitive desert landscape, vegetation communities, and vegetative food resources for wildlife... operations and following closure; increase in light pollution in the areas and direct visual impacts from...
Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape.
Hale, James D; Davies, Gemma; Fairbrass, Alison J; Matthews, Thomas J; Rogers, Christopher D F; Sadler, Jon P
2013-01-01
Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape
Hale, James D.; Davies, Gemma; Fairbrass, Alison J.; Matthews, Thomas J.; Rogers, Christopher D. F.; Sadler, Jon P.
2013-01-01
Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city’s brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas. PMID:23671566
NASA Astrophysics Data System (ADS)
Han, Qiaofeng; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong
2017-05-01
It is very significant to develop CH3COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.
All about Eve: Secret Sharing using Quantum Effects
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
2005-01-01
This document discusses the nature of light (including classical light and photons), encryption, quantum key distribution (QKD), light polarization and beamsplitters and their application to information communication. A quantum of light represents the smallest possible subdivision of radiant energy (light) and is called a photon. The QKD key generation sequence is outlined including the receiver broadcasting the initial signal indicating reception availability, timing pulses from the sender to provide reference for gated detection of photons, the sender generating photons through random polarization while the receiver detects photons with random polarization and communicating via data link to mutually establish random keys. The QKD network vision includes inter-SATCOM, point-to-point Gnd Fiber and SATCOM-fiber nodes. QKD offers an unconditionally secure method of exchanging encryption keys. Ongoing research will focus on how to increase the key generation rate.
Li, Ting [Ventura, CA
2011-04-26
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.
Zheng, Ying; Giordano, Mario; Gao, Kunshan
2015-05-15
Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 μmol L(-1)) or high (800 μmol L(-1)) [NO3(-)] and at high (1000 μatm) or low (390 μatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) μmol m(-2) s(-1) or (2) fluctuating light between 100 or 500 μmol photons m(-2) s(-1) with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 μmol m(-2) s(-1), and always higher at 500 μmol m(-2) s(-1). Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties. Copyright © 2015 Elsevier GmbH. All rights reserved.
ERIC Educational Resources Information Center
McFarlane, Donovan A.
2011-01-01
This paper examines the leadership roles of distance learning administrators (DLAs) in light of the demand and need for value and quality in educational distance learning programs and schools. The author explores the development of distance learning using available and emerging technologies in relation to increased demand for education, training,…
2011-01-01
Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread in European resource-rich riparian forests and impedes its establishment under closed-canopy hardwood forests. PMID:22115342
NASA Astrophysics Data System (ADS)
Julian, J. P.; Doyle, M. W.; Stanley, E. H.
2006-12-01
Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).
Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D
2007-08-01
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.
Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard
2015-01-01
Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109
Bright light induces choroidal thickening in chickens.
Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank
2013-11-01
Bright light is a potent inhibitor of myopia development in animal models. Because development of refractive errors has been linked to changes in choroidal thickness, we have studied in chickens whether bright light may exert its effects on myopia also through changes in choroidal thickness. Three-day-old chickens were exposed to "bright light" (15,000 lux; n = 14) from 10 AM to 4 PM but kept under "normal light" (500 lux) during the remaining time of the light phase for 5 days (total duration of light phase 8 AM to 6 PM). A control group (n = 14) was kept under normal light during the entire light phase. Choroidal thickness was measured in alert, hand-held animals with optical coherence tomography at 10 AM, 4 PM, and 8 PM every day. Complete data sets were available for 12 chicks in bright light group and nine in normal light group. The striking inter-individual variability in choroidal thickness (coefficient of variance: 23%) made it necessary to normalize changes to the individual baseline thickness of the choroid. During the 6 hours of exposure to bright light, choroidal thickness decreased by -5.2 ± 4.0% (mean ± SEM). By contrast, in the group kept under normal light, choroidal thickness increased by +15.4 ± 4.7% (difference between both groups p = 0.003). After an additional 4 hours, choroidal thickness increased also in the "bright light group" by +17.8 ± 3.5%, while there was little further change (+0.6 ± 4.0%) in the "normal light group" (difference p = 0.004). Finally, the choroid was thicker in the "bright light group" (+7.6 ± 26.0%) than in the "normal light group" (day 5: -18.6 ± 26.9%; difference p = 0.036). Bright light stimulates choroidal thickening in chickens, although the response is smaller than with experimentally imposed myopic defocus, and it occurs with some time delay. It nevertheless suggests that choroidal thickening is also involved in myopia inhibition by bright light.
Coble, Adam P; Cavaleri, Molly A
2017-10-01
A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Niinemets, Ülo; Keenan, Trevor
2017-04-01
Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy formation had lower within canopy plasticity during the growing season and in response to environmental and site modifications than species with high rates of canopy expansion and leaf turnover. The fast canopy-expanding species that grow in highly dynamic light environments, actively modified Aarea by nitrogen reallocation among and partitioning within leaves. In contrast, species with low rate of leaf turnover generally exhibited a passive acclimation response with variation in Aarea primarily determined by light-dependent modifications in leaf structure during leaf growth. Due to limited reacclimation capacity in species with low leaf turnover, within-canopy variation in Aarea decreased with increasing leaf age in these species. Furthermore, the plasticity responded less to modifications in environmental and site characteristics than in species with faster leaf turnover. This analysis concludes that the rate of leaf turnover is the key trait determining the temporal variation and environmental responses of canopy photosynthetic acclimation.
Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis
Niinemets, Ülo
2018-01-01
Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (NA) and photosynthetic capacity (AA) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (MA) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, MA and NA plasticity decreased with increasing leaf age, but the change in AA plasticity was less suggesting a certain re-acclimation of AA to altered light. In deciduous woody species, MA and NA gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, trait gradients increased constantly with increasing leaf age. In forbs, NA plasticity increased, while in grasses, NA plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID:27033356
Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.
de Jong, Ebbing P; Lucy, Charles A
2006-05-01
Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.
Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S
2017-03-01
The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.
Vulnerability Analysis of an All-Electric Warship
2010-06-01
active. Damage Control: Fire fighting, dewatering, lighting, electrical receptacles (for powering damage control equipment such as submersible pumps ...sufficient radar not available. This also requires an increase in chill water capacity by adding pump , compressor, and ASW pump . Remaining ventilation systems...Activate towed-array sonar, if applicable. Increase speed to 25 knots. Non-Vital Loads: All non-vital loads. Examples include galley equipment, heat
Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.
Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide
2004-01-01
Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plantâanimal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...
Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2016-01-01
Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs) and two growth statures (small, tall), and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1) and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass). Both trait-independent complementarity effects (TICE: +21%) and dominance effects (DE: +12%) positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%). Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that positive diversity effects are possible in grass-forb mixtures irrespective of differences in light availability, but that the chance for the complementary use of resources increases when nutrients are not available at excess.
Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2016-01-01
Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs) and two growth statures (small, tall), and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1) and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass). Both trait-independent complementarity effects (TICE: +21%) and dominance effects (DE: +12%) positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%). Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that positive diversity effects are possible in grass-forb mixtures irrespective of differences in light availability, but that the chance for the complementary use of resources increases when nutrients are not available at excess. PMID:27341495
Light energy conservation processes in Halobacterium halobium cells
NASA Technical Reports Server (NTRS)
Bogomolni, R. A.
1977-01-01
Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ting
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less
Ferreira, V S; Pinto, R F; Sant'Anna, C
2016-03-01
Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.
Rungruangsak-Torrissen, Krisna; Sunde, Jan; Berg, Arne Erik; Nordgarden, Ulla; Fjelldal, Per Gunnar; Oppedal, Frode
2009-06-01
This study comprised the results of three different seawater trials using unique combination of techniques to study protease digestive efficiency and growth performance quality to illustrate the effects of light regimes and vaccine types in Atlantic salmon (Salmo salar L.). Fish with higher growth had higher trypsin (T) and chymotrypsin (C) specific activities with higher T/C ratio or slope T/C ratio [calculated from the regression between trypsin (y) and chymotrypsin (x) specific activities] in the pyloric caeca. The T/C ratios indicated fish growth rates over a period of 1-2 months, while the slope T/C ratios indicated fish growth rates at sampling. Adaptation period for adjustment to the new environment of continuous light was 70 days, indicated by the differences in trypsin specific activities and the crossing of slope T/C ratio regressions following with the changes in growth rate directions between the control and the treated group. Vaccine types affected fish vertebral growth, and additional continuous light enhanced the impact of vaccines on fish growth during springtime, indicated by differences in slope T/C ratios. Continuous light stimulated fish growth during winter to spring, when the natural day length was short, without significantly changing white muscle and oocyte qualities in the fish of about 500 g, except for significantly increased white muscle RNA concentration. Continuous light also reduced fish growth rate later during summer, when the natural day length was long, by precedently decreasing the T/C ratio in late spring. Interestingly, plasma levels of free lysine related to tryptic digestion were correlated with trypsin specific activity levels. Continuous light caused higher levels of most free amino acids (FAA) involved in nitrogen metabolism, higher incorporation of essential FAA for protein synthesis, and higher protein turnover rate (free hydroxyproline levels) in both plasma and white muscle. However, continuous light did not affect higher protein content, intracellular buffering capacity and RNA levels in the white muscle of the fish of about 1 kg, probably due to limitation of FAA available for protein synthesis. It is therefore suggested that enhancing fish growth by continuous light stimulation should be accompanied by increasing availability or content of dietary protein (and probably minerals), which in turn would improve the quality of fish growth performance through increasing fillet protein concentration, strengthening vertebral growth, and delaying oocyte development.
Odzak, Niksa; Kistler, David; Sigg, Laura
2017-07-01
Nanoparticles, such as silver (Ag-NP) and zinc oxide (ZnO-NP), are increasingly used in many consumer products. These nanoparticles (NPs) will likely be exposed to the aquatic environment (rain, river, lake water) and to light (visible and UV) in the products where they are applied, or after those products are discharged. Dissolution of Ag-NP and ZnO-NP is an important process because the dissolved Ag + and Zn 2+ are readily available and toxic for aquatic organisms. The objective of this study was to investigate the role of daylight (UV and visible) for the fate of engineered Ag-NP and ZnO-NPs in different types of natural waters. Ag-NP and ZnO-NP were exposed to rainwater, river Rhine, and lake waters (Greifen, Lucerne, Cristallina, Gruère) under different light conditions (no light, UV 300-400 nm and visible light 400-700 nm) for up to 8 days. Stronger agglomeration of Ag-NP was observed in the waters with higher ionic strength in comparison to those with lower ionic strength. Visible light tended to increase the dissolution of Ag-NP under most natural water conditions in comparison to dark conditions, whereas UV-light led to decreased dissolved Ag + after longer exposure time. These effects illustrate the dynamic interactions of Ag-NP with light, which may lead both to increased oxidation and to increased reduction of Ag + by organic compounds under UV-light. In the case of ZnO-NP, agglomeration occurred at higher ionic strength, but the effects of pH were predominant for dissolution, which occurred up to concentrations close to the solubility limit of ZnO(s) at pH around 8.2 and to nearly complete dissolution of ZnO-NP at lower pH (pH 4.8-6.5), with both visible and UV-light facilitating dissolution. This study thus shows that light conditions play an important role in the dissolution processes of nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation
NASA Astrophysics Data System (ADS)
Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.
2010-12-01
Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.
The application of traffic-light food labelling in a worksite canteen intervention in Taiwan.
Chen, H-J; Weng, S-H; Cheng, Y-Y; Lord, A Y Z; Lin, H-H; Pan, W-H
2017-09-01
This study evaluated customer attitudes, perceptions, and utilisation of a traffic-light food labelling (TFL) programme before and after the TFL was implemented in a worksite canteen in Taiwan. A one-arm intervention was implemented in the canteen and buffet of a research park in Taiwan. Phase 1 consisted of dissemination of information regarding the TFL, targeting the customers (June-July, 2014); phase 2 consisted of implementation of the TFL in the buffet starting in August 2014. The TFL included red, yellow and green labels, indicating 'unhealthy/stop', 'moderately unhealthy/wait' and 'healthy/go', respectively. The evaluation was based on two independent anonymous surveys in July 2014 (in phase 1) and April 2015 (in phase 2). Customers were invited to take a survey regarding the TFL programme, the food environment in the canteen, and their lunch choices. Logistic regression models examined the changes in customers' attention and attitudes towards the labelling and their food choices between the two surveys. The customers reported positive attitudes towards the TFL. The proportion of customers who reported choosing foods based on the recommendations increased from 38% to 50% (P < 0.01). The proportion of the buffet customers who chose green-light entrées and red-light entrées changed from 13% and 63% to 36% and 21%, respectively (P < 0.001). The availability of green-light entrées in the buffet increased as well. This first report of a TFL intervention in an Asian worksite suggests that TFL is acceptable and well understood by this population and may assist customers in choosing healthier items when healthier choices are available. Copyright © 2017. Published by Elsevier Ltd.
Amazon forests did not green up during the 2005 drought
NASA Astrophysics Data System (ADS)
Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E. F.; Knyazikhin, Y.; Nemani, R. R.; Myneni, R. B.
2009-12-01
The sensitivity of Amazon rainforests to dry-season droughts remains unresolved with reports of enhanced tree mortality and forest fires, on one hand, and, excessive forest green-up, on the other. Here using the latest and improved version of satellite-derived vegetation greenness data - Collection 5 (C5) Enhanced Vegetation Index (EVI) - we report that the there is no evidence of large-scale greening of the Amazon during the 2005 drought - approximately 11%-12% of these forests display greening, while, 28%-29% show browning or no-change, and for the rest the data are not of sufficient quality to characterize any changes. In addition, independent satellite-derived data on precipitation, surface radiation and aerosols do not substantiate underlying assumptions of the hypothesis of enhanced photosynthetic capacity of intact Amazon forests stimulated by increased light availability during a drought. First, interannual changes in dry-season greenness are unrelated to concurrent changes in light availability. Second, the 2005 drought cannot be used as a surrogate for light availability to these rainforests owing to persistently high aerosol loads in the atmosphere. Third, the spatial extent and magnitude of greening do not change systematically with drought severity. Finally, the changes in vegetation activity of these forests during the drought-stricken dry season of 2005 are not unique in comparison to that observed during dry seasons of non-drought years. Our analysis also demonstrates the critical role of biomass burning aerosols in limiting light availability to water stressed Amazon forests during the dry season of 2005. This will have important implications for the sensitivity of these forests to similar droughts in future.
Light Pollution at Mount Wilson: Effect of Lighting Technology Changes
NASA Astrophysics Data System (ADS)
Garstang, R. H.
2000-05-01
In an earlier paper (Bull. AAS. 30, 838, 1998; Mem. Soc. Astr. Italia, in press, 2000) I studied the effects of population growth and of smog on the historical growth of light pollution at Mount Wilson. I have now done some very crude calculations to evaluate the effect of changes in lighting technology - the most important change being from incandescent lamps to mercury vapor lamps to high pressure sodium lamps in street lighting. I am greatly indebted to George Eslinger, lately Director of the Bureau of Public Lighting of the City of Los Angeles, for information on the numbers and types of street lights in that City. The ratio of numbers of lamps of different kinds throughout the Los Angeles basin at any given date has been assumed to be the same as in the City. The contributions to the photon output in the B and V photometric bands have been estimated. The calculations show a rate of increase of the V brightness greater than that obtained if lighting changes are neglected. The B brightness shows a maximum during the period when mercury vapor street lighting predominated. I hope to refine my calculations when additional information becomes available.
Cryptogein-Induced Transcriptional Reprogramming in Tobacco Is Light Dependent1[C][W
Hoeberichts, Frank A.; Davoine, Céline; Vandorpe, Michaël; Morsa, Stijn; Ksas, Brigitte; Stassen, Catherine; Triantaphylidès, Christian; Van Breusegem, Frank
2013-01-01
The fungal elicitor cryptogein triggers a light-dependent hypersensitive response in tobacco (Nicotiana tabacum). To assess the effect of light on this nonhost resistance in more detail, we studied various aspects of the response under dark and light conditions using the tobacco-cryptogein experimental system. Here, we show that light drastically alters the plant’s transcriptional response to cryptogein, notably by dampening the induction of genes involved in multiple processes, such as ethylene biosynthesis, secondary metabolism, and glutathione turnover. Furthermore, chlorophyll fluorescence measurements demonstrated that quantum yield and functioning of the light-harvesting antennae decreased simultaneously, indicating that photoinhibition underlies the observed decreased photosynthesis and that photooxidative damage might be involved in the establishment of the altered response. Analysis of the isomer distribution of hydroxy fatty acids illustrated that, in the light, lipid peroxidation was predominantly due to the production of singlet oxygen. Differences in (reduced) glutathione concentrations and the rapid development of symptoms in the light when cryptogein was coinfiltrated with glutathione biosynthesis inhibitors suggest that glutathione might become a limiting factor during the cryptogein-induced hypersensitive response in the dark and that this response might be modified by an increased antioxidant availability in the light. PMID:23878079
Evaluation of inorganic and organic light-emitting diode displays for signage application
NASA Astrophysics Data System (ADS)
Sharma, Pratibha; Kwok, Harry
2006-08-01
High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the conventional, inorganic LEDs. But, signage panels based on OLEDs can be made cheaper by avoiding the use of acrylic sheet and reflective gratings. Moreover, the distributed light output and light weight of OLEDs and the potential to be built inexpensively on flexible substrates can make OLEDs more beneficial for future signage applications than the inorganic LEDs.
Successional changes in functional composition contrast for dry and wet tropical forest.
Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans
2013-06-01
We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.
Growing fresh food on future space missions: Environmental conditions and crop management.
Meinen, Esther; Dueck, Tom; Kempkes, Frank; Stanghellini, Cecilia
2018-05-17
This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work done in preparation of the deployment of a mobile test facility for vegetable production of fresh food at the Neumayer III Antarctic research station. A selection of vegetable crops was grown under varying light and temperature conditions to quantify crop yield response to climate factors that determine resource requirement of the production system. Crops were grown at 21 °C or 25 °C under light treatments varying from 200 to 600 μmol m -2 s -1 and simulated the dusk and dawn light spectrum. Fresh food biomass was harvested as spread harvesting (lettuce), before and after regrowth (herbs) and at the end of cultivation. Lettuce and red mustard responded well to increasing light intensities, by 35-90% with increasing light from 200 to 600 μmol m -2 s -1 , while the other crops responded more variably. However, the quality of the leafy greens often deteriorated at higher light intensities. The fruit biomass of both determinate tomato and cucumber increased by 8-15% from 300 to 600 μmol m -2 s -1 . With the increase in biomass, the number of tomato fruits also increased, while the number of cucumber fruits decreased, resulting in heavier individual fruits. Increasing the temperature had varied effects on production. While in some cases the production increased, regrowth of herbs often lagged behind in the 25 °C treatment. In terms of fresh food production, the most can be expected from lettuce, cucumber, radish, then tomato, although the 2 fruit vegetables require a considerable amount of crop management. Spread harvesting had a large influence on the amount of harvested biomass per unit area. In particular, yield of the 3 lettuce cultivars and spinach was ca. 400% than single harvesting. Increasing plant density and applying spread harvesting increased fresh food production. This information will be the basis for determining crop growth recipes and management to maximize the amount of fresh food available, in view of the constraints of space and energy requirement of such a production system.
Flowering in grassland predicted by CO2 and resource effects on species aboveground biomass
USDA-ARS?s Scientific Manuscript database
Ongoing enrichment of atmospheric CO2 concentration may increase plant community productivity by changing plant community composition through direct and indirect effects on light, water, or nutrient availability. CO2 enrichment has been predicted to reduce plant reproductive allocation in herbaceou...
Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae
USDA-ARS?s Scientific Manuscript database
Limited availability of arable land and high market demand for off-season vegetables often leads to continuous cultivation and cultivation under unfavorable conditions such as too cold, wet, dry, or under low-light winter greenhouses. Successive cropping can increase salinity, the incidence of vege...
Kinetic study of acetaminophen degradation by visible light photocatalysis.
Gotostos, Mary Jane N; Su, Chia-Chi; De Luna, Mark Daniel G; Lu, Ming-Chun
2014-01-01
In this work, a novel photocatalyst K3[Fe(CN)6]/TiO2 synthesized via a simple sol-gel method was utilized to degrade acetaminophen (ACT) under visible light with the use of blue and green LED lights. Parameters (medium pH, initial concentration of reactant, catalyst concentration, temperature, and number of blue LED lights) affecting photocatalytic degradation of ACT were also investigated. The experimental result showed that compared to commercially available Degussa P-25 (DP-25) photocatalyst, K3[Fe(CN)6]/TiO2 gave higher degradation efficiency and rate constant (kapp) of ACT. The degradation efficiency or kapp decreased with increasing initial ACT concentration and temperature, but increased with increased number of blue LED lamps. Additionally, kapp increased as initial pH was increased from 5.6 to 6.9, but decreased at a high alkaline condition (pH 8.3). Furthermore, the degradation efficiency and kapp of ACT increased as K3[Fe(CN)6]/TiO2 loading was increased to 1 g L(-1) but decreased and eventually leveled off at photocatalyst loading above this value. Photocatalytic degradation of ACT in K3[Fe(CN)6]/TiO2 catalyst system follows a pseudo-first-order kinetics. The Langmuir-Hinshelwood equation was also satisfactorily used to model the degradation of ACT in K3[Fe(CN)6]/TiO2 catalyst system indicated by a satisfactory linear correlation between 1/kapp and Co, with kini = 6.54 × 10(-4) mM/min and KACT = 17.27 mM(-1).
QUEST1 Variability Survey. III. Light Curve Catalog Update
NASA Astrophysics Data System (ADS)
Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.
2009-03-01
This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.
Enhancement and inhibition of light tunneling mediated by resonant mode conversion.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-02-15
We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.
2016-10-01
Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.
Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests
NASA Astrophysics Data System (ADS)
de la Rosa-Manzano, Edilia; Andrade, José Luis; Zotz, Gerhard; Reyes-García, Casandra
2017-11-01
An enormous variation in light, both temporally and spatially, exists in tropical forests, which represents a potential driver for plant physiological plasticity. The physiological plasticity of epiphytic orchids from two tropical dry forests in response to different light environments was experimentally investigated. Plants of five species were growing in a shade-house under three different light regimes (photosynthetic photon flux density; PPFD of 20, 50 and 70% of total daily incident radiation) under watered and drought conditions. Orchids with similar leaf morphology but from different forests responded differently to the same light environment. Linear leaves of Encyclia nematocaulon avoided drought stress through stomata control and had a notable increase of photosynthesis, lower osmotic potential, and high photosynthetic efficiency under 50% daily PPFD during both drought and watered periods. In contrast, orchids with cylindrical and oval leaves had a marked decrease of these physiological parameters under 50 and 70% of PPFD during the drought period, but then recovered after rewatering. Oval leaves of Lophiaris oerstedii were more sensitive to high light and water availability because they had a strong decrease of their physiological parameters at 70% of PPFD, even during the rewatering period. Contrary to our predictions, E. nematocaulon had low plasticity and Laelia rubescens, from the deciduous forest, was the most able to acclimate. In general, orchids from the drier forest had higher plasticity than those from the more humid forest, which might help them to tolerate the higher fluctuations of light and water availability that occur there.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
...] Notice of Availability of a Draft Response to Petitions for the Reclassification of Light Brown Apple... two petitions we received requesting the reclassification of light brown apple moth [Epiphyas.... SUPPLEMENTARY INFORMATION: Background Light brown apple moth (Epiphyas postvittana [Walker]) (LBAM) is a plant...
Arctic tree rings as recorders of variations in light availability
Stine, A. R.; Huybers, P.
2014-01-01
Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143
Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats.
Cavas, María; Beltrán, David; Navarro, José F
2005-07-04
Dimethyl sulfoxide (DMSO) is an efficient solvent for water-insoluble compounds, widely used in biological studies and as a vehicle for drug therapy, but few data on its neurotoxic or behavioural effects is available. The aim of this work is to explore DMSO's effects upon sleep/wake states. Twenty male rats were sterotaxically prepared for polysomnography. Four concentrations of DMSO (5%, 10%, 15%, and 20%, in saline) were examined. DMSO or saline were administered intraperitoneally at the beginning of the light period. Three hours of polygraphic recording were evaluated for stages of vigilance after treatment. Sleep/wake parameters and EEG power spectral analyses during sleep were investigated. Results show no significant effect after 5% or 10% DMSO treatment. DMSO 15% increased mean episode duration of light slow wave sleep (SWS), decreasing mean episode duration of deep SWS and of quiet wake (QW). DMSO 20% increased light SWS enhancing number of episodes, while decreased deep SWS mean episode duration. EEG power spectra of sigma and delta activity were also affected by DMSO. Therefore, DMSO at 15% and 20% affects sleep architecture in rats, increasing light SWS and reducing deep SWS. Being aware of DMSO behavioural effects seems important since experimental artefacts caused by DMSO can lead to the erroneous interpretation of results.
Cirocco, Robert Michael; Facelli, José Maria; Watling, Jennifer Robyn
2016-01-01
Background and Aims There have been very few studies investigating the influence of light on the effects of hemiparasitic plants on their hosts, despite the fact that hemiparasites are capable of photosynthesis but also access carbon (C) from their host. In this study we manipulated light availability to limit photosynthesis in an established hemiparasite and its hosts, and determined whether this affected the parasite’s impact on growth and performance of two different hosts. We expected that limiting light and reducing autotrophic C gain in the parasite (and possibly increasing its heterotrophic C gain) would lead to an increased impact on host growth and/or host photosynthesis in plants grown in low (LL) relative to high light (HL). Methods The Australian native host Leptospermum myrsinoides and the introduced host Ulex europaeus were either infected or not infected with the native stem hemiparasite Cassytha pubescens and grown in either HL or LL. Photosynthetic performance, nitrogen status and growth of hosts and parasite were quantified. Host water potentials were also measured. Key Results In situ midday electron transport rates (ETRs) of C. pubescens on both hosts were significantly lower in LL compared with HL, enabling us to investigate the impact of the reduced level of parasite autotrophy on growth of hosts. Despite the lower levels of photosynthesis in the parasite, the relative impact of infection on host biomass was the same in both LL and HL. In fact, biomass of L. myrsinoides was unaffected by infection in either HL or LL, while biomass of U. europaeus was negatively affected by infection in both treatments. This suggests that although photosynthesis of the parasite was lower in LL, there was no additional impact on host biomass in LL. In addition, light did not affect the amount of parasite biomass supported per unit host biomass in either host, although this parameter was slightly lower in LL than HL for U. europaeus (P = 0·073). We also found no significant enhancement of host photosynthesis in response to infection in either host, regardless of light treatment. Conclusions Despite lower photosynthetic rates in LL, C. pubescens did not increase its dependency on host C to the point where it affected host growth or photosynthesis. The impact of C. pubescens on host growth would be similar in areas of high and low light availability in the field, but the introduced host is more negatively affected by infection. PMID:26832961
Cirocco, Robert Michael; Facelli, José Maria; Watling, Jennifer Robyn
2016-03-01
There have been very few studies investigating the influence of light on the effects of hemiparasitic plants on their hosts, despite the fact that hemiparasites are capable of photosynthesis but also access carbon (C) from their host. In this study we manipulated light availability to limit photosynthesis in an established hemiparasite and its hosts, and determined whether this affected the parasite's impact on growth and performance of two different hosts. We expected that limiting light and reducing autotrophic C gain in the parasite (and possibly increasing its heterotrophic C gain) would lead to an increased impact on host growth and/or host photosynthesis in plants grown in low (LL) relative to high light (HL). The Australian native host Leptospermum myrsinoides and the introduced host Ulex europaeus were either infected or not infected with the native stem hemiparasite Cassytha pubescens and grown in either HL or LL. Photosynthetic performance, nitrogen status and growth of hosts and parasite were quantified. Host water potentials were also measured. In situ midday electron transport rates (ETRs) of C. pubescens on both hosts were significantly lower in LL compared with HL, enabling us to investigate the impact of the reduced level of parasite autotrophy on growth of hosts. Despite the lower levels of photosynthesis in the parasite, the relative impact of infection on host biomass was the same in both LL and HL. In fact, biomass of L. myrsinoides was unaffected by infection in either HL or LL, while biomass of U. europaeus was negatively affected by infection in both treatments. This suggests that although photosynthesis of the parasite was lower in LL, there was no additional impact on host biomass in LL. In addition, light did not affect the amount of parasite biomass supported per unit host biomass in either host, although this parameter was slightly lower in LL than HL for U. europaeus (P = 0·073). We also found no significant enhancement of host photosynthesis in response to infection in either host, regardless of light treatment. Despite lower photosynthetic rates in LL, C. pubescens did not increase its dependency on host C to the point where it affected host growth or photosynthesis. The impact of C. pubescens on host growth would be similar in areas of high and low light availability in the field, but the introduced host is more negatively affected by infection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Xie, Yue
2012-01-01
In light of the new healthcare regulations, hospitals are increasingly reevaluating their IT integration strategies to meet expanded healthcare information exchange requirements. Nevertheless, hospital executives do not have all the information they need to differentiate between the available strategies and recognize what may better fit their…
Leaf Angle, Light Interception, and Water Relations.
ERIC Educational Resources Information Center
Knapp, Alan K.; Smith, Dixie L.
1997-01-01
Presents an exercise that demonstrates how plants cope with multiple resource limitations in the field. Stimulates students to think about interactions among multiple limited resources and the challenges plants as immobile organisms face when characteristics that increase the capture of one resource negatively impact the availability of another.…
Light colour and intensity alters reproductive/seasonal responses in Japanese quail.
Yadav, Suneeta; Chaturvedi, Chandra Mohini
2015-08-01
An extensive literature is available on the photoperiodic responses of avian species but studies on light colour and wavelength from light emitting diode (LED) sources on reproduction are limited. Hence, an experiment was designed to study the effect of different colours and intensities of light on the reproductive responses of Japanese quail. Three-week old quail were exposed to five different light conditions with a long photoperiod (LD 16:8): WT (white fluorescent light 100 lux as control), W LED (white light emitting diode, 30 lux), B LED (blue LED, 30 lux), G LED (green LED, 30 lux) and R-LED (red LED, 30 lux). The cloacal gland size, an indicator of androgenic activity, was monitored weekly. The results indicated an early initiation of gonadal growth in WT quail which continued and maintained a plateau throughout the period of study. On the other hand, in general low intensity light, there was a decreased amplitude of the reproductive cycle and the quail exposed to different colour lights (green, red and blue lights) used different incubation times to initiate their gonadal growth and exhibited a gonadal cycle of a different duration up to 15.5 weeks. Thereafter, the gonad of quail of all the LED groups started developing again (including the blue LED exposed quail which remained undeveloped until this age) and attained the increased degree of growth until 26.5 weeks of age. During the second cycle, gonads of green and red light exposed quail continued to increase and maintained a plateau of development similar to WT exposed control while white and blue LED exposed quail exhibited spontaneous regression and attained complete sexual quiescence. Based on our study, it is suggested that long term exposure to blue LED light of low intensity may induce gonadal regression even under long-day conditions (LD 16:8), while exposure to green and red lights appears to maintain a constant photosensitivity after one complete gonadal cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Light, plants, and power for life support on Mars
NASA Technical Reports Server (NTRS)
Salisbury, F. B.; Dempster, W. F.; Allen, J. P.; Alling, A.; Bubenheim, D.; Nelson, M.; Silverstone, S.
2002-01-01
Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.
Light, plants, and power for life support on Mars.
Salisbury, F B; Dempster, W F; Allen, J P; Alling, A; Bubenheim, D; Nelson, M; Silverstone, S
2002-01-01
Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.
Ostria-Gallardo, Enrique; Ranjan, Aashish; Chitwood, Daniel H; Kumar, Ravi; Townsley, Brad T; Ichihashi, Yasunori; Corcuera, Luis J; Sinha, Neelima R
2016-04-01
Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Lantana camara L. (Verbenaceae) invasion along streams in a heterogeneous landscape.
Ramaswami, Geetha; Sukumar, Raman
2014-09-01
Streams are periodically disturbed due to flooding, act as edges between habitats and also facilitate the dispersal of propagules, thus being potentially more vulnerable to invasions than adjoining regions. We used a landscape-wide transect-based sampling strategy and a mixed effects modelling approach to understand the effects of distance from stream, a rainfall gradient, light availability and fire history on the distribution of the invasive shrub Lantana camara L.(lantana) in the tropical dry forests of Mudumalai in southern India. The area occupied by lantana thickets and lantana stem abundance were both found to be highest closest to streams across this landscape with a rainfall gradient. There was no advantage in terms of increased abundance or area occupied by lantana when it grew closer to streams in drier areas as compared to moister areas. On an average, the area covered by lantana increased with increasing annual rainfall. Areas that experienced greater number of fires during 1989-2010 had lower lantana stem abundance irrespective of distance from streams. In this landscape, total light availability did not affect lantana abundance. Understanding the spatially variable environmental factors in a heterogeneous landscape influencing the distribution of lantana would aid in making informed management decisions at this scale.
Buhusi, Catalin V.; Lamoureux, Jeffrey A.; Meck, Warren H.
2008-01-01
The effects of prenatal choline availability on contextual processing in a 30-s peak-interval (PI) procedure with gaps (1, 5, 10, and 15 s) were assessed in adult male rats. Neither supplementation nor deprivation of prenatal choline affected baseline timing performance in the PI procedure. However, prenatal choline availability significantly altered the contextual processing of gaps inserted into the to-be-timed signal (light on). Choline-supplemented rats displayed a high degree of context sensitivity as indicated by clock resetting when presented with a gap in the signal (light off). In contrast, choline-deficient rats showed no such effect and stopped their clocks during the gap. Control rats exhibited an intermediate level of contextual processing in between stop and full reset. When switched to a reversed gap condition in which rats timed the absence of the light and the presence of the light served as a gap, all groups reset their clocks following a gap. Furthermore, when filling the intertrial interval (ITI) with a distinctive stimulus (e.g., sound), both choline-supplemented and control rats rightward shifted their PI functions less on trials with gaps than choline-deficient rats, indicating greater contextual sensitivity and reduced clock resetting under these conditions. Overall, these data support the view that prenatal choline availability affects the sensitivity to the context in which gaps are inserted in the to-be-timed signal, thereby influencing whether rats run, stop, or reset their clocks. PMID:18778696
Physiological and morphological responses of pine and willow saplings to post-fire salvage logging
NASA Astrophysics Data System (ADS)
Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.
2015-12-01
With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.
Cloern, James E.; Grenz, Christian; Vidergar-Lucas, Lisa
1995-01-01
We present an empirical model that describes the ratio of phytoplankton chlorophyll a to carbon, Chl: C, as a function of temperature, daily irradiance, and nutrient-limited growth rate. Our model is based on 219 published measurements of algal cultures exposed to light-limited or nutrient-limited growth conditions. We illustrate an approach for using this estimator of Chl: C to calculate phytoplankton population growth rate from measured primary productivity. This adaptive Chl: C model gives rise to interactive light-nutrient effects in which growth efficiency increases with nutrient availability under low-light conditions. One implication of this interaction is the enhancement of phytoplankton growth efficiency, in addition to enhancement of biomass yield, as a response to eutrophication.
Competition for light causes plant biodiversity loss after eutrophication.
Hautier, Yann; Niklaus, Pascal A; Hector, Andy
2009-05-01
Human activities have increased the availability of nutrients in terrestrial and aquatic ecosystems. In grasslands, this eutrophication causes loss of plant species diversity, but the mechanism of this loss has been difficult to determine. Using experimental grassland plant communities, we found that addition of light to the grassland understory prevented the loss of biodiversity caused by eutrophication. There was no detectable role for competition for soil resources in diversity loss. Thus, competition for light is a major mechanism of plant diversity loss after eutrophication and explains the particular threat of eutrophication to plant diversity. Our conclusions have implications for grassland management and conservation policy and underscore the need to control nutrient enrichment if plant diversity is to be preserved.
Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.
2015-01-01
Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963
Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D
2015-01-01
Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.
Investigation of uniformity field generated from freeform lens with UV LED exposure system
NASA Astrophysics Data System (ADS)
Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.
2015-03-01
In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.
Photometric followup investigations on LAMOST survey target Ly And
NASA Astrophysics Data System (ADS)
Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Pi, Qing-feng; Wang, Dai-mei
2017-02-01
We present a low-dispersion spectrum and two sets of CCD photometric light curves of the eclipsing binary LY And for the first time. The spectrum of LY And was classified as G2. We derived an updated ephemeris based on all previously available and our newly acquired minimum light times. Our analyses of LY And light curve minimum times reveals that the differences between calculated and observed minimum times for LY And can be represented by an upward parabolic curve, which means its orbital period is increasing with a rate of 1.88 (± 0.13) × 10-7 days/year. This increase in orbital period may be interpreted as mass transfer from the primary component to the secondary component, with a rate of dM1/dt = -4.54 × 10-8M⊙/year. By analyzing our CCD photometric light curves obtained in 2015, we obtained its photometric solution with the Wilson-Devinney program. This photometric solution also fits very well our light curves obtained in 2014. Our photometric solution shows that LY And is a contact eclipsing binary and its contact factor is f = (17.8 ± 1.9)%. Furthermore, both our spectroscopic and photometric data show no obvious chromospheric activity of LY And.
Acemind new indoor full duplex optical wireless communication prototype
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu
2016-09-01
For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.
Lallemand, Félix; Puttsepp, Ülle; Lang, Mait; Luud, Aarne; Courty, Pierre-Emmanuel; Palancade, Cécile; Selosse, Marc-André
2017-09-01
In temperate forests, some green plants, namely pyroloids (Pyroleae, Ericaceae) and some orchids, independently evolved a mode of nutrition mixing photosynthates and carbon gained from their mycorrhizal fungi (mixotrophy). Fungal carbon is more enriched in 13C than photosynthates, allowing estimation of the proportion of carbon acquired heterotrophically from fungi in plant biomass. Based on 13C enrichment, mixotrophic orchids have previously been shown to increase shoot autotrophy level over the growth season and with environmental light availability. But little is known about the plasticity of use of photosynthetic versus fungal carbon in pyroloids. Plasticity of mixotrophy with leaf age or light level (estimated from canopy openness) was investigated in pyroloids from three Estonian boreal forests. Bulk leaf 13C enrichment of five pyroloid species was compared with that of control autotrophic plants along temporal series (over one growth season) and environmental light gradients (n=405 samples). Mixotrophic 13C enrichment was detected at studied sites for Pyrola chlorantha and Orthilia secunda (except at one site for the latter), but not for Chimaphila umbellata, Pyrola rotundifolia and Moneses uniflora. Enrichment with 13C did not vary over the growth season or between leaves from current and previous years. Finally, although one co-occurring mixotrophic orchid showed 13C depletion with increasing light availability, as expected for mixotrophs, all pyroloids responded identically to autotrophic control plants along light gradients. A phylogenetic trend previously observed is further supported: mixotrophy is rarely supported by 13C enrichment in the Chimaphila + Moneses clade, whereas it is frequent in the Pyrola + Orthilia clade. Moreover, pyroloid mixotrophy does not respond plastically to ageing or to light level. This contrasts with the usual view of a convergent evolution with orchids, and casts doubt on the way pyroloids use the carbon gained from their mycorrhizal fungi, especially to replace photosynthetic carbon. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Díaz-Barradas, M C; Zunzunegui, M; Alvarez-Cansino, L; Esquivias, M P; Valera, J; Rodríguez, H
2018-03-01
Under natural conditions, light exposure for Mediterranean shrubs can be highly variable, especially during cloudy days or under a canopy, and can interfere with other environmental factors such as temperature and water availability. With the aim of decoupling the effect of radiation and temperature from water availability, we conducted an experiment where two perennial and three summer semi-deciduous shrub species were subjected to different levels of irradiation. In order to follow plant responses to light exposure, we measured gas exchange, photosystem II photochemical efficiency, photosynthetic pigments and leaf mass area in spring and summer. Results showed that all study species presented a plastic response to different light conditions, and that light-related traits varied in a coordinated manner. Summer semi-deciduous species exhibited a more opportunistic response, with higher photosynthesis rates in full sun, but under shade conditions, the two strategies presented similar assimilation rates. Stomatal conductance did not show such a drastic response as photosynthetsis, being related to changes in WUE. Daily cycles of F v /F m revealed a slight photoinhibitory response during summer, mainly in perennial species. In all cases photosynthetic pigments adjusted to the radiation level; leaves had lower chlorophyll content, higher pool of xanthophylls and higher proportion of the de-epoxydaded state of xanthophylls under sun conditions. Lutein content increased in relation to the xanthophyll pool under shade conditions. Our results evidenced that radiation is an important driving factor controlling morphological and physiological status of Mediterranean shrub species, independently of water availability. Summer semi-deciduous species exhibit a set of traits with higher response variability, maximising their photosynthetic assimilation under different sun conditions. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír
2016-01-01
We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.
Mosses and the struggle for light in a nitrogen-polluted world.
van der Wal, René; Pearce, Imogen S K; Brooker, Rob W
2005-01-01
The impact of reduced light conditions as an indirect effect of nitrogen (N) deposition was determined on three mosses in a montane ecosystem, where sedge and grass cover increase due to N enrichment. Additionally, in the greenhouse we established the importance of low light to moss growth as an indirect N deposition effect relative to the direct toxic effects of N. The amount of light reaching the moss layer was strongly and negatively related to graminoid abundance. Mosses showed differing sensitivities to reduced light in the field. Racomitrium lanuginosum biomass was found to be highest under high-light conditions, Polytrichum alpinum at intermediate light levels, whilst that of Dicranum fuscescens was unrelated to light availability. Moreover, Racomitrium biomass decreased with increasing amounts of graminoid litter, whereas the other species were little affected. All three mosses responded differently to the combination of elevated N (20 vs 10 kg N ha(-1) year(-1)) and reduced light (60 and 80% reduction) in the greenhouse. Racomitrium growth was strongly influenced by both light reduction and elevated N, in combination reducing shoot biomass up to 76%. There was a tendency for Dicranum growth to be modestly reduced by elevated N when shaded, causing up to 19% growth reduction. Polytrichum growth was not influenced by elevated N but was reduced up to 40% by shading. We conclude that competition for light, induced by vascular plants, can strongly influence moss performance even in unproductive low biomass ecosystems. The effects of reduced light arising from N pollution can be as important to mosses as direct toxicity from N deposition. Yet, different sensitivities of mosses to both toxic and shading effects of elevated N prevent generalisation and can lead to competitive species replacement within moss communities. This study demonstrates the importance of understanding moss-vascular plant interactions to allow interpretation and prediction of ecosystem responses to anthropogenic drivers such as atmospheric N deposition or climate change.
NASA Technical Reports Server (NTRS)
Zappala, V.; Di Martino, M.; Scaltriti, F.; Burchi, R.; Milano, L.; Young, J. W.; Wahlgren, G.; Pavlovski, K.
1983-01-01
Photometric observations of the asteroid 37 Fides carried out at four observatories are reported. The data were taken at phase angles ranging from approximately 2-23 deg. A composite of the light curves obtained revealed that, considering a period of 7.33 hr, the full cycle light curve exhibits one maximum and one minimum. An increase in brightness was observed following a primary minimum, a factor that indicated the cyclical appearance and disappearance of a large topographical feature. It is concluded that the 7.33 hr period is the rotational speed of the asteroid, in contrast with a previously held 14.66 hr rotational period. The method is concluded useful for identifying rotational periods of asteroids when only partial light curve data from different sources is available, and when the projections can be checked observationally.
Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting
Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael
2017-01-01
We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770
Photodynamic decontamination of blood for transfusion
NASA Astrophysics Data System (ADS)
Ben-Hur, Ehud; Margolis-Nunno, H.; Gottlieb, P.; Lustigman, S.; Horowitz, Bernard
1995-01-01
Currently transfused cellular components of blood are not available in a sterile form and carry a small risk of transmitting viral and parasite diseases. Using phthalocyanines and red light, lipid enveloped viruses, e.g., HIV-1, can be inactivated in red blood cell concentrates (RBCC). Under conditions leading to virus sterilization the blood borne parasites Trypanosoma cruzi (Chagas disease) and Plasmodium falciparum (malaria) could be eliminated to undetectable levels (> 4 log10 kill). RBC damage during treatment could be avoided by increasing the light fluence rate to 80 mW/cm2, and by including the free radical scavenger glutathione and the vitamin E derivative Trolox during light exposure. Similar sterilization of platelet concentrates was achieved with the psoralen derivative AMT and UVA light. Platelet damage due to PUVA treatment was avoided by including the plant flavonoid rutin during irradiation. It is concluded that elimination of the risk of transmitting pathogens during blood transfusion is feasible with photochemical treatments.
Interaction of Light and Ethylene on Stem Gravitropism
NASA Technical Reports Server (NTRS)
Harrison, Marcia A.
1996-01-01
The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.
Moreno-Marín, Francisco; Vergara, Juan J.; Pérez-Llorens, J. Lucas; Pedersen, Morten F.; Brun, Fernando G.
2016-01-01
Eutrophication affects seagrasses negatively by increasing light attenuation through stimulation of biomass of fast-growing, bloom-forming algae and because high concentrations of ammonium in the water can be toxic to higher plants. We hypothesized nevertheless, that moderate amounts of nitrophilic macroalgae that coexists with seagrasses under eutrophic conditions, can alleviate the harmful effects of eutrophication on seagrasses by reducing ammonium concentrations in the seawater to non-toxic levels because such algae have a very large capacity to take up inorganic nutrients. We studied therefore how combinations of different ammonium concentrations (0, 25 and 50 μM) and different standing stocks of macroalgae (i.e. 0, 1 and 6 layers of Ulva sp.) affected survival, growth and net production of the seagrass Zostera noltei. In the absence of Ulva sp., increasing ammonium concentrations had a negative influence on the performance of Z. noltei. The presence of Ulva sp. without ammonium supply had a similar, but slightly smaller, negative effect on seagrass fitness due to light attenuation. When ammonium enrichment was combined with presence of Ulva sp., Ulva sp. ameliorated some of negative effects caused by high ammonium availability although Ulva sp. lowered the availability of light. Benthic microalgae, which increased in biomass during the experiment, seemed to play a similar role as Ulva sp.–they contributed to remove ammonium from the water, and thus, aided to keep the ammonium concentrations experienced by Z. noltei at relatively non-toxic levels. Our findings show that moderate amounts of drift macroalgae, eventually combined with increasing stocks of benthic microalgae, may aid seagrasses to alleviate toxic effects of ammonium under eutrophic conditions, which highlights the importance of high functional diversity for ecosystem resistance to anthropogenic disturbance. PMID:27035662
NASA Astrophysics Data System (ADS)
Granderson, Jessica Ann
2007-12-01
The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general model of a daylighted environment was designed, and a practical means of user preference identification was defined. Further, a set of general procedures were identified for the design of human-centered sensor-based decision-analytic systems, and for the identification of the allowable uncertainty in nodes of interest. To confirm generality, a vehicle health monitoring problem was defined and solved using these two procedures. 1'Daylighting' systems use sensors to determine room occupancy and available sunlight, and automatically dim the lights in response.
The Kepler Catalog of Stellar Flares
NASA Astrophysics Data System (ADS)
Davenport, James R. A.
2016-09-01
A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ˜1035 erg. The net fraction of flare stars increases with g - I color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ˜0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.
González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis
2010-07-01
Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.
Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary
del Barrio, Pilar; Ganju, Neil K.; Aretxabaleta, Alfredo L.; Hayn, Melanie; García, Andrés; Howarth, Robert W.
2014-01-01
Estuarine eutrophication has led to numerous ecological changes, including loss of seagrass beds. One potential cause of these losses is a reduction in light availability due to increased attenuation by phytoplankton. Future sea level rise will also tend to reduce light penetration and modify seagrass habitat. In the present study, we integrate a spectral irradiance model into a biogeochemical model coupled to the Regional Ocean Model System (ROMS). It is linked to a bio-optical seagrass model to assess potential seagrass habitat in a eutrophic estuary under future nitrate loading and sea-level rise scenarios. The model was applied to West Falmouth Harbor, a shallow estuary located on Cape Cod (Massachusetts) where nitrate from groundwater has led to eutrophication and seagrass loss in landward portions of the estuary. Measurements of chlorophyll, turbidity, light attenuation, and seagrass coverage were used to assess the model accuracy. Mean chlorophyll based on uncalibrated in-situ fluorometry varied from 28 μg L−1 at the landward-most site to 6.5 μg L−1 at the seaward site, while light attenuation ranged from 0.86 to 0.45 m-1. The model reproduced the spatial variability in chlorophyll and light attenuation with RMS errors of 3.72 μg L−1 and 0.07 m-1 respectively. Scenarios of future nitrate reduction and sea-level rise suggest an improvement in light climate in the landward basin with a 75% reduction in nitrate loading. This coupled model may be useful to assess habitat availability changes due to eutrophication and sediment resuspension and fully considers spatial variability on the tidal timescale.
USDA-ARS?s Scientific Manuscript database
Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations and diminishing availability of irrigation water. Certain indica rice cultivars can produce high yields and suppress weeds in conventional flood-irrigated, drill-seeded systems in the...
Action Alters Object Identification: Wielding a Gun Increases the Bias to See Guns
ERIC Educational Resources Information Center
Witt, Jessica K.; Brockmole, James R.
2012-01-01
Stereotypes, expectations, and emotions influence an observer's ability to detect and categorize objects as guns. In light of recent work in action-perception interactions, however, there is another unexplored factor that may be critical: The action choices available to the perceiver. In five experiments, participants determined whether another…
A Systematic Review of Trauma Screening Measures for Children and Adolescents
ERIC Educational Resources Information Center
Eklund, Katie; Rossen, Eric; Koriakin, Taylor; Chafouleas, Sandra M.; Resnick, Cody
2018-01-01
Traumatized youth are at an increased risk of a host of negative academic and psychoeducational outcomes. Screening and identification of students who experience potentially traumatic events may help schools provide support to at-risk students. In light of this, the current study examines the availability and use of trauma screening measures to…
Item-Writing Rules: Collective Wisdom
ERIC Educational Resources Information Center
Frey, B.B.; Petersen, S.; Edwards, L.M.; Pedrotti, J.T.; Peyton, V.
2005-01-01
In student assessment, teachers place the greatest weight on tests they have constructed themselves and have an equally great interest in the quality of those tests. To increase the validity of teacher-made tests, many item-writing rules-of-thumb are available in the literature, but few rules have been tested experimentally. In light of the…
Methodological advances: using greenhouses to simulate climate change scenarios.
Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A
2014-09-01
Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Port and Waterways Safety Assessment Workshop Report, New York
2008-09-01
conduct Operation Clear Channel (14) • Increase the number of small craft fueling stations outside the port area (2) • Expand VTS AOR to include the...Island (6) • Increase the number of fueling stations outside of the port area (5) • Encourage less aggressive timetables for commuter ferries (5...data available through Stevens Institute of Technology, sponsored by the State of New York • Ambrose Light being replaced with a NOAA weather
Orbital period variations of two W UMa-type binaries: UY UMa and EF Boo
NASA Astrophysics Data System (ADS)
Yu, Yun-Xia; Zhang, Xu-Dong; Hu, Ke; Xiang, Fu-Yuan
2017-08-01
The orbital period variations of two W UMa-type contact binaries, UY UMa and EF Boo, are analyzed by using all available times of light minimum. It is detected that the general trends of their (O - C) curves show an upward parabolic variation, which reveals their continuous period increases at the rates of dP / dt = 2.545 ×10-7 days yr-1 and dP / dt = 2.623 ×10-7 days yr-1 , respectively. Meanwhile, UY UMa also shows a cyclic period variation with a small amplitude of A = 0.0026 days superposed on the long-term increase. Due to their contact configurations, the secular period increases are interpreted as a result of mass transfer from the less massive component to the more massive one. The cyclic period variation of UY UMa may be interpreted in terms of either the magnetic activity or the light time effect.
Light-emitting diodes (LED) for domestic lighting: any risks for the eye?
Behar-Cohen, F; Martinsons, C; Viénot, F; Zissis, G; Barlier-Salsi, A; Cesarini, J P; Enouf, O; Garcia, M; Picaud, S; Attia, D
2011-07-01
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.
1994-08-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.
Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.
1994-01-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.-G.; Dai, H.-F.; Zhang, X.-B.
We present new photometry for the eclipsing binary V1241 Tau, which was obtained on six nights between 2011 December and 2012 January using the 85 cm telescope at the Xinglong station of the National Astronomical Observatories of China. By using the updated Wilson-Devinney code, photometric models with third lights were deduced from two sets of light curves. The result implies that V1241 Tau is an Algol-type near-contact binary (NCB), whose mass ratio and filling-out of the primary are q = 0.545 ({+-} 0.003) and f{sub 1} = 82.4% ({+-} 0.2%), respectively. Based on all available times of minimum light spanningmore » over 80 yr, the O - C curve of V1241 Tau appears to show a quasi-sinusoidal oscillation, i.e., a light-time orbit. The modulated period and amplitude are P{sub mod} = 47.4 ({+-} 1.7) yr and A = 0.0087 ({+-} 0.0005) days, respectively. This kind of period variation may be more likely attributed to the light-time effect via a presence of an unseen third body. From an analysis of 23 Algol-type NCBs with EB-type light curves, we determine that the fill-out for the primary f{sub 1} will increase as the orbital period P decreases. With angular momentum loss, the orbit of the binary will shrink, which causes f{sub 1} to increase. The primary component finally fills its Roche lobe, and the binary evolves into contact configuration. Therefore, this kind of Algol-type NCB with EB-type light curves, such as V1241 Tau, may be a progenitor of the A-type W UMa binary.« less
Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes
Adam, Jens; Metzger, Wilhelm; Koch, Marcus; Rogin, Peter; Coenen, Toon; Atchison, Jennifer S.; König, Peter
2017-01-01
There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature. PMID:28336860
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2589-057--Michigan] Marquette Board of Light and Power; Notice of Availability of Final Environmental Assessment June 28, 2010... prepared a Final Environmental Assessment (FEA) regarding Marquette Board of Light and Power's plan to...
Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jennifer; Jacobson, Arne; Mills, Evan
Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hoursmore » from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.« less
Manuel, Sarah A; Coates, Kathryn A; Kenworthy, W Judson; Fourqurean, James W
2013-08-01
Surveys were undertaken on the shallow Bermuda marine platform between 2006 and 2008 to provide a baseline of the distribution, condition and environmental characteristics of benthic communities. Bermuda is located in temperate latitudes but coral reefs, tropical seagrasses and calcareous green algae are common in the shallow waters of the platform. The dominant organisms of these communities are all living at or near their northern latitudinal range limits in the Atlantic Ocean. Among the major benthic autotrophs surveyed, seagrasses were most restricted by light availability. We found that the relatively slow-growing and long-lived seagrass Thalassia testudinum is restricted to habitats with much higher light availability than in the tropical locations where this species is commonly found. In contrast, the faster growing tropical seagrasses in Bermuda, Syringodium filiforme, Halodule sp. and Halophila decipiens, had similar ecological compensation depths (ECD) as in tropical locations. Increasing sea surface temperatures, concomitant with global climate change, may either drive or allow the poleward extensions of the ranges of such tropical species. However, due to latitudinal light limitations at least one abundant and common tropical autotroph, T. testudinum, is able to occupy only shallower depths at the more temperate latitudes of Bermuda. We hypothesize that the poleward shift of seagrass species ranges would be accompanied by restrictions to even shallower depths of T. testudinum and by very different seagrass community structures than in tropical locations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Smith, Sarah R; Gillard, Jeroen T F; Kustka, Adam B; McCrow, John P; Badger, Jonathan H; Zheng, Hong; New, Ashley M; Dupont, Chris L; Obata, Toshihiro; Fernie, Alisdair R; Allen, Andrew E
2016-12-01
Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.
McCrow, John P.; Badger, Jonathan H.; Zheng, Hong; New, Ashley M.; Dupont, Chris L.; Obata, Toshihiro; Fernie, Alisdair R.; Allen, Andrew E.
2016-01-01
Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success. PMID:27973599
Smith, Sarah R.; Gillard, Jeroen T. F.; Kustka, Adam B.; ...
2016-12-14
Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved inmore » the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Sarah R.; Gillard, Jeroen T. F.; Kustka, Adam B.
Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved inmore » the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.« less
Herron, Patrick M.; Gage, Daniel J.; Arango Pinedo, Catalina; Haider, Zane K.; Cardon, Zoe G.
2013-01-01
The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to) environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constitutive promoter nptII and luxCDABE (coding for light-emitting proteins) from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L.), black poplar (Populus nigra L.), or tomato (Solanum lycopersicum L.) was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1–4 and 20–35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. PMID:24032034
Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma
2017-02-01
The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L -1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L -1 ) at higher surface photosynthetic active radiation (250 and 500 μmol m -2 s -1 ). Additionally, the rate approached a saturation phase at low MAAS (110 mg L -1 ) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L -1 . The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L -1 . The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h -1 and sludge volume index of 31-43 ml g -1 in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Suárez-Vidal, Estefanía; López-Goldar, Xosé; Sampedro, Luis; Zas, Rafael
2017-01-01
Light is a major environmental factor that may determine the interaction between plants and herbivores in several ways, including top-down effects through changes in herbivore behavior and bottom-up effects mediated by alterations of plant physiology. Here we explored the relative contribution of these two regulation processes to the outcome of the interaction of pine trees with a major forest pest, the pine weevil (Hylobius abietis). We studied to what extent light availability influence insect feeding behavior and/or the ability of pines to produce induced defenses in response to herbivory. For this purpose, 3-year old Pinus pinaster plants from three contrasting populations were subjected to 6 days of experimental herbivory by the pine weevil under two levels of light availability (complete darkness or natural sunlight) independently applied to the plant and to the insect in a fully factorial design. Light availability strongly affected the pine weevil feeding behavior. The pine weevil fed more and caused larger feeding scars in darkness than under natural sunlight. Besides, under the more intense levels of weevil damage (i.e., those registered with insects in darkness), light availability also affected the pine’s ability to respond to insect feeding by producing induced resin defenses. These results were consistent across the three studied populations despite they differed in weevil susceptibility and inducibility of defenses. Morocco was the most damaged population and the one that induced more defensive compounds. Overall, results indicate that light availability modulates the outcome of the pine–weevil interactions through both bottom-up and top-down regulation mechanisms. PMID:28912787
Rats fed only during the light period are resistant to stress-induced weight loss.
Harris, Ruth B S; Zhou, Jun; Mitchell, Tiffany; Hebert, Sadie; Ryan, Donna H
2002-08-01
Repeated restraint stress (3 h/day for 3 days) causes a chronic down-regulation of body weight in rats. This study determined whether weight loss was influenced by the time of day that rats had access to food or that stress was applied. Groups of male Sprague-Dawley rats were fed a 40% kcal fat diet with food given ad libitum, only during the light phase or only during the dark phase. After 2 weeks of adaptation, rats within each feeding treatment were divided into four groups. One was exposed to repeated restraint at the start of the light phase, another was restrained at the start of the dark phase and the remaining groups were nonstressed controls for restrained rats. Body weight was significantly reduced in ad libitum- and dark-fed restrained rats, compared with nonstressed controls, from Day 2 of restraint, regardless of the time of day that they were stressed. There was no significant effect of restraint on weight change of light-fed rats. Food intake was inhibited by stress in ad libitum- and dark-fed rats, but it was not changed in light-fed rats. Serum corticosterone was increased by restraint in all rats irrespective of feeding schedule. This study demonstrates that stress-induced weight loss only occurs when rats have food available during their normal feeding period (dark phase) and is not determined by increased corticosterone release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jianping; Deng, Minjun; Fan, Jiwen
We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to themore » effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.« less
Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G
2017-10-01
In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in determining LMA for temperate deciduous species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Brian R; Poon, Emily; Alam, Murad
2018-01-01
Lighting is an important component of consistent, high-quality dermatologic photography. There are different types of lighting solutions available. To evaluate currently available lighting equipment and methods suitable for procedural dermatology. Overhead lighting, built-in camera flashes, external flash units, studio strobes, and light-emitting diode (LED) light panels were evaluated with regard to their utility for dermatologic surgeons. A set of ideal lighting characteristics was used to examine the capabilities and limitations of each type of lighting solution. Recommendations regarding lighting solutions and optimal usage configurations were made in terms of the context of the clinical environment and the purpose of the image. Overhead lighting may be a convenient option for general documentation. An on-camera lighting solution using a built-in camera flash or a camera-mounted external flash unit provides portability and consistent lighting with minimal training. An off-camera lighting solution with studio strobes, external flash units, or LED light panels provides versatility and even lighting with minimal shadows and glare. The selection of an optimal lighting solution is contingent on practical considerations and the purpose of the image.
Design of Hybrid Silicon and Lithium Niobate Active Region for Electro-optical Modulation
2017-03-01
bandwidth our group has proposed a Mach-Zehnder traveling -wave type modulator with optimized cross section dimensions using a similar material stack as...increases the electric field intensity available to the Pockel’s effect. At the same time , the induced metal loss increases as the electrodes become...Gopalakrishnan et al., “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Light. Technol., vol. 12, no. 10, pp
Gaviria, Julian; Engelbrecht, Bettina M. J.
2015-01-01
Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important. PMID:26619138
Yamawo, Akira; Hada, Yoshio
2010-01-01
Background and Aims Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions. Methods The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined. Key results Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability. Conclusions These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits. PMID:20472698
Multi-spectral imaging with infrared sensitive organic light emitting diode
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-01-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589
Multi-spectral imaging with infrared sensitive organic light emitting diode
NASA Astrophysics Data System (ADS)
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-08-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.
77 FR 45290 - Proposed Modification of Class B Airspace Area; Philadelphia, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... be changed in light of comments received. All comments submitted will be available for examination in... establishment as a TCA in 1975. Since then, increasing operations have prompted a number of changes at the Philadelphia International Airport (PHL). For example, a new runway (8/ 26) was opened for use in December 1999...
Evaluation of lidar-derived DEMs through terrain analysis and field comparison
Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; Stephen P. Prisley
2015-01-01
Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detection and ranging (lidar) data is increasing but their suitability for such applications has received little critical...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... 211111, Crude Petroleum and Natural Gas Extraction and 213111, Drilling Oil and Gas Wells. For these... identify measures necessary to improve the safety of oil and gas exploration and development on the Outer Continental Shelf in light of the Deepwater Horizon event on April 20, 2010, and resulting oil spill. To...
ERIC Educational Resources Information Center
Penney, Dawn; Petrie, Kirsten; Fellows, Sam
2015-01-01
This paper centres on research that investigated the contemporary policy, curriculum and pedagogical landscape of Health and Physical Education (HPE) in Aotearoa New Zealand, in the light of increasing impressions that provision was moving to an "open market" situation. Publicly available information sourced via the Internet was used to…
Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures.
Alaasam, Valentina J; Duncan, Richard; Casagrande, Stefania; Davies, Scott; Sidher, Abhijaat; Seymoure, Brett; Shen, Yantao; Zhang, Yong; Ouyang, Jenny Q
2018-05-15
Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa. © 2018 Wiley Periodicals, Inc.
Li, Tong; Piltz, Bastian; Podola, Björn; Dron, Anthony; de Beer, Dirk; Melkonian, Michael
2016-05-01
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. © 2015 Wiley Periodicals, Inc.
Effects of native herbs and light on garlic mustard (Alliaria petiolata) invasion
Phillips-Mao, Laura; Larson, Diane L.; Jordan, Nicholas R.
2014-01-01
The degree to which invasive species drive or respond to environmental change has important implications for conservation and invasion management. Often characterized as a driver of change in North American woodlands, the invasive herb garlic mustard may instead respond to declines in native plant cover and diversity. We tested effects of native herb cover, richness, and light availability on garlic mustard invasion in a Minnesota oak woodland. We planted 50 garlic mustard seeds into plots previously planted with 0 to 10 native herb species. We measured garlic mustard seedling establishment, survival to rosette and adult stages, and average (per plant) and total (per plot) biomass and silique production. With the use of structural equation models, we analyzed direct, indirect, and net effects of native cover, richness, and light on successive garlic mustard life stages. Native plant cover had a significant negative effect on all life stages. Species richness had a significant positive effect on native cover, resulting in indirect negative effects on all garlic mustard stages, and net negative effects on adult numbers, total biomass, and silique production. Light had a strong negative effect on garlic mustard seedling establishment and a positive effect on native herb cover, resulting in significant negative net effects on garlic mustard rosette and adult numbers. However, light's net effect on total garlic mustard biomass and silique production was positive; reproductive output was high even in low-light/high-cover conditions. Combined effects of cover, richness, and light suggest that native herbs provide biotic resistance to invasion by responding to increased light availability and suppressing garlic mustard responses, although this resistance may be overwhelmed by high propagule pressure. Garlic mustard invasion may occur, in part, in response to native plant decline. Restoring native herbs and controlling garlic mustard seed production may effectively reduce garlic mustard spread and restore woodland diversity.
Ruiz, J M; Romero, J
2003-12-01
The light-limitation hypothesis was tested to assess whether water turbidity had caused the decline of a Mediterranean Posidonia oceanica (L.) Delile meadow in an area affected by a harbor. The annual growth, photosynthesis and rhizome starch concentrations of seagrass were measured and related to changes in light availability and dissolved nutrient concentration along a gradient of meadow degradation from areas close to the harbor outwards. Environmental and plant variables were measured in three stations placed along this gradient and compared with a reference station at an undisturbed meadow. The light attenuation coefficient (k) increased toward the inner harbor area, mainly due to sediment resuspension. The shoot density and leaf productivity of P. oceanica shoots were much lower in disturbed stations of the inner harbor area than in the outer, less disturbed station and the reference meadow. However, daily leaf carbon gains, calculated from the photosynthetic rates at saturating irradiance (P(max)) and the daily period in which seagrass receives light higher than its saturating irradiance (H(sat)), suggested positive C-balance in all stations. This was partly explained by photo-acclimatization of seagrass to the reduced light availability at the disturbed harbor stations (inner and intermediate), as indicated by the lengthening of H(sat) and the decrease in saturating irradiance (I(sat)) and respiratory demands. Despite photo-acclimatization, disturbed harbor stations showed less positive C-balance, seen not only in their lower leaf growth and biomass but also in a decrease in rhizome carbohydrate reserves (starch). Our results suggest that light reduction account for the reduced seagrass productivity and abundance. However, meadow decline (in terms of shoot mortality) in the harbor area is well above that predicted from similar light environments of nearby meadows or simulated in shading experiments. Thus, there are other factors than light limitation involved in seagrass mortality, most probably through more complex interactions (e.g. nutrient-epiphytes-grazers, water quality--siltation).
75 FR 27338 - Marquette Board of Light and Power; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2589-057--Michigan] Marquette Board of Light and Power; Notice of Availability of Environmental Assessment May 6, 2010. In... Environmental Assessment (EA) regarding Marquette Board of Light and Power's plan to repair the Tourist Park Dam...
Headlamps for light based driver assistance
NASA Astrophysics Data System (ADS)
Götz, M.; Kleinkes, M.
2008-04-01
Driving at night is dangerous. Although only 25% of all driving tasks are performed at night, nearly half of all fatal accidents happen in this time. In order to increase safety when driving under poor visibility conditions, automotive front lighting systems have undergone a strong development in the last fifteen years. One important milestone was the introduction of Xenon headlamps in 1992, which provide more and brighter light for road illumination than ever before. Since then the paradigm of simply providing more light has changed toward providing optimised light distributions, which support the driver's perception. A first step in this direction was the introduction of dynamic bend lighting and cornering light in 2003. In 2006 the first full AFS headlamp (Adaptive Front Lighting System) allowed an optimised adoption of the light distribution to the driving situation. These systems use information provided by vehicle sensors and an intelligent algorithm to guide light towards those areas where needed. Nowadays, even more information about the vehicle's environment is available. Image processing systems, for example, allow to detect other traffic participants, their speed and their driving directions. In future headlamp systems these data will be used to constantly regulate the reach of the light distribution thus allowing a maximal reach without providing glare. Moreover, technologies that allow to constantly use a high-beam light distribution are under development. These systems will illuminate the whole traffic area only excluding other traffic participants. LED light sources will play a significant role in these scenarios, since they allow to precisely illuminate certain areas of the road, while neighbouring parts will be left in dark.
Changes in degree of conversion and microhardness of dental resin cements.
Yan, Yong Li; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub
2010-01-01
There are few studies available on the post-light activation or post-mix polymerization of dental resin cements as a function of time. This in vitro study evaluated the successive changes in the degree of conversion (DC) and microhardness during polymerization of six commercial resin cements (light-cured [Choice 2, RelyX Veneer], chemical-cured [Multilink, C&B Cement] and dual-cured [Calibra, RelyX ARC]) within the first 24 hours and up to seven days. Resin specimens were prepared for Fourier transform infrared (FTIR) spectroscopy and microhardness testing to determine the DC and Vickers hardness (VH), respectively. The light-cured materials or mixed pastes of the dual-cured materials were irradiated with a light-curing unit (Elipar TriLight) through a precured composite overlay for 40 seconds. The FTIR spectra and microhardness readings were taken at specified times: 1, 2, 5, 10, 15, 30 and 60 minutes; 24 hours and after two days and seven days. According to the FTIR study, most of the curing reaction of Choice 2 and RelyX Veneer occurred within 10 and 30 minutes, respectively. Multilink, C&B Cement and Calibra exhibited gradual increases in the DC up to 24 hours, with no further statistically significant increase (p > 0.05). RelyX ARC attained a DC value within five minutes, similar to that at seven days (p > 0.05). Choice 2 and RelyXARC showed gradual increases in the VH, up to 15 minutes, with no further significant change over the remaining observation time (p > 0.05). For RelyX Veneer, Multilink, C&B Cement and Calibra, there were no significant increases in the VH value after 24 hours (p > 0.05). The light-cured materials produced significantly higher DC values than the chemical-cured materials (p < 0.05). The DC values of the two dual-cured resin cements were significantly different from each other (p < 0.001). The results suggest that the significant polymerization reaction was finished within 24 hours post-mix or post-light activation for all resin cements tested.
Fang, Longfa; Ge, Haitao; Huang, Xiahe; Liu, Ye; Lu, Min; Wang, Jinlong; Chen, Weiyang; Xu, Wu; Wang, Yingchun
2017-01-09
The photosynthetic model organism Synechocystis sp. PCC 6803 can grow in different trophic modes, depending on the availability of light and exogenous organic carbon source. However, how the protein profile changes to facilitate the cells differentially propagate in different modes has not been comprehensively investigated. Using isobaric labeling-based quantitative proteomics, we simultaneously identified and quantified 45% Synechocystis proteome across four different trophic modes, i.e., autotrophic, heterotrophic, photoheterotrophic, and mixotrophic modes. Among the 155 proteins that are differentially expressed across four trophic modes, proteins involved in nitrogen assimilation and light-independent chlorophyll synthesis are dramatically upregulated in the mixotrophic mode, concomitant with a dramatic increase of P II phosphorylation that senses carbon and nitrogen assimilation status. Moreover, functional study using a mutant defective in light-independent chlorophyll synthesis revealed that this pathway is important for chlorophyll accumulation under a cycled light/dark illumination regime, a condition mimicking day/night cycles in certain natural habitats. Collectively, these results provide the most comprehensive information on trophic mode-dependent protein expression in cyanobacterium, and reveal the functional significance of light-independent chlorophyll synthesis in trophic growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2015-11-01
Previous leaf-scale studies of carbon assimilation describe short-term resource-use efficiency (RUE) trade-offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long-term RUE trade-offs to differ from the short-term patterns. This may have important implications for understanding canopy-scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot-scale resource availability (light, water and nitrogen), net photosynthesis (An ) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot-scale An . These models showed that shoot-scale An was strongly dependent on light availability and was generally well described with simple one- or two-parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within-canopy trade-offs may be important for RUE-based modelling of canopy carbon uptake. © 2015 John Wiley & Sons Ltd.
Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.
2015-01-01
Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911
Thayer, Zaneta M
2014-04-15
Skin color has been proposed to contribute to race-based health disparities in the United States because of differences in ultraviolet (UV) light-induced vitamin D synthesis. The prediction of this hypothesis, herein named the UVD hypothesis, is that racial disparities in health outcomes are correlated with UV light availability. This paper investigates whether UV light availability is associated with disparities in the rates of low birth weight (LBW) and preterm birth (PTB) between whites and blacks, because these outcomes are thought to be influenced by vitamin D status and to shape disease risk in later life. Data on LBW and PTB from 2007 (n = 2,825,620 births) were compared with data on UV light exposure across the United States. Contrary to the predictions of the UVD hypothesis, LBW and PTB rate disparities were greatest in states with the highest UV light exposure. Notably, income inequality was positively and significantly related to LBW and PTB disparities, even after controlling for UV light availability. The results of this analysis demonstrate that there is a significant environmental gradient in racial disparities in birth outcomes in the United States, but other social or environmental factors associated with living in the southern United States are likely stronger contributors to disparities in birth outcomes than UV light-induced vitamin D status.
Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.
2018-01-01
Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529
Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.
2012-01-01
A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297
NASA Astrophysics Data System (ADS)
Mirkhalili, Seyedhamzeh
2016-07-01
Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.
Viski, Sandor; Orgovan, David; Szabo, Katalin; Rosengarten, Bernhard; Csiba, Laszlo; Olah, Laszlo
2016-04-15
Neuroimaging studies proved that Braille reading resulted in visual cortex activation in blind people, however, very few data are available about the measure of flow increase in these subjects. Therefore, we investigated the flow response in the posterior cerebral artery (PCA) of eleven early blind and ten sighted subjects induced by reading Braille and print, respectively. Two experimental protocols were used in both groups: PCA flow velocity during reading was compared to the resting phase and "NLC" phase (volunteers "read" non-lexical characters; e.g. .,-.:,-.:...,). The use of these experimental protocols allowed to investigate separately the effect of "light stimulus+print reading" versus "print reading alone" in sighted, and "hand/finger movement+Braille reading" versus "Braille reading alone" in blind subjects. The flow response in the PCA evoked by "Braille reading alone" in blind (10.5±4.5%) and "print reading alone" in sighted subjects (8.1±3.5%) was similar. The flow increase induced by "hand/finger movement+Braille reading" and by "Braille reading alone" did not differ in blind people, however, "light stimulus+print reading" in sighted subjects caused higher PCA flow increase (25.9±6.9%) than "print reading alone" (8.1±3.5%). The similar PCA flow response induced by Braille and print reading alone suggested a similar degree of occipital cortex activation in blind and sighted subjects. In sighted people, the 3-times higher flow velocity increase induced by "light stimulus+print reading" compared with "print reading alone" indicated that 2/3 of PCA flow increase during reading was due to the light stimulus and only 1/3 of flow response was caused by reading alone. Copyright © 2016 Elsevier B.V. All rights reserved.
Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E
2016-11-01
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S 0 ), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S 0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2016-01-01
ABSTRACT Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an “energy landscape” of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the “energy landscape.” C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. PMID:27565613
2011-01-27
users’ guide, report, Sequoia Sei., Inc., Mercer Island, Wash. (Available at http://www. HydroLight. info). Moblcy, C. D., and L. K. Sundman (2001b...HydroLight 4.2 technical doc- umentation, report. Sequoia Sei.. Inc., Mercer Island. Wash. (Available at http://www.HydroLight.info). Molinc, M
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Change Amending NYSE Arca Rule 6.62(cc) Making Available the Post No Preference Light Only Quotation to... the Post No Preference Light Only Quotation (``PNPLO Quotation'') to options classes not participating... Exchange proposes to amend Rule 6.62(cc) to make available the Post No Preference Light Only Quotation...
[Effects of light intensity on growth and photosynthetic characteristics of Tulipa edulis].
Xu, Hongjian; Zhu, Zaibiao; Guo, Qiaosheng; Wu, Zhengjun; Ma, Hongliang; Miao, Yuanyuan
2012-02-01
Present study was conducted to explore the growth and photosynthetic characteristics of Tulipa edulis under different light conditions (23%, 45%, 63%, 78%, 100% of full sunlight) and to determine the optimum light intensity for growth of T. edulis. The leaf area and biomass indicators as well as reproductive characteristics were measured. The photosynthetic basic parameters and light response curve were determined by a LI-6400XT portable photosynthesis system, and the light response curve characteristic parameters was determined. Additionally, chlorophyll fluorescence parameters were determined by assorted fluorescence leaf chamber of LI-6400XT. The lowest biomass yield was observed in the 23% and 100% of full sunlight treatments while the highest value was found under the 78% of full sunlight conditions. With the reduction of light availability, the success rate of sexual reproduction, light saturation point (LSP) and light compensation point (LCP) reduced, while apparent quantum yield (AQY) increased. 23% and 45% of full sunlight treatments led to lower photosynthesis rate (Pn) and higher apparent quantum yield (AQY) in comparison with other treatents. The highest photosynthesis rate was observed in the 78% and 100% of full sunlight treatments. In addition, 78% of full sunlight treatments led to highest Fv/Fm, Fv'/Fm', PhiPS II, ETR, and qP. T. edulis was able to adapt in a wide range of light intensity, and 78% of full sunlinght was the most suitable light condition for growth of T. edulis.
Archer, G S
2018-06-01
1. The objective of this study was to evaluate the effect of two different spectra of white light on hatchability and chick quality of broiler chickens. 2. A total of 8424 Ross 708 broiler eggs were divided over three light exposure treatments during incubation: No light (DARK), a light emitting diode (LED) light with high levels of blue light (BLUE), or a LED light with high levels of red light (RED). Hatchability, embryo mortality and chick quality were assessed at hatch. 3. DARK had a higher percentage of chicks with unhealed navels (21.1 ± 1.3%) and fewer overall chicks with no defects (77.0 ± 1.2%) compared to both the BLUE (9.9 ± 0.9% and 88.4 ± 1.1%) and RED treatments (7.7 ± 0.8% and 90.2 ± 1.0%). 4. Both the BLUE (80.9 ± 1.0%) and RED treatments (82.9 ± 1.4%) had higher hatchability of fertile eggs than the DARK treatment (76.0 ± 2.2%). 5. These results indicate that either of these LED fixtures could be used to improve hatchability and chick quality in broiler chickens. Utilising these types of lightings in commercial hatcheries will improve the efficiency via increased hatchability and quality of the chicks hatched.
Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.
Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang
2016-11-23
Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.
Laturnus, F; Giese, B; Wiencke, C; Adams, F C
2000-01-01
The influence of temperature, light, salinity and nutrient availability on the release of volatile halogenated hydrocarbons was investigated in the Antarctic red macroalgal species Gymnogongrus antarcticus Skottsberg. Compared to standard culture condition, an increase in the release rates of iodocompounds was generally found for the exposure of the alga to altered environmental conditions. Macroalgae exhibited higher release rates after adaptation for two months to the changed factors, than after short-term exposure. Monitoring the release rates during a 24 h incubation period (8.25 h light, 15.75 h darkness) showed that changes between light and dark periods had no influence on the release of volatile halocarbons. Compounds like bromoform and 1-iodobutane exhibited constant release rates during the 24 h period. The formation mechanisms and biological role of volatile organohalogens are discussed. Although marine macroalgae are not considered to be the major source of biogenically-produced volatile organohalogens, they contribute significantly to the bromine and iodine cycles in the environment. Under possible environmental changes like global warming and uncontrolled entrophication of the oceans their significance may be increase.
Bailes, Helena J; Zhuang, Ling-Yu; Lucas, Robert J
2012-01-01
Originally developed to regulate neuronal excitability, optogenetics is increasingly also used to control other cellular processes with unprecedented spatiotemporal resolution. Optogenetic modulation of all major G-protein signalling pathways (Gq, Gi and Gs) has been achieved using variants of mammalian rod opsin. We show here that the light response driven by such rod opsin-based tools dissipates under repeated exposure, consistent with the known bleaching characteristics of this photopigment. We continue to show that replacing rod opsin with a bleach resistant opsin from Carybdea rastonii, the box jellyfish, (JellyOp) overcomes this limitation. Visible light induced high amplitude, reversible, and reproducible increases in cAMP in mammalian cells expressing JellyOp. While single flashes produced a brief cAMP spike, repeated stimulation could sustain elevated levels for 10s of minutes. JellyOp was more photosensitive than currently available optogenetic tools, responding to white light at irradiances ≥1 µW/cm(2). We conclude that JellyOp is a promising new tool for mimicking the activity of Gs-coupled G protein coupled receptors with fine spatiotemporal resolution.
Determining light stress responses for a tropical multi-species seagrass assemblage.
Statton, John; McMahon, Kathryn; Lavery, Paul; Kendrick, Gary A
2018-03-01
Existing mitigations to address deterioration in water clarity associated with human activities are based on responses from single seagrass species but may not be appropriate for diverse seagrass assemblages common to tropical waters. We present findings from a light experiment designed to determine the effects of magnitude and duration of low light on a mixed tropical seagrass assemblage. Mixed assemblages of three commonly co-occurring Indo-West Pacific seagrasses, Cymodocea serrulata, Halodule uninervis and Halophila ovalis were grown in climate-controlled tanks, where replicate pots were subjected to a gradient in light availability (0.9-21.6 mols PAR m -2 day -1 ) for 12 weeks. Increased shading resulted in declines in growth and changes in cellular and photosynthesis responses for all species, although time-scale and magnitude of response were species-specific. Applying management criteria (e.g. thresholds) relevant to one species may under- or over-estimate potential for impact on other species and the meadow as a whole. Copyright © 2018 Elsevier Ltd. All rights reserved.
The influence of car-seat design on its character experience.
Kamp, Irene
2012-03-01
Producing higher efficiency cars with less and lighter materials but without compromising safety, comfort and driving pleasure might give a competitive advantage. In this light, at BMW a new light weight car-seat concept was developed based on the human body contour. A possibility to increase the comfort is using a seat which elicits positive tactile experiences. However, limited information is available on seat characteristics and tactile experiences. Therefore, this study describes the contour of three different car-seat designs, including a light weight seat, and the recorded corresponding emotion and tactile experience of 21 persons sitting in the seats. Results show that the new light weight car-seat concept rated well on experienced relaxedness, even with the lack of a side support. The most important findings are that hard seats with rather high side supports are rated sporty and seats that are softer are rated more luxurious. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Window Glasses: State and Prospects
NASA Astrophysics Data System (ADS)
Maiorov, V. A.
2018-04-01
Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.
NASA Astrophysics Data System (ADS)
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
A self-photoprotection mechanism helps Stipa baicalensis adapt to future climate change
Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui
2016-01-01
We examined the photosynthetic responses of Stipa baicalensis to relative long-term exposure (42 days) to the predicted elevated temperature and water availability changes to determine the mechanisms through which the plant would acclimate to future climate change. Two thermal regimes (ambient and +4 °C) and three irrigation levels (partial, normal and excess) were used in environmental control chambers. The gas exchange parameters, light response curves and A/Ci curves were determined. The elevated temperature and partial irrigation reduced the net photosynthetic rate due to a limitation in the photosynthetic capacity instead of the intercellular CO2 concentration. Partial irrigation decreased Rubisco activation and limited RuBP regeneration. The reduction in Vcmax increased with increasing temperature. Excess irrigation offset the negative effect of drought and led to a partial recovery of the photosynthetic capacity. Although its light use efficiency was restricted, the use of light and dark respiration by Stipa baicalensis was unchanged. We concluded that nonstomatal limitation was the primary reason for photosynthesis regulation in Stipa baicalensis under relative long-term climate change conditions. Although climate change caused reductions in the light use efficiency and photosynthetic rate, a self-photoprotection mechanism in Stipa baicalensis resulted in its high ability to maintain normal live activities. PMID:27161934
NASA Astrophysics Data System (ADS)
Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara
2014-02-01
Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.
Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír
2016-01-01
Objectives We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. Methods We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Results Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Conclusions Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance. PMID:27846293
Muramyl Peptide-Enhanced Sleep: Pharmacological Optimization of Performance.
1987-06-01
cycle of 12 h:12 h was maintained, light from 0600 to 1800 h. Food and water were available ad libitum. At the top of the chamber, a BRS/LVE electrical...and temperture in cat. Sleep Res. 16: 150, 1987. 108. Swanson, J. Studies on gonococcus infection. xii. Colony color and opacity variants of...Methods) received infusion. The major effectof increasing Ta to 27°C was to increase duration of slow wave sleep during the entire 6-hour recording
Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chong; Kong, Desheng; Hsu, Po -Chun
Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less
Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light
Liu, Chong; Kong, Desheng; Hsu, Po -Chun; ...
2016-08-15
Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less
Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David
2015-01-01
Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal variability of light availability and utilization in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.
1995-01-01
A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.
Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop.
Głowacka, Katarzyna; Kromdijk, Johannes; Kucera, Katherine; Xie, Jiayang; Cavanagh, Amanda P; Leonelli, Lauriebeth; Leakey, Andrew D B; Ort, Donald R; Niyogi, Krishna K; Long, Stephen P
2018-03-06
Insufficient water availability for crop production is a mounting barrier to achieving the 70% increase in food production that will be needed by 2050. One solution is to develop crops that require less water per unit mass of production. Water vapor transpires from leaves through stomata, which also facilitate the influx of CO 2 during photosynthetic assimilation. Here, we hypothesize that Photosystem II Subunit S (PsbS) expression affects a chloroplast-derived signal for stomatal opening in response to light, which can be used to improve water-use efficiency. Transgenic tobacco plants with a range of PsbS expression, from undetectable to 3.7 times wild-type are generated. Plants with increased PsbS expression show less stomatal opening in response to light, resulting in a 25% reduction in water loss per CO 2 assimilated under field conditions. Since the role of PsbS is universal across higher plants, this manipulation should be effective across all crops.
Cui, Yudong; Zhang, Huan; Lin, Senjie
2017-01-01
Intensified water column stratification due to global warming has the potential to decrease nutrient availability while increasing excess light for the photosynthesis of phytoplankton in the euphotic zone, which together will increase the need for photoprotective strategies such as non-photochemical quenching (NPQ). We investigated whether NPQ is enhanced and how it is regulated molecularly under phosphorus (P) deprivation in the dinoflagellate Karlodinium veneficum. We grew K. veneficum under P-replete and P-depleted conditions, monitored their growth rates and chlorophyll fluorescence, and conducted gene expression and comparative proteomic analyses. The results were used to characterize NPQ modulation and associated gene expression dynamics under P deprivation. We found that NPQ in K. veneficum was elevated significantly under P deprivation. Accordingly, the abundances of three light-harvesting complex stress-related proteins increased under P-depleted condition. Besides, many proteins related to genetic information flow were down-regulated while many proteins related to energy production and conversion were up-regulated under P deprivation. Taken together, our results indicate that K. veneficum cells respond to P deprivation by reconfiguring the metabolic landscape and up-tuning NPQ to increase the capacity to dissipate excess light energy and maintain the fluency of energy flow, which provides a new perspective about what adaptive strategy dinoflagellates have evolved to cope with P deprivation. PMID:28360892
Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng
2017-01-01
This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.
Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng
2017-01-01
This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. ‘Neva’) trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil. PMID:29117215
How light competition between plants affects their response to climate change.
van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R
2014-09-01
How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Ganju, Neil K.; Miselis, Jennifer L.; Aretxabaleta, Alfredo L.
2014-01-01
Light attenuation is a critical parameter governing the ecological function of shallow estuaries. In these systems primary production is often dominated by benthic macroalgae and seagrass; thus light penetration to the bed is of primary importance. We quantified light attenuation in three seagrass meadows in Barnegat Bay, New Jersey, a shallow eutrophic back-barrier estuary; two of the sites were located within designated Ecologically Sensitive Areas (ESAs). We sequentially deployed instrumentation measuring photosynthetically active radiation, chlorophyll-a (chl-a) fluorescence, dissolved organic matter fluorescence (fDOM; a proxy for colored DOM absorbance), turbidity, pressure, and water velocity at 10 min intervals over three week periods at each site. At the southernmost site, where sediment availability was highest, light attenuation was highest and dominated by turbidity and to a lesser extent chl-a and CDOM. At the central site, chl-a dominated followed by turbidity and CDOM, and at the northernmost site turbidity and CDOM contributed equally to light attenuation. At a given site, the temporal variability of light attenuation exceeded the difference in median light attenuation at the three sites, indicating the need for continuous high-temporal resolution measurements. Vessel wakes, anecdotally implicated in increasing sediment resuspension, did not contribute to local resuspension within the seagrass beds, though frequent vessel wakes were observed in the channels. With regards to light attenuation and water clarity, physical and biogeochemical variables appear to outweigh any regulation of boat traffic within the ESAs.
de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice
2015-12-10
Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. Copyright © 2015 Elsevier B.V. All rights reserved.
Shining a Light on Electronics
ERIC Educational Resources Information Center
Statler, James D.
2009-01-01
While they produced a limited amount of light when first introduced, light-emitting diode (LED) lights offered the benefit of rarely burning out. As a result, they were initially used primarily as indicator lights. Advances in the technology have made available LEDs that produce far brighter light, and one application that has come to market is…
NASA Technical Reports Server (NTRS)
Leveton, Lauren; Brainard, George; Whitmire, Alexandra; Kubey, Alan; Maida, Jim; Bowen, Charles; Johnston, Smith
2010-01-01
The International Space Station (ISS) currently uses General Luminaire Assemblies (GLAs) as its primary light source. These GLAs are composed of fluorescent lighting and are integrated into the electrical system on Station. Seventy seven of these units are distributed throughout the vehicle, and many of the lights, having reached their lifespan, are no longer functional; while backup panels are available on orbit, it is anticipated that the supplies of fluorescents on the station will be exhausted by 2015. The ISS vehicle office is therefore preparing to replace all of the GLAs, with Solid State Light Assemblies (SSLAs) composed of white Light Emitting Diodes (LEDs). In the Spring of 2010, an announcement for the replacement lights was released. The announcement specified that proposed lighting systems should use LED technology, given certain power draw restrictions and no changes to how the lights are currently controlled (a central on/off switch per node, and a dial to turn on/off and increase brightness on each lighting unit). The replacement lights are to follow current specifications for brightness levels (lux) and color temperature (degrees Kelvin, or K). Reportedly, the lighting on orbit is dim and suboptimal. The average brightness of the lights (given all lights within a node are operational) is 291 lux; by comparison, recommended office lighting ranges from 200 to 500 lux, and daylight ranges on a typical overcast day, consists of 10,000 to 25,000 lux. Representatives from NASA Behavioral Health and Performance Element (BHP) and Human Factors and Habitability identified that maintaining current brightness levels limits visual acuity, work space, and the use of light as a countermeasure for improving circadian entrainment, hastening phase shifting, evoking acute alertness and enhancing performance. Revised lighting specifications are therefore needed to optimize the replacement lights for the ISS.
Cecchini, M; Warin, L
2016-03-01
Food labels are considered a crucial component of strategies tackling unhealthy diets and obesity. This study aims at assessing the effectiveness of food labelling in increasing the selection of healthier products and in reducing calorie intake. In addition, this study compares the relative effectiveness of traffic light schemes, Guideline Daily Amount and other food labelling schemes. A comprehensive set of databases were searched to identify randomized studies. Studies reporting homogeneous outcomes were pooled together and analysed through meta-analyses. Publication bias was evaluated with a funnel plot. Food labelling would increase the amount of people selecting a healthier food product by about 17.95% (confidence interval: +11.24% to +24.66%). Food labelling would also decrease calorie intake/choice by about 3.59% (confidence interval: -8.90% to +1.72%), but results are not statistically significant. Traffic light schemes are marginally more effective in increasing the selection of healthier options. Other food labels and Guideline Daily Amount follow. The available evidence did not allow studying the effects of single labelling schemes on calorie intake/choice. Findings of this study suggest that nutrition labelling may be an effective approach to empowering consumers in choosing healthier products. Interpretive labels, as traffic light labels, may be more effective. © 2015 World Obesity.
High nitrogen availability reduces polyphenol content in Sphagnum peat.
Bragazza, Luca; Freeman, Chris
2007-05-15
Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.
Emile S. Gardiner; John D. Hodges
1998-01-01
Cherrybark oak (Quercus pagoda Raf.) seedlings were established and raised in the field under four light levels (100 percent. 53 percent, 27 percent or 8 percent of full sunlight) to study the effects of light availability on their shoot growth, biomass accumulation. and biomass distribution. After two growing seasons, greatest stem growth was observed on seedlings...
Far-red light is needed for efficient photochemistry and photosynthesis.
Zhen, Shuyang; van Iersel, Marc W
2017-02-01
The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David
2015-05-15
The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.
Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo
2015-01-01
The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Light-emitting diodes for analytical chemistry.
Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K
2014-01-01
Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.
Advances in atmospheric light scattering theory and remote-sensing techniques
NASA Astrophysics Data System (ADS)
Videen, Gorden; Sun, Wenbo; Gong, Wei
2017-02-01
This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].
Quantum simulation of 2D topological physics in a 1D array of optical cavities
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-01-01
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177
Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes.
Wu, Shaolong; Zhang, Cheng; Li, Xiaofeng; Zhan, Yaohui
2015-03-01
We focus on the light-trapping characteristics of a thin film with locally clustered nanoholes (NHs), considering that the clustering effect is usually encountered in preparing the nanostructures. Our full-wave finite-element simulation indicates that an intentionally introduced clustering effect could be employed for improving the light-trapping performance of the nanostructured thin film. For a 100 nm thick amorphous silicon film, an optimal clustering design with NH diameter of 100 nm is able to double the integrated optical absorption over the solar spectrum, compared to the planar counterpart, as well as show much improved optical performance over that of the nonclustered setup. A further insight into the underlying physics explains the outstanding light-trapping capability in terms of the increased available modes, a stronger power coupling efficiency, a higher fraction of electric field concentrated in absorbable material, and a higher density of photon states.
Quantum simulation of 2D topological physics in a 1D array of optical cavities.
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-07-06
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Russell, Richard C
2004-12-01
Two dominant day-biting pests and vector species on the island of Moorea in French Polynesia are Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) polynesiensis Marks, major vectors of dengue viruses and Wuchereria bancrofti, respectively. Their surveillance is hindered by a relative lack of attraction to light traps, necessitating the undesirable use of human bait collections with the inherent risks of pathogen transmission. The effectiveness of CDC- and EVS-type light traps baited with olfactory attractants was evaluated for these two Aedes species and the nocturnal Culex (Culex) quinquefasciatus Say in three sites in urban and semi-rural environments on Moorea in October/November 2003. Firstly, four CDC-type traps with light only, light with octenol, light with carbon dioxide (dry ice), and light with octenol plus carbon dioxide were operated continuously over four days with daily rotation to compensate for position effects. Secondly, two CDC- and two EVS-type traps with carbon dioxide or carbon dioxide plus octenol were operated continuously over four days with similar rotation. Variation was found in the numbers of the three species collected at the different sites, reflecting the relative availability of their preferred larval habitats. With the CDC traps in the first trial, the addition of octenol to the light did not significantly increase the collection of any species, the addition of carbon dioxide did significantly increase collection of all three species, while the addition of octenol to the light plus carbon dioxide did not significantly increase the collections further. In the second trial, there was no significant difference in the mean number of Ae. aegypti or Ae. polynesiensis collected in either EVS or CDC traps when baited with carbon dioxide or with octenol added. For Cx. quinquefasciatus, the supplementation with octenol made no significant difference with EVS traps but resulted in significantly reduced collections in CDC traps. Overall, neither trap, however baited, provided large samples when compared with landing/ biting collections at human bait. Only two other species were collected, Culex (Culex) roseni Belkin and Aedes (Aedimorphus) nocturnus (Theobald), the latter being a first record for the island of Moorea and for French Polynesia.
Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light
NASA Astrophysics Data System (ADS)
Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young
2016-07-01
Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications. Electronic supplementary information (ESI) available: FE-SEM image of thiol-acrylate hydrogels; UV/Vis spectra of Ellman's assay; the temperature increase during transdermal photothermal hydrogelation. See DOI: 10.1039/c6nr01956k
Non-cladding optical fiber is available for detecting blood or liquids.
Takeuchi, Akihiro; Miwa, Tomohiro; Shirataka, Masuo; Sawada, Minoru; Imaizumi, Haruo; Sugibuchi, Hiroyuki; Ikeda, Noriaki
2010-10-01
Serious accidents during hemodialysis such as an undetected large amount of blood loss are often caused by venous needle dislodgement. A special plastic optical fiber with a low refractive index was developed for monitoring leakage in oil pipelines and in other industrial fields. To apply optical fiber as a bleeding sensor, we studied optical effects of soaking the fiber with liquids and blood in light-loss experimental settings. The non-cladding optical fiber that was used was the fluoropolymer, PFA fiber, JUNFLON™, 1 mm in diameter and 2 m in length. Light intensity was studied with an ordinary basic circuit with a light emitting source (880 nm) and photodiode set at both terminals of the fiber under certain conditions: bending the fiber, soaking with various mediums, or fixing the fiber with surgical tape. The soaking mediums were reverse osmosis (RO) water, physiological saline, glucose, porcine plasma, and porcine blood. The light intensities regressed to a decaying exponential function with the soaked length. The light intensity was not decreased at bending from 20 to 1 cm in diameter. The more the soaked length increased in all mediums, the more the light intensity decreased exponentially. The means of five estimated exponential decay constants were 0.050±0.006 standard deviation in RO water, 0.485±0.016 in physiological saline, 0.404±0.022 in 5% glucose, 0.503±0.038 in blood (Hct 40%), and 0.573±0.067 in plasma. The light intensity decreased from 5 V to about 1.5 V above 5 cm in the soaked length in mediums except for RO water and fixing with surgical tape. We confirmed that light intensity significantly and exponentially decreased with the increased length of the soaked fiber. This phenomena could ideally, clinically be applied to a bleed sensor.
Schmid, Georg H.; Gaffron, Hans
1967-01-01
Neither an over-all deficiency of chlorophyll, nor an increased enzymatic capacity for maximal rates, nor an unusual lamellar structure was found to change the number of quanta required for the evolution of one molecule of oxygen in healthy aurea mutants of tobacco. The average minimal quantum number remains 10 (efficiency 0.1) as in many algae and typical higher plants. Most of the time the optimal efficiency depends on the availability of some far-red radiation, particularly in the blue region of the spectrum where blue light alone is rather inefficient. These results fit an explanation offered earlier in connection with the hydrogen or acetate photometabolism of algae in far-red light. PMID:19873573
Light field image denoising using a linear 4D frequency-hyperfan all-in-focus filter
NASA Astrophysics Data System (ADS)
Dansereau, Donald G.; Bongiorno, Daniel L.; Pizarro, Oscar; Williams, Stefan B.
2013-02-01
Imaging in low light is problematic as sensor noise can dominate imagery, and increasing illumination or aperture size is not always effective or practical. Computational photography offers a promising solution in the form of the light field camera, which by capturing redundant information offers an opportunity for elegant noise rejection. We show that the light field of a Lambertian scene has a 4D hyperfan-shaped frequency-domain region of support at the intersection of a dual-fan and a hypercone. By designing and implementing a filter with appropriately shaped passband we accomplish denoising with a single all-in-focus linear filter. Drawing examples from the Stanford Light Field Archive and images captured using a commercially available lenselet- based plenoptic camera, we demonstrate that the hyperfan outperforms competing methods including synthetic focus, fan-shaped antialiasing filters, and a range of modern nonlinear image and video denoising techniques. We show the hyperfan preserves depth of field, making it a single-step all-in-focus denoising filter suitable for general-purpose light field rendering. We include results for different noise types and levels, over a variety of metrics, and in real-world scenarios. Finally, we show that the hyperfan's performance scales with aperture count.
Angela M Happel; William E. Sharpe
2004-01-01
Soil acidity, nutrient deficient soils, lack of light penetration, herbivory, and understory competition are the major obstacles encountered in regenerating and sustaining northern red oak. Changes in soils that may occur during soil acidifi- cation include: reduced soil pH, increased availability of aluminum (Al) and manganese (Mn), loss of base cations due to...
Updated Buildings Sector Appliance and Equipment Costs and Efficiency
2016-01-01
EIA works with technology experts to project the cost and efficiency of future HVAC, lighting, and other major end-use equipment rather than developing residential and commercial technology projections in-house. These reports have always been available by request. By providing the reports online, EIA is increasing transparency for some of the most important assumptions used for our AEO projections of buildings energy demand.
Liu, Yang; Qian, Chenyun; Ding, Sihui; Shang, Xulan; Yang, Wanxia; Fang, Shengzuo
2016-12-01
As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.
Resource allocation in an annual herb: Effects of light, mycorrhizal fungi, and defoliation
NASA Astrophysics Data System (ADS)
Aguilar-Chama, Ana; Guevara, Roger
2016-02-01
Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.
Ballhorn, Daniel J; Schädler, Martin; Elias, Jacob D; Millar, Jess A; Kautz, Stefanie
2016-01-01
Plant associations with root microbes represent some of the most important symbioses on earth. While often critically promoting plant fitness, nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) also demand significant carbohydrate allocation in exchange for key nutrients. Though plants may often compensate for carbon loss, constraints may arise under light limitation when plants cannot extensively increase photosynthesis. Under such conditions, costs for maintaining symbioses may outweigh benefits, turning mutualist microbes into parasites, resulting in reduced plant growth and reproduction. In natural systems plants commonly grow with different symbionts simultaneously which again may interact with each other. This might add complexity to the responses of such multipartite relationships. We experimented with lima bean (Phaseolus lunatus), which efficiently forms associations with both types of root symbionts. We applied full light and low-light to each of four treatments of microbial inoculation. After an incubation period of 14 weeks, we quantified vegetative aboveground and belowground biomass and number and viability of seeds to determine effects of combined inoculant and light treatment on plant fitness. Under light-limited conditions, vegetative and reproductive traits were inhibited in AMF and rhizobia inoculated lima bean plants relative to controls (un-colonized plants). Strikingly, reductions in seed production were most critical in combined treatments with rhizobia x AMF. Our findings suggest microbial root symbionts create additive costs resulting in decreased plant fitness under light-limited conditions.
O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2018-02-01
A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roncali, Emilie; Mosleh-Shirazi, Mohammad Amin; Badano, Aldo
2017-10-01
Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented. The authors declare equal leadership and contribution regarding this review.
Plant Bioelectric Potential of Hard-leaf Cabbage to Irradiation-light Frequency
NASA Astrophysics Data System (ADS)
Tokuda, Masaki; Shao, Lixin; Oyabu, Takashi; Nanto, Hidehito
Bioelectric potential was investigated to examine the availability of vegetable growth control. The potential is a kind of information transmitted by the vegetable and it varies markedly with one’s physiological phenomenon, light, air contaminant and insect which are external factors. Highly-efficient growth control can be made possible due to clarifying the relationship between the external factors and the potential. Vegetable can be used as a sensor in addition. A hard-leaf cabbage (Ancient specie) was adopted as a subjective plant in this study and the bioelectric potential was measured. The analysis was carried out using the summation of the potential (vm1) for one minute. The data was input every 0.1 seconds through a difference amplifier. The potential characteristic was investigated as a function of light frequency emitting from a LED panel. In addition, the potential was studied when ethyl alcohol existed and not existed as an air contaminant. As a result, it becomes obvious that the vm1 is raised when blue and red lights are irradiated. The lights mainly contribute to photosynthesis. The potential increases in the presence of ethyl alcohol which was adopted as a kind of nutrient.
Music-of-light stethoscope: a demonstration of the photoacoustic effect
NASA Astrophysics Data System (ADS)
Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.
2016-07-01
In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.
Music-of-light stethoscope: a demonstration of the photoacoustic effect
Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T
2016-01-01
Abstract In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased. PMID:29249838
Music-of-light stethoscope: a demonstration of the photoacoustic effect.
Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T
2016-07-01
In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.
Crous, Kristine Y; O'Sullivan, Odhran S; Zaragoza-Castells, Joana; Bloomfield, Keith J; Negrini, A Clarissa A; Meir, Patrick; Turnbull, Matthew H; Griffin, Kevin L; Atkin, Owen K
2017-08-01
Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light
NASA Astrophysics Data System (ADS)
Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi
2016-12-01
Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l-1) under simulated visible light.
Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots
NASA Astrophysics Data System (ADS)
Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu
2016-01-01
We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range.We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c5nr07901b
Dim Light at Night Increases Body Mass of Female Mice
Aubrecht, Taryn G.; Jenkins, Richelle; Nelson, Randy J.
2016-01-01
During the past century the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16h light at ~150 lux/8h dark at ~0 lux) cycle or to light/dim light at night (dLAN; 16h light at ~150 lux/8h dim light at ~5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism. PMID:25431079
Past and Present of Total Artificial Heart Therapy: A Success Story.
Samak, Mostafa; Fatullayev, Javid; Sabashnikov, Anton; Zeriouh, Mohamed; Rahmanian, Parwis B; Choi, Yeong-Hoon; Wippermann, Jens; Wahlers, Thorsten; Schmack, Bastian; Ruhparwar, Arjang; Dohmen, Pascal M; Karck, Matthias; Popov, Aron-Frederik; Simon, André R; Weymann, Alexander
2015-09-07
The totally artificial heart (TAH) is among the most prominent medical innovations of the 21st century, especially due to the increasing population with end-stage heart failure. The progressive course of the disease, its resistance to conventional therapy, and the scarcity of hearts available for transplantation were the prime impetus for developing a TAH, especially when other options of mechanical circulatory assist devices are exhausted. In this review, we narrate the history of TAH, give an overview of its technology, and address the pros and cons of the currently available TAH models in light of published clinical experience.
Cost and energy-efficient (LED, induction and plasma) roadway lighting.
DOT National Transportation Integrated Search
2013-11-01
There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...
Lee, Changju; So, Jaehyun Jason; Ma, Jiaqi
2018-01-02
The conflicts among motorists entering a signalized intersection with the red light indication have become a national safety issue. Because of its sensitivity, efforts have been made to investigate the possible causes and effectiveness of countermeasures using comparison sites and/or before-and-after studies. Nevertheless, these approaches are ineffective when comparison sites cannot be found, or crash data sets are not readily available or not reliable for statistical analysis. Considering the random nature of red light running (RLR) crashes, an inventive approach regardless of data availability is necessary to evaluate the effectiveness of each countermeasure face to face. The aims of this research are to (1) review erstwhile literature related to red light running and traffic safety models; (2) propose a practical methodology for evaluation of RLR countermeasures with a microscopic traffic simulation model and surrogate safety assessment model (SSAM); (3) apply the proposed methodology to actual signalized intersection in Virginia, with the most prevalent scenarios-increasing the yellow signal interval duration, installing an advance warning sign, and an RLR camera; and (4) analyze the relative effectiveness by RLR frequency and the number of conflicts (rear-end and crossing). All scenarios show a reduction in RLR frequency (-7.8, -45.5, and -52.4%, respectively), but only increasing the yellow signal interval duration results in a reduced total number of conflicts (-11.3%; a surrogate safety measure of possible RLR-related crashes). An RLR camera makes the greatest reduction (-60.9%) in crossing conflicts (a surrogate safety measure of possible angle crashes), whereas increasing the yellow signal interval duration results in only a 12.8% reduction of rear-end conflicts (a surrogate safety measure of possible rear-end crash). Although increasing the yellow signal interval duration is advantageous because this reduces the total conflicts (a possibility of total RLR-related crashes), each countermeasure shows different effects by RLR-related conflict types that can be referred to when making a decision. Given that each intersection has different RLR crash issues, evaluated countermeasures are directly applicable to enhance the cost and time effectiveness, according to the situation of the target intersection. In addition, the proposed methodology is replicable at any site that has a dearth of crash data and/or comparison sites in order to test any other countermeasures (both engineering and enforcement countermeasures) for RLR crashes.
Effects of colored light-emitting diode illumination on behavior and performance of laying hens.
Huber-Eicher, B; Suter, A; Spring-Stähli, P
2013-04-01
The best method for lighting poultry houses has been an issue for many decades, generating much interest in any new systems that become available. Poultry farmers are now increasingly using colored LED (light-emitting diodes) to illuminate hen houses (e.g., in Germany, Austria, the Netherlands, and England). In Switzerland all newly installed systems are now equipped with LED, preferably green ones. The LED give monochromatic light from different wavelengths and have several advantages over conventional illuminants, including high energy efficiency, long life, high reliability, and low maintenance costs. The following study examines the effects of illumination with white, red, and green LED on behavior and production parameters of laying hens. Light intensities in the 3 treatments were adjusted to be perceived by hens as equal. Twenty-four groups of 25 laying hens were kept in identical compartments (5.0 × 3.3 m) equipped with a litter area, raised perches, feed and drinking facilities, and nest boxes. Initially, they were kept under white LED for a 2-wk adaptation period. For the next 4 wk, 8 randomly chosen compartments were lit with red LED (640 nm) and 8 others with green LED (520 nm). Behavior was monitored during the last 2 wk of the trial. Additionally weight gain, feed consumption, onset of lay, and laying performance were recorded. The results showed minor effects of green light on explorative behavior, whereas red light reduced aggressiveness compared with white light. The accelerating effect of red light on sexual development of laying hens was confirmed, and the trial demonstrated that this effect was due to the specific wavelength and not the intensity of light. However, an additional effect of light intensity may exist and should not be excluded.
Understanding the importance of an energy crisis
NASA Astrophysics Data System (ADS)
Mechtenberg, Abigail Reid
Human development and energy, in general, and electrical energy, specifically, co-exist seamlessly in high HDI countries where reliability and availability is greater than 99%. In numerous low HDI countries, there is 2-50% electric grid availability with reliability at or below 50% due to load shedding and faults. In Africa, solar, wind, biomass and hydroelectric energy production are cited to meet growing demand and increase reliability and availability; however, the capital costs are greater than the ability-to-pay for wide scale implementation. Since the 1970s, the United States has continued to argue over the new sustainable energy infrastructure solution(s); thus resulting in no new infrastructure being built for wide scale implementation. Together the world is facing the daunting task of averting an energy crisis in developed countries and facing energy crises in developing countries. This thesis explores the importance of energy crises: from the past, current, and future. The first part entails arguing that the United States is not on a pathway to prevent an energy crisis based on an analysis of 1986 and 2004 niche and status-quo manufacturing of light-duty vehicles. The second part answers the question of what an energy crisis looks like by exploring and investigating current electrical energy crises in Fort Portal, Uganda. This part used both anthropological and physics education empowerment research to co-design and build for various energy crisis situations in hospitals, schools, and businesses all from locally available materials and expertise. Finally, looking into the US light-duty vehicle's future, I design a new hybrid vehicle powertrain (called transition mode hybrid). This third part describes my new patent as a way to avert an energy crisis in the light-duty transportation sector.
Effects of Cryogenic Temperatures on LEDs and Optical Fiber
NASA Technical Reports Server (NTRS)
Pantel, Erica R.
2005-01-01
Light Emitting Diodes (LEDs) may provide a simple, low powered light source for future space missions. However, the effects of cryogenic temperatures on LEDs and optical fibers are largely unknown. Tests were performed on a selection of commercially-available LEDs, with wavelengths varying from 468 nm to 950 nm, as well as "white" LEDs. Dry ice and liquid nitrogen (LN2) were used to bring the LEDs to the desired temperatures. The optical fibers were tested using a specially-machined brass cylinder that would allow the fibers to be cooled slowly and evenly in an LN2 dewer. An optical fiber coupled to a spectrometer was used to acquired spectra of a calibration light source (wavelength range 253-922 nm) at various temperatures. Examination of the LED spectra has shown several different effects, depending on the LED in question. Those with wavelengths above 590 nm tend to show a "blue shift" in their peak wavelength and an increase in intensity. Other LEDs developed secondary or tertiary peaks, or showed no peak shift at all, although all LEDs did show an increase in observed intensity. The optical fiber showed a slight non-uniform decrease in transmission as the temperature cooled to -195 C.
Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program
2015-09-01
usually on most of the time. • Consider replacing existing CFL, high-intensity discharge (HID), or halogen lamp light fixtures/ lamps with LED fixtures... lamps . What is the Technology? An LED is a semiconductor-diode that emits light when power is applied. A driver is used, much as a ballast, to...available in integrated luminaires that can be used to replace existing luminaires. LEDs are also available as direct replacement lamps for many
Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary
Carter, V.; Rybicki, N.B.
1990-01-01
Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.
White LED sources for vehicle forward lighting
NASA Astrophysics Data System (ADS)
Van Derlofske, John F.; McColgan, Michele W.
2002-11-01
Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.
NASA Astrophysics Data System (ADS)
Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.
2016-02-01
A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee; Schneider, Irene; Hassler, Donald M.
2006-01-01
The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25 s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Performance enhancement technique of visible light communications using passive photovoltaic cell
NASA Astrophysics Data System (ADS)
Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Hsu, Chin-Wei; Yeh, Chien-Hung
2017-06-01
The light emitting diode (LED) based visible light communication (VLC) system can provide lighting and communication simultaneously. It has attracted much attenuation recently. As the photovoltaic cell (also known as solar cell) is physically flexible, low cost, and easily available, it could be a good choice for the VLC receiver (Rx). Furthermore, besides acting as the VLC Rx, the solar cell can convert VLC signal into electricity for charging up the Rx devices. Hence, it could be a promising candidate for the future internet-of-thing (IoT) networks. However, using solar cell as VLC Rx is challenging, since the response of the solar cell is highly limited and it will limit the VLC data rate. In this work, we propose and demonstrate for the first time using pre-distortion Manchester coding (MC) signal to enhance the signal performance of solar cell Rx based VLC. The proposed scheme can significantly mitigate the slow response, as well as the direct-current (DC) wandering effect of the solar cell; hence 50 times increase in data rate can be experimentally achieved.
75 FR 31430 - Northern Lights, Inc.; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2594-013-MT] Northern Lights, Inc.; Notice of Availability of Environmental Assessment May 27, 2010. In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission (Commission...
75 FR 78704 - Northern Lights, Inc.; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2594-013-MT] Northern Lights, Inc.; Notice of Availability of Environmental Assessment December 9, 2010. In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission (Commission...
Code of Federal Regulations, 2010 CFR
2010-07-01
... lock is available, a green light, semaphore or flag will be displayed; when not available, a red light... booms and piling must be obtained by written permit from the District Engineer. (8) The building...
Comparisons of luminaires: Efficacies and system design
NASA Technical Reports Server (NTRS)
Albright, L. D.; Both, A. J.
1994-01-01
Lighting designs for architectural (aesthetic) purposes, vision and safety, and plant growth have many features in common but several crucial ones that are not. The human eye is very sensitive to the color (wavelength) of light, whereas plants are less so. There are morphological reactions, particularly to the red and blue portions of the light spectrum but, in general, plants appear to accept and use light for photosynthesis everywhere over the PAR region of the spectrum. In contrast, the human eye interprets light intensity on a logarithmic scale, making people insensitive to significant differences of light intensity. As a rough rule, light intensity must change by 30 to 50% for the human eye to recognize the difference. Plants respond much more linearly to light energy, at least at intensities below photosynthetic saturation. Thus, intensity differences not noticeable to the human eye can have significant effects on total plant growth and yield, and crop timing. These factors make luminaire selection and lighting system design particularly important when designing supplemental lighting systems for plant growth. Supplemental lighting for plant growth on the scale of commercial greenhouses is a relatively expensive undertaking. Light intensities are often much higher than required for task (vision) lighting, which increases both installation and operating costs. However, and especially in the northern regions of the United States (and Canada, Europe, etc.), supplemental lighting during winter may be necessary to produce certain crops (e.g., tomatoes) and very useful to achieve full plant growth potential and crop timing with most other greenhouse crops. Operating costs over the life of a luminaire typically will exceed the initial investment, making lighting efficacy a major consideration. This report reviews tests completed to evaluate the efficiencies of various commercially-available High-Pressure Sodium luminaires, and then describes the results of using a commercial lighting design computer program, Lumen-Micro, to explore how to place luminaires within greenhouses and plant growth chambers to achieve light (PAR) uniformity and relatively high lighting efficacies. Several suggestions are presented which could encourage systematic design of plant lighting systems.
NASA Technical Reports Server (NTRS)
Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.
2001-01-01
The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.
Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong
2018-03-01
Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Energy cost unit of street and park lighting system with solar technology for a more friendly city
NASA Astrophysics Data System (ADS)
Warman, E.; Nasution, F. S.; Fahmi, F.
2018-03-01
Street and park lighting system is part of a basic infrastructure need to be available in such a friendly city. Enough light will provide more comfort to citizens, especially at night since its function to illuminate roads and park environments around the covered area. The necessity to add more and more lighting around the city caused the rapid growth of the street and park lighting system while the power from PLN (national electricity company) is insufficient and the cost is getting higher. Therefore, it is necessary to consider other energy sources that are economical, environmentally friendly with good continuity. Indonesia, which located on the equator, have benefited from getting solar radiation throughout the year. This free solar radiation can be utilized as an energy source converted by solar cells to empower street and park lighting system. In this study, we planned the street and park lighting with solar technology as alternatives. It was found that for Kota Medan itself, an average solar radiation intensity of 3,454.17 Wh / m2 / day is available. By using prediction and projection method, it was calculated that the energy cost unit for this system was at Rp 3,455.19 per kWh. This cost was higher than normal energy cost unit but can answer the scarcity of energy availability for street and park lighting system
Light Limitation within Southern New Zealand Kelp Forest Communities
Desmond, Matthew J.; Pritchard, Daniel W.; Hepburn, Christopher D.
2015-01-01
Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2–5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Long-term light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m−2 at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities. PMID:25902185
Dim light at night increases body mass of female mice.
Aubrecht, Taryn G; Jenkins, Richelle; Nelson, Randy J
2015-05-01
During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.
[Response of photosynthetic characteristics of peanut seedlings leaves to low light].
Zhang, Kun; Wan, Yong-shan; Liu, Feng-zhen; Zhang, Er-qun; Wang, Su
2009-12-01
To investigate the effects of shading and light recovery on the photosynthetic characteristics of peanut seedlings leaves, different shading treatments including no shading, 27% shading, 43% shading, and 77% shading were performed with black sunshade net at the seedling stage of two peanut cultivars Fenghua 1 and Fenghua 2, with related parameters determined. It was shown that with the increase of shading degree, the leaf chlorophyll content, actual PSII photochemical efficiency under irradiance (phi(PS II)), and maximum PS II photochemical efficiency (Fv/Fm) of test cultivars increased, while the Chl a/b ratio and photosynthetic rate (Pn) decreased. On the first day after light recovery, the Pn and stomatal conductance (Gs) decreased while the intercellular CO2 concentration (Ci) increased with increasing shading degree when measured under high light, but the Pn increased and the Gs and Ci decreased with increasing shading degree when measured under low light. The ratio of Pn measured under low light to that measured under high light increased significantly. With increasing shading degree, the light compensation point, light saturation point, CO2 compensation point, CO2 saturation point, and carboxylation efficiency decreased, while the apparent quantum yield increased. After the removal of shading, the Pn, phi(PS II), and Fv/Fm under natural light decreased immediately, but increased gradually 3-5 days after. 15 days after light recovery, the Pn, phi(PS II) and Fv/Fm in treatment 27% shading recovered to the level of no shading. As for the other treatments, the restored extent differed with shading degree and test variety. In the same treatments, the leaf chlorophyll content, Pn and phi(PS II) of Fenghua 1 were higher than those of Fenghua 2. The results demonstrated that shading at seedling stage improved the capabilities of test varieties in using low light, but reduced the capabilities in using high light.
Chauhan, Preeti; Cerdá, Magdalena; Messner, Steven F.; Tracy, Melissa; Tardiff, Kenneth; Galea, Sandro
2012-01-01
The current study evaluated a range of social influences including misdemeanor arrests, drug arrests, cocaine consumption, alcohol consumption, firearm availability, and incarceration that may be associated with changes in gun-related homicides by racial/ethnic group in New York City (NYC) from 1990 to 1999. Using police precincts as the unit of analysis, we used cross-sectional, time series data to examine changes in Black, White, and Hispanic homicides, separately. Bayesian hierarchical models with a spatial error term indicated that an increase in cocaine consumption was associated with an increase in Black homicides. An increase in firearm availability was associated with an increase in Hispanic homicides. Last, there were no significant predictors for White homicides. Support was found for the crack cocaine hypotheses but not for the broken windows hypothesis. Examining racially/ethnically disaggregated data can shed light on group-sensitive mechanisms that may explain changes in homicide over time. PMID:22328820
Heath-Heckman, Elizabeth A.C.; Foster, Jamie; Apicella, Michael A.; Goldman, William E.; McFall-Ngai, Margaret
2016-01-01
Summary Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid-vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile-organ brush borders also efface concomitantly with daily dawn-cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush-border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe-associated molecular patterns play a role in the regulation of brush-border microarchitecture. PMID:27062511
NASA Astrophysics Data System (ADS)
Cope, K. R.; Bugbee, B.
2011-12-01
Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.
Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems
NASA Technical Reports Server (NTRS)
Dougher, Tracy A. O.; Bugbee, Bruce
2004-01-01
Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.
Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin
2014-06-01
Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.
Field Commissioning of a Daylight-Dimming Lighting System.
ERIC Educational Resources Information Center
Floyd, David B.; Parker, Danny S.
A Florida elementary school cafeteria, retrofitted with a fluorescent lighting system that dims in response to available daylight, was evaluated through real time measurement of lighting and air conditioning power, work plane illumination, and interior/exterior site conditions. The new system produced a 27 percent reduction in lighting power due…
NASA Technical Reports Server (NTRS)
Jewett, M. E.; Kronauer, R. E.; Brown, E. N. (Principal Investigator)
1998-01-01
In 1990, Kronauer proposed a mathematical model of the effects of light on the human circadian pacemaker. Although this model predicted many general features of the response of the human circadian pacemaker to light exposure, additional data now available enable us to refine the original model. We first refined the original model by incorporating the results of a dose response curve to light into the model's predicted relationship between light intensity and the strength of the drive onto the pacemaker. Data from three bright light phase resetting experiments were then used to refine the amplitude recovery characteristics of the model. Finally, the model was tested and further refined using data from an extensive phase resetting experiment in which a 3-cycle bright light stimulus was presented against a background of dim light. In order to describe the results of the four resetting experiments, the following major refinements to the original model were necessary: (i) the relationship between light intensity (I) and drive onto the pacemaker was reduced from I1/3 to I0.23 for light levels between 150 and 10,000 lux; (ii) the van der Pol oscillator from the original model was replaced with a higher-order limit cycle oscillator so that amplitude recovery is slower near the singularity and faster near the limit cycle; (iii) a direct effect of light on circadian period (tau x) was incorporated into the model such that as I increases, tau x decreases, which is in accordance with "Aschoff's rule". This refined model generates the following testable predictions: it should be difficult to enhance normal circadian amplitude via bright light; near the critical point of a type 0 phase response curve (PRC) the slope should be steeper than it is in a type 1 PRC; and circadian period measured during forced desynchrony should be directly affected by ambient light intensity.
Artificial light at night alters trophic interactions of intertidal invertebrates.
Underwood, Charlotte N; Davies, Thomas W; Queirós, Ana M
2017-07-01
Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the balance of interspecific interactions involved in community structuring may be affected. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Blessing, William; Mohammed, Mazher; Ootsuka, Youichirou
2012-02-28
Laboratory rats, throughout the 24 hour day, alternate between behaviorally active and non active episodes that Kleitman called the basic rest-activity cycle (BRAC). We previously demonstrated that brown adipose tissue (BAT), body and brain temperatures and arterial pressure and heart rate increase in an integrated manner during behaviorally active phases. Studies show that eating is preceded by increases in body and brain temperature, but whether eating is integrated into the BRAC has not been investigated. In the present study of chronically instrumented, unrestrained Sprague-Dawley rats, peaks in BAT temperature occurred every 96 ± 7 and 162 ± 16 min (mean ± SE, n=14 rats) in dark and light periods respectively, with no apparent underlying regularity. With food available ad libitum, eating was integrated into the BRAC in a temporally precise manner. Eating occurred only after an increase in BAT temperature, commencing 15 ± 1 min (mean ± SE) after the onset of an increase, with no difference between dark and light phases. There were either no or weak preprandial and postprandial relations between intermeal interval and amount eaten during a given meal. Remarkably, with no food available the rat still disturbed the empty food container 16 ± 1 min (p>0.05 versus ad libitum food) after the onset of increases in BAT temperature, and not at other times. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food eating commences as part of the ultradian BRAC, a manifestation of intrinsic brain activity. Copyright © 2011 Elsevier Inc. All rights reserved.
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2309-019] Jersey Central Power and Light Company, PSEG Fossil, LLC; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's...
Evaluation of Internet websites about floaters and light flashes in patient education.
Barbosa, Andréa Lima; Martins, Elisabeth Nogueira
2007-01-01
Flashes of light and floaters are most commonly caused by posterior vitreous separation but may be associated with sight-threatening disorders. Prevention of severe sequelae requires prompt dilated eye examination. Thus, information dissemination is crucial. This study aimed to evaluate the quality of information about floaters and light flashes available for patients on the Internet. Cross-sectional study. In July 2005 we evaluated information available on the Internet regarding floaters and light flashes, using two search engines (MetaCrawler and MSN) and three key terms ("floaters", "dark spots eye", and "light flashes eye"). The quality of each website was evaluated using a score system. The sites were classified as academic, organizational or commercial. Readability, general quality of the website (based on: ownership, purpose, authorship, author qualification, attribution, interactivity, and currency) and quality of the specific content (definition, causes, epidemiology, diagnosis, treatment, and prognosis) were analyzed. Of 145 websites evaluated, 49 were included. Four sites (8.2%) were academic, 9 (18.4%) organizational, and 36 (73.4%) commercial. In the majority of the sites (53.0%) information was poor and quality was not correlated with website classification. Information about floaters and light flashes available on the Internet is poor.
NASA Astrophysics Data System (ADS)
Mallidi, Srivalleesha; Mai, Zhiming; Rizvi, Imran; Hempstead, Joshua; Arnason, Stephen; Celli, Jonathan; Hasan, Tayyaba
2015-04-01
In view of the increase in cancer-related mortality rates in low- to middle-income countries (LMIC), there is an urgent need to develop economical therapies that can be utilized at minimal infrastructure institutions. Photodynamic therapy (PDT), a photochemistry-based treatment modality, offers such a possibility provided that low-cost light sources and photosensitizers are available. In this proof-of-principle study, we focus on adapting the PDT light source to a low-resource setting and compare an inexpensive, portable, battery-powered light-emitting diode (LED) light source with a standard, high-cost laser source. The comparison studies were performed in vivo in a xenograft murine model of human squamous cell carcinoma subjected to 5-aminolevulinic acid-induced protoporphyrin IX PDT. We observed virtually identical control of the tumor burden by both the LED source and the standard laser source. Further insights into the biological response were evaluated by biomarker analysis of necrosis, microvessel density, and hypoxia [carbonic anhydrase IX (CAIX) expression] among groups of control, LED-PDT, and laser-PDT treated mice. There is no significant difference in the percent necrotic volume and CAIX expression in tumors that were treated with the two different light sources. These encouraging preliminary results merit further investigations in orthotopic animal models of cancers prevalent in LMICs.
Herbivores modify selection on plant functional traits in a temperate rainforest understory.
Salgado-Luarte, Cristian; Gianoli, Ernesto
2012-08-01
There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.
The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation
NASA Technical Reports Server (NTRS)
Whelan, Harry T.
2002-01-01
Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans
2014-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-05-01
Employing innovative mapping and spatial analyses of individual and neighbourhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a 'spatial isolation index' in explaining exchanging sex for drugs and exchanging sex while high. Analyses drew on baseline interview and geographic data (January 2010-October 2011) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighbourhood environment data. An index measuring 'spatial isolation' was developed from seven indicators measuring features of the built environment within 50m buffers (e.g., industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Of 510 SWs, 328 worked in street-based/outdoor environments (e.g., streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs' main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. Copyright © 2013 Elsevier B.V. All rights reserved.
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-01-01
Background Employing innovative mapping and spatial analyses of individual and neighborhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a ‘spatial isolation index’ in explaining exchanging sex for drugs and exchanging sex while high. Methods Analyses drew on baseline interview and geographic data (Jan/10-Oct/11) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighborhood environment data. An index measuring ‘spatial isolation’ was developed from seven indicators measuring features of the built environment within 50m buffers (e.g. industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Results Of 510 SWs, 328 worked in street-based/outdoor environments (e.g. streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs’ main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. Conclusions The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. PMID:24433813
Sensor/amplifier for weak light sources
NASA Technical Reports Server (NTRS)
Desmet, D. J.; Jason, A. J.; Parr, A. C.
1980-01-01
Light sensor/amplifier circuit detects weak light converts it into strong electrical signal in electrically noisy environment. Circuit is relatively simple and uses inexpensive, readily available components. Device is useful in such applications as fire detection and photographic processing.
Alexandre, Ana; Silva, João; Santos, Rui
2018-01-01
Restoration of seagrass beds through seedlings is an alternative to the transplantation of adult plants that reduces the impact over donor areas and increases the genetic variability of restored meadows. To improve the use of Cymodocea nodosa seedlings, obtained from seeds germinated in vitro , in restoration programs, we investigated the ammonium and phosphate uptake rates of seedlings, and the synergistic effects of light levels (20 and 200 μmol quanta m -2 s -1 ) and different nitrogen to phosphorus molar ratios (40 μM N:10 μM P, 25 μM N:25 μM P, and 10 μM N:40 μM P) on the photosynthetic activity and growth of seedlings. The nutrient content of seedlings was also compared to the seed nutrient reserves to assess the relative importance of external nutrient uptake for seedling development. Eighty two percent of the seeds germinated after 48 days at a mean rate of 1.5 seeds per day. All seedlings under all treatments survived and grew during the 4 weeks of the experiment. Seedlings of C. nodosa acquired ammonium and phosphate from the incubation media while still attached to the seed, at rates of about twice of adult plants. The relevance of external nutrient uptake was further highlighted by the observation that seedlings' tissues were richer in nitrogen and phosphorus than non-germinated seeds. The uptake of ammonium followed saturation kinetics with a half saturation constant of 32 μM whereas the uptake of phosphate increased linearly with nutrient concentration within the range tested (5 - 100 μM). Light was more important than the nutrient ratio of fertilization for the successful development of the young seedlings. The seedlings' photosynthetic and growth rates were about 20% higher in the high light treatment, whereas different nitrogen to phosphorus ratios did not significantly affect growth. The photosynthetic responses of the seedlings to changes in the light level and their capacity to use external nutrient sources showed that seedlings of C. nodosa have the ability to rapidly acclimate to the surrounding light and nutrient environment while still attached to the seeds. C. nodosa seedlings experiencing fertilization under low light levels showed slightly enhanced growth if nourished with a balanced formulation, whereas a slight increase in growth was also observed with unbalanced formulations under a higher light level. Our results highlight the importance of high light availability at the seedling restoration sites.
Rozendaal, Danaë M A; Kobe, Richard K
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests.
Rozendaal, Danaë M. A.; Kobe, Richard K.
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests. PMID:27870897
NASA Astrophysics Data System (ADS)
Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.
2017-12-01
Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.
Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication.
Janjua, Bilal; Oubei, Hassan M; Durán Retamal, Jose R; Ng, Tien Khee; Tsai, Cheng-Ting; Wang, Huai-Yung; Chi, Yu-Chieh; Kuo, Hao-Chung; Lin, Gong-Ru; He, Jr-Hau; Ooi, Boon S
2015-07-13
With increasing interest in visible light communication, the laser diode (LD) provides an attractive alternative, with higher efficiency, shorter linewidth and larger bandwidth for high-speed visible light communication (VLC). Previously, more than 3 Gbps data rate was demonstrated using LED. By using LDs and spectral-efficient orthogonal frequency division multiplexing encoding scheme, significantly higher data rates has been achieved in this work. Using 16-QAM modulation scheme, in conjunction with red, blue and green LDs, data rates of 4.4 Gbps, 4 Gbps and 4 Gbps, with the corresponding BER/SNR/EVM of 3.3 × 10⁻³/15.3/17.9, 1.4 × 10⁻³/16.3/15.4 and 2.8 × 10⁻³/15.5/16.7were obtained over transmission distance of ~20 cm. We also simultaneously demonstrated white light emission using red, blue and green LDs, after passing through a commercially available diffuser element. Our work highlighted that a tradeoff exists in operating the blue LDs at optimum bias condition while maintaining good color temperature. The best results were obtained when encoding red LDs which gave both the strongest received signal amplitude and white light with CCT value of 5835K.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Kim, H. J.; Lee, M. H.
2016-06-01
This study presents luminescence and scintillation properties of Silver doped LiI crystals. Single crystals of LiI: x% Ag (x=0.02, 0.05, 0.1 and 0.5) were grown by using the Bridgman technique. X-ray induced luminescence spectra show emission bands spanning from 275 nm to 675 nm, dominated by Ag+ band having a peak at 300 nm. Under UV-luminescence, a similar emission band was observed with the peak excitation wavelength of 265 nm. Energy resolution, light yield and decay time profiles of the samples were measured under a 137Cs γ-ray irradiation. The LiI(0.1%Ag) showed the highest light yield and the best energy resolution among the samples. The light yield of LiI(0.1%Ag) is higher than commercially available LiI(Eu) crystal (15,000±1500 ph/MeV). The LiI(Ag) samples exhibit three exponential decay time components except the LiI(0.02%Ag), where the fitting found two decay time components. Temperature dependences of emission spectra, light yield and decay time were studied from 300 K to 10 K. The LiI(0.1%Ag) crystal showed an increase in the light yield and a shortening of decay time with a decrease in temperature..
A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei
2014-05-19
To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.
Extending ROSAT Light Curves of Ecliptic Pole AGN Formation and Galaxy Evolution
NASA Technical Reports Server (NTRS)
Malkan, Matthew A.
1997-01-01
In collaboration with UCLA graduate student Fred Baganoff, Professor Malkan has obtained the longest continuous light curves ever available for a large sample (# = 60) of active galactic nuclei. This was accomplished by using the ROSATAII-Sky Survey, which covered the ecliptic pole regions once every 9O-minute orbit. Using this Astrophysics Data Processing grant from NASA, we extended these light curves by combining the RASS data with pointed observations over the next several years of operation of the ROSAT PSPC. This lengthens the baselines of about half of the light curves from a few months up to a few years. The proportion of AGN showing variability increases substantially with this improvement. In fact most AGN in this representative sample are now shown to be significantly variable in the X-rays. We are also able to say something about the amplitudes of variability on timescales from days to years, with more detail than previously has been possible. We have also identified some dependence of the X-ray variability properties on a) the luminosity of the AGN; and b) The presence of a "Blazar" nucleus. By extending the ROSAT light curves, we are also able to learn more about the correlation of X-ray and optical emission on longer time-scales. It appears to be very weak, at best.
Malvezzi-Campeggi, F; Jahnz, M; Heinze, K G; Dittrich, P; Schwille, P
2001-01-01
Green fluorescent protein (GFP) from jellyfish Aequorea victoria, the powerful genetically encoded tag presently available in a variety of mutants featuring blue to yellow emission, has found a red-emitting counterpart. The recently cloned red fluorescent protein DsRed, isolated from Discosoma corals (), with its emission maximum at 583 nm, appears to be the long awaited tool for multi-color applications in fluorescence-based biological research. Studying the emission dynamics of DsRed by fluorescence correlation spectroscopy (FCS), it can be verified that this protein exhibits strong light-dependent flickering similar to what is observed in several yellow-shifted mutants of GFP. FCS data recorded at different intensities and excitation wavelengths suggest that DsRed appears under equilibrated conditions in at minimum three interconvertible states, apparently fluorescent with different excitation and emission properties. Light absorption induces transitions and/or cycling between these states on time scales of several tens to several hundreds of microseconds, dependent on excitation intensity. With increasing intensity, the emission maximum of the static fluorescence continuously shifts to the red, implying that at least one state emitting at longer wavelength is preferably populated at higher light levels. In close resemblance to GFP, this light-induced dynamic behavior implies that the chromophore is subject to conformational rearrangements upon population of the excited state. PMID:11509387
NASA Technical Reports Server (NTRS)
1993-01-01
Seasonal Affective Disorder is a form of depression brought on by reduced light. For some people, this can lead to clinical depression. NASA has conducted research in light therapy and employs it to help astronauts adjust internal rhythms during orbital flight. Dr. George Brainard, a medical researcher and NASA consultant, has developed a portable light therapy device, which is commercially available. The Light Visor allows continuous light therapy and can be powered by either batteries or electricity. Dr. Brainard continues to research various aspects of light therapy.
Losing the Dark: Public Outreach about Light Pollution and Its Mitigation
NASA Astrophysics Data System (ADS)
Collins Petersen, Carolyn; Petersen, Mark C.; Walker, Constance E.; Kardel, W. Scott; International Dark Sky Association Education Committee
2015-01-01
Losing the Dark is a PSA video available for public outreach through fulldome theaters as well as conventional venues (classroom, lecture hall, YouTube, Vimeo). It was created by Loch Ness Productions for the International Dark Sky Association. It explains problems caused by light pollution, which targets astronomy, health, and the environment. Losing the Dark also suggests ways people can implement "wise lighting" practices to help mitigate light pollution. The video is available free of charge for outreach professionals in planetarium facilities (both fulldome and classical), science centers, classroom, and other outreach venues, and has been translated into 13 languages. It is available via download, USB key (at cost), and through online venues. This paper summarizes the program's outreach to more than a thousand fulldome theaters, nearly 100,000 views via four sites on Youtube and Vimeo,a number of presentations at other museum and classroom facilities, and shares some preliminary metrics and commentary from users.
Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.
Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo
2017-09-05
Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).
Integrating free-space optical communication links with existing WiFi (WiFO) network
NASA Astrophysics Data System (ADS)
Liverman, S.; Wang, Q.; Chu, Y.; Duong, T.; Nguyen-Huu, D.; Wang, S.; Nguyen, T.; Wang, A. X.
2016-02-01
Recently, free-space optical (FSO) systems have generated great interest due to their large bandwidth potential and a line-of-sight physical layer of protection. In this paper, we propose WiFO, a novel hybrid system, FSO downlink and WiFi uplink, which will integrate currently available WiFi infrastructure with inexpensive infrared light emitting diodes. This system takes full advantage of the mobility inherent in WiFi networks while increasing the downlink bandwidth available to each end user. We report the results of our preliminary investigation that show the capabilities of our prototype design in terms of bandwidth, bit error rates, delays and transmission distances.
Past and Present of Total Artificial Heart Therapy: A Success Story
Samak, Mostafa; Fatullayev, Javid; Sabashnikov, Anton; Zeriouh, Mohamed; Rahmanian, Parwis B.; Choi, Yeong-Hoon; Wippermann, Jens; Wahlers, Thorsten; Schmack, Bastian; Ruhparwar, Arjang; Dohmen, Pascal M.; Karck, Matthias; Popov, Aron-Frederik; Simon, André R.; Weymann, Alexander
2015-01-01
The totally artificial heart (TAH) is among the most prominent medical innovations of the 21st century, especially due to the increasing population with end-stage heart failure. The progressive course of the disease, its resistance to conventional therapy, and the scarcity of hearts available for transplantation were the prime impetus for developing a TAH, especially when other options of mechanical circulatory assist devices are exhausted. In this review, we narrate the history of TAH, give an overview of its technology, and address the pros and cons of the currently available TAH models in light of published clinical experience. PMID:26343363
How to improve colon cancer screening rates
Alberti, Luiz Ronaldo; Garcia, Diego Paim Carvalho; Coelho, Debora Lucciola; De Lima, David Correa Alves; Petroianu, Andy
2015-01-01
Colorectal carcinoma is a common cause of death throughout the world and may be prevented by routine control, which can detect precancerous neoplasms and early cancers before they undergo malignant transformation or metastasis. Three strategies may improve colon cancer screening rates: convince the population about the importance of undergoing a screening test; achieve higher efficacy in standard screening tests and make them more available to the community and develop new more sensitive and efficacious screening methods and make them available as routine tests. In this light, the present study seeks to review these three means through which to increase colon cancer screening rates. PMID:26688708
1991-05-01
GeoarId Reinforced Agregate Layers over Weak Clay Subgrades. Milligan and Love(Z3) conducted small-scale laboratory model tests under plane strain...34. Based on the very limited literature available on geogrid applications in airfield pavements, the literature review was expanded to cover railroad...thicknesses and clay subgrade strengths. Performance of the reinforced systems was significantly better. The increased performance resulted from the
Safety Parameter Considerations of Anodal Transcranial Direct Current Stimulation in Rats
2017-10-01
under standard laboratory conditions, including a 12 hour light/ dark cycle with food and water available ad libitum. Following a ten day quarantine...values greater than 7.04619 A/m2 are presented in dark red. The maximum threshold was determined by preliminary analysis corresponding the first...increased. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 11
Walls, Kelvin L.; Benke, Geza
2011-01-01
Increased use of fluorescent lighting as a climate change mitigation strategy may increase eye disease. The safe range of light to avoid exposing the eye to potentially damaging ultraviolet (UV) radiation is 2000 to 3500K and greater than 500 nanometers. Some fluorescent lights fall outside this safe range. Fluorescent lighting may increase UV-related eye diseases by up to 12% and, according to our calculations, may cause an additional 3000 cases of cataracts and 7500 cases of pterygia annually in Australia. Greater control of UV exposure from fluorescent lights is required. This may be of particular concern for aging populations in developed countries and countries in northern latitudes where there is a greater dependence on artificial lighting. PMID:22021286
Emile S. Gardiner; Ken W. Krauss
2001-01-01
Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27 percent) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves...
Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.
2011-01-01
Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952
Tunc, Elif Pak
2007-06-01
Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.
NASA Astrophysics Data System (ADS)
Jia, S.; Gillespie, T. W.
2016-12-01
Stable nighttime light, an indicator of persisting human activity and light pollution is a well-recognized disturbance to the wilderness of protected areas (PAs). Mostly supported by in situ observations, very limited studies of light pollution for PAs focused at a regional level and on a continuous time span to support policy making effectively. DMSP-OLS stable nighttime series provide continuous observation of nightlight and have been widely applied in studies focusing on human activities. In this study, we employed inter-calibrated DMSP-OLS nightlight series from 1992 to 2012 to evaluate the change of intensity and extension of stable nighttime light inside California PAs. We observed a decrease of stable nighttime light and a shrinkage in spatial extent in PAs located in all ecoregions from 1992 to 2012, especially before 2004. Such decrease and shrinkage occurred mostly in southern California and the Bay Area where mega metropolitan clusters locate. The successful application of protecting strategies in PAs and the improved technologies of lighting may contribute to the relieving of light pollution in PAs. However, the stable nighttime light slightly increased since 2004, when there was limited room for stricter protective regulations and the pressure from population growth persisted. Population density explained most spatial distribution of nightlight in years with census tract level demographic data available, except PAs with the highest wilderness such as Sierra Nevada Mts. We anticipate to improve the models with the newest remote sensing nighttime product from NASA Suomi-NPP and annually updated demographic data from American Community Survey at census tract level in the future to provide a cost-effective evaluation on protecting strategies. Such evaluation will support land managers of PAs and local policy-makers for modification and proposal of policies.
Lanoue, Jason; Leonardos, Evangelos D.; Ma, Xiao; Grodzinski, Bernard
2017-01-01
Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production. PMID:28676816
Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard
2017-01-01
Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.
Zanethia D. Choice; Thomas K. Frazer; Charles A. Jacoby
2014-01-01
Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8% to 10% of surface irradiance for Halophila...
Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
He, Hu; Hu, En; Yu, Jinlei; Luo, Xuguang; Li, Kuanyi; Jeppesen, Erik; Liu, Zhengwen
2017-02-01
It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.
Optical re-injection in cavity-enhanced absorption spectroscopy
Leen, J. Brian; O’Keefe, Anthony
2014-01-01
Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701
PHOTOMETRIC STUDY OF THE VERY SHORT PERIOD SHALLOW CONTACT BINARY DD COMAE BERENICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, L.; Qian, S.-B.; Mikulasek, Z.
2010-07-15
The first photometric solutions of the very short period (VSP) close binary DD Comae Berenices (P = 0fd26920811) based on our new complete (IR){sub C} light curves are derived by the 2003 version Wilson-Van Hamme code. They show that the system belongs to shallow contact W-type W UMa systems with a degree of overcontact of 8.7%. The observed light curve distortions are explained by employing the spots model due to the late-type nature of both components. We have collected all available photometric data about the system with emphasis on the individual observational data, which we treated simultaneously using our ownmore » method based on the usage of computed model light curves as templates. We recalculated published times of light minimum and added new ones of our own to construct an O - C diagram that spans over 70 years. Using a least squares method orthogonal quadratic model function, we found that the orbital period of DD Com is continuously increasing with P-dot =0.00401(22) s yr{sup -1}. The period increase may be caused by the mass transfer from the less-massive component to the more-massive one. With the period increase, the binary is evolving from the present shallow contact phase to the broken stage predicted by the thermal relaxation oscillation (TRO) theory. Compared with other VSP systems, DD Com is a rare system that lies on the expanding phase of the TRO cycle. Until now, only four such systems including DD Com are found in this stage. Thus, this target is another good observational proof of the TRO theory in a very short period region.« less
Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe
2015-01-01
Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID:26345627
Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1
Flores, Hector E.; Galston, Arthur W.
1984-01-01
Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552
Enhanced retinal responses in Huntington's disease patients.
Pearl, Jocelynn R; Heath, Laura M; Bergey, Dani E; Kelly, John P; Smith, Corrie; Laurino, Mercy Y; Weiss, Avery; Price, Nathan D; LaSpada, Albert; Bird, Thomas D; Jayadev, Suman
2017-01-01
Huntington's disease (HD) is a fatal progressive neurodegenerative disease characterized by chorea, cognitive impairment and psychiatric symptoms. Retinal examination of HD patients as well as in HD animal models have shown evidence of retinal dysfunction. However, a detailed retinal study employing clinically available measurement tools has not been reported to date in HD. The goal of this study was to assess retinal responses measured by electroretinogram (ERG) between HD patients and controls and evaluate any correlation between ERG measurements and stage of disease. Eighteen patients and 10 controls with inclusion criteria of ages 18-70 years (average age HD subjects: 52.1 yrs and control subjects: 51.9 yrs) were recruited for the study. Subjects with previous history of retinal or ophthalmologic disease were excluded. Retinal function was examined by full-field ERG in both eyes of each subject. Amplitudes and latencies to increasing flash intensities in both light- and dark-adaptation were measured in all subjects. Statistical analyses employed generalized estimating equations, which account for repeated measures per subject. We analyzed the b-wave amplitudes of ERG response in all flash intensities and with 30 Hz flicker stimulation. We found statistically significant increased amplitudes in HD patients compared to controls at light-adapted (photopic) 24.2 and 60.9 cd.sec/m2 intensities, dark-adapted (scotopic, red flash) 0.22 cd.sec/m2 intensity, and a trend toward significance at light-adapted 30 Hz flicker. Furthermore, we found a significant increase in light-adapted ERG response from female compared to male HD patients, but no significant difference between gender amongst controls. We also noted a positive association between number of CAG repeats and ERG response at the smallest light adapted intensity (3.1 cd.sec/m2). ERG studies revealed significantly altered retinal responses at multiple flash intensities in subjects with an HD expansion allele compared to controls. Significant differences were observed with either light-adapted tests or the dark-adapted red flash which suggests that the enhanced responses in HD patients is specific to the cone photoreceptor pathway.
Light-dependent emission of hydrogen sulfide from plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.G.; Bressan, R.A.; Filner, P.
1978-02-01
With the aid of a sulfur-specific flame photometric detector, an emission of volatile sulfur was detected from leaves of cucumber (Cucumis sativus L.), squash and pumpkin (Cucurbita pepo L.), cantaloupe (Cucumis melo L.), corn (Zea mays L.), soybean (Glycine max (L.) Merr.) and cotton (Gossypium hirsutum L.). The emission was studied in detail in squash and pumpkin. It occurred following treatment of the roots of plants with sulfate and was markedly higher from either detached leaves treated via the cut petiole, or whole plants treated via mechanically injured roots. Bisulfite elicited higher rates of emission than sulfate. The emission wasmore » completely light-dependent and increased with light intensity. The rate of emission rose to a maximum and then declined steadily toward zero in the course of a few hours. However, emission resumed after reinjury of roots, an increase in light intensity, an increase in sulfur anion concentration, or a dark period of several hours. The emission was identified as H/sub 2/S by the following criteria: it had the odor of H/sub 2/S; it was not trapped by distilled H/sub 2/O, but was trapped by acidic CdCl/sub 2/ resulting in the formation of a yellow precipitate, CdS; it was also trapped by base and the contents of the trap formed methylene blue when reacted with N,N-dimethyl-p-phenylenediamine and Fe/sup 3 +/. H/sub 2/S emission is not the cause of leaf injury by SO/sub 2/, since bisulfite produced SO/sub 2/ injury symptoms in dim light when H/sub 2/S emission was low, while sulfate did not produce injury symptoms in bright light when H/sub 2/S emission was high. The maximum rates of emission observed, about 8 nmol min/sup -1/ g fresh weight/sup -1/, are about the activity that would be expected for the sulfur assimilation pathway of a normal leaf. H/sub 2/S emission may be a means by which the plant can rid itself of excess inorganic sulfur when HS/sup -/ acceptors are not available in sufficient quantity.« less
NASA Astrophysics Data System (ADS)
Cullis, J. D.; Gillis, C.; Drummond, J. D.; Garcia, T.; Kilroy, C.; Larned, S.; Hassan, M. A.
2010-12-01
Didymosphenia geminata (didymo) was introduced into a New Zealand river in 2004, and since then has dramatically spread to cover the beds of many rivers with extremely dense and extensive mats. Successful management is hampered by the fact that much is still unknown about the factors affecting the growth of this nuisance species. We synthesized available data on the distribution of D. geminata in New Zealand rivers to determine how physical and chemical system conditions (flow, bed disturbance, nutrients, and light) affect the growth and persistence of this organism. Here we assess results from bi-weekly surveys performed over a full year on two rivers where didymo was first observed in New Zealand; the Oreti and Mararoa. We used the data to test the hypotheses that the development of thick, dense mats requires high light levels but is inversely proportional to nutrient levels, and that mat persistence is controlled by the frequency of flow events that produce bed sediment transport. Observed regrowth between disturbance events was found to be inversely correlated with nutrient availability. The seasonal availability of light did not correlate with variations in growth rate, but this did not account for specific characteristics of the different sites such as aspect, shading, flow depth and turbidity that will all impact on the amount of available light reaching the streambed. The results clearly indicate that the time-history of flow and nutrient levels is critical to evaluating the growth and persistence of D. geminata and that additional site specific information is necessary to determine the role of bed stability and the amount of available light reaching the streambed.
Varga, Sandra; Laaksonen, Ester; Siikamäki, Pirkko; Kytöviita, Minna-Maarit
2015-01-01
Sex-differential plasticity (SDP) hypothesis suggests that since hermaphrodites gain fitness through both pollen and seed production they may have evolved a higher degree of plasticity in their reproductive strategy compared to females which achieve fitness only through seed production. SDP may explain the difference in seed production observed between sexes in gynodioecious species in response to resource (nutrients or water) availability. In harsh environments, hermaphrodites decrease seed production whereas females keep it relatively similar regardless of the environmental conditions. Light availability can be also a limiting resource and thus could theoretically affect differently female and hermaphrodite seed output even though this ecological factor has been largely overlooked. We tested whether the two sexes in the gynodioecious species Geranium sylvaticum differ in their tolerance to light limitation during seed maturation in the field. We used a fully factorial block experiment exposing female and hermaphrodite plants to two different light environments (control and shade) after their peak flowering period. Specifically, we measured fruit and seed production in response to decreased light availability and compared it between the sexes. Shading reduced the number of fruits and seeds produced, but the decrease was similar between the sexes. Furthermore, shading delayed seed production by three days in both sexes, but did not affect seed mass, seed P content, or the probability of re-flowering the following year. Our results give no evidence for reproductive SDP in response to light during seed maturation.
NASA Astrophysics Data System (ADS)
Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju
2018-01-01
In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.
Plastic photochromic eyewear: a status report
NASA Astrophysics Data System (ADS)
Crano, John C.; Elias, Richard C.
1991-12-01
An estimated 10 million pairs of photochromic prescription lenses were dispensed in the United States in 1989, essentially all based on a silver halide system suspended in an inorganic glass. A significant trend within the ophthalmic industry has been the growth of light-weight plastic lenses. In the United States market, the percentage of prescription eyewear made of plastic is now greater than 70%. With this increasing market penetration of plastic lenses, the desire for an acceptable plastic photochromic lens has also increased. As with any commercial product, in order to achieve consumer acceptance there exist several technical requirements for a plastic photochromic lens. These include the light transmission and color of the lens in both the unactivated and activated states, the speeds of darkening and fading, and the fatigue resistance or lifetime of the photochromic system. These requirements will be defined along with approaches to achieving them. The properties of the commercially available plastic photochromic lenses will be compared with the defined requirements.
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A
2015-10-30
Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.
Landgren, Ola; Zeig-Owens, Rachel; Giricz, Orsolya; Goldfarb, David; Murata, Kaznouri; Thoren, Katie; Ramanathan, Lakshmi; Hultcrantz, Malin; Dogan, Ahmet; Nwankwo, George; Steidl, Ulrich; Pradhan, Kith; Hall, Charles B; Cohen, Hillel W; Jaber, Nadia; Schwartz, Theresa; Crowley, Laura; Crane, Michael; Irby, Shani; Webber, Mayris P; Verma, Amit; Prezant, David J
2018-06-01
The World Trade Center (WTC) attacks on September 11, 2001, created an unprecedented environmental exposure to known and suspected carcinogens suggested to increase the risk of multiple myeloma. Multiple myeloma is consistently preceded by the precursor states of monoclonal gammopathy of undetermined significance (MGUS) and light-chain MGUS, detectable in peripheral blood. To characterize WTC-exposed firefighters with a diagnosis of multiple myeloma and to conduct a screening study for MGUS and light-chain MGUS. Case series of multiple myeloma in firefighters diagnosed between September 11, 2001, and July 1, 2017, together with a seroprevalence study of MGUS in serum samples collected from Fire Department of the City of New York (FDNY) firefighters between December 2013 and October 2015. Participants included all WTC-exposed FDNY white, male firefighters with a confirmed physician diagnosis of multiple myeloma (n = 16) and WTC-exposed FDNY white male firefighters older than 50 years with available serum samples (n = 781). WTC exposure defined as rescue and/or recovery work at the WTC site between September 11, 2001, and July 25, 2002. Multiple myeloma case information, and age-adjusted and age-specific prevalence rates for overall MGUS (ie, MGUS and light-chain MGUS), MGUS, and light-chain MGUS. Sixteen WTC-exposed white male firefighters received a diagnosis of multiple myeloma after September 11, 2001; median age at diagnosis was 57 years (interquartile range, 50-68 years). Serum/urine monoclonal protein isotype/free light-chain data were available for 14 cases; 7 (50%) had light-chain multiple myeloma. In a subset of 7 patients, myeloma cells were assessed for CD20 expression; 5 (71%) were CD20 positive. In the screening study, we assayed peripheral blood from 781 WTC-exposed firefighters. The age-standardized prevalence rate of MGUS and light-chain MGUS combined was 7.63 per 100 persons (95% CI, 5.45-9.81), 1.8-fold higher than rates from the Olmsted County, Minnesota, white male reference population (relative rate, 1.76; 95% CI, 1.34-2.29). The age-standardized prevalence rate of light-chain MGUS was more than 3-fold higher than in the same reference population (relative rate, 3.13; 95% CI, 1.99-4.93). Environmental exposure to the WTC disaster site is associated with myeloma precursor disease (MGUS and light-chain MGUS) and may be a risk factor for the development of multiple myeloma at an earlier age, particularly the light-chain subtype.
Light-dependent leaf trait variation in 43 tropical dry forest tree species.
Markesteijn, Lars; Poorter, Lourens; Bongers, Frans
2007-04-01
Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.
Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos
2015-08-01
A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.
Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.
2016-06-28
Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of 13C-labeled and 15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively,more » of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. IMPORTANCECyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.« less
Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.
2012-01-01
Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827
Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A
2018-05-01
Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Egawa, Chika
2017-01-01
The availability of viable seeds in soil helps to determine the success of ecological restoration in disturbed habitats. Although seed survival in soil generally increases with an increase in burial depth, whether the effects of burial on seed survival are comparable across different sites is unclear. In this study, I tested the hypothesis that the positive effects of burial on seed survival decrease as vegetation develops through succession. Four wetland species, Drosera rotundifolia, Lobelia sessilifolia, Rhynchospora alba and Moliniopsis japonica, were used for the study. The four species differ in their light requirement for germination; i.e., D. rotundifolia, L. sessilifolia and R. alba germinate best in light, whereas M. japonica germinates equally well in light and darkness. The seeds of these species were buried for two years at three depths (litter, 0 and 4 cm) in three successional stages with different amounts of vegetation and litter in a post-mined peatland. The photosynthetically active radiation (PAR) and temperature at each of litter layer, 0 cm and 4 cm depths were measured for each successional stage. The between-depth differences in PAR and temperature fluctuations decreased as succession progressed. For the three light-demanding species, burial promoted seed survival more in the initial successional stage than in the later successional stages, whereas for M. japonica, burial promoted seed survival equally in all successional stages. This study revealed significant variation in the effects of burial on seed survival, particularly for light-sensitive seeds, and that the soil surface layers in vegetated sites can contain persistent seeds, which could be used as a seed source in restoration.
NASA Astrophysics Data System (ADS)
Rogers, J.; Cordoba, G.; Nieves, M.; Barber, P. H.; Fong, P.; Sura, S.
2016-02-01
Coral reefs provide food, recreation and economic resources for billions of people. Despite this importance, anthropogenic stressors including climate change and nutrification threaten coral reefs globally, causing phase-shifts to algal dominated ecosystems and loss of coral habitats. Throughout the tropical South Pacific, the brown macroalgae Turbinaria ornata is expanding its range and now dominates areas where corals used to thrive, especially shallow areas on fringing reefs of French Polynesia. Abiotic factors like light and nutrient availability could enhance the expansion of T. ornata by promoting its growth or by making it physically tougher, which could reduce herbivory pressure and enhance its survival in high energy zones. To understand the abiotic factors favoring growth and survival of T. ornata in Mo'orea, French Polynesia, we conducted a field experiment testing the effect of nutrients (+/- fertilizer), depth (1m within Turbinaria zone, 1.5m at border, 2m below depth distribution), and light (+/- shade) on the growth and toughness of T. ornata. Three-factor ANOVA showed that an interaction between nutrients and light favored T. ornata biomass accumulation (p=0.04). In addition, T. ornata from shallow depths were significantly tougher than intermediate depths (p=0.01). These results imply that nutrient enrichment combined with high light levels common in shallow coral reefs may promote growth and expansion of T. ornata to near-shore reef environments. Increased survival and population growth is likely further enhanced by increased toughness of T. ornata in shallow areas, which may limit herbivore grazing and improve survival in strong wave action or currents. Future research should examine whether reducing nutrient loading to coastal waters may limit the expansion of T. ornata in the South Pacific.
NASA Astrophysics Data System (ADS)
Nieves, M.; Cordoba, G.; Rogers, J.
2016-02-01
Coral reefs provide food, recreation and economic resources for billions of people. Despite this importance, anthropogenic stressors including climate change and nutrification threaten coral reefs globally, causing phase-shifts to algal dominated ecosystems and loss of coral habitats. Throughout the tropical South Pacific, the brown macroalgae Turbinaria ornata is expanding its range and now dominates areas where corals used to thrive, especially shallow areas on fringing reefs of French Polynesia. Abiotic factors like light and nutrient availability could enhance the expansion of T. ornata by promoting its growth or by making it physically tougher, which could reduce herbivory pressure and enhance its survival in high energy zones. To understand the abiotic factors favoring growth and survival of T. ornata in Mo'orea, French Polynesia, we conducted a field experiment testing the effect of nutrients (+/- fertilizer), depth (1m within Turbinaria zone, 1.5m at border, 2m below depth distribution), and light (+/- shade) on the growth and toughness of T. ornata. Three-factor ANOVA showed that an interaction between nutrients and light favored T. ornata biomass accumulation (p=0.04). In addition, T. ornata from shallow depths were significantly tougher than those at intermediate depths (p=0.01). These results imply that nutrient enrichment combined with high light levels common in shallow coral reefs may promote growth and expansion of T. ornata to near-shore reef environments. Increased survival and population growth is likely further enhanced by increased toughness of T. ornata in shallow areas, which may limit herbivore grazing and improve survival in strong wave action or currents. Future research should examine whether reducing nutrient loading to coastal waters may limit the expansion of T. ornata in the South Pacific.
Periphyton dynamics in a subalpine mountain stream during winter
Gustina, G.W.; Hoffmann, J.P.
2000-01-01
We conducted two experiments to determine the activity of and factors which control periphyton during winter in Stevensville Brook, Vermont. The first experiment during winter/spring 1994 examined the effect of a 300 to 450% difference in light and doubling of flow (low and high light, slow and fast flow) on periphyton chlorophyll a (chl a) and ash-free dry mass (AFDM) from stream rocks and artificial substrata. A second experiment was performed to determine whether periphyton was nitrogen or phosphorus limited. In addition, stream water was sampled during fall/winter 1994/95 for nitrate (NO3), ammonia (NH4), soluble reactive phosphorus (SRP), and total phosphorus (TP) to determine the availability of nutrients in Stevensville Brook. Increases of up to 250% for AFDM and 600% for chl a during the first study indicated robust activity throughout the winter despite low temperatures and light. Flow had a negative effect and sampling date was found to have a significant effect on periphyton biomass (chl a and AFDM) while light was found to influence increases in AFDM on clay tiles only. Water analyses showed that SRP was less than 0.001 mg L-1, NH4 and TP were low and often undetectable, and NO3 remained at about 0.20 mg L-1. Results from the nutrient enrichment experiment showed a significant response of chl a to P but not N and no response of AFDM to enrichment with either N or P. In Stevensville Brook during winter, the algal community, as represented by the chl a concentration, is predominantly controlled by phosphorus concentrations and is influenced to a lesser extent by flow; the periphyton community as a whole, represented by AFDM, is controlled mostly by stream flow and light.
Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.
2016-01-01
Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.
Photovoltaic device with increased light absorption and method for its manufacture
Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger
1993-07-20
A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.
NASA Astrophysics Data System (ADS)
Park, Juhan; Kim, Taekyu; Moon, Minkyu; Cho, Sungsik; Ryu, Daun; Kim, Hyun Seok
2015-04-01
This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for two years. Forest thinning, which removes some fraction of trees from stand, is widely conducted for reducing competition between remaining trees, improving tree productivity, reducing the risk of natural fire, and thus maintaining healthy forest. Forest thinning alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related productivity. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning (20%), and Heavy-thinning (40% of tree density)). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites. The climatic conditions showed little differences between two years. During the first growing season after thinning, stand transpiration was ca. 20% and 42% lower on light-thinning and heavy-thinning stand, respectively, even though sap flux density were higher in thinned stand. The difference in stand transpiration among treatments showed seasonal trends, so it was larger on summer when soil moisture was abundant due to monsoon, but was diminished on spring and autumn when soil moisture was limited. Tree-level productivity increased ca. 8% and 21% on light-thinning and heavy thinning stand, respectively. However, stand net primary production was ca. 20% lower on light-thinning stand, and ca. 31% on heavy-thinning stand. As a result, water use efficiency increased only in heavy-thinning stand. During the second growing season after thinning, stand transpiration was ca. 19% lower on light-thinning stand, and ca. 37% lower on heavy-thinning stand. The reduction of stand transpiration difference in heavy-thinning stand was caused mainly by increase in sap flux density. Trees in thinned stand showed higher productivity, but the magnitude was ca. 4% on light-thinning stand, and ca. 27% on heavy-thinning stand. Stand net primary production was ca. 23% lower on light-thinning stand, and ca. 28% on heavy-thinning stand. As a result, heavy-thinning stand showed highest water use efficiency. These results indicate that there are differences in biological reactions with thinning intensities.
Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.
Haluza, Daniela; Kaiser, August; Moshammer, Hanns; Flandorfer, Claudia; Kundi, Michael; Neuberger, Manfred
2012-07-01
The dependency on carbon-based fossil energy and growing awareness of climate change issues has induced ambitious policy initiatives to promote renewable energy sources for indoor heating. Combustion of regionally available material such as wood is considered a carbon-neutral alternative for oil and gas, but unregulated revival of wood stoves may cause detrimental health effects. For the prognosis of the health impact of air pollution due to the use of wood stoves, Upper Austria served for a case study. On the basis of recent measurements of particulate matter <10 μm in aerodynamic diameter (PM10) and nitrous gases (NO(x)), we compared the air pollution attributable to present energy mix (termed scenario 1) with two alternatives: For scenario 2, we assumed replacement of light fuel oil by either fossil gas or biomass, and for scenario 3, replacement of light fuel oil by biomass only. Compared with the current exposure from scenario 1, the increased annual mean PM10 levels are estimated to lead to 101 (95% CI 56;146) and 174 (95% CI 92;257) additional deaths among 1.4 million inhabitants per year for scenarios 2 and 3, respectively. Without adequate strategies for reducing the emissions of domestic heating facilities, replacement of fossil energy sources could lead to an increased health risk.
Pineda, Mari-Carmen; Strehlow, Brian; Kamp, Jasmine; Duckworth, Alan; Jones, Ross; Webster, Nicole S
2017-07-12
Dredging can cause increased suspended sediment concentrations (SSCs), light attenuation and sedimentation in marine communities. In order to determine the combined effects of dredging-related pressures on adult sponges, three species spanning different nutritional modes and morphologies were exposed to 5 treatment levels representing realistic dredging scenarios. Most sponges survived under low to moderate turbidity scenarios (SSCs of ≤ 33 mg L -1 , and a daily light integral of ≥0.5 mol photons m -2 d -1 ) for up to 28 d. However, under the highest turbidity scenario (76 mg L -1 , 0.1 mol photons m -2 d -1 ) there was 20% and 90% mortality of the phototrophic sponges Cliona orientalis and Carteriospongia foliascens respectively, and tissue regression in the heterotrophic Ianthella basta. All three sponge species exhibited mechanisms to effectively tolerate dredging-related pressures in the short term (e.g. oscula closure, mucus production and tissue regression), although reduced lipids and deterioration of sponge health suggest that longer term exposure to similar conditions is likely to result in higher mortality. These results suggest that the combination of high SSCs and low light availability can accelerate mortality, increasing the probability of biological effects, although there is considerable interspecies variability in how adult sponges respond to dredging pressures.
Finding the Average Speed of a Light-Emitting Toy Car with a Smartphone Light Sensor
ERIC Educational Resources Information Center
Kapucu, Serkan
2017-01-01
This study aims to demonstrate how the average speed of a light-emitting toy car may be determined using a smartphone's light sensor. The freely available Android smartphone application, "AndroSensor," was used for the experiment. The classroom experiment combines complementary physics knowledge of optics and kinematics to find the…
Suthaparan, Aruppillai; Solhaug, Knut Asbjørn; Stensvand, Arne; Gislerød, Hans Ragnar
2017-10-01
Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (<6% of blue) caused UV mediated curling of young leaves. Furthermore, application of blue light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.
Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E
2017-12-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.
2017-01-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505
Food and Sustainability Challenges Under Climate Changes.
Moustafa, Khaled
2016-12-01
Plants are permanently impacted by their environments, and their abilities to tolerate multiple fluctuating environmental conditions vary as a function of several genetic and natural factors. Over the past decades, scientific innovations and applications of the knowledge derived from biotechnological investigations to agriculture caused a substantial increase of the yields of many crops. However, due to exacerbating effects of climate change and a growing human population, a crisis of malnutrition may arise in the upcoming decades in some places in the world. So, effective, ethical and managerial regulations and fair policies should be set up and applied at the local and global levels so that Earth may fairly provide the food and living accommodation needed by its inhabitants. To save some energy consumption, electric devices (for e.g., smartphones, laptops, street lights, traffic lights, etc.) should be manufactured to work with solar energy, whenever available, particularly in sunny countries where sun is available most of the time. Such characteristic will save energy and make solar energy-based smartphones and laptops less cumbersome in terms of chargers and plugging issues.
Night-time lights as a proxy of human pressure on freshwater resources
NASA Astrophysics Data System (ADS)
Ceola, Serena; Montanari, Alberto; Laio, Francesco
2017-04-01
The presence and availability of freshwater resources at the global scale control the dynamics and the biodiversity of river ecosystems, as well as the human development and the security of people and economies. The increasing human pressure on freshwater is known to potentially drive significant alterations on both ecohydrological and social dynamics. To date, a spatially-detailed snapshot (i.e. single in time) analysis of human water security and river biodiversity threats revealed that the majority of the world's population and river ecosystems are exposed to high levels of endangerment. However, the temporal evolution of these effects at the global scale is still unexplored. To this aim, moving from the recent progress on remote sensing techniques, we employed yearly averaged night-time light images available from 1992 to 2013 as a proxy of anthropogenic presence and activity and we investigated how threats to human water security and river biodiversity evolved in time in 405 major river basins. Our results show a consistent correlation between nightlights and ecohydrological and threats, providing innovative support for freshwater resources management.
Leaf movements and photoinhibition in relation to water stress in field-grown beans.
Pastenes, Claudio; Pimentel, Paula; Lillo, Jacob
2005-01-01
Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.
Kettles, Nicola Louise; Kopriva, Stanislav; Malin, Gill
2014-01-01
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′-phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves up-regulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment. PMID:24733415
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage.
Buerck, J; Roth, S; Kraemer, K; Mathieu, H
2003-08-15
A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.
Vehicular Visible Light Networks for Urban Mobile Crowd Sensing
2018-01-01
Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver. PMID:29649149
Quality and noise measurements in mobile phone video capture
NASA Astrophysics Data System (ADS)
Petrescu, Doina; Pincenti, John
2011-02-01
The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.
Hyun, Hoon; Park, Min Ho; Lim, Wonbong; Kim, So Yeon; Jo, Danbi; Jung, Jin Seok; Jo, Gayoung; Um, Sewook; Lee, Deok-Won; Yang, Dae Hyeok
2018-05-11
Currently available chemotherapy is associated with serious side effects, and therefore novel drug delivery systems (DDSs) are required to specifically deliver anticancer drugs to targeted sites. In this study, we evaluated the feasibility of visible light-cured glycol chitosan (GC) hydrogels with controlled release of doxorubicin⋅hydrochloride (DOX⋅HCl) as local DDSs for effective cancer therapy in vivo. The storage modulus of the hydrogel precursor solutions was increased as a function of visible light irradiation time. In addition, the swelling ratio of the hydrogel irradiated for 10 s (GC 10 /DOX) was greater than in 60 s (GC 60 /DOX). In vitro release test showed that DOX was rapidly released in GC 10 /DOX compared with GC 60 /DOX due to the density of cross-linking. In vitro and in vivo tests including cell viability and measurement of tumor volume showed that the local treatment of GC 10 /DOX yielded substantially greater antitumor effect compared with that of GC 60 /DOX. Therefore, the visible light-cured GC hydrogel system may exhibit clinical potential as a local DDS of anticancer drugs with controlled release, by modulating cross-linking density.
Tewolde, Fasil T; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2016-01-01
Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.
Tewolde, Fasil T.; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru
2016-01-01
Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m-2 s-1 measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter. PMID:27092163
On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp
NASA Astrophysics Data System (ADS)
Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.
2013-06-01
In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.
Chandra Observations of Three Newly Discovered Quadruply Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Pooley, David
2017-09-01
Our previous work has shown the unique power of Chandra observations of quadruply gravitationally lensed quasars to address several fundamental astrophysical issues. We have used these observations to (1) determine the cause of flux ratio anomalies, (2) measure the sizes of quasar accretion disks, (3) determine the dark matter content of the lensing galaxies, and (4) measure the stellar mass-to-light ratio (in fact, this is the only way to measure the stellar mass-to-light ratio beyond the solar neighborhood). In all cases, the main source of uncertainty in our results is the small size of the sample of known quads; only 15 systems are available for study with Chandra. We propose Chandra observations of three newly discovered quads, increasing the sample size by 20%
Optogenetic Acidification of Synaptic Vesicles and Lysosomes
Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian
2016-01-01
Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543
Optogenetic acidification of synaptic vesicles and lysosomes.
Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian
2015-12-01
Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.
Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River
Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry
2010-01-01
The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.
Christianen, M J A; van der Heide, T; Bouma, T J; Roelofs, J G M; van Katwijk, M M; Lamers, L P M
2011-07-01
Seagrasses have declined at a global scale due to light reduction and toxicity events, caused by eutrophication and increased sediment loading. Although several studies have tested effects of light reduction and toxicants on seagrasses, there is at present no information available on their interacting effects. In a full-factorial 5-day laboratory experiment, we studied short-term interactive effects of light conditions, pH and reduced nitrogen (NH(x)) in the water layer, mimicking pulses of river discharge, on the tropical early successional species Halodule uninervis and the late successional species Thalassia hemprichii. In contrast to recent results reported for the temperate species Zostera marina, increased NH(x) supply did not affect leaf mortality or photochemical efficiency in H. uninervis and in 7 out of 8 treatments for T. hemprichii. However, both tropical species demonstrated striking differences in nitrogen accumulation, free amino acid composition and free NH₃ accumulation. The increase in tissue nitrogen content was two times higher for H. uninervis than for T. hemprichii. Nitrogen stored as free amino acids (especially asparagine) only increased in H. uninervis. High pH only affected T. hemprichii, but only when not shaded, by doubling its free NH₃ concentrations, concomitantly decreasing its photosynthetic efficiency. Our results indicate that the early successional H. uninervis has higher tolerance to high NH(x) loads as compared to the late successional T. hemprichii. H. uninervis was better able to avoid toxic internal NH(x) levels by further assimilating glutamine into asparagine in contrast to T. hemprichii. Moreover, both tropical species seem to cope much better with high NH(x) than the temperate Z. marina. The implications for the distribution and succession of seagrass species under high nutrient loads are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
CALiPER Special Summary Report: Retail Replacement Lamp Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-04-01
CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.
Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit
Singh, Bal Ram
2004-01-01
Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography (HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours of water immersion, respectively. Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze the anthocyanin biosynthesis are regulated differently by environments. PMID:15577187
Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe
NASA Astrophysics Data System (ADS)
Acharya, Kamal Prasad; De Frenne, Pieter; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A. O.; Diekmann, Martin; Hermy, Martin; Kolb, Annette; Lemke, Isgard; Plue, Jan; Verheyen, Kris; Graae, Bente Jessen
2017-05-01
Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34‧N) to Norway (63°40‧N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.
Light qualities and dose influence ascorbate pool size in detached oat leaves.
Mastropasqua, Linda; Borraccino, Giuseppe; Bianco, Laura; Paciolla, Costantino
2012-02-01
In this work, we studied the mechanism of light influence on AsA pool size in Avena sativa L. under the effects of low intensity light at different wavelengths. Exposure to low intensity light of oat leaf segments incubated in water or in l-galactono-1,4-lactone (GL), resulted in an increase in AsA content compared with the dark control. This increase was due to modulation of l-galactono-1,4-lactone dehydrogenase (GLDH; EC 1.3.2.3) light-dependent activity and was dependent on the size of the endogenous GL pool. Both blue and red light were effective in increasing AsA, and this increase depended on both exposure time and light intensity. Protein biosynthesis, photosynthesis and calcium were involved in controlling the level of light-dependent AsA. We suggest that multiple checkpoints correlated to the presence of light underlie the ascorbate pool size. The presence of a light-activated switch for the maintenance of an adequate AsA level seems to be necessary for the various tasks of scavenging reactive oxygen species, in response to the dark-light cycle which plants experience under natural conditions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy
2014-01-01
A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157
Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.
2012-01-01
A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212
Sensitivity Differences in Fish Offer Near-Infrared Vision as an Adaptable Evolutionary Trait
Shcherbakov, Denis; Knörzer, Alexandra; Espenhahn, Svenja; Hilbig, Reinhard; Haas, Ulrich; Blum, Martin
2013-01-01
Near-infrared (NIR) light constitutes an integrated part of solar radiation. The principal ability to sense NIR under laboratory conditions has previously been demonstrated in fish. The availability of NIR in aquatic habitats, and thus its potential use as a cue for distinct behaviors such as orientation and detection of prey, however, depends on physical and environmental parameters. In clear water, blue and green light represents the dominating part of the illumination. In turbid waters, in contrast, the relative content of red and NIR radiation is enhanced, due to increased scattering and absorption of short and middle range wavelengths by suspended particles and dissolved colored materials. We have studied NIR detection thresholds using a phototactic swimming assay in five fish species, which are exposed to different NIR conditions in their natural habitats. Nile and Mozambique tilapia, which inhabit waters with increased turbidity, displayed the highest spectral sensitivity, with thresholds at wavelengths above 930 nm. Zebrafish, guppy and green swordtail, which prefer clearer waters, revealed significantly lower thresholds of spectral sensitivity with 825–845 nm for green swordtail and 845–910 nm for zebrafish and guppy. The present study revealed a clear correlation between NIR sensation thresholds and availability of NIR in the natural habitats, suggesting that NIR vision, as an integral part of the whole spectrum of visual abilities, can serve as an evolutionarily adaptable trait in fish. PMID:23691215
Sanchis-Perucho, P; Duran, F; Barat, R; Pachés, M; Aguado, D
2018-06-01
The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 μmol s -1 m -2 ) and phosphorus concentrations (around 6 and 15 mgP L -1 ). Four green algae - Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas- and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L -1 , a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 ± 15.8% and 96.1 ± 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 μmol s -1 m -2 of light intensity and 6.02 mgP L -1 of phosphorus concentration, reaching about 674 ± 86 mg L -1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.
Using the shortwave infrared to image middle ear pathologies
Valdez, Tulio A.; Bruns, Oliver T.; Bawendi, Moungi G.
2016-01-01
Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1–2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope. PMID:27551085
NASA Astrophysics Data System (ADS)
Prabhat, Prashant; Peet, Michael; Erdogan, Turan
2016-03-01
In order to design a fluorescence experiment, typically the spectra of a fluorophore and of a filter set are overlaid on a single graph and the spectral overlap is evaluated intuitively. However, in a typical fluorescence imaging system the fluorophores and optical filters are not the only wavelength dependent variables - even the excitation light sources have been changing. For example, LED Light Engines may have a significantly different spectral response compared to the traditional metal-halide lamps. Therefore, for a more accurate assessment of fluorophore-to-filter-set compatibility, all sources of spectral variation should be taken into account simultaneously. Additionally, intuitive or qualitative evaluation of many spectra does not necessarily provide a realistic assessment of the system performance. "SearchLight" is a freely available web-based spectral plotting and analysis tool that can be used to address the need for accurate, quantitative spectral evaluation of fluorescence measurement systems. This tool is available at: http://searchlight.semrock.com/. Based on a detailed mathematical framework [1], SearchLight calculates signal, noise, and signal-to-noise ratio for multiple combinations of fluorophores, filter sets, light sources and detectors. SearchLight allows for qualitative and quantitative evaluation of the compatibility of filter sets with fluorophores, analysis of bleed-through, identification of optimized spectral edge locations for a set of filters under specific experimental conditions, and guidance regarding labeling protocols in multiplexing imaging assays. Entire SearchLight sessions can be shared with colleagues and collaborators and saved for future reference. [1] Anderson, N., Prabhat, P. and Erdogan, T., Spectral Modeling in Fluorescence Microscopy, http://www.semrock.com (2010).
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.
2016-12-01
We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.
Light and nitrogen nutrition regulate apical control in Rosa hybrida L.
Furet, Pierre-Maxime; Lothier, Jérémy; Demotes-Mainard, Sabine; Travier, Sandrine; Henry, Clémence; Guérin, Vincent; Vian, Alain
2014-03-01
Apical control is defined as the inhibition of basal axillary bud outgrowth by an upper actively growing axillary axis, whose regulation is poorly understood yet differs markedly from the better-known apical dominance. We studied the regulation of apical control by environmental factors in decapitated Rosa hybrida in order to remove the apical hormonal influence and nutrient sink. In this plant model, all the buds along the main axis have a similar morphology and are able to burst in vitro. We concentrated on the involvement of light intensity and nitrate nutrition on bud break and axillary bud elongation in the primary axis pruned above the fifth leaf of each rose bush. We observed that apical control took place in low light (92 μmol m(-2)s(-1)), where only the 2-apical buds grew out, both in low (0.25 mM) and high (12.25 mM) nitrate. In contrast, in high light (453 μmol m(-2)s(-1)), the apical control only operates in low nitrate while all the buds along the stem grew out when the plant was supplied with a high level of nitrate. We found a decreasing photosynthetic activity from the top to the base of the plant concomitant with a light gradient along the stem. The quantity of sucrose, fructose, glucose and starch are higher in high light conditions in leaves and stem. The expression of the sucrose transporter RhSUC2 was higher in internodes and buds in this lighting condition, suggesting an increased capacity for sucrose transport. We propose that light intensity and nitrogen availability both contribute to the establishment of apical control. Copyright © 2013 Elsevier GmbH. All rights reserved.
Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe
2015-01-01
The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an unbiased omics approach for the comprehensive study of the metabolism. PMID:26084047
NASA Astrophysics Data System (ADS)
Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.
2015-08-01
Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures. Electronic supplementary information (ESI) available: Materials and experimental methods for the synthesis of (1) positively charged alkyne functionalized nanoparticles (2) Zn(ii) and Cu(ii) centred porphyrin (3); conjugating porphyrins to alkyne-functionalized nanoparticles via click chemistry (4) nanoparticle characterisation (size charge and fluorescence), (5) synthesis of BPTFMC (6) hMSC collection, storage and preparation (7) delivery of porphyrin functionalized nanoparticles (8) staining mitochondria, cumulative ROS production and determination of nanoparticles subcellular localisation (9) fluorescence microscopy and controlled irradiation of hMSCs (10) flow cytometry and controlled irradiation using a custom built irradiator. In addition, results highlighting: (1) nanoparticles emission spectra, size and charge, (2) BPTFMC fluorescence response and (3) hMSCs following light irradiation using flow cytometry. See DOI: 10.1039/c5nr00795j
Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light availability. Similarly, percent surface irradiance at Zc (% SI) is an indicator of seagrass light requirements with applications in seagrass ecology and management. Methods ...
Light gradients and optical microniches in coral tissues.
Wangpraseurt, Daniel; Larkum, Anthony W D; Ralph, Peter J; Kühl, Michael
2012-01-01
Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.
Light gradients and optical microniches in coral tissues
Wangpraseurt, Daniel; Larkum, Anthony W. D.; Ralph, Peter J.; Kühl, Michael
2012-01-01
Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts. PMID:22969755
Light, soil moisture, and tree reproduction in hardwood forest openings.
Leon S. Minckler; John D. Woerheide; Richard C. Schlesinger
1973-01-01
Light, soil moisture, and tree reproduction were measured at five positions in six openings on each of three aspects in southern Illinois. Amount of light received was clearly related to position in the light openings, opening size, and aspect. More moisture was available in the centers of the openings, although 4 years after openings were made the differences...
Cheng, Dan Dan; Sun, Jian Ping; Chai, Yuan; Zhu, Yi Yong; Zhao, Min; Sun, Guang Yu; Sun, Xing Bin
2016-08-01
Pseudomonas syringae pv. tabaci (Pst) is a hemi-biotrophic bacterial pathogen that causes the formation of brown spots named wildfire disease. Pst has received considerable attention in recent years. However, most of the studies focused on the tolerance and defense mechanisms of the host and non-host plants against Pst infection and a toxin originally described as being from Pst named tabtoxin, little information is available on the photosynthetic performance of tobacco leaves after Pst infection. Exploring the effects of Pst on the photosystem Ⅱ (PSⅡ) will not only help in clarifying tobacco-Pst interaction mechanisms, but also deepen the understanding of bacterial pathogen disease from a physiological perspective. By analyzing chlorophyll a fluorescence transient, performing western blot of thylakoid membrane and measuring the content of reactive oxygen species (ROS) and total chlorophyll, the effects of Pst on PS2 in tobacco were studied under light (200 μmol·m -2 ·s -1 ) or dark conditions. The results showed that chlorophyll content significantly decreased and significant chlorosis of the infiltrated zone was observed compared to the untreated ones, and tobacco leaves exhibited a visible and overt wildfire symptom at 3 days post Pst infection (dpi) under light and dark conditions. The H 2 O 2 content increased at 3 dpi compared to untreated ones in tobacco leaves under light and dark conditions, and was much higher under light than dark condition. Besides, markedly increase of the normalized relative variable fluorescence at the K step (W K ) and the relative variable fluorescence at the J step (V J ), significant decrease of maximal quantum yield of PS2 (F v /F m ) and density of Q A - reducing PS2 reaction centers per cross section (RC/CSm) were observed in tobacco leaves after Pst infection at 3 dpi under light and dark conditions. Moreover, inhibition of the K and J steps was more pronounced in the dark, as indicated by the greater increase of W K and V J under darkness compared with the light conditions during Pst inoculation. Dramatic (net) degradation of D1 protein and PsaO, the core protein of PS2 reaction center and oxygen evolving complex (OEC) respectively, at 3 dpi after Pst infection was observed in tobacco leaves under both light or dark conditions, and the decline was more exacerbated under dark than light condition. The results indicated that the electron transport from Q A to Q B of photosynthesis electron transport chain was severely blocked, OEC was damaged on both the donor and acceptor sides, and the reaction center of PS2 was severely damaged by Pst infection in tobacco lea-ves under either light or dark condition. Photoinhibition and photoinhibition-like damage of PSⅡ was observed after Pst infection, and the damage to PS2 under dark condition was much more severe than under light condition in tobacco leaves.
Casals, P; Rios, A I
2018-06-15
Thinning and prescribed burning are two common operations for reducing fuel accumulation and decreasing the intensity and severity of wildfires. However, the resprouting response of understory species may reduce the effectiveness of fuel load treatments and thus negatively affect the cost-benefit ratio of these treatments. This study focuses on Buxus sempervirens, a slow-growing, multi-stemmed tree species, frequently dominant in the understory of temperate European forests, which resprouts strongly after clearing or burning. The aim was to assess how light availability and burning influence resprouting ability (resprouting or not) and vigor (i.e. the growth of resprouts) after clearing B. sempervirens in thinned stands without slash removal (unburned) or with burning of slash residues (burned), two years after the treatments. All individuals studied resprouted shortly after clearing in unburned stands, whereas almost ca. 40% never resprouted in the burned stands. Fire intensity, measured at the base of 49 individuals, contributed to explaining the likelihood of mortality. The number of resprouts was directly influenced by the pre-treatment size of individuals, but this relationship was lower in burned stands. Fire intensity, recorded in 29 resprouted individuals, also influenced the number of resprouts. Post-treatment light availability, in addition to pre-treatment size, contributed to explaining the volume of the ten largest resprouts and the length of the largest resprout. No tradeoffs between the resprout number and the volume of the ten largest resprouts or the maximum resprout length were found. Our study suggests that burning after clearing reduces the resprouting ability of B. sempervirens. Moreover, avoiding affecting the canopy cover reduces its resprouting vigor and, consequently, increases the effectiveness of understory fuel load treatments. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of low electric fields on alpha scintillation light yield in liquid argon
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-01-01
Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.
Mornieux, Guillaume; Gehring, Dominic; Fürst, Patrick; Gollhofer, Albert
2014-01-01
Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement. Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact. With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009). Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.
Phytoplankton growth rates in a light-limited environment, San Francisco Bay
Alpine, Andrea E.; Cloern, James E.
1988-01-01
This study was motivated by the need for quantitative measures of phytoplankton population growth rate in an estuarine environment, and was designed around the presumption that growth rates can be related empirically to light exposure. We conducted the study in San Francisco Bay (California, USA), which has large horizontal gradients in light availability (Zp:Zm) typical of many coastal plain estuaries, and nutrient concentrations that often exceed those presumed to limit phytoplankton growth (Cloern et al. 1985). We tested the hypothesis that light availability is the primary control of phytoplankton growth, and that previous estimates of growth rate based on the ratio of productivity to biomass (Cloern et al. 1985) are realistic. Specifically, we wanted to verify that growth rate varies spatially along horizontal gradients of light availability indexed as Zp:Zm, such that phytoplankton turnover rate is rapid in shallow clear areas (high Zp:Zm) and slow in deep turbid areas (low Zp:Zm). We used an in situ incubation technique which simulated vertical mixing, and measured both changes in cell number and carbon production as independent estimates of growth rate across a range of Zp:Zm ratios.
Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light availability. Similarly, percent surface irradiance at Zc (% SI) is an indicator of seagrass light requirements with applications in seagrass ecology and management. Methods ...
Nielsen, Anne L; Holmstrom, Kristian; Hamilton, George C; Cambridge, John; Ingerson-Mahar, Joseph
2013-06-01
Monitoring the distribution and abundance of an invasive species is challenging, especially during the initial years of spread when population densities are low and basic biology and monitoring methods are being investigated. Brown marmorated stink bug (Halyomorpha halys (Stål)) is an invasive agricultural and urban pest that was first detected in the United States in the late 1990s. At the time of its detection, no method was available to effectively track H. halys populations, which are highly mobile and polyphagous. One possible solution was the utilization of black light traps, which are nonspecific traps attractive to night flying insects. To determine if black light traps are a reliable monitoring tool for H. halys, a state-wide network of 40-75 traps located on New Jersey farms were monitored from 2004 to 2011 for H. halys. This proved to be a highly effective method of monitoring H. halys populations and their spread at the landscape level. The total number of brown marmorated stink bug caught in New Jersey increased exponentially during this period at a rate of 75% per year. Logistic regression estimates that 2.84 new farms are invaded each year by H. halys. The results indicate that black light traps are attractive to early season populations as well as at low population densities. Weekly trap catch data are being used to generate state-wide population distribution maps made available to farmers in weekly newsletters and online. While no economic threshold currently exists for brown marmorated stink bug, the maps provide farmers with a tool to forecast pest pressure and plan management.
Photon Counting Techniques Applied to Single Aerosol Particle Spectroscopy.
NASA Astrophysics Data System (ADS)
Joynson, Steven
Available from UMI in association with The British Library. Optical effects on single airborne particles were examined for their potential use in aerosol characterisation. All phenomena arising from the elastic or quasi-elastic scattering, or the absorption of light were considered. A survey of published research identified the effects that have so far been proposed and investigated by other researchers. The feasibility of using these effects is then discussed and appropriate calculations and measurements made. After reviewing the classical theory of the interaction of light with small particles it was apparent that there was a number of other effects that had not yet been considered or examined by other researchers. Calculations and measurements of these effects were then made and are also presented here. The effects were examined optically using photon counting equipment to count and store the dynamic light scattering signals from a single particles in an aerosol flow. The measurement thus entailed using a low intensity probe beam to measure the effects of higher intensity pump radiation on the motion, shape and scattering properties of a test particle. The amount of information in the probe signal was increased by using a velocimetry arrangement. In the absence of suitable commercially available photon counting equipment a new system had to be designed and developed at RMCS. Although requiring much time and effort to develop, the equipment allowed a new approach to light scattering research. The successful operation of the equipment was confirmed by the good agreement found when comparing measured photon count series statistics with those of the simulated signals presented by other researchers. Experiments that were done to measure some of the optical effects are described and the results presented. They demonstrate the successful diffusion sizing of individual aerosol particles and their motion under radiation pressure. Further experimental results demonstrate the measurement of radiation absorption by the thermally-increased diffusion rate. Other results provide evidence for what appears to be the explosive vapourisation of material at the peak radiation absorption centres of a liquid droplet. Finally, the uses and limitations of the techniques are summarised and proposals are made for further research.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... Statement for the NextLight Renewable Power, LLC, Silver State Solar Project, Clark County, NV AGENCY... Statement (EIS) for the Silver State Solar Project, Clark County, Nevada, and by this notice is announcing its availability. DATES: The BLM will not issue a final decision on the Silver State Solar Project for...
Family-friendly policies: general nurses' preferences and experiences.
Robinson, Sarah; Davey, Barbara; Murrells, Trevor
2003-01-01
While European Union policy emphasises that one of the aims of family-friendly working arrangements is to increasing gender equality, in the UK the focus has been primarily on workforce retention. Drawing on a study of Registered General Nurses who returned to work after breaks for maternity leave, this paper considers their preferences and experiences in light of current UK family-friendly policies and the implications of the findings for increasing gender equality. Questionnaires were completed by respondents in three regional health authorities and focused on the four to eight year period after qualification. The following topics were investigated: views about length of maternity break and reasons for returning to work sooner than preferred; hours sought after a return and hours obtained; the availability of preferred patterns of work and of flexible hours; retention of grade on return; the availability and use of workplace crèches, and childcare arrangements when children were unwell.
Application of 3D printing to prototype and develop novel plant tissue culture systems.
Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P
2017-01-01
Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.
Human phase response curve to intermittent blue light using a commercially available device
Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I
2012-01-01
Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC. We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm−2, ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world. PMID:22753544
Human phase response curve to intermittent blue light using a commercially available device.
Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I
2012-10-01
Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zhang, Hao; Davis, J Lynn
The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes.more » In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.« less
Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.
Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari
2014-08-01
Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
2013-01-01
Background The binding of transcription factors to DNA plays an essential role in the regulation of gene expression. Numerous experiments elucidated binding sequences which subsequently have been used to derive statistical models for predicting potential transcription factor binding sites (TFBS). The rapidly increasing number of genome sequence data requires sophisticated computational approaches to manage and query experimental and predicted TFBS data in the context of other epigenetic factors and across different organisms. Results We have developed D-Light, a novel client-server software package to store and query large amounts of TFBS data for any number of genomes. Users can add small-scale data to the server database and query them in a large scale, genome-wide promoter context. The client is implemented in Java and provides simple graphical user interfaces and data visualization. Here we also performed a statistical analysis showing what a user can expect for certain parameter settings and we illustrate the usage of D-Light with the help of a microarray data set. Conclusions D-Light is an easy to use software tool to integrate, store and query annotation data for promoters. A public D-Light server, the client and server software for local installation and the source code under GNU GPL license are available at http://biwww.che.sbg.ac.at/dlight. PMID:23617301
Flavonoids protecting food and beverages against light.
Huvaere, Kevin; Skibsted, Leif H
2015-01-01
Flavonoids, which are ubiquitously present in the plant kingdom, preserve food and beverages at the parts per million level with minor perturbation of sensory impressions. Additionally, they are safe and possibly contribute positive health effects. Flavonoids should be further exploited for the protection of food and beverages against light-induced quality deterioration through: (1) direct absorption of photons as inner filters protecting sensitive food components; (2) deactivation of (triplet-)excited states of sensitisers like chlorophyll and riboflavin; (3) quenching of singlet oxygen from type II photosensitisation; and (iv) scavenging of radicals formed as reaction intermediates in type I photosensitisation. For absorption of light, combinations of flavonoids, as found in natural co-pigmentation, facilitate dissipation of photon energy to heat thus averting photodegradation. For protection against singlet oxygen and triplet sensitisers, chemical quenching gradually decreases efficiency hence the pathway to physical quenching should be optimised through product formulation. The feasibility of these protection strategies is further supported by kinetic data that are becoming available, allowing for calculation of threshold levels of flavonoids to prevent beer and dairy products from going off. On the other hand, increasing understanding of the interplay between light and matrix physicochemistry, for example the effect of aprotic microenvironments on phototautomerisation of compounds like quercetin, opens up for engineering better light-to-heat converting channels in processed food to eventually prevent quality loss. © 2014 Society of Chemical Industry.
Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf
2014-01-01
Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511
Montgomery, Beronda L
2016-07-01
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sunscreen use optimized by two consecutive applications
Torsnes, Linnea R.; Philipsen, Peter A.; Wulf, Hans Christian
2018-01-01
Sunscreen users are often inadequately protected and become sunburned. This study aimed to investigate how much two consecutive sunscreen applications increased the quantity of sunscreen applied and decreased the skin area left without sunscreen (missed area) compared to a single application. Thirty-one healthy volunteers wearing swimwear were included and applied sunscreen two consecutive times in a laboratory environment. Participants had pictures taken in black light before and after each application. As sunscreens absorb black light, the darkness of the skin increased with increasing amounts of sunscreen applied. We conducted a standard curve establishing a link between change in picture darkness and quantity of sunscreen. The quantity of sunscreen at selected skin sites as well as the percentage of missed area was determined after each application. Participants had missed a median of 20% of their available body surface after a single application. After double application they had missed 9%. The decrease in missed areas was significant for the whole body surface and for each of the body regions separately. The median participant had applied between 13% and 100% more sunscreen at the selected skin sites after double application than after single application. We recommend double application, especially before intense sun exposure. PMID:29590142
Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek
2015-11-01
Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, J.; Kim, T.; Cho, S.; Ryu, D.; Moon, M.; Kim, H. S.
2015-12-01
This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for three years. Forest thinning, which remove some fraction of trees from stand, alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related tree growth. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning, and Heavy-thinning). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites.The climatic conditions showed remarkable differences among three years. In 2012, total precipitation was highest but spring was dry. 2013 was normal year with frequent rain events. In contrast, 2014 was hot and extremely dry. Stand transpiration was initially decreased ca. 20% and 42% on light-thinning and heavy-thinning stand, respectively. In second year, it gradually recovered in both thinning intensities, and was 19% and 37% lower on light-thinning and heavy-thinning stand, respectively. However, the recovery trends were different between two thinning intensities. Transpiration of heavy-thinning stand was recovered slowly than that of light thinning stand. In 2014, heavy-thinning stand transpired ca. 5% more than control plot in early growing season, but severe drought had negative effects that caused reduction of stand transpiration in thinned stand on late growing season. The tree-level productivity was increased initially ca. 24% and 28% on light-thinning and heavy-thinning stand, respectively. During the following growing seasons, this thinning-induced enhancement of productivity was diminished in light-thinning stand (21% in 2013 and 20% in 2014), but was increased in heavy-thinning stand (49% in 2013 and 56% in 2014). In addition, the relationship between tree diameter and relative growth rate showed opposite trends between heavy thinning and light thinning stands. These results indicate that there are differences in biological reactions with thinning intensities.
Advanced Solid State Lighting for Human Evaluation Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Holbert, Eirik
2015-01-01
Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.
Tailored Lighting Intervention for Persons with Dementia and Caregivers Living at Home
Figueiro, Mariana G.; Hunter, Claudia M.; Higgins, Patricia; Hornick, Thomas; Jones, Geoffrey E.; Plitnick, Barbara; Brons, Jennifer; Rea, Mark S.
2016-01-01
Objectives Light therapy has shown promise as a nonpharmacological treatment to help regulate abnormal sleep-wake patterns and associated behavioral issues prevalent among individuals diagnosed with Alzheimer’s disease and related dementia (ADRD). The present study investigated the effectiveness of a lighting intervention designed to increase circadian stimulation during the day using light sources that have high short-wavelength content and high light output. Methods Thirty-five persons with ADRD and 34 caregivers completed the 11-week study. During week 1, subjective questionnaires were administered to the study participants. During week 2, baseline data were collected using Daysimeters and actigraphs. Researchers installed the lighting during week 3, followed by 4 weeks of the tailored lighting intervention. During the last week of the lighting intervention, Daysimeter, actigraph and questionnaire data were again collected. Three weeks after the lighting intervention was removed, a third data collection (post-intervention assessment) was performed. Results The lighting intervention significantly increased circadian entrainment, as measured by phasor magnitude and sleep efficiency, as measured by actigraphy data, and significantly reduced symptoms of depression in the participants with ADRD. The caregivers also exhibited an increase in circadian entrainment during the lighting intervention; a seasonal effect of greater sleep efficiency and longer sleep duration was also found for caregivers. Conclusions An ambient lighting intervention designed to increase daytime circadian stimulation can be used to increase sleep efficiency in persons with ADRD and their caregivers, and may also be effective for other populations such as healthy older adults with sleep problems, adolescents, and veterans with traumatic brain injury. PMID:27066526
[Light pollution increases morbidity and mortality rate from different causes in male rats].
Bukalev, A V; Vinogradova, I A; Zabezhinskiĭ, M A; Semenchenko, A V; Anisimov, V N
2012-01-01
The influence of different light regimes (constant light--LL; constant darkness--DD; standard light regime--LD, 12 hours light 12 hours darkness; natural lightening of the North-West of Russia--NL) on the dynamics of life's morbidity rate, spontaneous tumorigenesis and frequency of some kinds of non-tumor pathology revealed at the post-mortem examination of male rats was studied. It was found out that the maintenance of animals at LL and NL conditions led to the increase of the number of infectious diseases, substantially faster development of spontaneous tumors and the increase of non-tumor diseases in comparison with the animals kept at LD (standard light) regime. Light deprivation (DD) led to substantial reduction of development of new growth, of non-tumor and infectious diseases in comparison with the similar parameters in standard light regime.
NASA Astrophysics Data System (ADS)
Deininger, Anne; Bergström, Ann-Kristin
2013-04-01
Input of inorganic nitrogen (N) in boreal unproductive lakes is steadily increasing due to anthropogenic deposition and usage of artificial fertilizers. N enrichment is predicted to have a major impact on the ecosystem productivity and food web structure in unproductive clear-water and humic lakes. For a long time, pelagic primary production (PP) has been mainly regarded as being phosphorus (P) limited. However, recent studies have shown that this is not true for unproductive lakes in northern Sweden, where phytoplankton is mainly N limited. Addition of inorganic N should therefore increase phytoplankton growth in these lake ecosystems. Bacterial production (BP) in the pelagic habitat, on the other hand, is usually limited by P. Nevertheless, elevated N could have a stimulating effect on BP through enhanced leakage of dissolved organic carbon (DOC) from phytoplankton following enhanced N availability and higher PP. Further, unproductive lakes vary naturally in their DOC content which affects overall nutrient- (N and P), energy- and carbon availability (light, C) for the basal producers (phytoplankton, bacteria). It is still not clear how higher inorganic N availability affects primary- and bacterial production in the pelagic in lakes with varying DOC content. We subsequently assessed this question by conducting whole-lake fertilization experiments with inorganic N additions in 6 lakes with varying DOC concentrations (2 low DOC; 2 medium DOC; 2 high DOC). For each DOC level one lake functioned as a reference and one was fertilized with N. Year 2011 was a reference year (all lakes) and 2012 was the first year of fertilization (i.e. in 3 lakes). Measurements included basal productivity such as primary production and bacteria production, lake water chemistry and physical parameters (i.e. light, temperature). The results of this study will help to develop a conceptual understanding of how increased inorganic N availability (through land use such as forestry and/or enhanced N deposition) affects basal productivity in boreal lakes which can have consequences for overall whole lake-ecosystem productivity and functioning.
An Inexpensive LED Light Sensor
ERIC Educational Resources Information Center
Kutzner, Mickey; Wright, Richard; Kutzner, Emily
2010-01-01
Light irradiance measurements are important for students grappling with abstract optical phenomena such as the inverse square law, polarization, diffraction, interference, and spectroscopy. A variety of commercial light sensors are available from scientific vendors such as the CI-6504A from PASCO scientific and the LS-BTA from Vernier Software and…
Photosynthetic Light Response of Bottomland Oak Seedlings Raised Under Partial Sunlight
Emile S. Gardiner
2002-01-01
Seedlings of cherrybark oak (Quercus pagoda Rafinesque), Nuttall oak (Quercus nuttallii Palmer) and overcup oak (Quercus lyrata Walter) were grown under two light levels, partial (20 percent) or full sunlight, to study physiological acclimation of leaves to low light availability. Shifts in leaf morphology were...
Ultraviolet Radiation in Wound Care: Sterilization and Stimulation
Gupta, Asheesh; Avci, Pinar; Dai, Tianhong; Huang, Ying-Ying; Hamblin, Michael R.
2013-01-01
Significance Wound care is an important area of medicine considering the increasing age of the population who may have diverse comorbidities. Light-based technology comprises a varied set of modalities of increasing relevance to wound care. While low-level laser (or light) therapy and photodynamic therapy both have wide applications in wound care, this review will concentrate on the use of ultraviolet (UV) radiation. Recent Advances UVC (200–280 nm) is highly antimicrobial and can be directly applied to acute wound infections to kill pathogens without unacceptable damage to host tissue. UVC is already widely applied for sterilization of inanimate objects. UVB (280–315 nm) has been directly applied to the wounded tissue to stimulate wound healing, and has been widely used as extracorporeal UV radiation of blood to stimulate the immune system. UVA (315–400 nm) has distinct effects on cell signaling, but has not yet been widely applied to wound care. Critical Issues Penetration of UV light into tissue is limited and optical technology may be employed to extend this limit. UVC and UVB can damage DNA in host cells and this risk must be balanced against beneficial effects. Chronic exposure to UV can be carcinogenic and this must be considered in planning treatments. Future Directions New high-technology UV sources, such as light-emitting diodes, lasers, and microwave-generated UV plasma are becoming available for biomedical applications. Further study of cellular signaling that occurs after UV exposure of tissue will allow the benefits in wound healing to be better defined. PMID:24527357
The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1
Gouinguené, Sandrine P.; Turlings, Ted C.J.
2002-01-01
Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583
[Comparative analysis of light sensitivity, depth and motion perception in animals and humans].
Schaeffel, F
2017-11-01
This study examined how humans perform regarding light sensitivity, depth perception and motion vision in comparison to various animals. The parameters that limit the performance of the visual system for these different functions were examined. This study was based on literature studies (search in PubMed) and own results. Light sensitivity is limited by the brightness of the retinal image, which in turn is determined by the f‑number of the eye. Furthermore, it is limited by photon noise, thermal decay of rhodopsin, noise in the phototransduction cascade and neuronal processing. In invertebrates, impressive optical tricks have been developed to increase the number of photons reaching the photoreceptors. Furthermore, the spontaneous decay of the photopigment is lower in invertebrates at the cost of higher energy consumption. For depth perception at close range, stereopsis is the most precise but is available only to a few vertebrates. In contrast, motion parallax is used by many species including vertebrates as well as invertebrates. In a few cases accommodation is used for depth measurements or chromatic aberration. In motion vision the temporal resolution of the eye is most important. The ficker fusion frequency correlates in vertebrates with metabolic turnover and body temperature but also has very high values in insects. Apart from that the flicker fusion frequency generally declines with increasing body weight. Compared to animals the performance of the visual system in humans is among the best regarding light sensitivity, is the best regarding depth resolution and in the middle range regarding motion resolution.
Churski, Marcin; Bubnicki, Jakub W; Jędrzejewska, Bogumiła; Kuijper, Dries P J; Cromsigt, Joris P G M
2017-04-01
Plant biomass consumers (mammalian herbivory and fire) are increasingly seen as major drivers of ecosystem structure and function but the prevailing paradigm in temperate forest ecology is still that their dynamics are mainly bottom-up resource-controlled. Using conceptual advances from savanna ecology, particularly the demographic bottleneck model, we present a novel view on temperate forest dynamics that integrates consumer and resource control. We used a fully factorial experiment, with varying levels of ungulate herbivory and resource (light) availability, to investigate how these factors shape recruitment of five temperate tree species. We ran simulations to project how inter- and intraspecific differences in height increment under the different experimental scenarios influence long-term recruitment of tree species. Strong herbivore-driven demographic bottlenecks occurred in our temperate forest system, and bottlenecks were as strong under resource-rich as under resource-poor conditions. Increased browsing by herbivores in resource-rich patches strongly counteracted the increased escape strength of saplings in these patches. This finding is a crucial extension of the demographic bottleneck model which assumes that increased resource availability allows plants to more easily escape consumer-driven bottlenecks. Our study demonstrates that a more dynamic understanding of consumer-resource interactions is necessary, where consumers and plants both respond to resource availability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.
Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G
2017-11-01
Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818
Gregg, Noel
2012-01-01
Accommodating adult basic education (ABE) learners with learning disabilities (LD) is common practice across many instructional, testing, and work settings. However, the results from this literature search indicate that very few empirically based studies are available to support or reject the effectiveness of a great deal of accommodation implementation. In addition, in light of the profound changes to literacy taking place in today's digital, networked, and multimodal world, technology is redefining traditional concepts of accessibility and accommodation.
Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong
2018-01-01
The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660
Heber, U; Bilger, W; Bligny, R; Lange, O L
2000-11-01
Adaptation to excessive light is one of the requirements of survival in an alpine environment particularly for poikilohydric organisms which in contrast to the leaves of higher plants tolerate full dehydration. Changes in modulated chlorophyll fluorescence and 820-nm absorption were investigated in the lichens Xanthoria elegans (Link) Th. Fr. and Rhizocarpon geographicum (L.) DC, in the moss Grimmia alpestris Limpr. and the higher plants Geum montanum L., Gentiana lutea L. and Pisum sativum L., all collected at altitudes higher than 2000 m above sea level. In the dehydrated state, chlorophyll fluorescence was very low in the lichens and the moss, but high in the higher plants. It increased on rehydration in the lichens and the moss, but decreased in the higher plants. Light-induced charge separation in photosystem II was indicated by pulse-induced fluorescence increases only in dried leaves, not in the dry moss and dry lichens. Strong illumination caused photodamage in the dried leaves, but not in the dry moss and dry lichens. Light-dependent increases in 820-nm absorption revealed formation of potential quenchers of chlorophyll fluorescence in all dehydrated plants, but energy transfer to quenchers decreased chlorophyll fluorescence only in the moss and the lichens, not in the higher plants. In hydrated systems, coupled cyclic electron transport is suggested to occur concurrently with linear electron transport under strong actinic illumination particularly in the lichens because far more electrons became available after actinic illumination for the reduction of photo-oxidized P700 than were available in the pool of electron carriers between photosystems II and I. In the moss Grimmia, but not in the lichens or in leaves, light-dependent quenching of chlorophyll fluorescence was extensive even under nitrogen, indicating anaerobic thylakoid acidification by persistent cyclic electron transport. In the absence of actinic illumination, acidification by ca. 8% CO2 in air quenched the initial chlorophyll fluorescence yield Fo only in the hydrated moss and the lichens, not in leaves of the higher plants. Under the same conditions, 8% CO2 reduced the maximal fluorescence yield Fm strongly in the poikilohydric organisms, but only weakly or not at all in leaves. The data indicate the existence of deactivation pathways which enable poikilohydric organisms to avoid photodamage not only in the hydrated but also in the dehydrated state. In the hydrated state, strong nonphotochemical quenching of chlorophyll fluorescence indicated highly sensitive responses to excess light which facilitated the harmless dissipation of absorbed excitation energy into heat. Protonation-dependent fluorescence quenching by cyclic electron transport, P700 oxidation and, possibly, excitation transfer between the photosystems were effectively combined to produce phototolerance.
Effect of low electric fields on alpha scintillation light yield in liquid argon
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-01-24
Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less
B. R. Lockhart; E. S. Gardiner; T. D. Leininger; M. S. Devall; A. D. Wilson; K. F. Connor; P. B. Hamel; N. M. Schiff
2017-01-01
Physiological responses to light availability and soil flooding on Lindera melissifolia (Walt.) Blume were studied. Shrubswere grown under 70, 37 or 5% of full sunlight with either 0, 45, or 90 d of soil flooding. We measured leaf photosyntheticrate (PN) to test the hypothesis that soil flooding reduces PN in L. melissifolia following shrub...
Ellen M. Boerger; Brent R. Frey; Andrew W. Ezell; Tracy Hawkins
2015-01-01
Recent studies suggest a troubling decline in the abundance of red oak species (Quercus spp., Section Erythrobalanus) in bottomland forests of the southeastern United States. We assessed red oak advance regeneration and associated tree species in relation to light availability in a 77-year-old oak-dominated stand 5 years after late rotation thinning. Residual basal...
Tracy S. Hawkins; Nathan Schiff; A. Dan Wilson; Theodor D. Leininger; Margaret S. Devall
2016-01-01
Brunnichia ovata (Walter) Shinners is a native, perennial, woody vine with the potential to become an aggressive competitor of the federally endangered shrub Lindera melissifolia (Walt.) Blume. Our study simulated habitat disturbances to hydrologic regime and light availability that may occur naturally, or through active...
USDA-ARS?s Scientific Manuscript database
Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...
NASA Technical Reports Server (NTRS)
2002-01-01
Retinex Imaging Processing, winner of NASA's 1999 Space Act Award, is commercially available through TruView Imaging Company. With this technology, amateur photographers use their personal computers to improve the brightness, scene contrast, detail, and overall sharpness of images with increased ease. The process was originally developed for remote sensing of the Earth by researchers at Langley Research Center and Science and Technology Corporation (STC). It automatically enhances a digital image in terms of dynamic range compression, color independence from the spectral distribution of the scene illuminant, and color/lightness rendition. As a result, the enhanced digital image is much closer to the scene perceived by the human visual system, under all kinds and levels of lighting variations. TruView believes there are other applications for the software in medical imaging, forensics, security, recognizance, mining, assembly, and other industrial areas.
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
Singh, Devraj; Trivedi, Neerja; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-07-01
We tested the hypothesis whether daily food availability period would restore rhythmicity in individuals with disrupted circadian behavior with no effect on appetite regulation. Particularly, we investigated the effects of timed food availability on activity behavior, and Fos and neuropeptide Y expressions in Indian weaverbirds (Ploceus philippinus) under atypical light conditions. Initially, weaverbirds in 3 groups of 7-8 each were entrained to 7L:17D (25: <0.3lx) with food ad libitum. Thereafter, food availability was restricted for 7h such that it overlapped with the light period. After a week, 7L:17D was replaced with 3.5L: 3.5D (T7, group 1), 3.5L: 20.5D (T24, group 2) or constant dim light, LLdim (<0.3lx, group 3) for 5weeks. Food cycles synchronized the circadian activity behavior, albeit with group differences, but did not affect body mass, blood glucose levels or testis size. Further, Fos, not NPY mRNA or peptide, expression measured at ZT2 and ZT14 (ZT0=time of food given) showed significant group differences in the hippocampus, dorsomedial hypothalamus and infundibular nuclear complex. Another identical experiment examined after-effects of the 3 light conditions on persistence of the circadian rhythms. Weaverbirds exposed for 4weeks to identical food but different light conditions, as above, were released into the free-running condition of food ad libitum and LLdim. Circadian rhythms were decayed in birds previously exposed to T7 LD cycle. Overall, these results show that timed meal restores rhythmicity in individuals with circadian rhythm disruptions without involving neuropeptide Y, the key appetite regulatory molecule. Copyright © 2016 Elsevier Inc. All rights reserved.
Zadeh, Rana Sagha; Shepley, Mardelle McCuskey; Williams, Gary; Chung, Susan Sung Eun
2014-01-01
To investigate the physiological and psychological effects of windows and daylight on registered nurses. To date, evidence has indicated that appropriate environmental lighting with characteristics similar to natural light can improve mood, alertness, and performance. The restorative effects of windows also have been documented. Hospital workspaces generally lack windows and daylight, and the impact of the lack of windows and daylight on healthcare employees' well being has not been thoroughly investigated. Data were collected using multiple methods with a quasi-experimental approach (i.e., biological measurements, behavioral mapping, and analysis of archival data) in an acute-care nursing unit with two wards that have similar environmental and organizational conditions, and similar patient populations and acuity, but different availability of windows in the nursing stations. Findings indicated that blood pressure (p < 0.0001) decreased and body temperature increased (p = 0.03). Blood oxygen saturation increased (p = 0.02), but the difference was clinically insignificant. Communication (p < 0.0001) and laughter (p = 0.03) both increased, and the subsidiary behavior indicators of sleepiness and deteriorated mood (p = 0.02) decreased. Heart rate (p = 0.07), caffeine intake (p = 0.3), self-reported sleepiness (p = 0.09), and the frequency of medication errors (p = 0.14) also decreased, but insignificantly. The findings support evidence from laboratory and field settings of the benefits of windows and daylight. A possible micro-restorative effect of windows and daylight may result in lowered blood pressure and increased oxygen saturation and a positive effect on circadian rhythms (as suggested by body temperature) and morning sleepiness. Critical care/intensive care, lighting, nursing, quality care, work environment.
Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges
NASA Astrophysics Data System (ADS)
Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.
2013-04-01
The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.
Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M
2015-09-15
Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.
Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi
Suzuki, Tadahiro
2018-01-01
Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012
LEDs for solid state lighting and other emerging applications: status, trends, and challenges
NASA Astrophysics Data System (ADS)
Craford, M. George
2005-09-01
LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.
Alcohol Consumption, Alcohol Outlets, and the Risk of Being Assaulted With a Gun
Branas, Charles C.; Elliott, Michael R.; Richmond, Therese S.; Culhane, Dennis P.; Wiebe, Douglas J.
2010-01-01
Background We conducted a population-based case–control study to better delineate the relationship between individual alcohol consumption, alcohol outlets in the surrounding environment, and being assaulted with a gun. Methods An incidence density sampled case–control study was conducted in the entire city of Philadelphia from 2003 to 2006. We enrolled 677 cases that had been shot in an assault and 684 population-based controls. The relationships between 2 independent variables of interest, alcohol consumption and alcohol outlet availability, and the outcome of being assaulted with a gun were analyzed. Conditional logistic regression was used to adjust for numerous confounding variables. Results After adjustment, heavy drinkers were 2.67 times as likely to be shot in an assault when compared with nondrinkers (p < 0.10) while light drinkers were not at significantly greater risk of being shot in an assault when compared with nondrinkers. Regression-adjusted analyses also demonstrated that being in an area of high off-premise alcohol outlet availability significantly increased the risk of being shot in an assault by 2.00 times (p < 0.05). Being in an area of high on-premise alcohol outlet availability did not significantly change this risk. Heavy drinkers in areas of high off-premise alcohol outlet availability were 9.34 times (p < 0.05) as likely to be shot in an assault. Conclusions This study finds that the gun assault risk to individuals who are near off-premise alcohol outlets is about the same as or statistically greater than the risk they incur from heavy drinking. The combination of heavy drinking and being near off-premise outlets resulted in greater risk than either factor alone. By comparison, light drinking and being near on-premise alcohol outlets were not associated with increased risks for gun assault. Cities should consider addressing alcohol-related factors, especially off-premise outlets, as highly modifiable and politically feasible approaches to reducing gun violence. PMID:19320627
Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.
2016-01-01
Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015
Acoustic emission analysis of fiber-reinforced composite in flexural testing.
Alander, Pasi; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K
2004-05-01
The aim of this study was to examine the emission of acoustic signals from six commercially available fiber-reinforced composites (FRC) used in the frameworks of fixed partial dentures in material bending. FRC test specimens were made of six commercially available fiber products of polyethylene or glass and five light-curing resins. FRC test specimens were polymerized with a hand light-curing unit or with a light-curing oven. The flexural test for determination of ultimate flexural strength of test specimens (n = 6) was based on the ISO 10477 standard after the specimens were stored in air or in water for two weeks. The acoustic emission (AE) signals were monitored during three-point loading test of the test specimens using a test with increasing loading levels until the specimens fractured. Generally, stress level required for the AE activity initiation ranged from 107 MPa (Ribbond) to 579 MPa (everStick). The ultimate flexural strength of FRC specimens were higher, ranging from 132 to 764 MPa, being highest with everStick and Vectris FRC, and lowest with Ribbond FRC. ANOVA showed a statistically significant difference between the initiation of AE activity and the ultimate flexural strength according to the brand (p < 0.001) storing conditions (p < 0.001) and polymerization procedure (p < 0.001). AE activity and ultimate flexural strength correlated significantly (p < 0.010, r = 0.887). The result of this study suggested that AE activity in FRC specimens started at a 19-32% lower stress level than occurred at final fracture.
Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads
NASA Astrophysics Data System (ADS)
Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.
2018-01-01
Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.
Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji
2015-08-01
Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.
NASA Astrophysics Data System (ADS)
Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung
2017-11-01
Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.