Sample records for increased liquid level

  1. Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles

    PubMed Central

    Mei, Qingsong; Li, Juying

    2015-01-01

    The liquid thermal history effect on liquid supercooling behavior has been found in various metals and alloys; typically the degree of liquid supercooling (ΔT−) increases with the increase of liquid overheating (ΔT+) up to several to tens of degrees above the equilibrium melting point (T0). Here we report quantitative experimental measurements on the ΔT−-ΔT+ relationship of Al small particles encapsulated in Al2O3 shells by using a differential scanning calorimeter. We find a remarkable dependence of ΔT− on ΔT+ of Al small particles, extending to at least 340 °C above T0 of Al (~1.36T0), which indicates the existence of temperature-dependent crystallization centers in liquid Al up to very high liquid overheating levels. Our results demonstrate quantitatively the significant effect of liquid thermal history on the supercooling behavior of Al and its alloys, and raise new considerations about the dependence of ΔT− on ΔT+ at very high ΔT+ levels. PMID:28787806

  2. A dual-parameter tilted fiber Bragg grating-based sensor for liquid level and temperature monitoring

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Jurek, Tomasz; Markowski, Konrad; Jedrzejewski, Kazimierz

    2016-09-01

    In this paper, the concept and experimental characterization of tilted fiber Bragg grating (TFBG) based sensor for temperature and liquid level measurement are presented. It is shown that, when liquid level increases the peak amplitudes of cladding modes linearly decreases (in dB). In turn, changes in temperature causes a shift of the TFBG transmission spectrum, which can be accurately measured by monitoring the Bragg wavelength corresponding to the liquid level independent core mode. The main advantages of proposed sensor are simple design as well as linear responses to liquid level and temperature.

  3. Liquid level controller

    DOEpatents

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  4. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  5. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  7. Impact of e-cigarette refill liquid exposure on rat kidney.

    PubMed

    Golli, Narges El; Jrad-Lamine, Aicha; Neffati, Hajira; Dkhili, Houssem; Rahali, Dalila; Dallagi, Yosra; El May, Michele V; El Fazaa, Saloua

    2016-06-01

    Electronic-cigarettes (e-cigarette), the alternative to classic cigarettes are becoming extremely popular but their safety is not still established. Recent studies have showed cytotoxic effects of the electronic cigarette and its recharge e-liquid, in vitro. The present study was designed to evaluate e-cigarette liquid nephrotoxicity in rats. For this purpose, 32 rats were treated for 28 days as follows: Control group was injected intraperitoneally with NaCl 9 g/l; e-cigarette 0% treated group received an intraperitoneal injection of e-liquid without nicotine diluted in NaCl 9 g/l, e-cigarette treated group, received an intraperitoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l and nicotine-treated group received an intraperitoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l. In nicotine group, creatinine level was increased, whereas urea and acid uric levels were decreased. In e-liquid-exposed groups, levels of uric acid and mainly urea were lower. Interestingly, after e-liquid exposure, oxidative stress status showed increased total protein and sulfhydril content, whereas superoxide dismutase and catalase activities were decreased. However, the levels of lipid peroxides were not increased after e-liquid exposure. Histological studies identified excess of cells with reduced and dark nuclei exclusively located in the renal collecting ducts. Thus, e-liquid seems to alter anti-oxidant defense and to promote minor changes in renal function parameters. This preliminary study raises some flags about possible nephrotoxicity of e-cigarette liquids in rats. As some features observed in rats may not be observed in human smokers, additional studies are needed to further qualify conclusions that might be applicable to actual users of e-cigarettes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  9. The Effect of Antioxidant Activity of Liquid Smoke in Feed Supplement Block on Meat Functional of Muscle Longissimus dorsi

    NASA Astrophysics Data System (ADS)

    Abustam, E.; Said, M. I.; Yusuf, M.

    2018-02-01

    This study aims to look at the role of liquid smoke as an antioxidant added in feed supplement block and administered to cattle for 45 days on the functional properties of meat. The level of liquid smoke in the feed and the time of maturation in Muscle Longissimus dorsi after slaughtering cattle were the two treatment factors observed for the functional properties of meat. The study used a complete randomized design in which factor 1 was a 10% smoke level in the feed (0, 1, 2%) and factor 2 was maturation time (0, 2, 4, 6, 8 days). The parameters observed were water holding capacity (WHC), raw meat shear force (RMSF), fat oxidation rate (thiobarbituric acid reactive substance) and antioxidant activity (DPPH). The results showed that liquid smoke levels lowered the WHC, RMSF more or less the same, increased fat oxidation rate, and antioxidant activity more or less the same. While maturation tends to increase WHC, increase RMSF, fat oxidation rate, and antioxidant activity. It can be concluded that liquid smoke as an antioxidant in the diet of block supplements can maintain the functional properties of Muscle Longissimus dorsi of Bali cattle during maturation.

  10. Effects of different levels of supplementation of a 50:50 mixture of molasses:crude glycerol on performance, Bermuda grass hay intake, and nutrient digestibility of beef cattle.

    PubMed

    Ciriaco, F M; Henry, D D; Mercadante, V R G; Schulmeister, T; Ruiz-Moreno, M; Lamb, G C; DiLorenzo, N

    2015-05-01

    Two experiments were performed to evaluate the effects of different levels of supplementation with a 50:50 (as-fed) mixture of molasses:crude glycerol on animal performance, total tract digestibility of nutrients, and ruminal in situ degradability of nutrients in beef heifers and steers consuming Tifton 85 Bermuda grass (Cynodon spp.) hay. For Exp. 1, 24 Angus crossbred heifers (380 ± 31 kg BW) were used in a generalized randomized block design. For Exp. 2, 8 ruminally cannulated Angus crossbred steers (323 ± 42 kg BW) were used in a 4 × 4 duplicated Latin square design. For both experiments, animals were housed in individual pens at the University of Florida Feed Efficiency Facility, had ad libitum access to Tifton 85 Bermuda grass hay, and were randomly assigned to 1 of 4 treatments: 1) CTRL, no supplementation; 2) SUP1, 0.45 kg/d (as fed) of 50:50 mixture; 3) SUP3, 1.36 kg/d (as fed) of 50:50 mixture; and 4) SUP5, 2.27 kg/d (as fed) of a 50:50 mixture. Individual feed intake was recorded. Total DMI increased linearly (P = 0.005) as the level of supplementation increased. Hay intake ranged from 1.36 (CTRL) to 1.23% (SUP5) of BW, and was not affected (P ≥ 0.10) by liquid supplementation. Final BW was not affected by liquid supplementation ( ≥ 0.10). There was a linear increase (P = 0.027) in ADG as the liquid supplementation amounts increased. Liquid supplementation did not affect G:F (P ≥ 0.10). Apparent total tract digestibility of DM, OM, NDF, and ADF increased linearly (P < 0.001), while CP total tract digestibility decreased linearly (P = 0.002) as the level of supplementation increased. Ruminal pH was decreased linearly (P = 0.012) as the level of supplementation increased. No effect (P ≥ 0.10) of liquid supplementation was detected on lag time for NDF and ADF content of bermudagrass hay; however, rate of degradation (Kd) of NDF tended (P = 0.076) to be affected cubically by liquid supplementation. In addition, liquid supplementation linearly decreased (P < 0.05) ED of OM, CP, NDF, and ADF. In conclusion, supplementing up to 2.27 kg/d of a 50:50 mixture of molasses:crude glycerol may stimulate microbial growth and fermentative activity, thereby increasing nutrient digestibility. Increased fiber digestion, along with energy supplementation, led to increased ADG in heifers consuming Bermuda grass hay.

  11. Liquid Acquisition Device Design Sensitivity Study

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Hastings, L. J.

    2012-01-01

    In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.

  12. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    PubMed Central

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730

  13. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  14. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Hasan, M. M.; Lin, C.-S.

    1991-01-01

    Experimental results are presented for the self pressurization and thermal stratification of a 4.89 cu m liquid hydrogen storage tank subjected to low heat flux (2.0 and 3.5 W/sq m) in normal gravity. The test tank was representative of future spacecraft tankage, having a low mass to volume ratio and high performance multilayer thermal insulation. Tests were performed at fill levels of 29 and 49 pcts. (by volume) and complement previous tests at 83 pct. fill. As the heat flux increases, the pressure rise rate at each fill level exceeds the homogeneous rate by an increasing ratio. Herein, this ratio did not exceed a value of 2. The slowest pressure rise rate was observed for the 49 pct. fill level at both heat fluxes. This result is attributed to the oblate spheroidal tank geometry which introduces the variables of wetted wall area, liquid-vapor interfacial area, and ratio of side wall to bottom heating as a function of fill level or liquid depth. Initial tank thermal conditions were found to affect the initial pressure rise rate. Quasi steady pressure rise rates are independent of starting conditions.

  15. Study of Liquid Breakup Process in Solid Rocket Motors

    DTIC Science & Technology

    2014-01-01

    waves. The breakup level increases with the surrounding gas velocity; more liquid breakup in the nozzle throat reduces the liquid alumina droplet size...process of a liquid film that flows along the wall of a straight channel while a high-speed gas moves over it. We have used an unsteady-flow Reynolds...Averaged Navier-Stokes code (URANS) to investigate the interaction of the liquid film flow with the gas flow, and analyzed the breakup process for

  16. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen

    PubMed Central

    Koštál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2011-01-01

    The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury. PMID:21788482

  17. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.

    PubMed

    Kostál, Vladimír; Zahradnícková, Helena; Šimek, Petr

    2011-08-09

    The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury.

  18. Fluorescent optical liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    2001-01-01

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  19. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    NASA Astrophysics Data System (ADS)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  20. [Human body composition during extended stay in microgravity].

    PubMed

    Noskov, V B; Nichiporuk, I A; Vasilieva, G Yu; Smirnov, Yu I

    2015-01-01

    According to the Sprut-2 protocol, bio-impedancemetry of ISS cosmonauts was performed once a month and also before and after mission. Multiple non-invasive body measurements were carried out in 15 cosmonauts in real time. Relocation of extracellular liquid along the body axis led to its reduction in legs and, on the contrary, an increase in the abdomen. Volumes of total body liquid as well as intra- and extracellular liquids decreased in comparison with pre-flight levels. Lean body mass also became less in microgravity, whereas fat mass showed an increase.

  1. Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Fu, Juan; Chen, Xiaoqian; Huang, Yiyong

    2013-12-01

    It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.

  2. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.

    PubMed

    Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton

    Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier system demonstrated a sixfold increase in alizarin red staining at 14 days when compared with collagen membrane alone. The combination of enamel matrix derivative in a liquid carrier system with a barrier membrane significantly increased cell attachment, differentiation, and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of combining enamel matrix derivative in a liquid carrier system with a barrier membrane for guided bone or tissue regeneration.

  3. Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats.

    PubMed

    El Golli, Narges; Dkhili, Houssem; Dallagi, Yosra; Rahali, Dalila; Lasram, Montassar; Bini-Dhouib, Ines; Lebret, Maryline; Rosa, Jean-Philippe; El Fazaa, Saloua; Allal-El Asmi, Monia

    2016-02-01

    Nicotine is known to promote body weight loss and to disturb glucose homeostasis and lipoprotein metabolism. Electronic cigarettes, as a substitute to nicotine, are becoming increasingly popular, although there is no evidence regarding their safety. Considering the dearth of information about e-cigarette toxicity, the present study was designed to compare nicotine alone to e-liquid with or without nicotine on metabolic parameters in Wistar rats. For this purpose, e-liquid with or without nicotine and nicotine alone (0.5mg/kg of body weight) were administered intra-peritoneally during 28 days. Our results show a significant decrease in food and energy intake after nicotine or e-liquid with nicotine exposure, when compared to control or e-liquid without nicotine. Analysis of lipid status identified a significant decrease in cholesterol and LDL levels in e-cigarette groups, suggesting an improvement in lipid profile. Interestingly, e-liquid without nicotine induced hyperglycemia which is negatively correlated to hepatic glycogen level, acting like nicotine alone. Furthermore, an increase in liver biomarkers was observed in all treated groups. qRT-PCR analysis showed GSK3β up-regulation in e-liquid with nicotine as well as, surprisingly, in e-liquid without nicotine exposure. In contrast, PEPCK genes were only up-regulated in e-liquid with nicotine. While some features observed in rats may not be observed in human smokers, most of our data are consistent with, e-liquid per se i.e. without nicotine, not being neutral from a metabolic stand point since disrupting glucose homeostasis in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quality characteristic of liquid smoked straw mushroom (Volvariella volvacea) ball during storage

    NASA Astrophysics Data System (ADS)

    Kurniawan, C. W.; Atmaka, W.; Manuhara, G. J.; Sanjaya, A. P.

    2018-01-01

    Straw mushroom (Volvariella volvacea) ball was soaked for 15, 30, and 45 minutes with the concentration level 1%, 2%, and 3% (v/v) of the coconut shell liquid smoke. The chemical characteristics (water contains, total phenol, carbonil contains, total-N, TVB-N, and pH), microbiological characteristics (Total Plate Count), and sensory characteristics (color, flavor, taste, texture, and overalls) of the liquid smoked straw mushroom ball during 14 days storage at freezing temperature were investigated. The result showed that the water content and TVB-N were decreased after soaked and were increased after storaged. On the other hand, the result of total phenol, carbonyl content, and Total-N were increased after soaked and were decreased after storage. The level of pH and Total Plate Count of the straw mushroom ball were decreased during storage. Due to the sensory characteristics of the straw mushroom ball, the panelists provide high values for the straw mushroom ball which was soaked in 3% concentration level with 30 minutes soaked time. The best-soaked treatment was by soaked at 30 minutes with 3% concentration level liquid smoke. The straw mushroom ball has 70.95±0.10% water contains; 0.32±0.02% total phenol; 1.08±0.22% carbonyl contains; and 2.29±0.07% total-N.

  5. Nutrients content and quality of liquid fertilizer made from goat manure

    NASA Astrophysics Data System (ADS)

    Sunaryo, Yacobus; Purnomo, Djoko; Theresia Darini, Maria; Ratri Cahyani, Vita

    2018-05-01

    Quality of liquid fertilizer is determined by the content of nutrients and other chemical factors such as pH and EC. This research aimed to examine nutrient contents and dynamic of pH and EC of liquid fertilizer made from goat manure in combination with sugar and ammonium sulfate (ZA) and using Effective Microorganisms (EM) as the decomposer. This research was conducted by employing 3 x 3 factorial experiment with three replications. Each treatment combination was applied in 20 L of water. The first factor was the quantity of sugar which consisted of 3 levels: 12.5, 25, and 50 g L-1 of water. The second factor was the quantity of ZA which consisted of 3 levels: 25, 37.5, and 50 g L-1 of water. All combinations were added by 100 g of air dried goat manure L-1 of water and EM solution 1 ml L-1 of water, and incubated for five months. Results of the experiment indicated that the increasing concentration of ZA resulted in the significantly increase of N total and S total. Increasing concentration of sugar resulted in decreasing pH and increasing lactic acid; whereas, increasing concentration of ZA followed by increasing Electrical Conductivity (EC). There was no significantly change of pH and EC of the liquid fertilizer during five months incubation.

  6. Continuous liquid level detection based on two parallel plastic optical fibers in a helical structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yingzi; Hou, Yulong; Zhang, Yanjun; Hu, Yanjun; Zhang, Liang; Gao, Xiaolong; Zhang, Huixin; Liu, Wenyi

    2018-02-01

    A simple and low-cost continuous liquid-level sensor based on two parallel plastic optical fibers (POFs) in a helical structure is presented. The change in the liquid level is determined by measuring the side-coupling power in the passive fiber. The side-coupling ratio is increased by just filling the gap between the two POFs with ultraviolet-curable optical cement, making the proposed sensor competitive. The experimental results show that the side-coupling power declines as the liquid level rises. The sensitivity and the measurement range are flexible and affected by the geometric parameters of the helical structure. A higher sensitivity of 0.0208 μW/mm is acquired for a smaller curvature radius of 5 mm, and the measurement range can be expanded to 120 mm by enlarging the screw pitch to 40 mm. In addition, the reversibility and temperature dependence are studied. The proposed sensor is a cost-effective solution offering the advantages of a simple fabrication process, good reversibility, and compensable temperature dependence.

  7. Effect of Hydrogenated, Liquid and Ghee Oils on Serum Lipids Profile

    PubMed Central

    Mohammadifard, Noushin; Nazem, Masoud; Naderi, Gholam-Ali; Saghafian, Faezeh; Sajjadi, Firoozeh; Maghroon, Maryam; Bahonar, Ahmad; Alikhasi, Hasan; Nouri, Fatemeh

    2010-01-01

    BACKGROUND Trans fatty acids are known as the most harmful type of dietary fats, so this study was done to compare the effects of hydrogenated, liquid and ghee oils on serum lipids profile of healthy adults. METHODS This study was a randomized clinical trial conducted on 129 healthy participants aged from 20 to 60 years old who were beneficiaries of Imam-e-Zaman charitable organization. Subjects were randomly divided into 3 groups and each group was treated with a diet containing cooking and frying liquid, ghee, or hydrogenated for 40 days. Fasting serum lipids, including total cholesterol (TC), triglyceride (TG), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), apoprotein A (Apo A), and apoprotein B (Apo B) were measured before and after the study. RESULTS TC, TG and Apo B had a significant reduction in the liquid oil group compared to the hydrogenated oil group. In the ghee group TG declined and Apo A increased significantly (P < 0.01). Liquid oil group had a significant reduction in HDL-C, compared to the ghee oil group (P < 0.05). CONCLUSION It was concluded that consuming liquid oil along with frying oil caused to reduce all serum lipid levels. However, ghee oil only reduced TG and increased HDL-C levels. PMID:22577408

  8. CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia.

    PubMed

    Li, Xiaopeng; Comellas, Alejandro P; Karp, Philip H; Ernst, Sarah E; Moninger, Thomas O; Gansemer, Nicholas D; Taft, Peter J; Pezzulo, Alejandro A; Rector, Michael V; Rossen, Nathan; Stoltz, David A; McCray, Paul B; Welsh, Michael J; Zabner, Joseph

    2012-07-01

    A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.

  9. Perfluorochemical (PFC) liquid enhances recombinant adenovirus vector-mediated viral interleukin-10 (AdvIL-10) expression in rodent lung.

    PubMed

    Li, John T; Bonneau, Laura A; Zimmerman, Jerry J; Weiss, Daniel J

    2007-05-01

    Adenovirus and cationic liposome mediated transfer of Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been shown to decrease pro-inflammatory cytokine levels and overall lung inflammation in models of lung transplantation and injury. Limitations to current approaches of IL-10 gene therapy include poor vector delivery methods and pro-inflammatory properties of human IL-10 under certain conditions. We hypothesize that using perfluorochemical (PFC) liquid to deliver the highly homologous viral IL-10 (vIL-10), which is predominantly anti-inflammatory with minimal pro-inflammatory activities, can potentially be a more effective strategy to combat inflammatory lung diseases. In this study, we compare the use of PFC liquid versus aerosolized method to deliver adenovirus encoding the vIL-10 gene (AdvIL-10) in C57Bl6 mice. Detectable vIL-10 levels were measured from bronchoalveolar lavage fluid and lung homogenates at one, four, ten and thirty days after AdvIL-10. Furthermore, we determined if use of PFC liquid could allow for the use of a lower dose of AdvIL-10 by comparing the levels of detectable vIL-10 at different doses of AdvIL-10 delivered +/- PFC liquid. Results showed that PFC liquid enhanced detectable vIL-10 by up to ten fold and that PFC liquid allowed the use of ten-fold less vector. PFC liquid increased detectable vIL-10 in lung homogenates at all time points; however, the increase in detectable vIL-10 in BAL fluid peaked at four days and was no longer evident by thirty days after intratracheal instillation. In summary, this is the first report utilizing PFC liquid to enhance the delivery of a potentially therapeutic molecule, vIL-10. We believe this strategy can be used to perform future studies on the use of the predominantly anti-inflammatory vIL-10 to treat inflammatory lung diseases.

  10. A new solution to emulsion liquid membrane problems by non-Newtonian conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelland, A.H.P.; Meng, X.

    1996-02-01

    Surfactant-stabilized emulsion liquid membrane processes constitute an emerging separation technology that has repeatedly been shown to be highly suited for such diverse separation processes as metal recovery or removal from dilute aqueous solutions; separations in the food industry; removal of organic bases and acids from water; and separation of hydrocarbons. Emulsion liquid membrane separation processes remain excessively vulnerable to one or more of four major problems. Difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This article providesmore » a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect on the fourth problem (demulsification) and may even alleviate it. Numerous benefits of optimized conversion of the membrane phase into suitable non-Newtonian form are identified, their mechanisms outlined, and experimental verifications provided. These include increased stability, retained (or enhanced) permeability, reduced swelling, increased internal phase volume, and increased stirrer speeds. The highly favorable responsiveness of both aliphatic and aromatic membranes to the new technique is demonstrated.« less

  11. Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams

    NASA Technical Reports Server (NTRS)

    Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.

    1999-01-01

    The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.

  12. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  13. Computational and Experimental Investigation of Li-doped Ionic Liquid Electrolytes: [pyr14][tfsi], [pyr13][fsi], and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange (hopping) increases at high xLi+ and in liquids with large anions.

  14. Understanding the atomic-level Green-Kubo stress correlation function for a liquid through phonons in a model crystal

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2014-11-01

    In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.

  15. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  16. Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals.

    PubMed

    Dentith, Susan; Lockwood, Brian

    2008-05-01

    For over 20 years, soy isoflavones have been investigated for their ability to prevent a wide range of cancers and cardiovascular problems, and numerous other disease states. This research is underpinned by the ability of researchers to analyse isoflavones in various forms in a range of raw materials and biological fluids. This review summarizes the techniques recently used in their analysis. The speed of high performance liquid chromatography analysis has been improved, allowing analysis of more samples, and increasing the sensitivity of detection techniques allows quantification of isoflavones down to nanomoles per litre levels in biological fluids. The combination of high-performance liquid chromatography with immunoassay has allowed identification and estimation of low-level soy isoflavones. The use of soy isoflavone supplements has shown an increase in their circulating levels in plasma and urine, aiding investigation of their biological effects. The significance of the metabolite equol has spurned research into new areas, and recently the specific enantiomers have been studied. High-performance liquid chromatography, capillary electrophoresis and gas chromatography are widely used with a range of detection systems. Increasingly, immunoassay is being used because of its high sensitivity and low cost.

  17. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.

    PubMed

    Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching

    2011-03-01

    The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effect of PEEP and inhaled nitric oxide on pulmonary gas exchange during gaseous and partial liquid ventilation with small volumes of perfluorocarbon.

    PubMed

    Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R

    2000-04-01

    Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.

  19. Etonitazene as a reinforcer: oral intake of etonitazene by rhesus monkeys.

    PubMed

    Carroll, M E; Meisch, R A

    1978-12-08

    Drinking of etonitazene HCI was studied in three rhesus monkeys during daily 3-h sessions. As the drug concentration was increased, the number of liquid deliveries decreased, and etonitazene intake (microgram/kg body weight) increased. As fixed-ratio (FR) requirements were increased, rate of responding increased, and liquid deliveries slightly decreased. When water was substituted for the drug, there was a large increase in responding for several sessions, followed by a slow decline to low rates. When etonitazene was reintroduced, responding abruptly increased to previous drug levels. These data suggest that etonitazene can serve as a positive reinforcer when taken orally by rhesus monkeys.

  20. Level indicator for pressure vessels

    DOEpatents

    Not Available

    1982-04-28

    A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  1. A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection

    PubMed Central

    Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter

    2009-01-01

    A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594

  2. Effects of ventilation on hyaluronan and protein concentration in pleural liquid of anesthetized and conscious rabbits.

    PubMed

    Wang, P M; Lai-Fook, S J

    1998-01-01

    The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.

  3. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  4. Ice versus liquid water saturation in simulations of the indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between wIce and woIce is around 10% of the observed interannual variability of seasonal All India rainfall.

  5. Loudspeaker Performance Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Many manufacturers of loudspeakers are now using a magnetic liquid cooling agent known as ferrofluid. Commercialized by Ferrofluids Corporation, ferrofluid is a liquid material in which sub-microscopic particles of iron oxide are permanently suspended. Injected into the voice coil segment of speaker system, magnetic liquid serves as superior heat transfer medium for cooling the voice coil, thus substantially increasing the system's ability to handle higher power levels and decreasing chance of speaker failure. Ferrofluid offers several additional advantages which add up to improved speaker performance, lower manufacturing costs and fewer rejects.

  6. Adjustable Lid Aids Silicon-Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.

    1985-01-01

    Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.

  7. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  8. Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J.W.; Zagula, E.J.

    1987-05-01

    The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less

  9. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4].

    PubMed

    Haskins, Justin B; Bennett, William R; Wu, James J; Hernández, Dionne M; Borodin, Oleg; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W

    2014-09-25

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ xLi(+) ≤ 0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi(+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi(+), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi(+) = 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (∼200 ns) to converge transport properties at room temperature. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions (τ(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li(+) transport in each liquid, we find that while the net motion of Li(+) with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high xLi(+) and in liquids with large anions.

  10. Nicotine Levels and Presence of Selected Tobacco-Derived Toxins in Tobacco Flavoured Electronic Cigarette Refill Liquids

    PubMed Central

    Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis

    2015-01-01

    Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768

  11. Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids.

    PubMed

    Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis

    2015-03-24

    Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.

  12. Transport of viruses through saturated and unsaturated columns packed with sand

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2009-01-01

    Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.

  13. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation

    NASA Technical Reports Server (NTRS)

    DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)

    2001-01-01

    Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.

  15. Impact of electronic-cigarette refill liquid on rat testis.

    PubMed

    El Golli, N; Rahali, D; Jrad-Lamine, A; Dallagi, Y; Jallouli, M; Bdiri, Y; Ba, N; Lebret, M; Rosa, J P; El May, M; El Fazaa, S

    2016-07-01

    Electronic cigarettes (e-cigarettes) are becoming the fashionable alternative to decrease tobacco smoking, although their impact on health has not been fully assessed yet. The present study was designed to compare the impact of e-cigarette refill liquid (e-liquid) without nicotine to e-liquid with nicotine on rat testis. For this purpose, e-liquid with nicotine and e-liquid without nicotine (0.5 mg/kg of body weight) were administered to adult male Wistar rats via the intraperitoneally route during four weeks. Results showed that e-liquid with or without nicotine leads to diminished sperm density and viability, such as a decrease in testicular lactate dehydrogenase activity and testosterone level. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified a reduction in cytochrome P450 side-chain cleavage (P450 scc) and 17 beta-hydroxysteroid dehydrogenase (17βHSD) mRNA level, two key enzymes of steroidogenesis. Following e-liquid exposure, histopathological examination showed alterations in testis tissue marked by germ cells desquamation, disorganization of the tubular contents of testis and cell deposits in seminiferous tubules. Finally, analysis of oxidative stress status pointed an outbreak of antioxidant enzyme activities such as superoxide dismutase, catalase and gluthatione-S-transferase, as well as an important increase in sulfhydril group content. Taken together, these results indicate that e-liquid per se induces toxicity in Wistar rat testis, similar to e-liquid with nicotine, by disrupting oxidative balance and steroidogenesis.

  16. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  17. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  18. Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.

    2016-09-01

    One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in this case, the filling degree of contact elements by the liquid must be maximum.

  19. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  20. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. © The Author(s) 2015.

  1. Effects of formulation and host nematode density on the ability of in vitro-produced pasteuria endospores to control its host Belonolaimus longicaudatus.

    PubMed

    Luc, John E; Pang, Wenjing; Crow, William T; Giblin-Davis, Robin M

    2010-06-01

    The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm(3) of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.

  2. Effects of Formulation and Host Nematode Density on the Ability of In Vitro-Produced Pasteuria Endospores to Control its Host Belonolaimus longicaudatus

    PubMed Central

    Luc, John E.; Pang, Wenjing; Crow, William T.; Giblin-Davis, Robin M.

    2010-01-01

    The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm3 of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective. PMID:22736843

  3. Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating

    NASA Astrophysics Data System (ADS)

    Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.

    2001-10-01

    A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.

  4. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  5. High performance liquid level monitoring system based on polymer fiber Bragg gratings embedded in silicone rubber diaphragms

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.

    2015-05-01

    Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental.

  6. Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa.

    PubMed

    Martins, Isabel; Hartmann, Diego O; Alves, Paula C; Planchon, Sébastien; Renaut, Jenny; Leitão, M Cristina; Rebelo, Luís P N; Silva Pereira, Cristina

    2013-12-06

    This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of mycelial proteins in Aspergillus nidulans and Neurospora crassa after their exposure to two of the most commonly used ionic liquids: 1-ethyl-3-methylimidazolium chloride or cholinium chloride. Data obtained showed that numerous stress-responsive proteins (e.g. anti-ROS defence proteins) as well as several critical biological processes and/or pathways were affected by either ionic liquid. Amongst other changes, these compounds altered developmental programmes in both fungi (e.g. promoting the development of Hülle cells or conidiation) and led to accumulation of osmolytes, some of which may play an important role in multiple stress responses. In particular, in N. crassa, both ionic liquids increased the levels of proteins which are likely involved in the biosynthesis of unusual metabolites. These data potentially open new perspectives on ionic liquid research, furthering their conscious design and their use to trigger production of targeted metabolites. The present study emphasises the importance of understanding ionic liquid's stress responses, crucial to further their safe large-scale usage. Knowledge of the alterations prompted at a cellular and biochemical level gives also fresh perspectives on how to employ these "novel" compounds to manipulate proteins or pathways of biotechnological value. The results presented here provide meaningful insights into the understanding of fungi stress and adaptation responses to anthropogenic chemicals used in industry. © 2013.

  7. Effect of Hibiscus sabdariffa on obesity in MSG mice.

    PubMed

    Alarcon-Aguilar, Francisco J; Zamilpa, Alejandro; Perez-Garcia, Ma Dolores; Almanza-Perez, Julio C; Romero-Nuñez, Eunice; Campos-Sepulveda, Efrain A; Vazquez-Carrillo, Laura I; Roman-Ramos, Ruben

    2007-10-08

    The aim of the present investigation was determine whether a standardized Hibiscus sabdariffa calyces aqueous extract has an effect on body weight in an obese animal model induced by the administration of monosodium glutamate. Hibiscus sabdariffa aqueous extract, containing 33.64 mg of total anthocyanins per each 120 mg of extract, was orally administered (120 mg/kg/day) for 60 days to healthy and obese mice, and body weight gain, food and liquid intake, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, and triglycerides levels were measured. Hibiscus sabdariffa administration significantly reduced body weight gain in obese mice and increased liquid intake in healthy and obese mice. ALT levels were significantly increased on the 15th and 45th days in obese mice, but AST levels did not show significant changes. Mortality was not observed in the Hibiscus sabdariffa treated groups. Triglycerides and cholesterol levels showed non-significant reductions in animals treated with Hibiscus sabdariffa. Our data confirm the anti-obesity effect of Hibiscus sabdariffa reported by the Mexican population.

  8. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  9. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...

  10. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...

  11. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...

  12. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...

  13. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that is...

  14. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, P. D., E-mail: grigorev@itp.ac.ru; Dyugaev, A. M.; Lebedeva, E. V.

    2008-02-15

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium.

  15. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    PubMed

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Low gravity liquid level sensor rake

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D. (Inventor); Craddock, Jeffrey C. (Inventor)

    2003-01-01

    The low gravity liquid level sensor rake measures the liquid surface height of propellant in a propellant tank used in launch and spacecraft vehicles. The device reduces the tendency of the liquid propellant to adhere to the sensor elements after the bulk liquid level has dropped below a given sensor element thereby reducing the probability of a false liquid level measurement. The liquid level sensor rake has a mast attached internal to a propellant tank with an end attached adjacent the tank outlet. Multiple sensor elements that have an arm and a sensor attached at a free end thereof are attached to the mast at locations selected for sensing the presence or absence of the liquid. The sensor elements when attached to the mast have a generally horizontal arm and a generally vertical sensor.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasley, J.N.; Rice, R.L.; McCullough, S.S.

    The role of gastrointestinal peptides in eating disorders has yet to be determined. Methods: In this study we examined plasma levels of gastrin (G), cholecystokinin (CCK), and pancreatic polypeptide (PP) in adolescent anorexic, and obese female subjects hospitalized for feeding behavior disorders. Six anorexic, six obese and six control young females (ages 13-26) were studied after an overnight fast and after consuming a liquid test meal. The liquid test meal (Ensure, Ross Laboratories; Columbus OH) consisted of 14% calories as protein, 31.5% calories as fat and 54.5% calories as carbohydrate in a 240ml volume. Plasma levels of gastrointestinal peptides, G,more » CCK and PP were determined by specific radioimmunoassay. The data were analyzed by one way analysis of variance and the Student's t-test. Results: show that fasting levels of G were greater in control and obese groups than the anorexic subjects. Postprandial G levels for controls were higher than the anorexic, and obese groups respectively. When fasting and postprandial G levels were compared among the same groups only the controls increased after eating. Fasting CCK levels were lower in control and anorexic groups than the obese group. Postprandial CCK levels were higher among control patients compared to anorexic and obese subjects. When fasting and postprandial CCK levels were compared among groups, only control levels increased after eating. Fasting and postprandial PP levels were not different between groups. Postprandial PP levels increased over fasting PP levels only in controls.« less

  18. Specialist gelator for ionic liquids.

    PubMed

    Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa

    2005-11-08

    Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.

  19. Collaboration of liquid bio-ameliorant and compost effect to crop yield and decreasing of inorganic fertilizer utilization for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Rasyid, B.

    2018-05-01

    Soil quality and plant productivity are main issue in agriculture production. The purpose of this research was to obtain sustainable crop management in effort to improve soil quality and increase maize production through collaboration of liquid bio-ameliorant and compost. Field experiment was carried out in two planting season with factorial experimental design replicated three times in 2m x 2m plots. Duncan multiple range test was used to analysis the effect of treatment on all parameters evaluated. The first planting season, treatments were arranged in three factors as: (1) planting space with two spaces, (2) three concentration of liquid bio-ameliorant, and (3) three level of urea fertilizer. The second planting season, treatments were arranged in two factors as: (1) liquid bio-ameliorant (LBA) with four concentrations and (2) compost with four levels. In the first season, result showed in soil quality parameters such as microbial density and soil chemical properties increased approximately 28%. The highest yield of 9.00 ton ha-1 was found in application 300 ml l-1 LBA + urea 240 kg ha-1. In the second season, collaboration treatment of 250 ml l-1 LBA + 10 ton ha-1 compost had the highest yield by 10.47 ton ha-1. This study confirmed that collaboration of liquid bio-ameliorant and compost could be used as fertilizer complement and reducing inorganic fertilizer utilization to sustain crop production and soil quality.

  20. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  1. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  2. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  3. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  4. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  5. Process for stabilization of coal liquid fractions

    DOEpatents

    Davies, Geoffrey; El-Toukhy, Ahmed

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  6. Atomic and electronic structures of an extremely fragile liquid.

    PubMed

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  7. Atomic and electronic structures of an extremely fragile liquid

    PubMed Central

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-01-01

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236

  8. A proposed method to minimize waste from institutional radiation safety surveillance programs through the application of expected value statistics.

    PubMed

    Emery, R J

    1997-03-01

    Institutional radiation safety programs routinely use wipe test sampling and liquid scintillation counting analysis to indicate the presence of removable radioactive contamination. Significant volumes of liquid waste can be generated by such surveillance activities, and the subsequent disposal of these materials can sometimes be difficult and costly. In settings where large numbers of negative results are regularly obtained, the limited grouping of samples for analysis based on expected value statistical techniques is possible. To demonstrate the plausibility of the approach, single wipe samples exposed to varying amounts of contamination were analyzed concurrently with nine non-contaminated samples. Although the sample grouping inevitably leads to increased quenching with liquid scintillation counting systems, the effect did not impact the ability to detect removable contamination in amounts well below recommended action levels. Opportunities to further improve this cost effective semi-quantitative screening procedure are described, including improvements in sample collection procedures, enhancing sample-counting media contact through mixing and extending elution periods, increasing sample counting times, and adjusting institutional action levels.

  9. Liquid chromatographic determination of urinary 5-methyl-2'-deoxycytidine and pseudouridine as potential biological markers for leukaemia.

    PubMed

    Zambonin, C G; Aresta, A; Palmisano, F; Specchia, G; Liso, V

    1999-12-01

    A simple reversed-phase liquid chromatographic (LC) method for the determination of urinary 5-methyl-2'-deoxycytidine (m5dCyd), recently claimed (on the basis of an imuno-technique) to be a potential marker for leukaemia, has been developed. Sample pre-treatment is based on a microcolumn clean-up step with an average recovery of 79% and a RSD of 3%. Detection limit was 0.2 microg/ml which is about tenfold lower than levels previously measured by an ELISA method in urine of healthy individuals. The creatinine (Cre) excretion, necessary for normalising the m5dCyd excretion, was evaluated by ion-pair liquid chromatography which permitted the simultaneous determination of pseudouridine (psi), a modified nucleoside also potentially useful as a marker for leukaemia. The described LC procedures were applied to the analysis of urine samples from healthy individuals and leukaemia patients. While the urinary psi/Cre ratio was found significantly increased for leukaemia patients, the urinary m5dCyd levels in healthy individuals were below the detection limits and did not increase in presence of the malignant disease.

  10. Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm

    NASA Astrophysics Data System (ADS)

    Dhara, P.; Singh, Vinod K.

    2015-01-01

    A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.

  11. Effect of gravity on liquid plug transport through an airway bifurcation model.

    PubMed

    Zheng, Y; Anderson, J C; Suresh, V; Grotberg, J B

    2005-10-01

    Many medical therapies require liquid plugs to be instilled into and delivered throughout the pulmonary airways. Improving these treatments requires a better understanding of how liquid distributes throughout these airways. In this study, gravitational and surface mechanisms determining the distribution of instilled liquids are examined experimentally using a bench-top model of a symmetrically bifurcating airway. A liquid plug was instilled into the parent tube and driven through the bifurcation by a syringe pump. The effect of gravity was adjusted by changing the roll angle (phi) and pitch angle (gamma) of the bifurcation (phi = gamma =0 deg was isogravitational). Phi determines the relative gravitational orientation of the two daughter tubes: when phi not equal to 0 deg, one daughter tube was lower (gravitationally favored) compared to the other. Gamma determines the component of gravity acting along the axial direction of the parent tube: when gamma not equal to 0 deg, a nonzero component of gravity acts along the axial direction of the parent tube. A splitting ratio Rs, is defined as the ratio of the liquid volume in the upper daughter to the lower just after plug splitting. We measured the splitting ratio, Rs, as a function of: the parent-tube capillary number (Cap); the Bond number (Bo); phi; gamma; and the presence of pre-existing plugs initially blocking either daughter tube. A critical capillary number (Cac) was found to exist below which no liquid entered the upper daughter (Rs = 0), and above which Rs increased and leveled off with Cap. Cac increased while Rs decreased with increasing phi, gamma, and Bo for blocked and unblocked cases at a given Cap > Ca,. Compared to the nonblockage cases, Rs decreased (increased) at a given Cap while Cac increased (decreased) with an upper (lower) liquid blockage. More liquid entered the unblocked daughter with a blockage in one daughter tube, and this effect was larger with larger gravity effect. A simple theoretical model that predicts Rs and Cac is in qualitative agreement with the experiments over a wide range of parameters.

  12. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  13. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  14. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  15. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  16. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  17. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  18. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  19. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  20. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  1. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  2. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  3. Remote sensing of liquid level measurement using Fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Sengupta, Dipankar; Shankar, M. Sai; Srimannarayana, K.; Vengal Rao, P.

    2013-09-01

    The present work proposes a simple low cost sensor head design making use of FBG sensor, for the measurement of liquid level. The sensor head consists of a lever, a buoyancy tube and an FBG. The lever is used to transfer the buoyancy force due to change in liquid level to the FBG resulting in shift in Bragg wavelength. The Flexibility of this design enables to measure the liquid level in an open or closed tank. The arrangement shows that liquid level sensitivity is high and is 10.7pm/mm.

  4. Liquid level sensing device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.

  5. High-performance liquid chromatographic method for profiling 2-oxo acids in urine and its application in evaluating vitamin status in rats.

    PubMed

    Shibata, Katsumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2016-01-01

    B-group vitamins are involved in the catabolism of 2-oxo acids. To identify the functional biomarkers of B-group vitamins, we developed a high-performance liquid chromatographic method for profiling 2-oxo acids in urine and applied this method to urine samples from rats deficient in vitamins B1 and B6 and pantothenic acid. 2-Oxo acids were reacted with 1,2-diamino-4,5-methylenebenzene to produce fluorescent derivatives, which were then separated using a TSKgel ODS-80Ts column with 30 mmol/L of KH2PO4 (pH 3.0):acetonitrile (7:3) at a flow rate of 1.0 mL/min. Vitamin B1 deficiency increased urinary levels of all 2-oxo acids, while vitamin B6 deficiency only increased levels of sum of 2-oxaloacetic acid and pyruvic acid, and pantothenic acid deficiency only increased levels of 2-oxoisovaleric acid. Profiles of 2-oxo acids in urine samples might be a non-invasive way of clarifying the functional biomarker of B-group vitamins.

  6. Liver stiffness and portal blood flow modifications induced by a liquid meal consumption: pathogenetic mechanisms and clinical relevance.

    PubMed

    Barone, Michele; Iannone, Andrea; Brunetti, Natale Daniele; Sebastiani, Francesco; Cecere, Onofrio; Berardi, Elsa; Antonica, Gianfranco; Di Leo, Alfredo

    2015-05-01

    The correlation between liver stiffness (LS) variations and portal blood flow (PBF) modifications induced by a standardized liquid meal consumption and the clinical relevance of this matter are two aspects not yet fully elucidated. Herein, we evaluated the variations of LS and PBF after a standardized liquid meal intake in patients with chronic liver disease. PBF and LS were determined after an overnight fasting period in 54 patients. They were divided in three groups according to baseline LS (absent, moderate, and severe). They consumed 200 ml of water and a standardized liquid meal (300 Kcal/200 ml) after 60 min. PBF and LS were measured at 30 min after water and liquid meal consumption. In all groups, LS and PBF values significantly increased only after meal consumption. A significant correlation between baseline LS values and post-meal increase of LS was observed. Moreover, higher basal stiffness values were associated to a larger increase of LS variation after meal consumption. The effect of the meal on LS remained statistically significant after multiple regression analysis. A significant correlation between increase of LS and PBF was found in patients with absent and moderate baseline LS. Nine patients (17%) switched from a lower to a higher level of LS after meal consumption. A low calories/low-volume meal is capable of significantly increasing LS regardless of the grade of stiffness, determining a reclassification rate of 17%. In presence of minimal or moderate stiffness, the increase of LS is significantly correlated with the augment of PBF.

  7. Coaxial cavity for measuring level of liquid in a container

    DOEpatents

    Booman, Glenn L.; Phelps, Frank R.

    1979-01-01

    A method and means for measuring the level of a liquid in a container. A coaxial cavity having a perforated outer conductor is partially submerged in the liquid in the container wherein the liquid enters and terminates the annular region of the coaxial cavity. The fundamental resonant frequency of the portion of the coaxial cavity which does not contain liquid is determined experimentally and is used to calculate the length of the liquid-free portion of the coaxial cavity and thereby the level of liquid in the container.

  8. Insulation Requirements of High-Voltage Power Systems in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Qureshi, A. Haq; Dayton, James A., Jr.

    1995-01-01

    The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.

  9. Analysis of Xylem Sap from Functional (Nonembolized) and Nonfunctional (Embolized) Vessels of Populus nigra: Chemistry of Refilling1[C][W][OA

    PubMed Central

    Secchi, Francesca; Zwieniecki, Maciej A.

    2012-01-01

    It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process. PMID:22837359

  10. Radiometric liquid level gauge with linear-detection (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, M.; Emmelmann, K.P.

    1973-09-01

    A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)

  11. Sensory characteristics of liquids thickened with commercial thickeners to levels specified in the International Dysphagia Diet Standardization Initiative (IDDSI) framework.

    PubMed

    Ong, Jane Jun-Xin; Steele, Catriona M; Duizer, Lisa M

    2018-06-01

    Sensory characteristics are important for the acceptance of thickened liquids, but those of liquids thickened to the new standards put forth by the International Dysphagia Diet Standardization Initiative (IDDSI) are unknown. This research sought to identify and rate the perception of important sensory properties of liquids thickened to levels specified in the IDDSI framework. Samples were made with water, with and without added barium sulfate, and were thickened with a cornstarch or xanthan gum based thickener. Samples were characterized using projective mapping/ultra-flash profiling to identify important sample attributes, and then with trained descriptive analysis panels to characterize those attributes in non-barium and barium thickened liquids. Three main groups of attributes were observed. Taste and flavor attributes decreased in intensity with increasing thickener. Thickener specific attributes included graininess and chalkiness for the cornstarch thickened samples, and slipperiness for the xanthan gum samples. Within the same type of thickener, ratings of thickness-related attributes (perceived viscosity, adhesiveness, manipulation, and swallowing) at different IDDSI levels were significantly different from each other. However, in non-barium samples, cornstarch samples were perceived as thicker than xanthan gum samples even though they had similar apparent viscosities at 50 s -1 . On the other hand, the two thickeners had similar perceived thickness in the barium samples even though the apparent viscosities of cornstarch samples were higher than those of the xanthan gum samples. In conclusion, IDDSI levels can be distinguished based on sensory properties, but these properties may be affected by the type of thickener and medium being thickened.

  12. July 2012 Greenland melt extent enhanced by low-level liquid clouds.

    PubMed

    Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C

    2013-04-04

    Melting of the world's major ice sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was observed across almost the entire Greenland ice sheet, raising questions about the frequency and spatial extent of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based observations, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial extent of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.

  13. HHP treatment of liquid egg at 200-350 MPa

    NASA Astrophysics Data System (ADS)

    Tóth, A.; Németh, Cs; Palotás, P.; Surányi, J.; Zeke, I.; Csehi, B.; Castillo, L. A.; Friedrich, L.; Balla, Cs

    2017-10-01

    High hydrostatic pressure (HHP) treatment of egg proteins partially limits their sensitivity to pressure. According to the literature, at the 450 MPa level, denaturation of some proteins sets in to the extent that sensory and functional characteristics are impacted. This study involved treating liquid egg (egg white, yolk, and melange) at less than the above-mentioned value, after which the microbiological effect was examined. For the study, pressure pouches were filled with 100ml of raw liquid egg per pouch. Then the samples were treated at 200, 250, 300 and 350 MPa. In each case, the level was reached by increasing pressure at a rate of 100 MPa/min. Measurements were taken at the Corvinus University of Budapest, Faculty of Food Science, Dept. of Refrigeration and Livestock Products Technology RESATO FPU 100-2000 equipment. Denaturation was determined with calorimetric (DSC) tests. From our results, it appears that even at 250 MPa pressure treatment, the viable cell count decreases. Further, it can be said that microbe count went down in the egg white samples at 300-350 MPa, below the impact level. Significant denaturation was not detected during our examinations. In summary, we state that the most HHP-sensitive liquid egg type, egg white, can be pressure treated to reduce microbe count at a level less than that which causes denaturation. Microbe reduction was smaller in yolk and melange, so higher pressure values are appropriate for these products.

  14. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  15. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    PubMed Central

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  16. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    PubMed

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  17. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla

    2011-01-01

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  18. Automatic cryogenic liquid level controller is safe for use near combustible substances

    NASA Technical Reports Server (NTRS)

    Krejsa, M.

    1966-01-01

    Automatic mechanical liquid level controller that is independent of any external power sources is used with safety in the presence of combustibles. A gas filled capillary tube which leads from a pressurized chamber, is inserted into the cryogenic liquid reservoir and becomes a liquid level sensing element or probe.

  19. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  20. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  1. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  2. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  3. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  4. Evolution of a phase separated gravity independent bioreactor

    NASA Technical Reports Server (NTRS)

    Villeneuve, Peter E.; Dunlop, Eric H.

    1992-01-01

    The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.

  5. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    DOE PAGES

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less

  6. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Fan, A.; Fiorillo, G.

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  8. Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study.

    PubMed

    Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J

    2003-12-15

    The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.

  9. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues

    NASA Astrophysics Data System (ADS)

    Cara, Cristóbal; Romero, Inmaculada; Oliva, Jose Miguel; Sáez, Felicia; Castro, Eulogio

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170-230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.

  10. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  11. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.

    PubMed

    Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong

    2010-10-05

    Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.

  12. Impact of Ionic Liquids on the Structure and Dynamics of Collagen.

    PubMed

    Tarannum, Aafiya; Adams, Alina; Blümich, Bernhard; Fathima, Nishter Nishad

    2018-01-25

    The changes in the structure and dynamics of collagen treated with two different classes of ionic liquids, bis-choline sulfate (CS) and 1-butyl-3-methyl imidazolium dimethyl phosphate (IDP), have been studied at the molecular and fibrillar levels. At the molecular level, circular dichroic studies revealed an increase in molar ellipticity values for CS when compared with native collagen, indicating cross-linking, albeit pronounced conformational changes for IDP were witnessed indicating denaturation. The impedance was analyzed to correlate the conformational changes with the hydration dynamics of protein. Changes in the dielectric properties of collagen observed upon treatment with CS and IDP reported molecular reorientation in the surrounding water milieu, suggesting compactness or destabilization of the collagen. This was further confirmed by proton transverse NMR relaxation time measurements, which demonstrated that the water mobility changes in the presence of the ILs. At the fibrillar level, differential scanning calorimetry thermograms for rat tail tendon collagen fibers treated with CS show a 5 °C increase in denaturation temperature, suggesting imparted stability. On the contrary, a significant temperature decrease was noticed for IDP, indicating the destabilization of collagen fibers. The obtained results clearly indicate that the changes in the secondary structure of protein are due to the changes in the hydration dynamics of collagen upon interaction with ILs. Thus, this study on the interaction of collagen with ionic liquids unfolds the propensity of ILs to stabilize or destabilize collagen depending on the changes invoked at the molecular level in terms of structure and dynamics of protein, which also got manifested at the fibrillar level.

  13. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  14. Fuzzy control for a nonlinear mimo-liquid level problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.

    2001-01-01

    Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid levelmore » control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.« less

  15. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  16. Agile lensing-based non-contact liquid level optical sensor for extreme environments

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer; Riza, Nabeel A.

    2010-09-01

    To the best of the author's knowledge, demonstrated is the first opto-fluidic technology- based sensor for detection of liquid levels. An opto-fluidic Electronically Controlled Variable Focus Lens (ECVFL) is used to change the spatial intensity profile of the low power optical beam falling on the liquid surface. By observing, tuning and measuring the liquid surface reflected intensity profile to reach its smallest size, the liquid level is determined through a beam spot size versus ECVFL focal length calibration table. Using a 50 μW 632.8 nm laser wavelength liquid illuminating beam, a proof-of-concept sensor is tested using engine oil, vegetable oil, and detergent fluid with measured liquid levels over a 75 cm range. This non-contact Radio Frequency (RF) modulation-free sensor is particularly suited for hazardous fluids in window-accessed sealed containers including liquid carrying vessels in Electromagnetic Interference (EMI) rich environments.

  17. Evolution of plasma homovanillic acid (HVA) levels during treatment in schizo-affective disorder.

    PubMed

    Galinowski, A; Castelnau, C; Spreux-Varoquaux, O; Bourdel, M C; Olie, J P; Loo, H; Poirier, M F

    2000-11-01

    1. Plasma Homovanillic Acid (p HVA) levels were measured by HPLC (high performance liquid chromatography) in 5 schizo-affective depressed patients receiving a standardized treatment. (lithium, chlorpromazine and clomipramine) during 4 weeks. 2. Four patients were pretreated, without a washout period. 3. No significant difference was observed between patients and normal controls at baseline. Under treatment, pHVA levels increased (p<0.02) with clinical improvement (MADRS and PANSS scores). 4. Although effects of medications prior to the study period were not controlled, these findings suggest that depressed schizo-affective patients may have normal pHVA levels that increase with clinical improvement, unlike schizophrenic patients whose increased pHVA concentrations decline with neuroleptic treatment.

  18. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences. PMID:25658421

  19. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  20. Remote photoacoustic detection of liquid contamination of a surface.

    PubMed

    Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C

    2003-08-20

    A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.

  1. Investigation of two-phase phenomena occurring within moisture separator reheater high-level reactor trips at the Maanshan nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferng, Y.M.; Liao, L.Y.

    1996-01-01

    During the operating history of the Maanshan nuclear power plant (MNPP), five reactor trips have occurred as a result of the moisture separator reheater (MSR) high-level signal. These MSR high-level reactor trips have been a very serious concern, especially during the startup period of MNPP. Consequently, studying the physical phenomena of this particular event is worthwhile, and analytical work is performed using the RELAP5/MOD3 code to investigate the thermal-hydraulic phenomena of two-phase behaviors occurring within the MSR high-level reactor trips. The analytical model is first assessed against the experimental data obtained from several test loops. The same model can thenmore » be applied with confidence to the study of this topic. According to the present calculated results, the phenomena of liquid droplet accumulation ad residual liquid blowing in the horizontal section of cross-under-lines can be modeled. In addition, the present model can also predict the different increasing rates of inlet steam flow rate affecting the liquid accumulation within the cross-under-lines. The calculated conclusion is confirmed by the revised startup procedure of MNPP.« less

  2. Natural vibration frequencies of horizontal tubes partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto

    2017-11-01

    This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.

  3. Experimental and modeling studies showing the effect of lipid type and level on flavor release from milk-based liquid emulsions.

    PubMed

    Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte

    2003-01-01

    The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.

  4. [Influence of S-nitrosoglutathione on agglutination and nitric oxide concentration in frozen platelets].

    PubMed

    Wu, Tao; Liu, Jing-Han; Li, Hui; Zhou, Wu; Wang, Shu-Ying

    2012-04-01

    The aim of this study was to investigate the influence of S-nitrosoglutathione (GSNO) on agglutination and nitric oxide (NO) concentration in frozen platelets. The agglutination of platelets was detected by using platelet agglutination apparatus, the level of NO in platelets was detected by the nitrate enzyme reduction method. The results showed that the rates of agglutination in freeze platelets and frozen platelets treated with GSNO were (35.47 ± 2.93) and (24.43 ± 3.07), which were significantly lower than that in fresh liquid platelets (63.44 ± 2.96). The level of NO concentration in frozen platelets was (22.16 ± 6.38), which was significantly lower than that in fresh liquid platelets (31.59 ± 16.88). The level of NO concentration in frozen platelets treated with GSNO was (45.64 ± 6.31), which was significantly higher than that in fresh liquid platelets (P < 0.01). It is concluded that GSNO increases the concentration of NO in frozen platelets, inhibits platelet activation and maintains platelet function, thus GSNO can be used as a frozen protective agent.

  5. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  6. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin Bradley; Bennett, William Raymond; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Watson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  7. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  8. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  9. ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients.

    PubMed

    Alecu, M; Alecu, S; Coman, G; Gălăţescu, E; Ursaciuc, C

    1999-01-01

    The levels of ICAM-1, ELAM-1, TNF-alpha and IL-6 were determined in 12 patients with pemphigus vulgaris (PV) both in serum and the blister liquid. As a control, the same parameters were determined in 7 patients with herpes zoster (HZ). The patients with PV presented significantly higher values of ICAM-1 in the blister liquid, as compared to the serum values. The values of TNF-alpha and IL-6 were increased both in serum and the blister liquid. The ELAM-1 values did not show significant differences between serum and the blister liquid. In HZ patients, the blister liquid values did not significantly exceed the serum values both for ICAM-1 and ELAM-1. TNF-alpha and IL-6 presented high values both in serum and the blister liquid. We consider that the high values of ICAM-1 in the blister liquid from PV patients suggest the involvement of this adhesion molecule in the PV pathogenic features. The implication of ICAM-1 could be nonspecific and limited, and could possibly represent a reaction to the destruction of the desmosomal bonds within keratinocytes.

  10. Flexible Cryogenic Temperature and Liquid-Level Probes

    NASA Technical Reports Server (NTRS)

    Haberbusch, Mark

    2003-01-01

    Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the non-liquid-level-sensing temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode . a known function of the current and temperature . is measured as an indication of its temperature. For the purpose of this measurement, "small electric current" signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired locations along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.

  11. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  12. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

    PubMed Central

    Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074

  13. Quantification of sulfatides in dried blood and urine spots from metachromatic leukodystrophy patients by liquid chromatography/electrospray tandem mass spectrometry.

    PubMed

    Barcenas, Mariana; Suhr, Teryn R; Scott, C Ronald; Turecek, Frantisek; Gelb, Michael H

    2014-06-10

    Treatments are being developed for metachromatic leukodystrophy (MLD), suggesting the need for eventual newborn screening. Previous studies have shown that sulfatide molecular species are increased in the urine of MLD patients compared to samples from non-MLD individuals, but there is no data using dried blood spots (DBS), the most common sample available for newborn screening laboratories. We used ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) to quantify sulfatides in DBS and dried urine spots from 14 MLD patients and 50 non-MLD individuals. Several sulfatide molecular species were increased in dried urine samples from all MLD samples compared to non-MLD samples. Sulfatides, especially low molecular species, were increased in DBS from MLD patients, but the sulfatide levels were relatively low. There was good separation in sulfatide levels between MLD and non-MLD samples when dried urine spots were used, but not with DBS, because DBS from non-MLD individuals have measurable levels of sulfatides. Sulfatide accumulation studies in urine, but not in DBS, emerges as the method of choice if newborn screening is to be proposed for MLD. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; hide

    2013-01-01

    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.

  15. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  16. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  17. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments.

    PubMed

    Daly, Paul; van Munster, Jolanda M; Blythe, Martin J; Ibbett, Roger; Kokolski, Matt; Gaddipati, Sanyasi; Lindquist, Erika; Singan, Vasanth R; Barry, Kerrie W; Lipzen, Anna; Ngan, Chew Yee; Petzold, Christopher J; Chan, Leanne Jade G; Pullan, Steven T; Delmas, Stéphane; Waldron, Paul R; Grigoriev, Igor V; Tucker, Gregory A; Simmons, Blake A; Archer, David B

    2017-01-01

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.

  18. Ellipsometric measurement of liquid film thickness

    NASA Technical Reports Server (NTRS)

    Chang, Ki Joon; Frazier, D. O.

    1989-01-01

    The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.

  19. Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee

    2016-07-01

    We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.

  20. The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.

    PubMed

    Deng, Yun; Morrissey, Saibh; Gathergood, Nicholas; Delort, Anne-Marie; Husson, Pascale; Costa Gomes, Margarida F

    2010-03-22

    The effect of the incorporation of either ester or ester and ether functions into the side chain of an 1-alkyl-3-methylimidazolium cation on the physico-chemical properties of ionic liquids containing bis(trifluoromethylsulfonyl)imide or octylsulfate anions is studied. It is believed that the introduction of an ester function into the cation of the ionic liquids greatly increases their biodegradability. The density of three such ionic liquids is measured as a function of temperature, and the solubility of four gases-carbon dioxide, ethane, methane, and hydrogen-is determined between 303 K and 343 K and at pressures close to atmospheric level. Carbon dioxide is the most soluble gas, followed by ethane and methane; the mole fraction solubilities vary from 1.8 x 10(-3) to 3.7 x 10(-2). These solubilities are of the same order of magnitude as those determined for alkylimidazolium-based ionic liquids. The chemical modification of the alkyl side chain does not result in a significant change of the solvation properties of the ionic liquid. All of the solubilities decrease with increasing temperature, corresponding to an exothermal solvation process. From the variation of this property with temperature, the thermodynamic functions of solvation (Gibbs energy, enthalpy, and entropy) are calculated and provide information about the solute-solvent interactions and the molecular structure of the solutions.

  1. Simulation of fiber optic liquid level sensor demodulation system

    NASA Astrophysics Data System (ADS)

    Yi, Cong-qin; Luo, Yun; Zhang, Zheng-ping

    Measuring liquid level with high accuracy is an urgent requirement. This paper mainly focus on the demodulation system of fiber-optic liquid level sensor based on Fabry-Perot cavity, design and simulate the demodulation system by the single-chip simulation software.

  2. Tethered float liquid level sensor

    DOEpatents

    Daily, III, William Dean

    2016-09-06

    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  3. [Liver injury and intervention of compound 912 liquid on it in rats with endotoxemia].

    PubMed

    Hu, Lan; Zhang, Shu-Wen; Yin, Cheng-Hong

    2007-06-01

    To investigate the liver injury in model rats with endotoxemia and to observe the protective effect of Compound 912 Liquid on it. Rats were randomly divided into three groups, the endotoxemia model group (EMG, injected by lipoplysaccharides (LPS) peritoneally), the intervention group (IG, treated with Compound 912 Liquid via gastrogavage 1 h before model establishing) and the normal control group (NCG). Blood samples of rats were taken at the time points of the 2nd, 4th, 8th, 12th, 48th, 72nd hour and the 7th day after modeling for measuring liver function, levels of plasmatic endotoxin, tumor necrosis factor alpha (TNF-alpha), interleukin-10 (IL-10). The pathological change of liver was observed using light microscope and electro-transmission microscope. The peak concentration of endotoxin detected at 2 hour after modeling in the IG was significantly lower than that in the EMG (0.358 +/- 0.056 vs 0.685 +/- 0.030), but insignificant difference (P > 0.05) was shown between them in TNF-alpha level. The level of IL-10 continuously rose in IG after treatment, it was still higher than normal level until day 7 (49.096 +/- 4.076 vs 43.454 +/- 5.928, P < 0.05). LPS can induce the increase of serum inflammatory cytokines and anti-inflammatory cytokines in rats to injure liver. Therefore, the inflammatory reaction indicated by LPS may be one of the mechanisms for liver injury. Preventive medication with Compound 912 Liquid showed a significant liver protective effect.

  4. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    PubMed

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Liquid level sensor based on an excessively tilted fibre grating

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Zhou, Kaiming; Yan, Zhijun; Fu, Hongyan; Zhang, Lin

    2013-09-01

    We propose and demonstrate an optical liquid level sensor based on the surrounding medium refractive index (SRI) sensing using an excessively tilted fibre grating (ETFG). When the ETFG submerged in water, two sets of cladding modes are coupled, corresponding to air- and water-surrounded grating structures, respectively. The coupling strengths of the two sets of cladding modes evolve with the submerging length of the grating, providing a mechanism to measure the liquid level. Comparing with long-period fibre grating based liquid level sensor, the ETFG sensor has a much higher SRI responsivity for liquids with refractive index around 1.33 and a lower thermal cross sensitivity.

  6. Tidal sampler

    DOEpatents

    Hayes, David W.

    1978-01-01

    An apparatus for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel.

  7. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.

  8. Variations in Label Information and Nicotine Levels in Electronic Cigarette Refill Liquids in South Korea: Regulation Challenges

    PubMed Central

    Kim, Sungroul; Goniewicz, Maciej L.; Yu, Sol; Kim, Bokyeong; Gupta, Ribhav

    2015-01-01

    Background: In South Korea, the consumption of liquid nicotine used in electronic cigarettes has dramatically increased from 4310 L in 2012 to 7220 L in 2013. This study aimed to examine the level of heterogeneity of contents of the labels and discrepancy of the nicotine content between that indicated on the label and the actual values for electronic cigarette liquid refill products in South Korea. Methods: We purchased 32 electronic cigarette liquid refill products (17 Korean domestic, 15 imported ones) and one pure nicotine product at six different electronic cigarette retail stores in Seoul between May and June 2014. The actual nicotine concentrations of each product were measured by a blinded analyst at Roswell Park Cancer Institute, Buffalo, NY, USA. Results: Three out of 15 imported liquid refill products provided manufacturing dates, while expiration dates were available on eight products. The range of nicotine concentration was from “not detected” to 17.5 mg/mL. Labeling discrepancies of the concentrations ranged from −32.2% to 3.3% among electronic cigarette liquid refill products. The highest concentration (150.3 ± 7.9 mg/mL) was found in a sample labeled as “pure nicotine”. Conclusions: There is no standardization of labelling among electronic cigarette liquids sampled from retail stores and the labels did not accurately reflect the content. One product labeled “pure nicotine” raises concerns, since it may be poisonous to consumers, especially to children. This study revealed the urgent need for the development of product regulations in South Korea. PMID:25950652

  9. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  10. Liquid level detector

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A liquid level sensor having a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  11. Age trends in estradiol and estrone levels measured using liquid chromatography tandem mass spectrometry in community-dwelling men of the Framingham Heart Study.

    PubMed

    Jasuja, Guneet Kaur; Travison, Thomas G; Davda, Maithili; Murabito, Joanne M; Basaria, Shehzad; Zhang, Anqi; Kushnir, Mark M; Rockwood, Alan L; Meikle, Wayne; Pencina, Michael J; Coviello, Andrea; Rose, Adam J; D'Agostino, Ralph; Vasan, Ramachandran S; Bhasin, Shalender

    2013-06-01

    Age trends in estradiol and estrone levels in men and how lifestyle factors, comorbid conditions, testosterone, and sex hormone-binding globulin affect these age trends remain poorly understood, and were examined in men of the Framingham Heart Study. Estrone and estradiol concentrations were measured in morning fasting samples using liquid chromatography tandem mass spectrometry in men of Framingham Offspring Generation. Free estradiol was calculated using a law of mass action equation. There were 1,461 eligible men (mean age [±SD] 61.1±9.5 years and body mass index [BMI] 28.8±4.5kg/m(2)). Total estradiol and estrone were positively associated with age, but free estradiol was negatively associated with age. Age-related increase in total estrone was greater than that in total estradiol. Estrone was positively associated with smoking, BMI, and testosterone, and total and free estradiol with diabetes, BMI, testosterone, and comorbid conditions; additionally, free estradiol was associated negatively with smoking. Collectively, age, BMI, testosterone, and other health and behavioral factors explained only 18% of variance in estradiol, and 9% of variance in estrone levels. Men in the highest quintile of estrone levels had significantly higher age and BMI, and a higher prevalence of smoking, diabetes, and cardiovascular disease than others, whereas those in the highest quintile of estradiol had higher BMI than others. Total estrone and estradiol levels in men, measured using liquid chromatography tandem mass spectrometry, revealed significant age-related increases that were only partially accounted for by cross-sectional differences in BMI, diabetes status, and other comorbidities and health behaviors. Longitudinal studies are needed to confirm these findings.

  12. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  13. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  14. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.

    PubMed

    Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W

    2015-11-19

    Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.

  15. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  16. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  17. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  18. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  19. Experimental and computational study on the properties of pure and water mixed 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid.

    PubMed

    Aparicio, Santiago; Alcalde, Rafael; Atilhan, Mert

    2010-05-06

    Ionic liquids have attracted great attention, from both industry and academe, as alternative fluids for a large collection of applications. Although the term green is used frequently to describe ionic liquids in general, it is obvious that it cannot be applied to the huge quantity of possible ionic liquids, and thus, those with adequate environmental and technological profiles must be selected for further and deeper studies, from both basic science and applied approaches. In this work, 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid is studied, because of its remarkable properties, through a wide-ranging approach considering thermophysical, spectroscopic, and computational tools, to gain a deeper insight into its complex liquid structure, both pure and mixed with water, thus implying the main factors that would control the technological applications that could be designed using this fluid. The reported results shows a strongly structured pure ionic liquid, in which hydrogen bonding, because of the hydroxyl group of the lactate anion, develops a remarkable role, together with Coulombic forces to determine the fluid's behavior. Upon mixing with water, the ionic liquid retains its structure up to very high dilution levels, with the effect of the ionic liquid on the water structure being very large, even for very low ionic liquid mole fractions. Thus, in water solution, the studied ionic liquid evolves from noninteracting ions solvated by water molecules toward large interacting structures with increasing ionic liquid content.

  20. Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation

    DOE PAGES

    Wang, Y.; Fan, A.; Fiorillo, G.; ...

    2017-02-27

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  1. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.

    PubMed

    Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula

    2017-09-01

    Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging

    NASA Technical Reports Server (NTRS)

    Xu. Wei

    2010-01-01

    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty <0.5 percent over cryogenic propellant tank fill levels from 2 to 98 percent. The proposed sensor uses a single optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of the optical sensor, thereby avoiding any feedback to the optical interrogation unit

  3. A longitudinal study of cotinine in long-term daily users of e-cigarettes.

    PubMed

    Etter, Jean-François

    2016-03-01

    It is not clear whether, in established vapers, cotinine levels remain stable or change over time. We enrolled 98 exclusive users of e-cigarettes on websites and forums dedicated to smoking cessation and to e-cigarettes. We collected saliva vials by mail in 2013-2014 (baseline), and collected a second saliva vial eight months later (follow-up) in the same participants. Participants had not used any tobacco or nicotine medications in the previous five days. Cotinine in saliva was analyzed with liquid chromatography-mass spectrometry. Use of e-cigarettes, tobacco and nicotine medications was self-reported. All participants were former smokers, and 99% were using e-cigarettes daily. They had already been using e-cigarettes for nine months on average at baseline. The median cotinine level was 252ng/mL at baseline (quartiles: 124-421ng/mL) and 307ng/mL at follow-up (114-466ng/mL, W=0.9, p=0.4 for change over time). The median concentration of nicotine in refill liquids was 11mg/mL at baseline (quartiles: 6-15mg/mL) and 6mg/mL at follow-up (5-12mg/mL) (Wilcoxon signed rank test: W=5.2, p<0.001 for change over time). The median volume of e-liquid used per month was 80mL at baseline (quartiles: 50-130mL) and 100mL at follow-up (60-157mL, W=3.3, p=0.001 for change over time). In experienced e-cigarette users enrolled online, cotinine levels were similar to levels usually observed in cigarette smokers. Over time, these users decreased the concentration of nicotine in their e-liquids, but increased their consumption of e-liquid in order to maintain their cotinine levels constant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Pharmacokinetics of buprenorphine: a comparison of sublingual tablet versus liquid after chronic dosing.

    PubMed

    Compton, Peggy; Ling, Walter; Chiang, C Nora; Moody, David E; Huber, Alice; Ling, Debbie; Charuvastra, Charles

    2007-06-01

    Although buprenorphine is approved for use in the outpatient treatment of opioid addiction in 2 tablet formulations, a monoproduct containing buprenorphine only (Subutex) and a buprenorphine/naloxone combination product (Suboxone), much of the clinical data that support the approval by the U.S. Food and Drug Administration were generated by using a sublingual liquid. To interpret the literature in prescribing parameters for tablet buprenorphine, this study was designed to determine steady state buprenorphine plasma levels for the 2 formulations and to assess the relative bioavailability of each. A randomized, double-blind, crossover study with dose increases was conducted during a 12-week period at an outpatient treatment clinic. Of the 184 subjects initially randomized to treatment, 133 (72.3%) were evaluated for the steady-state trough plasma concentration, 16 (8.7%) for relative bioavailability, and 31 (16.8%) for dose proportionality. At steady state, differences in the trough plasma concentrations of buprenorphine between the 2 formulations were found across all the dose levels. Average plasma concentration (Cavg) of the tablet at twice the milligram dose of the liquid was twice that of the liquid; intersubject variability was greater for the tablet. At double the dose of tablet, there is no difference in steady state plasma concentrations. The bioavailability seems equivalent for the 2 formulations across all the dose levels.

  5. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  6. The role of ultrasound in controlling the liquid-liquid phase separation and nucleation of vanillin polymorphs I and II

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Supriya, S.; Srinivasan, K.

    2018-02-01

    The influence of ultrasound on liquid-liquid phase separation (LLPS) and polymorphism of vanillin in aqueous solution has been investigated for the first time by varying the ultrasonic parameters such as power, pulse rate and insonation time at ambient condition. Results reveal that the application of ultrasound controls the impact of LLPS and accelerates the nucleation of vanillin within a short period at lower levels of ultrasonic process parameters, and also enhances the quality of the nucleated crystals. Moreover, the application of ultrasound induces the nucleation of rare and metastable polymorph of vanillin Form II in aqueous solution. But, at higher levels of power, pulse rate and insonation time, the rate of LLPS is found increased and the quality of the crystals becomes deteriorated. Morphology of the nucleated polymorphs were identified through optical microscopy and confirmed by optical goniometry. The internal structure and thermal stability of the grown stable Form I and metastable Form II of vanillin were confirmed through powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses. Further, results suggest that the ultrasound has profound effect in controlling the LLPS and nucleation of vanillin polymorphs in aqueous solution.

  7. An optical liquid level sensor based on core-offset fusion splicing method using polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian

    2016-01-01

    A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.

  8. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  9. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  10. Experimental and Theoretical Investigations on the Nanoscale Kinetic Friction in Ambient Environmental Conditions.

    PubMed

    Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei

    2015-07-08

    The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.

  11. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less

  12. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  13. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  14. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  15. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  16. Fluid intake patterns: an epidemiological study among children and adolescents in Brazil

    PubMed Central

    2012-01-01

    Background Energy from liquids is one of the most important factors that could impact on the high prevalence of children and adolescents obesity around the world. There are few data on the liquid consumption in Brazil. The aim of this study is to evaluate the volume and quality of liquids consumed by Brazilian children and adolescents and to determine the proportion of their daily energy intake composed of liquids. Methods A multicenter study was conducted in five Brazilian cities; the study included 831 participants between 3 and 17 years of age. A four-day dietary record specific to fluids was completed for each individual, and the volume of and Kcal from liquid intake were evaluated. The average number of Kcal in each beverage was determined based on label information, and the daily energy intake data from liquids were compared with the recommendations of the National Health Surveillance Agency (Agência Nacional de Vigilância Sanitária– ANVISA), the Brazilian food regulation authority, according to each subject’s age. Results As the children aged, the volume of carbonated beverages that they consumed increased significantly, and their milk intake decreased significantly. For children between the ages of 3 and 10, milk and dairy products contributed the greatest daily number of Kcal from liquids. Sugar sweetened beverages which included carbonated beverages, nectars and artificial beverages, accounted for 37% and 45% of the total Kcal from liquid intake in the 3- to 6-year-old and 7- to 10- year-old groups, respectively. Among adolescents (participants 11- to 17- years old), most of the energy intake from liquids came from carbonated beverages, which accounted for an average of 207 kcal/day in this group (42% of their total energy intake from liquids). Health professionals should be attentive to the excessive consumption of sugar sweetened beverages in children and adolescents. The movement toward healthier dietary patterns at the individual and population levels may help to improve programs for preventing overweight and obesity in children and adolescents. Conclusion From childhood to adolescence the daily volume of liquid ingested increased reaching a total of 2.0 liters on average. Of this volume, the daily volume of milk ingested decreased while the carbonated drinks, sweetened, nectars and artificial beverages increased significantly. The proportion of water remained constant in about 1/3 of the total volume. From 3 to 17 years of age the energy intake from carbonated beverages increased by about 20%. The carbonated drinks on average corresponded to a tenth of the daily requirements of energy of adolescents. PMID:23167254

  17. The Effect of Dihydroxyacetone on the Liquid Storage Properties of Human Blood.

    DTIC Science & Technology

    Addition of dihydroxyacetone (DHA) to acid-citrate-phosphate (ACD) blood is effective in partially maintaining 2,3- diphosphoglycerate levels for a...period of 21 to 28 days. DHA has no effect on adenosine triphosphate (ATP) levels or cell viability. The overall effect of adenine with DHA is...unfavorable since it retards the effect of the DHA while only slightly raising ATP levels . DHA may be valuable in maintaining increased hemoglobin function levels throughout the present 21 day storage period. (Author)

  18. Temperature- and pressure-dependent infrared spectroscopy of 1-butyl-3-methylimidazolium trifluoromethanesulfonate: A dipolar coupling theory analysis

    NASA Astrophysics Data System (ADS)

    Burba, Christopher M.; Chang, Hai-Chou

    2018-03-01

    Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.

  19. Collection of liquid from below-ground location

    DOEpatents

    Phillips, Steven J.; Alexander, Robert G.

    1995-01-01

    A method of retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container.

  20. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia — significance for activation of the kynurenine pathway

    PubMed Central

    Schwieler, Lilly; Larsson, Markus K.; Skogh, Elisabeth; Kegel, Magdalena E.; Orhan, Funda; Abdelmoaty, Sally; Finn, Anja; Bhat, Maria; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schuppe-Koistinen, Ina; Svensson, Camilla I.; Erhardt, Sophie; Engberg, Göran

    2015-01-01

    Background Accumulating evidence indicates that schizophrenia is associated with brain immune activation. While a number of reports suggest increased cytokine levels in patients with schizophrenia, many of these studies have been limited by their focus on peripheral cytokines or confounded by various antipsychotic treatments. Here, well-characterized patients with schizophrenia, all receiving olanzapine treatment, and healthy volunteers were analyzed with regard to cerebrospinal fluid (CSF) levels of cytokines. We correlated the CSF cytokine levels to previously analyzed metabolites of the kynurenine (KYN) pathway. Methods We analyzed the CSF from patients and controls using electrochemiluminescence detection with regard to cytokines. Cell culture media from human cortical astrocytes were analyzed for KYN and kynurenic acid (KYNA) using high-pressure liquid chromatography or liquid chromatography/mass spectrometry. Results We included 23 patients and 37 controls in our study. Patients with schizophrenia had increased CSF levels of interleukin (IL)-6 compared with healthy volunteers. In patients, we also observed a positive correlation between IL-6 and the tryptophan:KYNA ratio, indicating that IL-6 activates the KYN pathway. In line with this, application of IL-6 to cultured human astrocytes increased cell medium concentration of KYNA. Limitations The CSF samples had been frozen and thawed twice before analysis of cytokines. Median age differed between patients and controls. When appropriate, all present analyses were adjusted for age. Conclusion We have shown that IL-6, KYN and KYNA are elevated in patients with chronic schizophrenia, strengthening the idea of brain immune activation in patients with this disease. Our concurrent cell culture and clinical findings suggest that IL-6 induces the KYN pathway, leading to increased production of the N-methyl-d-aspartate receptor antagonist KYNA in patients with schizophrenia. PMID:25455350

  1. Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia.

    PubMed

    Peng, Wei; Lü, Fan; Shao, Liming; He, Pinjing

    2015-04-01

    The effect of different concentrations of ammonia (1.0-7.0 g/L) during mesophilic anaerobic digestion with fiber or liquid digestate as inoculum was examined. Evolution of microbial community within fiber and liquid digestates was quantitatively assessed by the intact lipid analysis methods and qualitatively by DNA fingerprint methods in order to determine their resistance to ammonia inhibition. The results showed that an increased level of total ammonia nitrogen prolonged the lag phase of fiber digestates while reduced the metabolic rate of liquid digestates. Fiber digestates had 19.6-50.9-fold higher concentrations of phospholipid fatty acids (PLFA) compared to liquid digestates, whereas concentrations of phospholipid ether lipids (PLEL) in the fiber digestates were only 2.91-17.6-fold higher compared to liquid digestates. Although the cell concentration in liquid fraction was far lower than that in the fiber one, the ammonia-resistant ability and the methanization efficiency of the liquid digestate was superior to the fiber digestate. The bacterial profiles were affected more by the type of digestate inoculum compared to the concentration of ammonia. Principal component analysis indicated that the lipids technique was superior to the DNA technique for bacterial quantification but detected less archaeal diversity.

  2. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    NASA Astrophysics Data System (ADS)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  3. 12 CFR 1225.4 - Standards and factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 1225.4 Standards and factors. (a) Standard for imposing a temporary increase. In making a determination... ability to access liquidity and funding; (2) Credit (including counterparty), market, operational and... market conditions; (6) Level of reserves or retained earnings; (7) Initiatives, operations, products, or...

  4. 12 CFR 1225.4 - Standards and factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 1225.4 Standards and factors. (a) Standard for imposing a temporary increase. In making a determination... ability to access liquidity and funding; (2) Credit (including counterparty), market, operational and... market conditions; (6) Level of reserves or retained earnings; (7) Initiatives, operations, products, or...

  5. 12 CFR 1225.4 - Standards and factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1225.4 Standards and factors. (a) Standard for imposing a temporary increase. In making a determination... ability to access liquidity and funding; (2) Credit (including counterparty), market, operational and... market conditions; (6) Level of reserves or retained earnings; (7) Initiatives, operations, products, or...

  6. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation.

    PubMed

    Liu, Yawei; Zhang, Xianren

    2014-10-07

    In this paper, we apply the molecular dynamics simulation method to study the stability of surface nanobubbles in both pure fluids and gas-liquid mixtures. First, we demonstrate with molecular simulations, for the first time, that surface nanobubbles can be stabilized in superheated or gas supersaturated liquid by the contact line pinning caused by the surface heterogeneity. Then, a unified mechanism for nanobubble stability is put forward here that stabilizing nanobubbles require both the contact line pinning and supersaturation. In the mechanism, the supersaturation refers to superheating for pure fluids and gas supersaturation or superheating for the gas-liquid mixtures, both of which exert the same effect on nanobubble stability. As the level of supersaturation increases, we found a Wenzel or Cassie wetting state for undersaturated and saturated fluids, stable nanobubbles at moderate supersaturation with decreasing curvature radius and contact angle, and finally the liquid-to-vapor phase transition at high supersaturation.

  7. Comparison of intraocular pressure during the application of a liquid patient interface (FEMTO LDV Z8) for femtosecond laser-assisted cataract surgery using two different vacuum levels.

    PubMed

    Ebner, Martina; Mariacher, Siegfried; Januschowski, Kai; Boden, Katrin; Seuthe, Anna-Maria; Szurman, Peter; Boden, Karl Thomas

    2017-08-01

    To evaluate intraocular pressure (IOP) using the application of a novel liquid patient interface for femtosecond laser-assisted cataract surgery with the FEMTO LDV Z8. IOP was evaluated in enucleated porcine eyes prior, during and after the application of the Femto LDV Z8 liquid patient interface (Ziemer Ophthalmic Systems, Switzerland) using intracameral cannulation (n=20), intravitreal cannulation (n=20), rebound tonometry (n=20) and indentation tonometry (n=20). Pressure was assessed prior vacuum, during vacuum (30 s, 1 min, 2 min, 3 min) and after releasing the vacuum (1 min and 2 min). Two groups with different predefined vacuum levels (350 mbar, 420 mbar) were investigated. Mean intracameral pressure (±SD) increased during vacuum application from 20 mm Hg to 52.00 mm Hg (±6.35mm Hg; p=0.005) and 45.18 mmHg (±4.34 mm Hg; p=0.005) for the 420 mbar and the 350 mbar vacuum levels, respectively. Mean intravitreal pressure increased from 20 mm Hg to 25.60 mm Hg (±9.85 mm Hg; p=0.058) and 28.10 mm Hg (±2.54 mm Hg; p=0.059) for the 420 mbar and the 350 mbar vacuum levels, respectively. Pressure values from indentation and rebound tonometry were in between intracameral and intravitreal values. Mean intracameral IOP was 18.1% higher (p=0.019) in the 420 mbar group compared with the 350 mbar group. During vacuum application of the liquid patient interface of the Femto LDV Z8 for femtosecond laser-assisted cataract surgery, IOP values were higher in the anterior chamber compared with the intravitreal pressure measurements. The higher predefined vacuum level (350 mbar vs 420 mbar) resulted in significant higher intracameral IOP. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  9. Gas transport and vesicularity in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Pioli, Laura; Bonadonna, Costanza; Abdulkareem, Lokman; Azzopardi, Barry; Phillips, Jeremy

    2010-05-01

    Vesicle textures of basaltic scoria preserve information on magma bubble content at fragmentation and are commonly used to constrain degassing, vesiculation and magma permeability. These studies are based on the assumption that microscale textures are representative of the conduit-scale structures and processes. However, the conditions for which this assumption is valid have not been investigated in detail. We have investigated conduit-scale structures by performing a series of experiments of separate two-phase flows in a 6.5-m high cylindrical bubble column using a combination of air with pure glucose syrup, water-syrup mixtures and pure water to reproduce open-system degassing and strombolian activity conditions in the upper volcanic conduit (i.e. at very low or zero liquid fluxes). We have varied gas fluxes, initial liquid height, gas inlet configuration and liquid viscosity and analyzed flow regimes and properties. Temperature and pressure were measured at several heights along the pipe and vesicularity was calculated using pressure data, liquid level measurements and an Electrical Capacitance tomography (ECT) system, which measures instantaneous vesicularity and phase distribution from capacitance measurements between pairs of electrodes placed uniformly around the pipe circumference. The aim of the experiments was to identify the effect of gas-flow rates on the flow regimes (i.e. bubbly, slug, churn and annular), the main degassing structures and the total gas content of the column. The effect of increasing and decreasing gas flow rates was also studied to check hysteresis effects. Results indicate that the vesicularity of the liquid column depends primarily on gas flux, whereas flow regimes exert a minor control. In fact, vesicularity increases with gas flux following a power-law trend whose exponent depends on the viscosity of the liquid. In addition, distributions of instantaneous gas fraction in the column cross section during syrup experiments have shown that gas is mainly transported by large, conduit-size bubbles rising in a microvesicular liquid. Coalescence processes occur throughout the whole column, and are strongly affected by bubble size, shearing and flow dynamics. Increasing gas fluxes increases frequency and length of the large bubbles but does not affect the concentration of small bubbles in the liquid matrix. Scaling of these experiments suggest that these conditions could be met in low viscosity, crystal-poor magmas and we therefore suggest that this dynamics could also characterize two-phase flow in open conduit mafic systems.

  10. Dependence of the atomic level Green-Kubo stress correlation function on wavevector and frequency: molecular dynamics results from a model liquid.

    PubMed

    Levashov, V A

    2014-09-28

    We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.

  11. [Cystic fibroadenoma detected incidentally in a patient with postpartum infectious mastitis].

    PubMed

    Belmajdoub, Meryem; Jayi, Sofia

    2017-01-01

    We report the case of Ms. A.A, a primiparous woman aged 21 years presenting (4 months after delivery) with an increase in left breast volume occurred 1 week after delivery associated with fever. The patient was put on amoxicillin, protected by suspending breast-feeding for several weeks without improvement. Clinical examination showed febrile patient with a temperature of 39°, an increase in left breast volume, inflammatory signs especially at the level of internal quadrants (A). Palpation showed a painful, hot collection adherent to the skin, measuring 16 cm, at the level of the internal quadrants, invading the external quadrants, without axillary adenopathies, suggesting breast abscess. Ultrasound (B) showed voluminous solidocystic predominantly liquid echogenic mass with thick walls and buds up to 46 mm, classified as ACR4. Puncture biopsy collected grayish green liquid, sent for bacteriological examination; antibiotic therapy with quinolones was started. Follow up of patient, after 3 days, showed reduction of the inflammatory signs and bacteriological examination of the liquid found no germ. After 15 days of antibiotic therapy, the inflammatory signs had disappeared and the volume of the mass had reduced enough, hence the indication for cystectomy. Cystectomy with simple enucleation was performed (C); surprisingly, the histological examination showed cystic fibroadenoma (D).

  12. 46 CFR 32.20-20 - Liquid level gaging-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquid level gaging-T/ALL. 32.20-20 Section 32.20-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-20 Liquid level gaging—T/ALL. On tankships, the construction or...

  13. 46 CFR 32.20-20 - Liquid level gaging-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquid level gaging-T/ALL. 32.20-20 Section 32.20-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-20 Liquid level gaging—T/ALL. On tankships, the construction or...

  14. Cryogenic Liquid Level Sensor Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr. (Inventor); Richards, W. Lance (Inventor); Piazza, Anthony (Inventor); Man, Hon Chan (Inventor); Bakalyar, John A. (Inventor)

    2015-01-01

    The invention proposed herein is a system and method for measuring the liquid level in a container that employs an optic fiber sensor which is heated using a simple power source and a wire and making an anemometry measurement. The heater wire is cycled between two levels of heat and the liquid level is obtained by measuring the heat transfer characteristics of the surrounding environment.

  15. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  16. Design, development and calibration of HTS wire based LOX level sensor probe

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, A. S.; Gowthaman, M.; Deekshith, P.; Shrivastava, V.

    2014-01-01

    For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.

  17. Design of Energetic Ionic Liquids (Preprint)

    DTIC Science & Technology

    2008-05-07

    mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been

  18. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  19. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    PubMed

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  20. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-08-16

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.

  1. Understanding the impact of ionic liquid pretreatment on eucalyptus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wallmore » sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.« less

  2. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production.

    PubMed

    Feng, Jinsong; Jiang, Jing; Liu, Yan; Li, Wei; Azat, Ramila; Zheng, Xiaodong; Zhou, Wen-Wen

    2016-10-01

    Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.

  3. Collection of liquid from below-ground location

    DOEpatents

    Phillips, S.J.; Alexander, R.G.

    1995-05-30

    A method is described for retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container. 3 figs.

  4. Influence of casein as a percentage of true protein and protein level on color and texture of milks containing 1 and 2% fat.

    PubMed

    Misawa, Noriko; Barbano, David M; Drake, MaryAnne

    2016-07-01

    Combinations of fresh liquid microfiltration retentate of skim milk, ultrafiltered retentate and permeate produced from microfiltration permeate, cream, and dried lactose monohydrate were used to produce a matrix of 20 milks. The milks contained 5 levels of casein as a percentage of true protein of about 5, 25, 50, 75, and 80% and 4 levels of true protein of 3.0, 3.76, 4.34, and 5.0% with constant lactose percentage of 5%. The experiment was replicated twice and repeated for both 1 and 2% fat content. Hunter color measurements, relative viscosity, and fat globule size distribution were measured, and a trained panel documented appearance and texture attributes on all milks. Overall, casein as a percentage of true protein had stronger effects than level of true protein on Hunter L, a, b values, relative viscosity, and fat globule size when using fresh liquid micellar casein concentrates and milk serum protein concentrates produced by a combination of microfiltration and ultrafiltration. As casein as a percentage of true protein increased, the milks became more white (higher L value), less green (lower negative a value), and less yellow (lower b value). Relative viscosity increased and d(0.9) generally decreased with increasing casein as a percentage of true protein. Panelists perceived milks with increasing casein as a percentage of true protein as more white, more opaque, and less yellow. Panelists were able to detect increased throat cling and mouthcoating with increased casein as a percentage of true protein in 2% milks, even when differences in appearance among milks were masked. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  6. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, James W.

    1998-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  7. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1998-03-03

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units. 12 figs.

  8. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  9. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  10. Flexible Cryogenic Temperature and Liquid-Level Probes

    NASA Technical Reports Server (NTRS)

    Haberbusch, Mark

    2005-01-01

    Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode a known function of the current and temperature is measured as an indication of its temperature. For the purpose of this measurement, small electric current signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when the diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired location along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.

  11. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    DOE PAGES

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J.; ...

    2017-12-27

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme productionmore » host before they could be considered a viable alternative to current commercial cellulases. Aspergillus Niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. Niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. Niger and Escherichia coli. Finally, this comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. Niger is equivalent, suggesting that A. Niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.« less

  12. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J.

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme productionmore » host before they could be considered a viable alternative to current commercial cellulases. Aspergillus Niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. Niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. Niger and Escherichia coli. Finally, this comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. Niger is equivalent, suggesting that A. Niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.« less

  13. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    PubMed Central

    Lynn, Jed; Sibert, Stephanie J.; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M.; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W.; Adams, Paul D.; Sale, Kenneth L.; Simmons, Blake A.; Baker, Scott E.; Magnuson, Jon K.; Gladden, John M.

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry. PMID:29281693

  14. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger.

    PubMed

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W; Adams, Paul D; Sale, Kenneth L; Simmons, Blake A; Baker, Scott E; Magnuson, Jon K; Gladden, John M

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.

  15. α5β1 Integrin-Fibronectin Interactions Specify Liquid to Solid Phase Transition of 3D Cellular Aggregates

    PubMed Central

    Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.

    2010-01-01

    Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications. PMID:20686611

  16. Pharmacokinetics of guaifenesin, pseudoephedrine and hydrocodone in a combination oral liquid formulation, administered as single and multiple doses in healthy Chinese volunteers, and comparison with data for individual compounds formulated as Antuss®.

    PubMed

    Deng, Shuhua; Huang, Wencan; Ni, Xiaojia; Zhang, Ming; Lu, Haoyang; Wang, Zhanzhang; Hu, Jinqing; Zhu, Xiuqing; Qiu, Chang; Shang, Dewei; Zhang, Yuefeng; Xiong, Linghui; Wen, Yuguan

    2017-10-01

    1. A new oral liquid formulation combining guaifenesin, pseudoephedrine and hydrocodone is effective in improving the symptoms of common cold. The pharmacokinetic properties of the individual components were evaluated in a randomized, open-label, four-period study in 12 healthy Chinese volunteers following single and multiple doses. The data were compared with data for the individual ingredients in Antuss®. 2. In the single-dose period, exposure levels (AUC and C max ) for guaifenesin, pseudoephedrine and hydrocodone increased directly as the dose of the oral liquid formulation increased from 5 to 15 mL. Only minor amounts of guaifenesin and hydrocodone were excreted in urine (∼0.10% and 4.66%, respectively). Pseudoephedrine was mainly excreted unchanged, with 44.95% of the dose excreted in urine within 24 h. After multiple dosing, there was no obvious accumulation of any drug, as assessed by AUC. When considering C max , there was a trend toward accumulation of hydrocodone and pseudoephedrine. The pharmacokinetic profiles of guaifenesin and pseudoephedrine in the oral liquid formulation were similar to those in the branded preparation, Antuss®. 3. The newly developed oral liquid formulation combining guaifenesin, pseudoephedrine and hydrocodone was safe and well tolerated and might provide a reliable alternative to the branded formulation for patients with common colds.

  17. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    NASA Astrophysics Data System (ADS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  18. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  19. Evaluation of Personal Cooling Systems in Conjunction with Explosive Ordnance Disposal Suits

    DTIC Science & Technology

    1992-06-01

    of thermal comfort and perceived exertion. The results indicated that wearing the EOD suit produces significant increases in thermal physiological...indicated reduced perceived exertion levels and improved thermal comfort when wearing the liquid-cooling garment with a EOD suit. In contrast, the ribbed

  20. Partitioning of K, U, and TH between sulfide and silicate liquids: Implications for radioactive heating of planetary cores

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1986-07-01

    The possibility of heating of planetary cores by K radioactivity has been extensively discussed, as well as the possibility that K partitioning into the terrestrial core is the reason for the difference between the terrestrial and chondritic K/U. We had previously suggested that U and Th partitioning into FeFeS liquids was more important than K. Laboratory FeFeS liquid, silicate liquid partition coefficient measurements (D) for K, U, and Th were made to test this suggestion. For a basaltic liquid at 1450°C and 1.5 GPa, DU is 0.013 and DK is 0.0026; thus U partitioning into FeFeS liquids is 5 times greater than K partitioning under these conditions. There are problems with 1-atm experiments in that they do not appear to equilibrate or reverse. However, measurable U and Th partitioning into sulfide was nearly always observed, but K partitioning was normally not observed (DK <~ 10-4). A typical value for DU from a granitic silicate liquid at one atmosphere, 1150°C, and low f02 is about 0.02; DTh is similar. At low f02 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with DU > 1. DTh is less strongly affected. Because of the consistently low DK/DU, pressure effects near the core-mantle boundary would need to increase DK by factors of ~103 with much smaller increases in DU in order to have the terrestrial K and U abundances at chondritic levels. In addition, if radioactive heating is important for planetary cores, U and Th will be more important than K unless the lower mantle has K/U greater than 10 times chondritic or large changes in partition coefficients with conditions reverse the relative importance of K versus U and Th from our measurements.

  1. Grain boundaries structures and wetting in doped silicon, nickel and copper

    NASA Astrophysics Data System (ADS)

    Meshinchi Asl, Kaveh

    This thesis reports a series of fundamental investigations of grain boundary wetting, adsorption and structural (phases) transitions in doped Ni, Cu and Si with technological relevance to liquid metal embrittlement, liquid metal corrosion and device applications. First, intrinsically ductile metals are prone to catastrophic failure when exposed to certain liquid metals, but the atomic level mechanism for this effect is not fully understood. A nickel sample infused with bismuth atoms was characterized and a bilayer interfacial phase that is the underlying cause of embrittlement was observed. In a second related study, we showed that addition of minor impurities can significantly enhance the intergranular penetration of bismuth based liquids in polycrystalline nickel and copper, thereby increasing the liquid metal corrosion rates. Furthermore, we extended a concept that was initially proposed in the Rice-Wang model for grain boundary embrittlement to explain our observations of the impurity-enhanced intergranular penetration of liquid metals. Finally, a grain-boundary transition from a bilayer to an intrinsic is observed in the Si-Au system. This observation directly shows that a grain boundary can exhibit a first-order "phase" transition, which often implies abrupt changes in properties.

  2. Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

    PubMed Central

    Murillo, M.; Herrera, E.; Ruiz, O.; Reyes, O.; Carrete, F. O.; Gutierrez, H.

    2016-01-01

    Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers (204±5 kg initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers (BW = 350±3 kg) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen (NH3-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns. PMID:26954168

  3. Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season.

    PubMed

    Murillo, M; Herrera, E; Ruiz, O; Reyes, O; Carrete, F O; Gutierrez, H

    2016-05-01

    Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers (204±5 kg initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers (BW = 350±3 kg) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen (NH3-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

  4. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Paul; van Munster, Jolanda M.; Blythe, Martin J.

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retainingmore » more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.« less

  5. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

    DOE PAGES

    Daly, Paul; van Munster, Jolanda M.; Blythe, Martin J.; ...

    2017-02-07

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retainingmore » more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.« less

  6. Liquid-level detector

    DOEpatents

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  7. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  8. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  9. New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.

    DTIC Science & Technology

    1982-04-02

    restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be

  10. Ultrasonic technique for detection of liquids in copper tubing process lines

    NASA Astrophysics Data System (ADS)

    Dudley, W. A.

    1980-10-01

    An ultrasonic pulse-echo method developed for semiquantitative measurement of liquid levels in copper tubing is described. This ultrasonic approach is of particular value when used as a pre-maintenance diagnostic tool in repairing process lines containing hazardous liquids. Performance tests show that water and similar liquids can be directly detected to fill levels as low as 1/16 in. For water fills below 1/16 in., direct level detection is impractical because of signal resolution limitations. However, this fill condition is indirectly measurable and is detected by the effect of observed degradation of the adjacent wall echo pattern. Fill conditions for liquids associated with high sound attenuation such as oil can be indirectly determined.

  11. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  12. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tankmore » toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.« less

  15. Development of a low background liquid scintillation counter for a shallow underground laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less

  16. Simulating chemical reactions in ionic liquids using QM/MM methodology.

    PubMed

    Acevedo, Orlando

    2014-12-18

    The use of ionic liquids as a reaction medium for chemical reactions has dramatically increased in recent years due in large part to the numerous reported advances in catalysis and organic synthesis. In some extreme cases, ionic liquids have been shown to induce mechanistic changes relative to conventional solvents. Despite the large interest in the solvents, a clear understanding of the molecular factors behind their chemical impact is largely unknown. This feature article reviews our efforts developing and applying mixed quantum and molecular mechanical (QM/MM) methodology to elucidate the microscopic details of how these solvents operate to enhance rates and alter mechanisms for industrially and academically important reactions, e.g., Diels-Alder, Kemp eliminations, nucleophilic aromatic substitutions, and β-eliminations. Explicit solvent representation provided the medium dependence of the activation barriers and atomic-level characterization of the solute-solvent interactions responsible for the experimentally observed "ionic liquid effects". Technical advances are also discussed, including a linear-scaling pairwise electrostatic interaction alternative to Ewald sums, an efficient polynomial fitting method for modeling proton transfers, and the development of a custom ionic liquid OPLS-AA force field.

  17. The glass-liquid transition of water on hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2008-09-01

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF6] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF6]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF6] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  18. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning, is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.5C lower limit for the equilibrium global climate sensitivity to a doubling of CO2 which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.

  19. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Wolf, Audrey B.

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.

  20. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  1. Increased Requirement of Replacement Doses of Levothyroxine Caused by Liver Cirrhosis.

    PubMed

    Benvenga, Salvatore; Capodicasa, Giovanni; Perelli, Sarah; Ferrari, Silvia Martina; Fallahi, Poupak; Antonelli, Alessandro

    2018-01-01

    Since hypothyroidism is a fairly common dysfunction, levothyroxine (L-T4) is one of the most prescribed medications. Approximately 70% of the administered L-T4 dose is absorbed. The absorption process takes place in the small intestine. Some disorders of the digestive system and some medicines, supplements, and drinks cause L-T4 malabsorption, resulting in failure of serum TSH to be normal. Only rarely liver cirrhosis is mentioned as causing L-T4 malabsorption. In this study, we report increased requirement of daily doses of l-thyroxine in two patients with the atrophic variant of Hashimoto's thyroiditis and liver cirrhosis. In one patient, this increased requirement could have been contributed by the increased serum levels of the estrogen-dependent thyroxine-binding globulin (TBG), which is the major plasma carrier of thyroid hormones. In the other patient, we switched from tablet L-T4 to liquid L-T4 at the same daily dose. Normalization of TSH levels was achieved, but TSH increased again when she returned to tablet L-T4. Liver cirrhosis can cause increased L-T4 requirements. In addition to impaired bile secretion, the mechanism could be increased serum TBG. A similar increased requirement of L-T4 is observed in other situations characterized by elevation of serum TBG. Because of better intestinal absorption, L-T4 oral liquid formulation is able to circumvent the increased need of L-T4 in these patients.

  2. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms

    PubMed Central

    Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.

    2015-01-01

    Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893

  3. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  4. Effect of viscosity on food transport and swallow initiation during eating of two-phase food in normal young adults: a pilot study.

    PubMed

    Matsuo, Koichiro; Kawase, Soichiro; Wakimoto, Nina; Iwatani, Kazuhiro; Masuda, Yuji; Ogasawara, Tadashi

    2013-03-01

    When eating food containing both liquid and solid phases (two-phase food), the liquid component frequently enters the hypopharynx before swallowing, which may increase the risk of aspiration. We therefore tested whether preswallow bolus transport and swallow initiation would change as the viscosity of two-phase food was increased. Fiberoptic endoscopy was recorded while 18 adult subjects ate 5 g of steamed rice with 3 ml of blue-dye water. Liquid viscosity was set at four levels by adding a thickening agent (0, 1, 2, and 4 wt%, respectively). We measured the timing of the leading edge of the food reaching the base of the epiglottis, as well as the location of the leading edge at swallow initiation. As viscosity increased, the leading edge of the food reached the epiglottis significantly later during chewing and was higher in the pharynx at swallow onset. The time after the leading edge reached the epiglottis did not vary among the viscosities of the two-phase food. This study found that the initial viscosity of two-phase food significantly altered oropharyngeal bolus flow and the timing of swallow initiation. Accordingly, increased two-phase food viscosity may delay food entry into the pharynx and be of use in dysphagic diets.

  5. Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications

    NASA Astrophysics Data System (ADS)

    Caimi, F. M.; Kocak, D. M.; Justak, J. F.

    2006-04-01

    Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.

  6. Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] osb. pretreated with sucrose.

    PubMed

    Santos, Izulmé R I; Stushnoff, Cecil

    2003-01-01

    Embryonic axes of Citrus sinensis L. were successfully cryopreserved. While fully hydrated unfrozen axes germinated 100%, survival decreased as axes water content dropped, and total loss of viability was observed when the water content dropped to 0.04 and 0.10 mg H2O/mg dry mass, for axes without and with sucrose preculture, respectively. Fully hydrated axes did not survive exposure to liquid nitrogen. Highest seedling recovery (93-100%) for untreated axes was observed at 0.26 to 0.15 mg H2O/mg dry mass. Differential scanning calorimetry revealed the presence of broad melting peaks in fully hydrated embryonic axes. The size of the melting peak diminished as water was removed by desiccation. Minimum melting of water was observed at the point axes survived cryopreservation. Occurrence of a glass transition upon warming was not a condition for axes to survive liquid nitrogen exposure. In untreated axes, glucose, increased with desiccation to 0.2 mg H2O/mg dry mass, and decreased as the axes were desiccated to lower water contents. Fructose and sucrose levels did not increase when untreated samples were desiccated for the same periods of time. Raffinose and stachyose levels decreased as untreated and precultured embryonic axes were desiccated. In sucrose precultured axes, sucrose and fructose levels increased when they were dehydrated, reaching maximum levels at 0.2 mg H2O/mg dry mass. Tissue glucose did not change significantly with desiccation. Raffinose and stachyose levels dropped as precultured embryonic axes were dried.

  7. Phosphatidylethanolamine N-methyltransferase activity is increased in rat intestinal brush-border membrane by chronic ethanol ingestion.

    PubMed

    Furtado, Valéria Cristina Soares; Takiya, Christina Maeda; Braulio, Valeria Bender

    2002-01-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) catalyses the synthesis of phosphatidylcholine from phosphatidylethanolamine. The aim of this study was to evaluate the effect of chronic ethanol ingestion on PEMT activity in the jejunal brush-border membrane (BBM) of adequately nourished rats. For this purpose, rats were fed a liquid diet containing ethanol [ethanol-fed group (EFG)] or an isocaloric liquid diet without ethanol [pair-fed group (PFG)] for 4 weeks. Diet ingestion, body weight, nitrogen balance and urinary creatinine excretion were monitored during the experimental period, and serum transferrin levels were determined at the end. BBM was isolated for the determination of PEMT activity. PEMT activity was significantly increased in the jejunal BBM of the EFG. Nutritional parameters, however, did not differ between groups. The increase in PEMT activity may be attributed exclusively to chronic ethanol ingestion, since a major nutritional deficit was excluded.

  8. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    PubMed

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative metabolite yields, as determined by HPLC analysis and measurement of antimicrobial activity. The application of such immobilized-cell fermentation methods under solid and liquid conditions facilitated the discovery of new antibiotic compounds, and offers new approaches to fungal fermentation for natural product discovery.

  9. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosnovsky, Denis V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Novosibirsk State University, Pirogova 2, 630090, Novosibirsk

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals andmore » radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign rules. Thus, LCs/LACs provide a consistent description of CIDNP in both liquids and solids with the prospect of exploiting it for the analysis of short-lived radicals and for optimizing the polarization level.« less

  10. Expert-guided optimization for 3D printing of soft and liquid materials.

    PubMed

    Abdollahi, Sara; Davis, Alexander; Miller, John H; Feinberg, Adam W

    2018-01-01

    Additive manufacturing (AM) has rapidly emerged as a disruptive technology to build mechanical parts, enabling increased design complexity, low-cost customization and an ever-increasing range of materials. Yet these capabilities have also created an immense challenge in optimizing the large number of process parameters in order achieve a high-performance part. This is especially true for AM of soft, deformable materials and for liquid-like resins that require experimental printing methods. Here, we developed an expert-guided optimization (EGO) strategy to provide structure in exploring and improving the 3D printing of liquid polydimethylsiloxane (PDMS) elastomer resin. EGO uses three steps, starting first with expert screening to select the parameter space, factors, and factor levels. Second is a hill-climbing algorithm to search the parameter space defined by the expert for the best set of parameters. Third is expert decision making to try new factors or a new parameter space to improve on the best current solution. We applied the algorithm to two calibration objects, a hollow cylinder and a five-sided hollow cube that were evaluated based on a multi-factor scoring system. The optimum print settings were then used to print complex PDMS and epoxy 3D objects, including a twisted vase, water drop, toe, and ear, at a level of detail and fidelity previously not obtained.

  11. Expert-guided optimization for 3D printing of soft and liquid materials

    PubMed Central

    Abdollahi, Sara; Davis, Alexander; Miller, John H.

    2018-01-01

    Additive manufacturing (AM) has rapidly emerged as a disruptive technology to build mechanical parts, enabling increased design complexity, low-cost customization and an ever-increasing range of materials. Yet these capabilities have also created an immense challenge in optimizing the large number of process parameters in order achieve a high-performance part. This is especially true for AM of soft, deformable materials and for liquid-like resins that require experimental printing methods. Here, we developed an expert-guided optimization (EGO) strategy to provide structure in exploring and improving the 3D printing of liquid polydimethylsiloxane (PDMS) elastomer resin. EGO uses three steps, starting first with expert screening to select the parameter space, factors, and factor levels. Second is a hill-climbing algorithm to search the parameter space defined by the expert for the best set of parameters. Third is expert decision making to try new factors or a new parameter space to improve on the best current solution. We applied the algorithm to two calibration objects, a hollow cylinder and a five-sided hollow cube that were evaluated based on a multi-factor scoring system. The optimum print settings were then used to print complex PDMS and epoxy 3D objects, including a twisted vase, water drop, toe, and ear, at a level of detail and fidelity previously not obtained. PMID:29621286

  12. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a fixed trycock line, or a differential pressure liquid level gauge must be used as the primary... control for filling. (2) The design pressure of each liquid level gauging device must be at least that of... openings for dip tube gauging devices and pressure gauges in flammable cryogenic liquid service must be...

  13. Measuring Liquid-Level Utilizing Wedge Wave

    PubMed Central

    Honma, Yudai; Mori, Masayuki; Ihara, Ikuo

    2017-01-01

    A new technique for measuring liquid-level utilizing wedge wave is presented and demonstrated through FEM simulation and a corresponding experiment. The velocities of wedge waves in the air and the water, and the sensitivities for the measurement, are compared with the simulation and the results obtained in the experiments. Combining the simulation and the measurement theory, it is verified that the foundation framework for the methods is available. The liquid-level sensing is carried out using the aluminum waveguide with a 30° wedge in the water. The liquid-level is proportional to the traveling time of the mode 1 wedge wave. The standard deviations and the uncertainties of the measurement are 0.65 mm and 0.21 mm using interface echo, and 0.39 mm and 0.12 mm utilized by end echo, which are smaller than the industry standard of 1.5 mm. The measurement resolutions are 7.68 μm using the interface echo, which is the smallest among all the guided acoustic wave-based liquid-level sensing. PMID:29267232

  14. Changes in diadenosine tetraphosphate levels in Physarum polycephalum with different oxygen concentrations.

    PubMed Central

    Garrison, P N; Mathis, S A; Barnes, L D

    1989-01-01

    Cellular levels of diadenosine tetraphosphate (Ap4A) were measured, by a specific high-pressure liquid chromatography method, in microplasmodia of Physarum polycephalum subjected to different degrees of hypoxia, hyperoxia, and treatment with H2O2. Ap4A levels increased three- to sevenfold under anaerobic conditions, and the microplasmodia remained viable after such treatment. Elevated levels of Ap4A returned to the basal level within 5 to 10 min upon reoxygenation of the microplasmodia. The increases in Ap4A levels were larger in stationary-phase or starved microplasmodia than in fed, log-phase microplasmodia. The maximal increase measured in log-phase microplasmodia was twofold. No significant changes in Ap4A levels occurred in microplasmodia subjected to mild hypoxia, hyperoxia, or treatment with 1 mM H2O2. These results indicate that in P. polycephalum, Ap4A may function in the metabolic response to anaerobic conditions rather than in the response to oxidative stress. PMID:2921243

  15. Development and assessment of a fiber-optic liquid level sensor with long-period fiber grating and Shewhart control charts

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Neng; Jan, Chen-Han; Tang, Jaw-Luen; Wu, Wei-Te; Chen, Der-Cheng; Chen, Chien-Hsing; Syu, Jial-Yan; Luo, Ching-Ying

    2011-12-01

    This paper presents the development and assessment of a liquid level sensor using long-period fiber grating (LPFG) technology and Shewhart control charts. The 22-mm LPFGs were fabricated with the point-by-point CO2 laser engraving method. This sensor was designed in such a way that it could be moved up and down with a position controller. The experimental section covered LPFG position sensing test, liquid level detection capacity and reliability measurements, and sensing resolution evaluation. LPFG position sensing test was studied and confirmed by the resonance wavelength shifts which were significantly generated when 75% of the LPFG was immersed in water. There were ten groups of different liquid level capacity testing and each group underwent ten repeated measurements. Based on Shewhart control charts including an X-bar chart, s chart, and R chart, the results showed all measurands within the upper and lower control limits. This sensor was reliable and the liquid level could be measured at least 1000 mm. The transmission loss versus the percent of immersion of the LPFG sensor for water and green tea was used to study the sensing resolution. The findings show the LPFG-based liquid sensor had at least 1000-mm level measurement capacity and about 2-mm resolution.

  16. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  17. Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.

    2018-06-01

    We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.

  18. Effect of seaweed supplementation on tocopherol concentrations in bovine milk using dispersive liquid-liquid microextraction.

    PubMed

    Quigley, Andrew; Walsh, Siobhán W; Hayes, Eva; Connolly, Damian; Cummins, Wayne

    2018-06-07

    A dispersive liquid-liquid microextraction (DLLME) method, combined with HPLC-UV detection, was developed for the extraction and preconcentration of δ-tocopherol from bovine milk. This method was used to study the effect of supplementing cow feed with the seaweed Ascophyllum nodosum on vitamin content in milk. The optimal experimental conditions were determined: 200 μL of chloroform (extraction solvent), 1.0 mL of ethanol (dispersive solvent), 5 mL of water (aqueous phase). Under these optimal conditions the DLLME method provided linearity in the range 0.01 μg/mL to 8 μg/mL with R 2 values of 0.998. Limit of detection (LOD) was 0.01 μg/mL, while the enrichment factor was 89. Cow feed that was supplemented with Ascophyllum nodosum was shown to increase δ-tocopherol levels from 3.82 μg/mL to 5.96 μg/mL. Copyright © 2018. Published by Elsevier B.V.

  19. Rare earths recovery and gypsum upgrade from Florida phosphogypsum

    DOE PAGES

    Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...

    2017-11-01

    Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less

  20. Rare earths recovery and gypsum upgrade from Florida phosphogypsum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Haijun; Zhang, Patrick; Jin, Zhen

    Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less

  1. 78 FR 32292 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ..., To Institute Supplemental Liquidity Deposits to Its Clearing Fund Designed To Increase Liquidity Resources To Meet Its Liquidity Needs May 22, 2013. On March 21, 2013, National Securities Clearing... liquidity deposits to NSCC's Clearing Fund, in order to increase NSCC's liquidity resources to meet its...

  2. Short communication: The effect of liquid storage on the flavor of whey protein concentrate.

    PubMed

    Park, Curtis W; Parker, Megan; Drake, MaryAnne

    2016-06-01

    Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Altered brain arginine metabolism in schizophrenia

    PubMed Central

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  4. Quantification of nitrogen in the liquid fraction and in vitro assessment of lysine bioavailability in the solid fraction of soybean meal hydrolysates.

    PubMed

    Luján-Rhenals, D; Morawicki, R; Shi, Z; Ricke, S C

    2018-01-02

    Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and β-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L -1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.

  5. Non-contact optical Liquid Level Sensors

    NASA Astrophysics Data System (ADS)

    Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.

    2016-06-01

    Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.

  6. Evaluation of sodium benzoate and licorice (Glycyrrhiza glabra) root extract as heat-sensitizing additives against Escherichia coli O157:H7 in mildly heated young coconut liquid endosperm.

    PubMed

    Gabriel, A A; Salazar, S K P

    2014-08-01

    This study evaluated the use of sodium benzoate (SB) and licorice root extract (LRE) as heat-sensitizing additives against Escherichia coli O157:H7 in mildly heated young coconut liquid endosperm. Consumer acceptance scoring showed that maximum permissible supplementation (MPS) levels for SB and LRE were at 300 and 250 ppm, respectively. The MPS values were considered in the generation of a 2-factor rotatable central composite design for the tested SB and LRE concentration combinations. Liquid endosperm with various SB and LRE supplementation combinations was inoculated with E. coli O157:H7 and heated to 55°C. The susceptibility of the cells towards heating was expressed in terms of the decimal reduction time (D55 ). Response surface analysis showed that only the individual linear effect of benzoate significantly influenced D55 value, where increasing supplementation level resulted in increasing susceptibility. The results reported could serve as baseline information in further investigating other additives that could be used as heat-sensitizing agents against pathogens in heat-labile food systems. Fruit juice products have been linked to outbreaks of microbial infection, where unpasteurized products were proven vectors of diseases. Processors often opt not to apply heat process to juice products as the preservation technique often compromises the sensorial quality. This work evaluated two common additives for their heat-sensitizing effects against E. coli O157:H7 in coconut liquid endosperm, the results of which may serve as baseline information to small- and medium-scale processors, and researchers in the establishment of mild heat process schedule for the test commodity and other similar products. © 2014 The Society for Applied Microbiology.

  7. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  8. High-performance liquid chromatography post-column derivatization with fluorescence detection to study the influence of ambroxol on dipalmitoylphosphatidylcholine levels in rabbit eustachian tube washings.

    PubMed

    Kitsos, M; Gandini, C; Massolini, G; De Lorenzi, E; Caccialanza, G

    1991-08-16

    In this work an appropriate high-performance liquid chromatography method was set up to guarantee specificity, sensitivity, precision and accuracy in analyzing dipalmitoylphosphatidylcholine (DPPC) in rabbit eustachian tube washings, as well as to determine its varying levels after administration of ambroxol chloride. The procedure is based on a post-column derivatization with fluorescence detection using 1,6-diphenyl-1,3,5-hexatriene which exhibits increased fluorescence in a lipid environment. DPPC was chromatographed on a Hypersil C18. The mobile phase for the isocratic elution consisted of 40 mmol/l choline chloride in methanol-tetrahydrofuran (97:3). Ambroxol was given to a group of New Zealand white rabbits at a dose of 30 mg/kg. A second group receiving vehicle only acted as controls.

  9. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma.

    PubMed

    Anderson, M A; Wachs, T; Henion, J D

    1997-02-01

    A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.

  10. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  11. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  12. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  13. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  14. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process

    NASA Astrophysics Data System (ADS)

    Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu

    2018-05-01

    The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.

  15. Ultrasonic liquid-level detector for varying temperature and pressure environments

    DOEpatents

    Anderson, R.L.; Miller, G.N.

    1981-10-26

    An ultrasonic liquid level detector for use in varying temperature and pressure environments, such as a pressurized water nuclear reactor vessel, is provided. The detector employs ultrasonic extensional and torsional waves launched in a multiplexed alternating sequence into a common sensor. The sensor is a rectangular cross section stainless steel rod which extends into the liquid medium whose level is to be detected. The sensor temperature derived from the extensional wave velocity measurements is used to compensate for the temperature dependence of the torsional wave velocity measurements which are also level dependent. The torsional wave velocity measurements of a multiple reflection sensor then provide a measurement of liquid level over a range of several meters with a small uncertainty over a temperature range of 20 to 250/sup 0/C and pressures up to 15 MPa.

  16. Fate of estradiol and testosterone in anaerobic lagoon digestors

    USDA-ARS?s Scientific Manuscript database

    Laboratory-scale lagoon digestors were constructed, and the fate of 14C-labelled 17ß-estradiol (E2) and testosterone (Test) were monitored for 42 d anaerobically under biological and sterile conditions. Hormone levels decreased in the liquid layer and increased in the sludge with time. At 42 d, 16-2...

  17. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M [Augusta, GA

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  18. A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness

    NASA Astrophysics Data System (ADS)

    Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim

    2017-06-01

    This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.

  19. [Intake of liquid beverage among Chinese adults aged 18-59 years old in 15 provinces, 2015].

    PubMed

    Wang, Yun; Jia, Xiaofang; Du, Wenwen; Huang, Feifei; Zhang, Ji; Jiang, Hongru; Su, Chang; Zhang, Jiguo; Li, Li; Ouyang, Yifei; Wang, Zhihong; Zhang, Bing; Wang, Huijun

    2018-03-01

    To understand the current status of liquid beverage consumption of adult residents in 15 provinces and cities in China, and discuss relevant factors that may affect the consumption of liquid beverage of adult residents, and provide data support to guide the rational consumption of liquid beverage. Using data from China Nutritional Transition Cohort Survey in 2015 on the subjects aged 18 to 59 years old in 15 provinces and cities in China with complete 24-hour-dietary for 3 days and food consumption frequency method, chi-square was used to analyze liquid beverage consumption rate, nonparametric test was used to analyze beverage consumption intake levels of different gender, age, education degree, urban and rural areas, income, region. The factors affecting the consumption of liquid beverage were analyzed by Logistic regression model. The result of complete 24-hour-dietary for 3 days showed that the consumption rate of liquid beverage was 2. 8% and the 99 th consumption of liquid beverage was 93. 3 g/d for adult residents in 15 provinces and cities in 2015. The consumption rate and P99 intake of liquid beverage increased gradually with the increase of educational degree and income; the city was higher than the rural areas; the eastern was higher than the central and west region. Logistic analysis showed that the distribution of education, urban and rural areas and region were the influencing factors of whether adult residents drank liquid beverage. The 50 th consumption of liquid beverage in the consumer group was 70. 0 g/d. Among them, 18-44 years old youth group was higher than 45-59 years old middle age group; junior middle school education was highest lowest; the rural was higher than the city; the central was higher than west and east region. The result of food consumption frequency showed that 25. 8% of adults were reported consumed liquid beverage in 2015. The main types of beverages were fruit juice and fruit juice beverages, carbonated drinks, accounting for 37. 5% and 21. 9% of the consumption frequency of the consumption population, respectively. The consumption condition of liquid beverage was influenced by education degree, urban and rural areas, income and region mainly. Among them, high educated, high-income, developed regions( urban and eastern) were more likely to consume liquid beverages and consumed the more average consumption of liquid beverage. On the contrary, the average consumption of liquid beverage in the consumer group among the highly educated and developed regions( urban and Eastern) were the lowest. We should strengthen health education for adult residents in middle or low educational backgrounds and underdeveloped areas to guide residents to consume liquid beverage especially sugary beverages rationally.

  20. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice.

    PubMed

    Lin, Ching-Pin; Chuang, Wen-Chen; Lu, Fung-Jou; Chen, Chih-Yen

    2017-07-21

    To investigate the effects of hydrogen-rich water (HRW) treatment on prevention of ethanol (EtOH)-induced early fatty liver in mice. In vitro reduction of hydrogen peroxide by HRW was determined with a chemiluminescence system. Female mice were randomly divided into five groups: control, EtOH, EtOH + silymarin, EtOH + HRW and EtOH + silymarin + HRW. Each group was fed a Lieber-DeCarli liquid diet containing EtOH or isocaloric maltose dextrin (control diet). Silymarin was used as a positive control to compare HRW efficacy against chronic EtOH-induced hepatotoxicity. HRW was freshly prepared and given at a dosage of 1.2 mL/mouse trice daily. Blood and liver tissue were collected after chronic-binge liquid-diet feeding for 12 wk. The in vitro study showed that HRW directly scavenged hydrogen peroxide. The in vivo study showed that HRW increased expression of acyl ghrelin, which was correlated with food intake. HRW treatment significantly reduced EtOH-induced increases in serum alanine aminotransferase, aspartate aminotransferase, triglycerol and total cholesterol levels, hepatic lipid accumulation and inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. HRW attenuated malondialdehyde level, restored glutathione depletion and increased superoxide dismutase, glutathione peroxidase and catalase activities in the liver. Moreover, HRW reduced TNF-α and IL-6 levels but increased IL-10 and IL-22 levels. HRW protects against chronic EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress the pro-inflammatory cytokines TNF-α and IL-6 and induce IL-10 and IL-22, thus activating antioxidant enzymes against oxidative stress.

  1. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice

    PubMed Central

    Lin, Ching-Pin; Chuang, Wen-Chen; Lu, Fung-Jou; Chen, Chih-Yen

    2017-01-01

    AIM To investigate the effects of hydrogen-rich water (HRW) treatment on prevention of ethanol (EtOH)-induced early fatty liver in mice. METHODS In vitro reduction of hydrogen peroxide by HRW was determined with a chemiluminescence system. Female mice were randomly divided into five groups: control, EtOH, EtOH + silymarin, EtOH + HRW and EtOH + silymarin + HRW. Each group was fed a Lieber-DeCarli liquid diet containing EtOH or isocaloric maltose dextrin (control diet). Silymarin was used as a positive control to compare HRW efficacy against chronic EtOH-induced hepatotoxicity. HRW was freshly prepared and given at a dosage of 1.2 mL/mouse trice daily. Blood and liver tissue were collected after chronic-binge liquid-diet feeding for 12 wk. RESULTS The in vitro study showed that HRW directly scavenged hydrogen peroxide. The in vivo study showed that HRW increased expression of acyl ghrelin, which was correlated with food intake. HRW treatment significantly reduced EtOH-induced increases in serum alanine aminotransferase, aspartate aminotransferase, triglycerol and total cholesterol levels, hepatic lipid accumulation and inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. HRW attenuated malondialdehyde level, restored glutathione depletion and increased superoxide dismutase, glutathione peroxidase and catalase activities in the liver. Moreover, HRW reduced TNF-α and IL-6 levels but increased IL-10 and IL-22 levels. CONCLUSION HRW protects against chronic EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress the pro-inflammatory cytokines TNF-α and IL-6 and induce IL-10 and IL-22, thus activating antioxidant enzymes against oxidative stress. PMID:28785146

  2. Parental Self-Feeding Effects on Parental Care Levels and Time Allocation in Palestine Sunbirds

    PubMed Central

    Markman, Shai

    2014-01-01

    The trade-off between parents feeding themselves and their young is an important life history problem that can be considered in terms of optimal behavioral strategies. Recent studies on birds have tested how parents allocate the food between themselves and their young. Until now the effect of food consumption by parent birds on their food delivery to their young as well as other parental activities has rarely been studied. I have previously shown that parent Palestine sunbirds (Nectarinia osea) will consume nectar and liquidized arthropods from artificial feeders. However, they will only feed their young with whole arthropods. This provided a unique opportunity to experimentally manipulate the food eaten by parents independent of that fed to their offspring. Here, I hypothesized that parents invest in their current young according to the quality of food that they themselves consume. Breeding pairs with two or three nestlings were provided with feeders containing water (control), sucrose solution (0.75 mol) or liquidized mealworms mixed with sucrose solution (0.75 mol). As food quality in feeders increased (from water up to liquidized mealworms mixed with sucrose solution): 1) Parents (especially females) increased their food delivery of whole arthropod prey to their young. 2) Only males increased their nest guarding effort. Nestling food intake and growth rate increased with increasing food quality of parents and decreasing brood size. These results imply that increasing the nutrient content of foods consumed by parent sunbirds allow them to increase the rate at which other foods are delivered to their young and to increase the time spent on other parental care activities. PMID:25474620

  3. Ovarian stimulation by exogenous gonadotrophins in fetal ethanol-exposed immature rats.

    PubMed

    Rudeen, P K; Hagaman, J

    1988-08-15

    Adult pregnant rats were given either an ad libitum liquid diet containing 5% ethanol, a pair fed liquid diet or an ad libitum diet of rat chow and water administered throughout pregnancy and during the nursing period. The female offspring received either pregnant mare's serum gonadotrophin (PMSG) or PMSG followed by human chorionic gonadotrophin (hCG) at 30 days of age. The ovaries of fetal ethanol-exposed animals responded greater to the exogenous gonadotrophins with enhanced ovarian weights, increased numbers of ova shed, greater numbers of corpora lutea and antral follicles, and higher serum progesterone levels than in animals exposed to the control diets during gestation.

  4. Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine.

    PubMed

    Ivanov, Alexander Vladimirovich; Bulgakova, Polina Olegovna; Virus, Edward Danielevich; Kruglova, Maria Petrovna; Alexandrin, Valery Vasil'evich; Gadieva, Viktoriya Aleksandrovna; Luzyanin, Boris Petrovich; Kushlinskii, Nikolai Evgen'evich; Fedoseev, Anatolij Nikolaevich; Kubatiev, Aslan Amirkhanovich

    2017-10-01

    A rapid and selective method has been developed for highly sensitive determination of total cysteine and homocysteine levels in human blood plasma and urine by capillary electrophoresis (CE) coupled with liquid-liquid extraction. Analytes were first derivatized with 1,1'-thiocarbonyldiimidazole and then samples were purified by chloroform-ACN extraction. Electrophoretic separation was performed using 0.1 M phosphate with 30 mM triethanolamine, pH 2, containing 25 μM CTAB, 2.5 μM SDS, and 2.5% polyethylene glycol 600. Samples were injected into the capillary (with total length 32 cm and 50 μm id) at 2250 mbar*s and subsequent injection was performed for 30 s with 0.5 M KОН. The total analysis time was less than 9 min, accuracy was 98%, and precision was <2.6%. The LOD was 0.2 μM for homocysteine and 0.5 μM for cysteine. The use of liquid-liquid extraction allowed the precision and sensitivity of the CE method to be significantly increased. The validated method was applied to determine total cysteine and homocysteine content in human blood plasma and urine samples obtained from healthy volunteers and patients with kidney disorders. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Withdrawal of gases and liquids from an in situ oil shale retort

    DOEpatents

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  6. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  7. An automated system for liquid-liquid extraction in monosegmented flow analysis

    PubMed Central

    Facchin, Ileana; Pasquini, Celio

    1997-01-01

    An automated system to perform liquid-liquid extraction in monosegmented flow analysis is described. The system is controlled by a microcomputer that can track the localization of the aqueous monosegmented sample in the manifold. Optical switches are employed to sense the gas-liquid interface of the air bubbles that define the monosegment. The logical level changes, generated by the switches, are flagged by the computer through a home-made interface that also contains the analogue-to-digital converter for signal acquisition. The sequence of operations, necessary for a single extraction or for concentration of the analyte in the organic phase, is triggered by these logical transitions. The system was evaluated for extraction of Cd(II), Cu(II) and Zn(II) and concentration of Cd(II) from aqueous solutions at pH 9.9 (NH3/NH4Cl buffer) into chloroform containing PAN (1-(2-pyridylazo)-2-naphthol) . The results show a mean repeatability of 3% (rsd) for a 2.0 mg l-1 Cd(II) solution and a linear increase of the concentration factor for a 0.5mg l-1 Cd(II) solution observed for up to nine extraction cycles. PMID:18924792

  8. Dopants concentration effects on the wavelength shift of long-period fiber gratings used as liquid level detectors

    NASA Astrophysics Data System (ADS)

    Mao, Barerem-Melgueba; Zhou, Bin

    2011-12-01

    Two liquid level sensors based on different long-period fiber gratings are proposed and compared. The long-period gratings have the same characteristics (length, grating period) but are fabricated in different optical fibers (photosensitive B-Ge codoped optical fibers with different dopants concentrations). The principle of this type of sensor is based on the refractive index sensitivity of long-period fiber gratings. By monitoring the resonant wavelength shifts of a given attenuation band, one can measure the immersed lengths of long-period fiber gratings and then the liquid level. The levels of two different solutions are measured. The maximum shift (7.69 nm) of the investigated resonance wavelength was observed in LPG1 (fabricated in Fibercore PS1250/1500). By controlling the fiber dopants concentrations one can improve the readouts of a fiber-optic liquid level sensor based on long-period fiber gratings.

  9. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers.

    PubMed

    Schober, Wolfgang; Szendrei, Katalin; Matzen, Wolfgang; Osiander-Fuchs, Helga; Heitmann, Dieter; Schettgen, Thomas; Jörres, Rudolf A; Fromme, Hermann

    2014-07-01

    Despite the recent popularity of e-cigarettes, to date only limited data is available on their safety for both users and secondhand smokers. The present study reports a comprehensive inner and outer exposure assessment of e-cigarette emissions in terms of particulate matter (PM), particle number concentrations (PNC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), carbonyls, and metals. In six vaping sessions nine volunteers consumed e-cigarettes with and without nicotine in a thoroughly ventilated room for two hours. We analyzed the levels of e-cigarette pollutants in indoor air and monitored effects on FeNO release and urinary metabolite profile of the subjects. For comparison, the components of the e-cigarette solutions (liquids) were additionally analyzed. During the vaping sessions substantial amounts of 1,2-propanediol, glycerine and nicotine were found in the gas-phase, as well as high concentrations of PM2.5 (mean 197 μg/m(3)). The concentration of putative carcinogenic PAH in indoor air increased by 20% to 147 ng/m(3), and aluminum showed a 2.4-fold increase. PNC ranged from 48,620 to 88,386 particles/cm(3) (median), with peaks at diameters 24-36 nm. FeNO increased in 7 of 9 individuals. The nicotine content of the liquids varied and was 1.2-fold higher than claimed by the manufacturer. Our data confirm that e-cigarettes are not emission-free and their pollutants could be of health concern for users and secondhand smokers. In particular, ultrafine particles formed from supersaturated 1,2-propanediol vapor can be deposited in the lung, and aerosolized nicotine seems capable of increasing the release of the inflammatory signaling molecule NO upon inhalation. In view of consumer safety, e-cigarettes and nicotine liquids should be officially regulated and labeled with appropriate warnings of potential health effects, particularly of toxicity risk in children. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  11. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Wang, Youqiong; Tang, Lipeng; Yin, Wei; Chen, Jiesi; Leng, Tiandong; Zheng, Xiaoke; Zhu, Wenbo; Zhang, Haipeng; Qiu, Pengxin; Yang, Xiaoxiao; Yan, Guangmei; Hu, Haiyan

    2016-01-01

    Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.

  12. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2+/- mice, using liquid chromatography-tandem mass spectrometry.

    PubMed

    Forrest, Caroline M; Kennedy, Peter G E; Rodgers, Jean; Dalton, R Neil; Turner, Charles; Darlington, L Gail; Cobb, Stuart R; Stone, Trevor W

    2016-11-01

    To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography - tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene - a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Association between alterations in global DNA methylation and predisposing factors in diabetes: a high pressure liquid chromatography based study.

    PubMed

    Maghbooli, Z; Hossein-Nezhad, A; Larijani, B; Pasalar, P; Keshtkar, A A

    2015-08-01

    The aim of this study was to investigate the relationship between inter-individual global DNA methylation and diabetes predisposing factors. The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood leukocytes obtained from 178 type 2 diabetes patients to determine individual global DNA methylation status. There was a positive significant correlation between diabetes duration and DNA methylation levels (P=0.002) with increasing levels of DNA methylation associated with age (P=0.047). There was no significant correlation between DNA methylation levels and HbA1c (P=0.15). No significant differences were observed between patients with and without diabetes predisposing factors including: hypertension (P=0.772), dyslipidemia (P=0.617), insulin resistance (homeostatic model assessment index) (P=0.156) and obesity (P=0.609). As such, the duration of diabetes (>10 years) was the most important predictor of global DNA methylation levels in diabetic patients after adjusting for age and sex (P=0.023). Our findings indicate that chronic hyperglycemic exposure plays an independent role in global DNA methylation levels in type 2 diabetes patients.

  14. High-accurate optical fiber liquid level sensor

    NASA Astrophysics Data System (ADS)

    Sun, Dexing; Chen, Shouliu; Pan, Chao; Jin, Henghuan

    1991-08-01

    A highly accurate optical fiber liquid level sensor is presented. The single-chip microcomputer is used to process and control the signal. This kind of sensor is characterized by self-security and is explosion-proof, so it can be applied in any liquid level detecting areas, especially in the oil and chemical industries. The theories and experiments about how to improve the measurement accuracy are described. The relative error for detecting the measurement range 10 m is up to 0.01%.

  15. Detection of airborne bacteria with disposable bio-precipitator and NanoGene assay.

    PubMed

    Lee, Eun-Hee; Chua, Beelee; Son, Ahjeong

    2016-09-15

    We demonstrated the detection of airborne bacteria by a disposable bio-precipitator and NanoGene assay combination. The bio-precipitator employed micro corona discharge at 1960V and at less than 35µA to simultaneously charge, capture and lyse the airborne bacteria. This was enabled by the use of a 15μL liquid anode. Using a custom exposure setup, the target bacterium Bacillus subtilis in the atomization solution was rendered airborne. After exposure, the liquid anode in the bio-precipitator was subsequently measured for DNA concentration and analyzed with the NanoGene assay. As the bacterial concentration increased from 0.0104 to 42.6 g-DCW/L the released DNA concentration in the liquid anode increased from 2.10±1.57 to 75.00±7.15ng/μL. More importantly, the NanoGene assay showed an increase in normalized fluorescence (gene quantification) from 18.03±1.18 to 49.71±1.82 as the bacterial concentrations increased from 0.0104 to 42.6 g-DCW/L. the electrical power consumption of the bio-precipitator was shown to be amenable for portable use. In addition, the detection limit of bio-precipitator and NanoGene assay combination in the context of environmentally relevant levels of airborne bacteria was also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Distribution characteristics of stock market liquidity

    NASA Astrophysics Data System (ADS)

    Luo, Jiawen; Chen, Langnan; Liu, Hao

    2013-12-01

    We examine the distribution characteristics of stock market liquidity by employing the generalized additive models for location, scale and shape (GAMLSS) model and three-minute frequency data from Chinese stock markets. We find that the BCPE distribution within the GAMLSS framework fits the distributions of stock market liquidity well with the diagnosis test. We also find that the stock market index exhibits a significant impact on the distributions of stock market liquidity. The stock market liquidity usually exhibits a positive skewness, but a normal distribution at a low level of stock market index and a high-peak and fat-tail shape at a high level of stock market index.

  17. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  18. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  19. Intensification of oily waste waters purification by means of liquid atomization

    NASA Astrophysics Data System (ADS)

    Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.

    2017-10-01

    In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.

  20. A Lipidomic and Metabolomic Serum Signature from Nonhuman Primates Exposed to Ionizing Radiation.

    PubMed

    Pannkuk, Evan L; Laiakis, Evagelia C; Mak, Tytus D; Astarita, Giuseppe; Authier, Simon; Wong, Karen; Fornace, Albert J

    2016-05-01

    Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a "snapshot" of potential cellular damage. The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR). Serum sample lipids and metabolites were extracted using a biphasic liquid-liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode. Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid β-oxidation. This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.

  1. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.

    2016-08-14

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binarymore » liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl tail length increases, the changes in the binary mixtures’ properties become more pronounced.« less

  2. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar.

    PubMed

    Fang, Ci; Zhang, Tao; Li, Ping; Jiang, Rongfeng; Wu, Shubiao; Nie, Haiyu; Wang, Yingcai

    2015-03-01

    Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600>Ca-Mg/B450>Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment. Copyright © 2014. Published by Elsevier B.V.

  3. IMPACT OF LIQUID NITROGEN EXPOSURE ON SELECTED BIOCHEMICAL AND STRUCTURAL PARAMETERS OF HYDRATED Phaseolus vulgaris L. SEEDS.

    PubMed

    Cejas, Inaudis; Rivas, Maribel; Nápoles, Lelurlys; Marrero, Pedro; Yabor, Lourdes; Aragón, Carlos; Pérez, Aurora; Engelmann, Florent; Martínez-Montero, Marcos Edel; Lorenzo, José Carlos

    2015-01-01

    It is well known that cryopreserving seeds with high water content is detrimental to survival, but biochemical and structural parameters of cryostored hydrated common bean seeds have not been published. The objective of this work was to study the effect of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris seeds. We cryopreserved seeds at various moisture contents and evaluated: germination; electrolyte leakage; fresh seed weight; levels of chlorophyll pigments, malondialdehyde, other aldehydes, phenolics and proteins; thickness of cotyledon epidermis, parenchyma, and starch storage parenchyma; and radicle and plumule lengths. Germination was totally inhibited when seeds were immersed in water for 50 min (moisture content of 38%, FW basis) before cryopreservation. The combined effects of seed water imbibition and cryostorage decreased phenolics (free, cell wall-linked, total), chlorophyll a and protein content. By contrast, electrolyte leakage and levels of chlorophyll b and other aldehydes increased as a result of the combination of these two experimental factors. These were the most significant effects observed during exposure of humid seed to liquid nitrogen. Further studies are still required to clarify the molecular events taking place in plant cells during cryostorage.

  4. Push pull microfluidics on a multi-level 3D CD.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-08-21

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.

  5. Push pull microfluidics on a multi-level 3D CD

    PubMed Central

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-01-01

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994

  6. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  7. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  8. Electron beam irradiation induced changes in liquid-crystal compound 5CB

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.

    2008-12-01

    Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.

  9. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  10. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  11. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  12. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  13. Far-infrared laser vibration-rotation-tunneling spectroscopy of water clusters in the librational band region of liquid water

    NASA Astrophysics Data System (ADS)

    Keutsch, Frank N.; Fellers, Ray S.; Viant, Mark R.; Saykally, Richard J.

    2001-03-01

    We report the first high resolution spectrum of a librational vibration for a water cluster. Four parallel bands of (H2O)3 were measured between 510 and 525 cm-1 using diode laser vibration-rotation-tunneling (VRT) spectroscopy. The bands lie in the "librational band" region of liquid water and are assigned to the nondegenerate out of plane librational vibration. The observation of at least three distinct bands within 8 cm-1 originating in the vibrational ground state is explained by a dramatically increased splitting of the rovibrational levels relative to the ground state by bifurcation tunneling and is indicative of a greatly reduced barrier height in the excited state. This tunneling motion is of special significance, as it is the lowest energy pathway for breaking and reforming of hydrogen bonds, a salient aspect of liquid water dynamics.

  14. An Ultra-Sensitive Method for the Analysis of Perfluorinated Alkyl Acids in Drinking Water using a Column Switching High-Performance Liquid Chromatography Tandem Mass Spectrometry

    EPA Science Inventory

    In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemi...

  15. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  16. Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jennifer E.; Wall, Casey; Yettella, Vineel

    Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less

  17. Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM)

    DOE PAGES

    Kay, Jennifer E.; Wall, Casey; Yettella, Vineel; ...

    2016-06-10

    Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less

  18. Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.

    2004-01-01

    A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.

  19. Axial jet mixing of ethanol in spherical containers during weightlessness

    NASA Technical Reports Server (NTRS)

    Audelott, J. C.

    1976-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter spherical containers in weightlessness. Complete liquid circulation flow patterns were easily established in containers that were less than half full of liquid, while for higher liquid fill conditions, vapor was drawn into the inlet of the simulated mixer unit. Increasing the liquid-jet or lowering the position at which the liquid jet entered the container caused increasing turbulence and bubble formation.

  20. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure.

    PubMed

    DeVito, Elise E; Krishnan-Sarin, Suchitra

    2018-01-01

    Electronic cigarette (e-cigarette) use has increased substantially in recent years. While e-cigarettes have been proposed as a potentially effective smoking cessation tool, dualuse in smokers is common and e-cigarettes are widely used by non-smokers, including youth and young-adult non-smokers. Nicotine, the primary addictive component in cigarettes, is present at varying levels in many e-liquids. E-cigarettes may lead to initiation of nicotine use in adult and youth non-smokers, re-initiation of nicotine dependence in ex-smokers or increased severity of nicotine dependence in dual-users of cigarettes and e-cigarettes. As such, there are important clinical and policy implications to understanding factors impacting nicotine exposure from e-cigarettes. However, the broad and rapidly changing range of e-liquid constituents and e-cigarette hardware which could impact nicotine exposure presents a challenge. Recent changes in regulatory oversight of e-cigarettes underscore the importance of synthesizing current knowledge on common factors which may impact nicotine exposure. This review focuses on factors which may impact nicotine exposure by changing e-cigarette use behavior, puff topography, altering the nicotine yield (amount of nicotine exiting the e-cigarette mouth piece including nicotine exhaled as vapor) or more directly by altering nicotine absorption and bioavailability. Topics reviewed include e-liquid components or characteristics including flavor additives (e.g., menthol), base e-liquid ingredients (propylene glycol, vegetable glycerin), components commonly used to dissolve flavorants (e.g., ethanol), and resulting properties of the e-liquid (e.g., pH), e-cigarette device characteristics (e.g., wattage, temperature, model) and user behavior (e.g., puff topography) which may impact nicotine exposure. E-liquid characteristics and components, e-cigarette hardware and settings, and user behavior can all contribute substantially to nicotine exposure from e-cigarettes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Determination of Low Level Alpha and Beta Emitters Using Liquid-Liquid Extraction and a Liquid Scintillation Spectrometer

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Fu; BjØRnstad, H. E.; Salbu, B.

    Two radiochemical procedures for determination of low level strontium-90 and plutonium-239+240 in environmental and biological materials using combined selective solvent extraction with low level liquid scintillation counting have been presented. Y-90, the daughter nuclide of Sr-90, and Pu-239+240 are selectively extracted from nitric acid solution into 5% di(-2ethylhexyl)phosphoric acid (HDEHP) in toluene and the radionuclides of interest in organic phase are counted with an ultra low level scintillation counter "Quantulus". The lower detection limits for Sr-90 and Pu-239+240 are estimated to be 20 mBq and 0.3 mBq respectively. The developed procedures have been tested for soma environmental and biological samples and the preminarly results show that they are more simple and time-saving than traditional methods.

  2. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  3. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  4. Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure.

    PubMed

    de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges

    2007-04-01

    To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.

  5. Low gravity reorientation in a scale-model Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Masica, W. J.; Lacovic, R. F.

    1973-01-01

    An experiment was conducted to investigate the process of liquid reorientation from one end of a scale-model Centaur liquid-hydrogen tank to the other end by means of low-level accelerations. Prior to reorientation, the liquid was stabilized at the top of the tank at a Bond number of 15. Tanks both with and without ring baffles and with tank radii of 5.5 and 7.0 centimeters were used in the study. Reorientation acceleration values were varied to obtain Bond numbers of 200 and 450. Liquid fill levels of 20 and 70 percent were used. From the data in this study, relations were developed to estimate reorientation event times in unbaffled tanks through the point of final liquid clearing from the top of the tank. The insertion of ring baffles drastically changed the reorientation flow profiles but resulted in only minor differences in the times of tank-top uncovering and liquid collection.

  6. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    NASA Astrophysics Data System (ADS)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.

  7. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  8. Correlation of chemical evaporation rate with vapor pressure.

    PubMed

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  9. Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Chen, Hongping; Pan, Meiling; Liu, Xin; Lu, Chengyin

    2017-02-01

    Pesticide residues could be transferred from tea into its infusion and by-products, and subsequently consumed by humans. Extra extraction conditions may induce more pesticide leaching into the infusion and by-products of tea and cause greater damage to humans. The aim of this study is to evaluate the infusion of multiple pesticides from green tea into hot water via pressurized liquid extraction. The results showed that pesticides in spiked samples generally have higher leaching (0.8-45.0%) than those in the positive samples. There was a marked rise of transfer rates when water solubility increased from 20mgL(-1) to 450mgL(-1) and LogKow decreased from 6 to 4. All pesticides had more leaching into hot water using pressurized liquid extraction than traditional tea brewing. This study helps in risk assessment of pesticide residues and in the formulation of maximum residue levels (MRLs) in tea and its by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry.

    PubMed

    Erarpat, Sezin; Özzeybek, Gözde; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-12-01

    In this study, dispersive liquid-liquid microextraction (DLLME) and slotted quartz tube (SQT) were coupled to flame atomic absorption spectrometry (FAAS) to increase the sensitivity of lead. Conditions such as the formation of the lead-dithizone complex, efficiency of the DLLME method and the output of the SQT were systematically optimized to improve the detection limit for the analyte. The conventional FAAS system was improved upon by about 3.0 times with SQT-FAAS, 32 times with DLLME-FAAS and 142 times with DLLME-SQT-FAAS. The method was applicable over a wide linear range (10-500 μg L -1 ). The limit of detection (LOD) determined by DLLME-SQT-FAAS for seawater and mussel were 2.7 μg L -1 and 270 μg kg -1 , respectively. The percent recoveries obtained for mussel and seawater samples (spiked at 20 and 50 μg L -1 ) were 95-96% and 98-110%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  12. Experimental study of oblique impact between dry spheres and liquid layers

    NASA Astrophysics Data System (ADS)

    Ma, Jiliang; Liu, Daoyin; Chen, Xiaoping

    2013-09-01

    Liquid addition is common in industrial fluidization-based processes. A detailed understanding of collision mechanics of particles with liquid layers is helpful to optimize these processes. The normal impact with liquid has been studied extensively; however, the studies on oblique impact with liquid are scarce. In this work, experiments are conducted to trace Al2O3 spheres obliquely impacting on a surface covered by liquid layers, in which the free-fall spheres are disturbed initially by a horizontal gas flow. The oblique impact exhibits different rebound behaviors from normal collision due to the occurrence of strong rotation. The normal and tangential restitution coefficients (en and et) and liquid bridge rupture time (trup) are analyzed. With increase in liquid layer thickness and viscosity, en and et decline, and trup increases. With increase in tangential velocity, et decreases first and then increases, whereas en remains nearly unchanged, and trup decreases constantly. A modified Stokes number is proposed to further explore the relation between restitution coefficients and the impact parameters. Finally, an analysis of energy dissipation shows that the contact deformation and liquid phase are the two main sources of total energy dissipation. Unexpectedly, the dissipative energy caused by the liquid phase is independent of tangential velocity.

  13. Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang

    2007-03-01

    We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

  14. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies.

    PubMed

    Miranda-Fuentes, Antonio; Rodríguez-Lizana, Antonio; Gil, Emilio; Agüera-Vega, J; Gil-Ribes, Jesús A

    2015-12-15

    Olive is a key crop in Europe, especially in countries around the Mediterranean Basin. Optimising the parameters of a spray is essential for sustainable pesticide use, especially in high-input systems, such as the super-intensive hedgerow system. Parameters may be optimised by adjusting the applied volume and airflow rate of sprays, in addition to the liquid to air proportion and the relationship between air velocity and airflow rate. Two spray experiments using a commercial airblast sprayer were conducted in a super-intensive orchard to study how varying the liquid volume rate (testing volumes of 182, 619, and 1603 l ha(-1)) and volumetric airflow rate (with flow rates of 11.93, 8.90, and 6.15 m(3) s(-1)) influences the coverage parameters and the amount and distribution of deposits in different zones of the canopy.. Our results showed that an increase in the application volume raised the mean deposit and percentage coverage, but decreased the application efficiency, spray penetration, and deposit homogeneity. Furthermore, we found that the volumetric airflow rate had a lower influence on the studied parameters than the liquid volume; however, an increase in the airflow rate improved the application efficiency and homogeneity to a certain threshold, after which the spray quality decreased. This decrease was observed in the high-flow treatment. Our results demonstrate that intermediate liquid volume rates and volumetric airflow rates are required for the optimal spraying of pesticides on super-intensive olive crops, and would reduce current pollution levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  16. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.

    PubMed

    Modrzejewska, Martyna; Gawronski, Maciej; Skonieczna, Magdalena; Zarakowska, Ewelina; Starczak, Marta; Foksinski, Marek; Rzeszowska-Wolny, Joanna; Gackowski, Daniel; Olinski, Ryszard

    2016-12-01

    The most plausible mechanism behind active demethylation of 5-methylcytosine involves TET proteins which participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine; the latter is further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil can be also generated from thymine in a TET-catalyzed process. Ascorbate was previously demonstrated to enhance generation of 5-hydroxymethylcytosine in cultured cells. The aim of this study was to determine the levels of the abovementioned TET-mediated oxidation products of 5-methylcytosine and thymine after addition of ascorbate, using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Intracellular concentration of ascorbate was determined by means of ultra-performance liquid chromatography with UV detection. Irrespective of its concentration in culture medium (10-100µM) and inside the cell, ascorbate stimulated a moderate (2- to 3-fold) albeit persistent (up to 96-h) increase in the level of 5-hydroxymethylcytosine. However, exposure of cells to higher concentrations of ascorbate (100µM or 1mM) stimulated a substantial increase in 5-formylcytosine and 5-carboxycytosine levels. Moreover, for the first time we demonstrated a spectacular (up to 18.5-fold) increase in 5-hydroxymethyluracil content what, in turn, suggests that TET enzymes contributed to the presence of the modification in cellular DNA. These findings suggest that physiological concentrations of ascorbate in human serum (10-100µM) are sufficient to maintain a stable level of 5-hydroxymethylcytosine in cellular DNA. However, markedly higher concentrations of ascorbate (ca. 100µM in the cell milieu or ca. 1mM inside the cell) were needed to obtain a sustained increase in 5-formylcytosine, 5-carboxycytosine and 5-hydroxymethyluracil levels. Such feedback to elevated concentrations of ascorbate may reflect adaptation of the cell to environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Liquid and Solid Meal Replacement Products Differentially Affect Postprandial Appetite and Food Intake in Older Adults

    PubMed Central

    Stull, April J.; Apolzan, John W.; Thalacker-Mercer, Anna E.; Iglay, Heidi B.; Campbell, Wayne W.

    2008-01-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macro-nutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a “comfortable level of fullness.” Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults. PMID:18589034

  18. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface.

    PubMed

    Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang

    2017-12-01

    External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. System-level simulation of liquid filling in microfluidic chips.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-06-01

    Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X-4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.

  20. Liquid fractionation. Part I: Basic principles and experimental simulations

    NASA Astrophysics Data System (ADS)

    McBirney, Alexander R.; Baker, Brian H.; Nilson, Robert H.

    1985-03-01

    A possible explanation for the closely associated magmas of contrasting compositions erupted from many mature volcanic centers can be found in the large differences of density produced by relatively small compositional variations in liquids that evolve by crystallization or melting at the walls of shallow magma chambers. A mechanism of liquid fractionation in which differentiated liquids segragate gravitationally to form compositionally graded columns of magma may surmount the long-standing problem of explaining large volumes of highly evolved liquids that reach advanced degrees of differentiation in times that are too short to be consistent with conventional models of crystal fractionation based on crystal settling. In those types of magmas that decrease in density as they differentiate, a fractionated liquid next to a wall may form a buoyant compositional boundary layer that flows up the wall and accumulates as a separate zone in the upper levels of the reservoir. Magmas that increase in density as they differentiate will have the opposite behavior; they descend along the wall and pond on the floor. Both types of systems can be modeled using simple aqueous solutions and techniques similar to those developed by Chen and Turner (1980). The insights gained through experiments of this kind suggest a number of processes that may be responsible for common types of volcanic behavior and patterns of differentiation in shallow plutons.

  1. A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy

    PubMed Central

    Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhao, Li-Hui; Xiong, Ji-Jun

    2017-01-01

    The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas–liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container. PMID:28106857

  2. Analysis of refill liquids for electronic cigarettes.

    PubMed

    Etter, Jean-François; Zäther, Eva; Svensson, Sofie

    2013-09-01

    To assess levels of nicotine, nicotine degradation products and some specific impurities in commercial refill liquids for electronic cigarettes. We analyzed 20 models of 10 of the most popular brands of refill liquids, using gas and liquid chromatography. We assessed nicotine content, content of the known nicotine degradation products and impurities, and presence of ethylene glycol and diethylene glycol. The nicotine content in the bottles corresponded closely to the labels on the bottles. The levels of nicotine degradation products represented 0-4.4% of those for nicotine, but for most samples the level was 1-2%. Cis-N-oxide, trans-N-oxide, myosmine, anatabine and anabasine were the most common additional compounds found. Neither ethylene glycol nor diethylene glycol were detected. The nicotine content of electronic cigarette refill bottles is close to what is stated on the label. Impurities are detectable in several brands above the level set for nicotine products in the European Pharmacopoeia, but below the level where they would be likely to cause harm. © 2013 Society for the Study of Addiction.

  3. Temporal length-scale cascade and expansion rate on planar liquid jet instability

    NASA Astrophysics Data System (ADS)

    Sirignano, William; Zandian, Arash; Hussain, Fazle

    2016-11-01

    Using the local radius of curvature of the surface and the local transverse dimension of the two-phase (i.e., spray) domain as length scales, we obtained two PDFs over a wide range of length-scales at different times and for different Reynolds and Weber (We) numbers. The PDFs were developed via post-processing of DNS Navier-Stokes results for a 3D planar liquid sheet segment with level-set and Volume-of-Fluid surface tracking, giving better statistical data for the length scales compared to the former methods. The radius PDF shows that, with increasing We , the average radius of curvature decreases, number of small droplets increases, and cascade occurs at a faster rate. In time, the mean of the radius PDF decreases while the rms increases. The other PDF represents the spray expansion in a more realistic and meaningful form, showing that the spray angle is larger at higher We and density-ratios. Both the mean and the rms of the spray-size PDF increase with time. The PDFs also track the transitions between symmetric and anti-symmetric modes.

  4. The use of personalized biomarkers and liquid biopsies to monitor treatment response and disease recurrence in locally advanced rectal cancer after neoadjuvant chemoradiation.

    PubMed

    Carpinetti, Paola; Donnard, Elisa; Bettoni, Fabiana; Asprino, Paula; Koyama, Fernanda; Rozanski, Andrei; Sabbaga, Jorge; Habr-Gama, Angelita; Parmigiani, Raphael B; Galante, Pedro A F; Perez, Rodrigo O; Camargo, Anamaria A

    2015-11-10

    Neoadjuvant chemoradiotherapy (nCRT) followed by surgery is the mainstay treatment for locally advanced rectal cancer. Variable degrees of tumor regression are observed after nCRT and alternative treatment strategies, including close surveillance without immediate surgery, have been investigated to spare patients with complete tumor regression from potentially adverse outcomes of radical surgery. However, clinical and radiological assessment of response does not allow accurate identification of patients with complete response. In addition, surveillance for recurrence is similarly important for these patients, as early detection of recurrence allows salvage resections and adjuvant interventions. We report the use of liquid biopsies and personalized biomarkers for monitoring treatment response to nCRT and detecting residual disease and recurrence in patients with rectal cancer. We sequenced the whole-genome of four rectal tumors to identify patient-specific chromosomal rearrangements that were used to monitor circulating tumor DNA (ctDNA) in liquid biopsies collected at diagnosis and during nCRT and follow-up. We compared ctDNA levels to clinical, radiological and pathological response to nCRT. Our results indicate that personalized biomarkers and liquid biopsies may not be sensitive for the detection of microscopic residual disease. However, it can be efficiently used to monitor treatment response to nCRT and detect disease recurrence, preceding increases in CEA levels and radiological diagnosis. Similar good results were observed when assessing tumor response to systemic therapy and disease progression. Our study supports the use of personalized biomarkers and liquid biopsies to tailor the management of rectal cancer patients, however, replication in a larger cohort is necessary to introduce this strategy into clinical practice.

  5. Quantitative Analysis of Aloins and Aloin-Emodin in Aloe Vera Raw Materials and Finished Products Using High-Performance Liquid Chromatography: Single-Laboratory Validation, First Action 2016.09.

    PubMed

    Kline, David; Ritruthai, Vicha; Babajanian, Silva; Gao, Quanyin; Ingle, Prashant; Chang, Peter; Swanson, Gary

    2017-05-01

    A single-laboratory validation study is described for a method of quantitative analysis of aloins (aloins A and B) and aloe-emodin in aloe vera raw materials and finished products. This method used HPLC coupled with UV detection at 380 nm for the aloins and 430 nm for aloe-emodin. The advantage of this test method is that the target analytes are concentrated from the sample matrix (either liquid or solid form) using stepwise liquid-liquid extraction (water-ethyl acetate-methanol), followed by solvent evaporation and reconstitution. This sample preparation process is suitable for different forms of products. The concentrating step for aloins and aloe-emodin has enhanced the method quantitation level to 20 parts per billion (ppb). Reversed-phase chromatography using a 250 × 4.6 mm column under gradient elution conditions was used. Mobile phase A is 0.1% acetic acid in water and mobile phase B is 0.1% acetic acid in acetonitrile. The HPLC run starts with a 20% mobile phase B that reaches 35% at 13 min. From 13 to 30 min, mobile phase B is increased from 35 to 100%. From 30 to 40 min, mobile phase B is changed from 100% back to the initial condition of 20% for re-equilibration. The flow rate is 1 mL/min, with a 100 μL injection volume. Baseline separation (Rs > 2.0) for aloins A and B and aloe-emodin was observed under this chromatographic condition. This test method was validated with raw materials of aloe vera 5× (liquid) and aloe vera 200× (powder) and finished products of aloe concentrate (liquid) and aloe (powder). The linearity of the method was studied from 10 to 500 ppb for aloins A and B and aloe-emodin, with correlation coefficients of 0.999964, 0.999957, and 0.999980, respectively. The test method was proven to be specific, precise, accurate, rugged, and suitable for the intended quantitative analysis of aloins and aloe-emodin in raw materials and finished products. The S/N for aloins A and B and aloe-emodin at 10 ppb level were 12, 10, and 8, respectively, indicating our conservative LOD level at 10 ppb (the typical LOD level S/N is about 3). The S/N for aloins A and B and aloe-emodin at the 20 ppb level were 17, 14, and 16, respectively, indicating our conservative LOQ level at 20 ppb (the typical LOQ level S/N is about 10). The stock standard solution of a mixture of aloins and aloe-emodin and a working standard solution were found to be stable for at least 19 days when stored refrigerated at 2-8°C, with a recovery of 100 ± 5%.

  6. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. Aluminum in erythropoietin formulations: lyophilized versus liquid forms.

    PubMed

    Veiga, Marlei; Bohrer, Denise; Noremberg, Simone; Mattiazzi, Patricia; do Nascimento, Paulo C; de Carvalho, Leandro M

    2013-01-01

    Erythropoietin (EPO) formulations may comprise aluminum (Al) as a contaminant. Due to the toxicity of Al in chronic kidney disease patients, possible sources of Al were investigated. Since EPO formulations are stored in container-closure systems made of glass and rubber, and both contain Al, formulation ingredients may enable its leaching into the solution during shelf-life. Individual solutions of formulation ingredients were stored in new glass vials and in contact with the rubber stopper and kept at 4 ± 2 °C. For 12 months, aliquots of each solution were collected for analysis. Fifteen commercial samples of EPO were analyzed for their Al content. Aluminum was determined by atomic absorption spectrometry. Glass and rubber are sources of Al for EPO formulations. Storage assay showed that citrate and phosphate (used as buffers) extracted high amounts of Al from the container/closure parts. The most important difference, however, was found when comparing liquid and lyophilized samples. While in liquid forms the Al level reached 943 μg/L, in lyophilized forms the level did not exceed 20 μg/L. The container system was also confirmed as a source of Al in reconstituted lyophilized samples. Al in reconstituted samples stored in their own vials increased 19-fold in 12 months. Lyophilized powders stored for 2 years in glass vials contained less Al than in 1 month after dissolution. The difference in the Al measured in liquid forms of EPO and in lyophilized powders suggests that the latter would be the best pharmaceutical form for CKD patients.

  8. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.

    PubMed

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.

  9. Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    PubMed Central

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997

  10. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit

    PubMed Central

    Singh, Bal Ram

    2004-01-01

    Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography (HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours of water immersion, respectively. Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze the anthocyanin biosynthesis are regulated differently by environments. PMID:15577187

  11. Critical review of the analysis of brominated flame retardants and their environmental levels in Africa.

    PubMed

    Brits, Martin; de Vos, Jayne; Weiss, Jana M; Rohwer, Egmont R; de Boer, Jacob

    2016-12-01

    World-wide, the prevalence of brominated flame retardants (BFRs) is well documented for routine analysis of environmental and biological matrices. There is, however, limited information on these compounds in the African environment and insufficient information on the analytical approaches used to obtain data. This paper presents a review on BFR levels in the African environment and the various analytical methodologies specifically applied in Africa for polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls and alternative-BFRs. The analyses include liquid sample preparation using liquid-liquid and solid phase extraction and solid sample preparation involving Soxhlet extraction, with ultrasound-assisted extraction increasingly being applied. Instrumental detection techniques were limited to gas chromatography coupled with electron capture detector and electron impact ionisation with single quadrupole mass spectrometers. Information on congener profile prevalence in indoor dust, soil, aquatic environment (water, sediment, and aquatic organisms), eggs, wastewater treatment plant compartments, landfills (leachate and sediment) and breast milk are presented. Although PBDEs were inconsistently detected, contamination was reported for all investigated matrices in the African environment. The manifestation in remote regions indicates the ubiquitous prevalence and long-range transport of these compounds. Levels in sediment, and breast milk from some African countries were higher than reported for Asia and Europe. Due to limited data or non-detection of alternative-BFRs, it is unclear whether banned formulations were replaced in Africa. Most of the data reported for BFR levels in Africa were obtained in non-African laboratories or in South Africa and formed the basis for our discussion of reported contamination levels and related methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of preparation on nutrient and environmental contaminant levels in Arctic beluga whale (Delphinapterus leucas) traditional foods.

    PubMed

    Binnington, Matthew J; Lei, Ying D; Pokiak, Lucky; Pokiak, James; Ostertag, Sonja K; Loseto, Lisa L; Chan, Hing M; Yeung, Leo W Y; Huang, Haiyong; Wania, Frank

    2017-08-16

    For Canadian Arctic indigenous populations, marine mammal (MM) traditional foods (TFs) represent sources of both important nutrients and hazardous environmental contaminants. Food preparation is known to impact the nutrient and environmental contaminant content of processed items, yet the impacts of preparation on indigenous Arctic MM TFs remain poorly characterized. In order to determine how the various processes involved in preparing beluga blubber TFs affect their levels of nutrients and environmental contaminants, we collected blubber samples from 2 male beluga whales, aged 24 and 37 years, captured during the 2014 summer hunting season in Tuktoyaktuk, Northwest Territories, and processed them according to local TF preparation methods. We measured the levels of select nutrients [selenium (Se), polyunsaturated fatty acids (PUFAs)] and contaminants [organochlorine pesticides, perfluoroalkyl and polyfluoroalkyl substances (PFASs), polybrominated diphenyl ethers, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), mercury (Hg)] in raw and prepared (boiled, roasted, aged) beluga blubber TFs. The impacts of beluga blubber TF preparation methods on nutrient and environmental contaminant levels were inconsistent, as the majority of processes either did not appear to influence concentrations or affected the two belugas differently. However, roasting and ageing beluga blubber consistently impacted certain compounds: roasting blubber increased concentrations of hydrophilic substances (Se and certain PFASs) through solvent depletion and deposited PAHs from cookfire smoke. The solid-liquid phase separation involved in ageing blubber depleted hydrophilic elements (Se, Hg) and some ionogenic PFASs from the lipid-rich liquid oil phase, while PUFA levels appeared to increase, and hydrophobic persistent organic pollutants were retained. Ageing blubber adjacent to in-use smokehouses also resulted in considerable PAH deposition to processed samples. Our findings demonstrated that contaminant concentration differences were greater between the two sets of whale samples, based on age differences, than they were within each set of whale samples, due to variable preparation methods. When considering means to minimize human contaminant exposure while maximizing nutrient intake, consumption of aged liquid from younger male whales would be preferred, based on possible PUFA enhancement and selective depletion of hydrophilic environmental contaminants in this food item.

  13. Fluid inclusion studies on the mineralized quartz-rich hydrothermal breccias and quartz veins of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines

    NASA Astrophysics Data System (ADS)

    Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.

    2017-12-01

    The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.

  14. Control of methanol vapours in a biotrickling filter: performance analysis and experimental determination of partition coefficient.

    PubMed

    Avalos Ramirez, Antonio; Peter Jones, J; Heitz, Michéle

    2009-02-01

    Methanol vapours were treated in a biotrickling filter (BTF) packed with inert polypropylene spheres. The effects of the nitrogen concentration in the nutrient solution, the empty bed residence time (EBRT) and the methanol inlet concentration, on the BTF performance, were all examined. The elimination capacity (EC), the biomass and the carbon dioxide production rates were all increased with the rising of the nitrogen concentration and the EBRT. The EC also rose with increasing methanol inlet load (IL) when the methanol inlet concentration and the EBRT were varied, from 0.3 to 37.0 g m(-3), and from 20 to 65 s, respectively. The BTF reached its maximum EC level of 2160 g m(-3) h(-1) when it was operated at an IL level of 3700 g m(-3) h(-1). The input methanol was removed through two mechanisms: biodegradation and absorption in the liquid phase. The partition coefficient for the methanol in the BTF was determined at five EBRTs and along the packed bed. It generally followed the Henry model, having an average value of 2.64 x 10(-4)[mol L(-1)](gas)/[mol L(-1)](liquid).

  15. Origin of the world-class PGE-Au mineralisation in the Skaergaard intrusion by bulk S-saturation, accumulation, partial dissolution, and secondary reef formation.

    NASA Astrophysics Data System (ADS)

    Daugaard Nielsen, Troels Frederik

    2013-04-01

    The Skaergaard intrusion is the type locality for stratiform "Skaergaard-type" PGE-Au mineralisations with layers rich in PGE, followed by Au and Cu. Models for stratiform PGE mineralisations divide into uppers and downers models. Downers models assume bulk liquid S-saturation followed by a variety of accumulation processes and the second model the scavenging of metals by fluids deep in intrusions and deposition in chemical traps above. This investigation is based on continuous profiling in roof, walls and floor. Cu anomalies in roof, walls and floor are contemporaneous and systematics in Pd/Pt and Pd/Au ratios document bulk liquid S-saturation, no loss of precious metal below the mineralisation and no obvious chemical traps. A classic downers process is documented. The timing of the mineralisation is controlled by composition of liquidus plagioclase and fraction of residual magma (F). PGE concentrations are an order of magnitude higher in the floor mineralisation due to accumulation. Systematics across the mineralisation shows in the centre of the intrusion 5 main levels of Pd-concentration followed by an Au and a Cu-level. All levels PGE and Au levels have c. 100 ppm Cu and show no correlation to PGE and Au. 90% of all PGE is contained in one phase, skaergaardite (PdCu).The lower and main PGE concentration has moderate Pd/Pt ratios. Overlying secondary reefs have high, basal Pd/Pt and show local S-saturation reflecting d-values of PGE between sulphide and silicate liquid. No basal high Pd/Pt anomaly occurs at Au and Cu levels and the floor shows four types of mineralisation. The main PGE reef (Pd5) has gradual increase and decrease in PGE and Pd/Pt, dissolution of sulphide, increasing PGE+Au/Cu due to reaction between interstial and documented reactive Fe-rich silicate melt and the bulk magma sulfides. Dissolution of Cu-sulfide increases PGE/Cu, reduces the size of droplets to 30µ (av.) and provides metals for secondary reefs above - formed by migration of interstitial melt - and show expected decrease in Pd/Pt and increase in Au/Pd due to fractionation and substitutions in Skaergaardite (PdCu) and tetra-auricupride (AuCu). The main Au level is elevated relative to the top Pd-level (Pd1). High resolution X-ray tomography and petrography shows the precious metal phases on grain boundaries. The paragenesis is complex with many tellurides, arsenite and sulfides, and primary hydrous phases including amphiboles, ferrosaponite and chlorite. The Au mineralisation level is the residual of the Fe-rich interstitial silicate melt trapped by the layering of the gabbros. The Cu levels above are like the secondary Pd-levels secondary mineralisation levels caused by reaction between primary sulphide and Fe-rich melt. The Skaergaard-type mineralisation owes its characteristics to the concentration of Fe-rich interstitial melt and loss of immiscible granophyric melt from the mush zone at the floor of the residual bulk magma and a continuum of dissolution and S-saturation in an ever changing interstitial melt environment.

  16. Developing a modified preservative efficacy testing approach as a predictive tool for the evaluation of preservative systems in liquid home care products under variable test conditions.

    PubMed

    Hoyt, Anne L; Bushman, Don; Lewis, Nathan; Faber, Robert

    2012-01-01

    How can a formulator have confidence that a preservative system will perform as expected under adverse conditions? Extreme conditions that can lead to the development of "off odors" in the product can be a serious challenge for companies providing home care products in the global market. Formulation and stability testing occur under controlled parameters that simulate limited environmental conditions and microbial challenges are typically performed with a standard inoculum level. While this is an acceptable and dependable process, it does not necessarily assess how well a preservative system can perform under extreme environmental conditions or against unusually high levels of bacterial challenges. This is especially true when formulations are diluted and stored by the end-user. By modifying microbial challenge testing of a liquid dishwashing product to include unexpected dilution schemes, increased microbial assaults, and elevated temperatures, a pattern of preservative efficacy was established. The resulting approach proved to be a useful tool when developing use directions, recommended dilution levels, the overall surfactant system, preservative type, and storage restrictions.

  17. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  18. Thermocapillary flow with evaporation and condensation and its effect on liquid retention in low-G fluid acquisition devices

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1994-01-01

    The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.

  19. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    NASA Astrophysics Data System (ADS)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  20. Adsorption energy as a metric for wettability at the nanoscale

    PubMed Central

    Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.

    2017-01-01

    Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869

  1. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    PubMed

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  2. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  3. Closure device for lead-acid batteries

    DOEpatents

    Ledjeff, Konstantin

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  4. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    PubMed

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Influence of fresh alfalfa supplementation on fat skatole and indole concentration and chop odour and flavour in lambs grazing a cocksfoot pasture.

    PubMed

    Devincenzi, T; Prunier, A; Meteau, K; Nabinger, C; Prache, S

    2014-12-01

    We investigated the influence of the level of fresh alfalfa supplementation on fat skatole and indole concentration and chop sensory attributes in grazing lambs. Four groups of nine male Romane lambs grazing a cocksfoot pasture were supplemented with various levels of alfalfa for at least 60days before slaughter. Perirenal fat skatole concentration was higher for lambs that consumed alfalfa than for those that consumed only cocksfoot. The intensity of 'animal' odour in the lean part of the chop and of 'animal' flavour in both the lean and fat parts of the chop, evaluated by a trained sensory panel, increased from the lowest level of alfalfa supplementation onwards and did not increase further with increasing levels of alfalfa supplementation. The outcome of this study therefore suggests that these sensory attributes may reach a plateau when perirenal fat skatole concentration is in the range 0.16-0.24μg/g of liquid fat. Copyright © 2014. Published by Elsevier Ltd.

  6. Liquid propellant reorientation in a low-gravity environment

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An existing empirical analysis relating to the reorientation of liquids in cylindrical tanks due to propulsive settling in a low gravity environment was extended to include the effects of geyser formation in the Weber number range from 4 to 10. Estimates of the minimum velocity increment required to be imposed on the propellant tank to achieve liquid reorientation were made. The resulting Bond numbers, based on tank radius, were found to be in the range from 3 to 5, depending upon the initial liquid fill level, with higher Bond number required for high initial fill levels. The resulting Weber numbers, based on tank radius and the velocity of the liquid leading edge, were calculated to be in the range from 6.5 to 8.5 for cylindrical tanks having a fineness ratio of 2.0, with Weber numbers of somewhat greater values for longer cylindrical tanks. It, therefore, appeared to be advantageous to allow small geysers to form and then dissipate into the surface of the collected liquid in order to achieve the minimum velocity increment. The Bond numbers which defined the separation between regions in which geyser formation did and did not occur due to propulsive settling in a spherical tank configuration ranged from 2 to 9 depending upon the liquid fill level.

  7. Improvement of Leaching Resistance of Low-level Waste Form in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.Y.; Lee, B.C.; Kim, C.L.

    2006-07-01

    Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molarmore » syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic polymethylbenzenes. However, as syngas conversion increases with increasing temperature, selectivity to liquid product diminished. This is attributed, in large part, to increased saturation of the olefinic intermediates over PdZn metal sites. Under all the conditions and catalysts evaluated in this study, generating liquid product in high yield was challenging (<10 wt. % C5+ yield).« less

  9. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  10. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  11. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  12. Line Spread as a Visual Clinical Tool for Thickened Liquids

    ERIC Educational Resources Information Center

    Lund, Annelise Masters; Mertz Garcia, Jane; Chambers, Edgar, IV.

    2013-01-01

    Purpose: Preparing modified liquids to a target level of consistency is critical to patients' nutritional care. This study examined the relationship of line spread (i.e., the distance a liquid flows) to viscometer measurements for a variety of product/liquid combinations and determined if flow distance visually differentiated nectar-thick…

  13. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  14. Neutrinoless double beta decay in Gerda

    NASA Astrophysics Data System (ADS)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  15. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level.

    PubMed

    Bendif, Hamdi; Adouni, Khaoula; Miara, Mohamed Djamel; Baranauskienė, Renata; Kraujalis, Paulius; Venskutonis, Petras Rimantas; Nabavi, Seyed Mohammad; Maggi, Filippo

    2018-09-15

    The aim of this study was to demonstrate the potential of extracts from Algerian Thymus munbyanus as a valuable source of antioxidants for use on an industrial level. To this end, a study was conducted on the composition and antioxidant activities of essential oils (EOs), pressurized liquid extracts (PLE) and supercritical fluid extracts (SFE-CO 2 ) obtained from Thymus munbyanus subsp. coloratus (TMC) and subsp. munbyanus (TMM). EOs and SFE-CO 2 extracts were analysed by GC-FID and GC×GC-TOFMS revealing significant differences. A successive extraction of the solid SFE-CO 2 residue by PLE extraction with solvents of increasing polarity such as acetone, ethanol and water, was carried out. The extracts were evaluated for total phenolic content by Folin-Ciocalteu assay, while the antioxidant power was assessed by DPPH, FRAP, and ORAC assays. SFE-CO 2 extracts were also analysed for their tocopherol content. The antioxidant activity of PLE extracts was found to be higher than that of SFE-CO 2 extracts, and this increased with solvent polarity (water > ethanol > acetone). Overall, these results support the use of T. munbyanus as a valuable source of substances to be used on an industrial level as preservative agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH and Selected Flavors in e-Cigarette Cartridges and Refill Solutions

    PubMed Central

    Lisko, Joseph G.; Tran, Hang; Stanfill, Stephen B.; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Introduction Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH and flavors in 36 e-liquids brands from four manufacturers. Methods We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control (QC) validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH and flavors. Results Three-quarters of the products contained lower measured nicotine levels than the stated label values (6% - 42% by concentration). The pH for e-liquids ranged from 5.1 – 9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Conclusions Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. Pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. PMID:25636907

  17. Effects of local infusions of apomorphine on the extracellular citrulline level in the striatum: Involvement of D1 and D2 dopamine receptors.

    PubMed

    Savel'ev, S A

    2006-11-01

    Studies using vital microdialysis and high-performance liquid chromatography showed that local infusion of the NO synthase inhibitor N-nitro-L-arginine (1 mM) into the striatum decreased, while infusion of the dopamine receptor agonist apomorphine (100 microM) increased the level of citrulline (a side product of nitric oxide synthesis) in the intercellular space of this structure in Sprague-Dawley rats. The increase in the citrulline level induced by infusions of apomorphine was completely prevented by local infusions of N-nitro-L-arginine (1 mM) and raclopride (10 microm), a dopamine D2 receptor blocker, but not by infusion of SCH-23390 (50 microm), a dopamine D1 receptor blocker. These data suggest that the increase in extracellular citrulline in the striatum induced by dopaminergic stimulation results from local increases in NO synthase activity and that this effect involves D2, but not D1 dopamine receptors.

  18. Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.

    PubMed

    Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming

    2018-01-01

    The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.

  19. Metabonomics evaluation of urine from rats administered with phorate under long-term and low-level exposure by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Sun, Xiaowei; Xu, Wei; Zeng, Yan; Hou, Yurong; Guo, Lin; Zhao, Xiujuan; Sun, Changhao

    2014-02-01

    The purpose of this study was to investigate the toxic effect of long-term and low-level exposure to phorate using a metabonomics approach based on ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Male Wistar rats were given phorate daily in drinking water at low doses of 0.05, 0.15 or 0.45 mg kg⁻¹ body weight (BW) for 24 weeks consecutively. Rats in the control group were given an equivalent volume of drinking water. Compared with the control group, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), urea nitrogen (BUN) and creatinine (CR) were increased in the middle- and high-dose groups whereas albumin (ALB) and cholinesterase (CHE) were decreased. Urine metabonomics profiles were analyzed by UPLC-MS. Compared with the control group, 12 metabolites were significantly changed in phorate-treated groups. In the negative mode, metabolite intensities of uric acid, suberic acid and citric acid were significantly decreased in the middle- and high-dose groups, whereas indoxyl sulfic acid (indican) and cholic acid were increased. In the positive mode, uric acid, creatinine, kynurenic acid and xanthurenic acid were significantly decreased in the middle- and high-dose groups, but 7-methylguanine (N⁷G) was increased. In both negative and positive modes, diethylthiophosphate (DETP) was significantly increased, which was considered as a biomarker of exposure to phorate. In conclusion, long-term and low-level exposure to phorate can cause disturbances in energy-related metabolism, liver and kidney function, the antioxidant system, and DNA damage. Moreover, more information can be provided on the evaluation of toxicity of phorate using metabonomics combined with clinical chemistry. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  1. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  2. [Effect of ensilage on bioconversion of switchgrass to ethanol based on liquid hot water pretreatment].

    PubMed

    Wu, Wentao; Ju, Meiting; Liu, Jinpeng; Liu, Boqun

    2016-04-25

    Ensilage is a traditional way of preserving fresh biomass. However, in order to apply ensilage to the ethanol biorefinery, two parameters need to be evaluated: quantity and quality changes of the biomass; and its effects on bioconversion process. To study these two aspects, switchgrass harvested on three different time points (Early, mid and late fall) were used as feedstock. The early fall harvested biomass was ensiled at 5 moisture levels ranging from 30% to 70%. Silage of 40% moisture and 3 other raw switchgrass were pretreated with liquid hot water, followed by enzymatic hydrolysis as well as simultaneous saccharification and fermentation. After 21 days storage pH values of all silages decreased below 4.0 and the dry matter losses were less than 2.0%, and structural sugars contents did not change dramatically. Liquid hot water caused more hemicellulose dissolution in the silage than in unensiled switchgrass. However, ensilage also increased the risk of releasing more sugar degradation products; After enzymatic hydrolysis, silage obtained higher total glucose, xylose and galactose yields than raw materials; After simultaneous saccharification and fermentation, ethanol concentration in silage was 12.1 g/L, higher than the unensiled switchgrass (10.3 g/L, 9.7 g/L and 10.6 g/L for early, mid and late fall respectively). Our results suggest that ensilage helps increase pretreatment efficiency and sugar yield, which increases final ethanol production.

  3. Treatment of wastewater containing o-phenylenediamine by ozone in a rotor-stator reactor.

    PubMed

    Arowo, Moses; Li, Yingwen; Chu, Guangwen; Sun, Baochang; Chen, Jianfeng; Shao, Lei

    2016-01-01

    This work employed a novel rotor-stator reactor (RSR) to intensify the degradation process of o-phenylenediamine (o-PDA) by ozone. The effects of different operating parameters including initial pH, temperature, rotation speed, liquid volumetric flow rate and inlet ozone concentration on the removal efficiency of o-PDA were investigated in an attempt to establish the optimum conditions. The removal efficiency was evaluated in terms of degradation ratio and chemical oxygen demand (COD) reduction ratio of the o-PDA wastewater. Results indicate that the removal efficiency decreased with increasing liquid volumetric flow rate but increased with an increase in pH and inlet ozone concentration. Also, the removal efficiency increased up to a certain level with an increase in rotation speed and temperature. Additionally, a comparison experiment was carried out in a stirred tank reactor (STR), and the results show that the degradation and COD reduction ratios reached a maximum of 94.6% and 61.2% in the RSR as compared to 45.3% and 28.6% in the STR, respectively. This work demonstrates that ozone oxidation carried out in RSR may be a promising alternative for pre-treatment of o-PDA wastewater.

  4. Liquid Motion Experiment Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato David J.; Dalton, Penni J.; Dodge, Franklin T.; Green, Steve

    1998-01-01

    The Liquid Motion Experiment (LME), designed to study the effects of liquid motion in rotating tanks, was flown on STS 84. LME was essentially a spin table that created a realistic nutation motion of scale-model tanks containing liquid. TWo spherical and two cylindrical transparent tanks were tested simultaneously, and three sets of such tanks were employed to vary liquid viscosity, fill level, and propellant management device (PMD) design. All the tanks were approximately 4.5 inches diameter. The primary test measurements were the radial and tangential torques exerted on the tanks by the liquid. Resonant frequencies and damping of the liquid oscillations were determined by sine sweep tests. For a given tank shape, the resonant frequency depended on fill level. For the cylindrical tanks, the resonances had somewhat different frequencies for the tangential axis (0.55 to 0.75 times spin rate) and the radial axis (0.73 to 0.78 times spin rate), and the tangential axis resonance agreed more closely with available analytical models. For the spherical tanks, the resonant frequencies were between 0.74 to 0.77 times the spin rate and were the same for the tangential and radial axes. The damping coefficients varied from about I% to 3% of critical, depending on tank shape, fill level, and liquid viscosity. 'Me viscous energy dissipation rates of the liquid oscillations were determined from sine dwell tests. The LME energy dissipation rates varied from 0.3 to 0.5 times the estimates obtained from scaling previous ground tests and spacecraft flight data. The PNDs sometimes enhanced the resonances and energy dissipation rates and sometimes decreased them, which points out the need to understand better the effects of PMD on liquid motion as a function of PMD and tank design.

  5. Design and Testing of Non-Toxic RCS Thrusters for Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Calvignac, Jacky; Tramel, Terri

    2003-01-01

    The current NASA Space Shuttle auxiliary propulsion system utilizes nitrogen tetroxide (NTO) and monomethylhydrazine (MMH), hypergolic propellants. This use of these propellants has resulted in high levels of maintenance and precautions that contribute to costly launch operations. By employing alternate propellant combinations, those less toxic to humans, the hazards and time required between missions can be significantly reduced. Use of alternate propellants can thereby increase the efficiency and lower the cost in launch operations. In support of NASA's Space Launch Initiative (SLI), TRW proposed a three-phase project structured to significantly increase the technology readiness of a high-performance reaction control subsystem (RCS) thruster using non-toxic propellant for an operationally efficient and reusable auxiliary propulsion system (APS). The project enables the development of an integrated primary/vernier thruster capable of providing dual-thrust levels of both 1000-lbf class thrust and 25-lbf thrust. The intent of the project is to reduce the risk associated with the development of an improved RCS flight design that meets the primary NASA objectives of improved safety and reliability while reducing systems operations and maintenance costs. TRW proposed two non-toxic auxiliary propulsion engine designs, one using liquid oxygen and liquid hydrogen and the other using liquid oxygen and liquid ethanol, as candidates to meet the goals of reliability and affordability at the RCS level. Both of these propellant combinations offer the advantage of a safe environment for maintenance, while at the same time providing adequate to excellent performance for a conventional liquid propulsion systems. The key enabling technology incorporated in both TRW thrusters is the coaxial liquid on liquid pintle injector. This paper will concentrate on only the design and testing of one of the thrusters, the liquid oxygen (LOX) and liquid hydrogen (LH2) thruster. The LOX/LH2 thruster design includes a LOX-centered pintle injector, consisting of two rows of slots that create a radial spoke spray pattern in the combustion chamber. The main fuel injector creates a continuous sheet of LH2 originating upstream of the LOX pintle injector. The two propellants impinge at the pintle slots, where the resulting momentum ratio and spray pattern determines the combustion efficiency and thermal effects on the hardware. Another enabling technology used in the design of this thruster is fuel film cooling through a duct, lining the inner wall of the combustion chamber barrel section. The duct is also acts as a secondary fuel injection point. The variation in the amount of LH2 used for the duct allows for adjustments in the cooling capacity for the thruster. The Non-Toxic LOX-LH2 RCS Workhorse Thruster was tested at the NASA Marshall Space Flight Center's Test Stand 500. Hot-fire tests were conducted between March 08, 2002 and April 05, 2002. All testing during the program base period were performed at sea-level conditions. During the test program, 7 configurations were tested, including 2 combustion chambers, 3 LOX injector pintle tips, and 4 LH2 injector stroke settings. The operating conditions that were surveyed varied thrust levels, mixture ratio and LH2 duct cooling flow. The copper heat sink chamber was used for 16 burns, each burn lasting from 0.4 to 10 seconds, totaling 51.4 seconds, followed by Haynes chamber testing ranging from 0.9 to 120 seconds, totaling 300.9 seconds. The total accumulated burn time for the test program is 352.3 seconds. C* efficiency was calculated and found to be within expectable limits for most operating conditions. The temperature on the Haynes combustion chamber remained below established material limits, with the exception of one localized hot spot. The test results demonstrate that both the coaxial liquid-on-liquid pintle injector design and fuel duct concepts are viable for the intended application. The thruster head-e design maintained cryogenic injection temperatures while firing, which validates the concept for minimal heat soak back. By injecting fuel into the duct, the throat temperatures were manageable, yet the split of fuel through the cooling duct does not compromise the overall combustion efficiency, which indicates that, provided proper design refinement, such a concept can be applied to a high-performance version of the thruster. These hot fire tests demonstrate the robustness of the duct design concept and good capability to withstand off-nominal operating conditions without adversely impacting the thermal response of the engine, a key design feature for a cryogenic thruster.

  6. Plasma levels of coenzyme Q10 in children with hyperthyroidism.

    PubMed

    Menke, Thomas; Niklowitz, Petra; Reinehr, Thomas; de Sousa, Gideon John; Andler, Werner

    2004-01-01

    In hyperthyroidism, increased oxygen consumption and free radical production in the stimulated respiratory chain leads to oxidative stress. Apart from its antioxidative function, coenzyme Q10 (CoQ10) is involved in electron transport in the respiratory chain. The aim of this study was to determine whether there is a correlation between an increased respiratory chain activity and the state of CoQ10 in children with hyperthyroidism. The CoQ10 plasma concentration was measured by high-performance liquid chromatography in 12 children with hyperthyroidism before and after treatment. In the hyperthyroid state, the plasma level of CoQ10 was significantly decreased in comparison with the level in the euthyroid state. The correction of the hyperthyroid state resulted in a normalization of the CoQ10 level. Plasma CoQ10 deficiency appears to be related to the stimulated respiratory chain activity in children with hyperthyroidism. Copyright 2004 S. Karger AG, Basel

  7. Second Breakdown of 18V Grounded Gate NMOS induced by the Kirk Effect under Electrostatic Discharge

    NASA Astrophysics Data System (ADS)

    Jeon, Byung-Chul; Lee, Seung-Chul; Han, Min-Koo

    2003-09-01

    Electrostatic Discharge (ESD) failure mechanisms of 18V grounded gate NMOS (GGNMOS) for liquid crystal display driver IC (LDI) applications are investigated and effects of layout design parameters on the ESD immunity level are analyzed. Experimental results show that 18V GGNMOS exhibits snapback characteristics and the ESD immunity level is rather high when XO (N-drift overlap over n+ source/drain) is sufficiently large, while GGNMOS does not exhibit the sustaining region and is very vulnerable to ESD stress when XO is relatively small. Simulation results show that the ESD failure mechanism of 18V GGNMOS could be the low-temperature second breakdown induced by the Kirk effect. It is inferred that a certain amount of XO is indispensable to ensure snapback characteristics and high ESD immunity level. Simulation results also show that the ESD immunity level is increased as drain contact to gate space (DCGS) is increased.

  8. Fusarium species and fumonisins in subsistence maize in the former Transkei region, South Africa: a multi-year study in rural villages.

    PubMed

    Rheeder, J P; Van der Westhuizen, L; Imrie, G; Shephard, G S

    2016-09-01

    Fumonisin occurrence was investigated in subsistence maize in four rural villages in each of Mbizana and Centane areas, South Africa. Samples (total 211) were analysed morphologically for Fusarium species and by high performance liquid chromatography for fumonisins. The mean incidence levels of Fusarium verticillioides in Centane good maize were 16% for both 1997 and 2000, but increased to 32% in 2003, whereas Mbizana good maize contained levels of 17% and 11% (2000 and 2003 seasons, respectively). The mean total fumonisin level in good maize in Centane for 1997 and 2000 was 575 and 975 µg/kg and 2150 µg/kg in 2003. In Mbizana, the mean total fumonisin level in good maize for 2000 was 950 µg/kg, but decreased to 610 µg/kg in 2003. The 2003 drought conditions led to a substantial increase in fumonisin levels in dry subhumid Centane, compared to humid subtropical Mbizana. This study emphasises the seasonal fluctuation in fumonisin levels.

  9. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  10. Experimental tobacco marketplace: substitutability of e-cigarette liquid for cigarettes as a function of nicotine strength.

    PubMed

    Pope, Derek A; Poe, Lindsey; Stein, Jeffrey S; Kaplan, Brent A; Heckman, Bryan W; Epstein, Leonard H; Bickel, Warren K

    2018-04-18

    The experimental tobacco marketplace (ETM) provides a method to estimate, prior to implementation, the effects of new products or policies on purchasing across various products in a complex tobacco marketplace. We used the ETM to examine the relationship between nicotine strength and substitutability of alternative products for cigarettes to contribute to the literature on regulation of e-liquid nicotine strength. The present study contained four sampling and four ETM purchasing sessions. During sampling sessions, participants were provided 1 of 4 e-liquid strengths (randomised) to sample for 2 days followed by an ETM purchasing session. The nicotine strength sampled in the 2 days prior to an ETM session was the same strength available for purchase in the next ETM. Each participant sampled and could purchase 0 mg/mL, 6 mg/mL, 12 mg/mL and 24 mg/mL e-liquid, among other products, during the study. Cigarette demand was unaltered across e-liquid strength. E-liquid was the only product to substitute for cigarettes across more than one e-liquid strength. Substitutability increased as a function of e-liquid strength, with the 24 mg/mL displaying the greatest substitutability of all products. The present study found that e-liquid substitutability increased with nicotine strength, at least up to 24 mg/mL e-liquid. However, the effects of e-liquid nicotine strength on cigarette purchasing were marginal and total nicotine purchased increased as e-liquid nicotine strength increased. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes

    NASA Astrophysics Data System (ADS)

    Fathi, H.; Raoof, A.; Mansouri, S. H.

    2017-05-01

    The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.

  12. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei; Atlas Collaboration

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  13. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.

    PubMed

    Kurnia, Kiki A; Sintra, Tânia E; Neves, Catarina M S S; Shimizu, Karina; Canongia Lopes, José N; Gonçalves, Fernando; Ventura, Sónia P M; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2014-10-07

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.

  14. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  15. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  16. Creation of energetic biothermite inks using ferritin liquid protein

    NASA Astrophysics Data System (ADS)

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-04-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality.

  17. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    NASA Astrophysics Data System (ADS)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN decreases its utility as a molecular solvent for polymers such as PEO.

  18. Influence of trace elements mixture on bacterial diversity and fermentation characteristics of liquid diet fermented with probiotics under air-tight condition.

    PubMed

    He, Yuyong; Chen, Zhiyu; Liu, Xiaolan; Wang, Chengwei; Lu, Wei

    2014-01-01

    Cu2+, Zn2+, Fe2+ and I- are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I- mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I- mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I- at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I- is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I- in a 21-d fermentation and Cu2+>I->Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I- is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.

  19. Electronic and structural transitions in dense liquid sodium.

    PubMed

    Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A

    2007-09-27

    At ambient conditions, the light alkali metals are free-electron-like crystals with a highly symmetric structure. However, they were found recently to exhibit unexpected complexity under pressure. It was predicted from theory--and later confirmed by experiment--that lithium and sodium undergo a sequence of symmetry-breaking transitions, driven by a Peierls mechanism, at high pressures. Measurements of the sodium melting curve have subsequently revealed an unprecedented (and still unexplained) pressure-induced drop in melting temperature from 1,000 K at 30 GPa down to room temperature at 120 GPa. Here we report results from ab initio calculations that explain the unusual melting behaviour in dense sodium. We show that molten sodium undergoes a series of pressure-induced structural and electronic transitions, analogous to those observed in solid sodium but commencing at much lower pressure in the presence of liquid disorder. As pressure is increased, liquid sodium initially evolves by assuming a more compact local structure. However, a transition to a lower-coordinated liquid takes place at a pressure of around 65 GPa, accompanied by a threefold drop in electrical conductivity. This transition is driven by the opening of a pseudogap, at the Fermi level, in the electronic density of states--an effect that has not hitherto been observed in a liquid metal. The lower-coordinated liquid emerges at high temperatures and above the stability region of a close-packed free-electron-like metal. We predict that similar exotic behaviour is possible in other materials as well.

  20. Ecological Risk Assessment Report, Submerged Quench Incinerator, Task IRA-2, Basin F Liquids Treatment Design. Version 3.0

    DTIC Science & Technology

    1991-03-01

    black bullhead (Ictalurus melas), channel catfish (Ictalurus punctatus), and carp (Cvorinus corpio). Aquatic invertebrates that have been collected...in an aquatic medium); "* Bioaccumulation ( concentration from water and from diet ); and * Biomagnification (systematic increase in concentration as...pathway bioaccumulation is estimated by comparing chemical concentrations in soil and diet to chemical concentrations in tissue levels at

  1. Wireless remote liquid level detector and indicator for well testing

    DOEpatents

    Fasching, George E.; Evans, Donald M.; Ernest, John H.

    1985-01-01

    An acoustic system is provided for measuring the fluid level in oil, gas or water wells under pressure conditions that does not require an electrical link to the surface for level detection. A battery powered sound transmitter is integrated with a liquid sensor in the form of a conductivity probe, enclosed in a sealed housing which is lowered into a well by means of a wire line reel assembly. The sound transmitter generates an intense identifiable acoustic emission when the sensor contacts liquid in the well. The acoustic emissions propagate up the well which functions as a waveguide and are detected by an acoustic transducer. The output signal from the transducer is filtered to provide noise rejection outside of the acoustic signal spectrum. The filtered signal is used to indicate to an operator the liquid level in the well has been reached and the depth is read from a footage counter coupled with the wire line reel assembly at the instant the sound signal is received.

  2. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    PubMed

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  3. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  4. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    PubMed

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  5. Development of medial pterygoid muscle fibers in rabbits fed with a liquid diet.

    PubMed

    Kuroki, Kozue; Morita, Takumi; Takasu, Hiroki; Saito, Keisuke; Fujiwara, Takuya; Hiraba, Katsunari; Goto, Shigemi

    2017-08-01

    This study aimed to investigate the influence of decreased functional load on the medial pterygoid muscle during mastication in rabbits fed with a liquid-diet. Medial pterygoid muscles from 54 rabbits (solid- and liquid-diet groups, n=48; unweaned group, n=6) were histochemically examined at 4, 9, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Significant increases in the diameters of all fiber types were seen up to 33 weeks of age in the solid-diet group; however, no significant increase was noted in fiber types I and IC, from 4 to 33 weeks of age, in the liquid-diet group. The proportion of slow fibers increased up to 12 weeks followed by an increase in the number of fast fibers in the solid-diet group, whereas in the liquid-diet group, the number of slow fiber declined after weaning. Liquid-diet consumption caused muscle fiber atrophy and an increase in the number of fast fibers during early developmental stages after weaning. Furthermore, the growth pattern of the medial pterygoid muscle in the liquid-diet group was different from that in the solid-diet group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  7. Electrolysis of a molten semiconductor

    DOE PAGES

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less

  8. Heat Capacity of Hydrous Silicate Melts

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T

  9. Capacitive density measurement for supercritical hydrogen

    NASA Astrophysics Data System (ADS)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  10. Choline-Based Amino Acid ILs-Collagen Interaction: Enunciating Its Role in Stabilization/Destabilization Phenomena.

    PubMed

    Tarannum, Aafiya; Rao, J Raghava; Fathima, N Nishad

    2018-01-25

    Given the potential of productive interaction between choline-based amino acid ionic liquids (CAAILs) and collagen, we investigated the role of four CAAILs, viz., choline serinate, threoninate, lysinate, and phenylalaninate, and the changes mediated by them in the structure of collagen at different hierarchical orderings, that is, at molecular and fibrillar levels. The rheological, dielectric behavior and the secondary structural changes signify the alteration in the triple helical structure of collagen at higher concentrations of CAAILs. A marginal swelling and slight decrease in the thermal stability of rat tail tendon collagen fibers were observed for choline serinate and threoninate, albeit distortions in banding patterns were noticed for choline lysinate and phenylalaninate, suggesting chaotropicity of the ions at the fibrillar level. This signifies the changes in the hydrogen-bonding environment of collagen with increasing concentrations of CAAILs, which could be due to competitive hydrogen bonding between the carbonyl group of amino acid ionic liquids and the hydroxyl groups of collagen.

  11. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    PubMed

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  13. The effect of an antibacterial washing-up liquid in reducing dishwater aerobic plate counts.

    PubMed

    Holah, J T; Hall, K E

    2006-05-01

    To assess any significant differences in the aerobic plate count (APC) of catering dishwaters following the use of a traditional, nonantibacterial or an antibacterial washing-up liquid. A dishwashing trial was undertaken within a commercial restaurant of 6 weeks duration (3 weeks with each washing-up liquid in a randomized, weekly pattern). Five replicate samples were taken from the dishwater at the end of the washing-up operation, on three separate occasions each day corresponding to mid-morning, lunchtime and mid-afternoon meal preparations. The antibacterial product was shown to significantly reduce the APC by an average log10 reduction of 1.81 CFU ml(-1) (98.5%) as compared with the traditional product. APC were lower for each of the three weekly time periods for the antibacterial product. Continued use of the antibacterial product did not decrease the APC of the dishwater, though with the traditional product, dishwater counts increased throughout the trial week. Antibacterial washing-up liquids, with proven activity in controlling levels of microorganisms in dishwaters, could play a significant role in reducing the risk of cross-contamination between washed articles during washing-up operations.

  14. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    PubMed

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  15. Hybrid propulsion for launch vehicle boosters: A program status update

    NASA Technical Reports Server (NTRS)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  16. Isotropic Elastic Stress Induced Large Temperature Range Liquid Crystal Blue Phase at Room Temperature.

    PubMed

    Manna, Suman K; Dupont, Laurent; Li, Guoqiang

    2016-08-11

    A thermodynamically stable blue phase (BP) based on the conventional rod like nematogen is demonstrated for the first time at room temperature by only diluting a chiral-nematic mixture with the help of some nonmesogenic isotropic liquid. It is observed that addition of this isotropic liquid does not only stabilize the BPs at room temperature, but also significantly improves the temperature range (reversible during heating and cooling) of the BPs to the level of more than 28 °C. Apart from that, we have observed its microsecond electro-optic response time and, external electric field induced wavelength tuning, which are the two indispensable requirements for next generation optical devices, photonic displays, lasers, and many more. Here we propose that the isotropic liquid plays two crucial roles simultaneously. On one hand, it reduces the effective elastic moduli (EEM) of the BP mixtures and stabilizes the BPs at room temperature, and on the other hand, it increases the symmetry of the mutual orientation ordering among the neighboring unit cells of the BP. Hence, the resultant mixture becomes better resistive to some microscopic change due to the change in temperature, even over a large range.

  17. Interaction of Ionic Liquids with Lipid Biomembrane: Implication from Supramolecular Assembly to Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Jing, Benxin; Lan, Nan; Zhu, Y. Elaine

    2013-03-01

    An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.

  18. Highly resolved fluid flows: "liquid plasmas" at the kinetic level.

    PubMed

    Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor

    2004-04-30

    Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.

  19. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.

    PubMed

    Wu, Sarah Xiao; Chen, Lide; Zhu, Jun; Walquist, McKenzie; Christian, David

    2018-04-30

    Insufficient denitrification in biological treatment is often a result of the lack of a carbon source. In this study, use of the volatile fatty acids (VFAs) generated via pre-digestion as a carbon source to improve denitrification in sequencing batch reactor (SBR) treatment of liquid swine manure was investigated. The pre-digestion of swine manure was realized by storing the manure in a sealed container in room temperature and samples were taken periodically from the container to determine the VFA levels. The results showed that after 14 days of pre-digestion, the VFA level in the digested liquid was increased by 200%. A polynomial relationship for the VFA level in the digested manure with the digestion time was observed with a correlation coefficient being 0.9748. Two identical SBRs were built and operated on 8-h cycles in parallel, with one fed with pre-digested and the other raw swine manure. There were five phases included in each cycle, i.e., anaerobic (90 min), anoxic (150 min), anoxic/anaerobic (90 min), anoxic/aerobic (120 min), and settle/decant (30 min), and the feeding was split to 600 mL/200 mL and performed at the beginning of and 240 min into the cycle. The SBR fed on pre-digested swine manure achieved successful denitrification with only 0.35 mg/L nitrate left in the effluent, compared to 15.9 mg/L found in the effluent of the other SBR. Nitrite was not detected in the effluent from both SBRs. The results also indicated that there was no negative impact of feeding SBRs with the pre-digested liquid swine manure for treatment on the removal of other constituents such as total solids (TS), volatile solids (VS), suspended solids (SS), volatile suspended solids (VSS), and soluble chemical oxygen demand (COD). Therefore, anaerobic digestion as a pretreatment can be an effective way to condition liquid swine manure for SBR treatment to achieve sufficient nitrate removal.

  20. 43. Upper level, left to rightground missile guidance system liquid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Upper level, left to right--ground missile guidance system liquid cooling equipment, guidance and control coupler rack, programmer group - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  1. 40 CFR 60.747 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... efficiency falls below the applicable level as follows: (A) For those affected facilities demonstrating... efficiency falls below the applicable level as follows: (A) For those affected facilities demonstrating..., demonstrating compliance by the test methods described in § 60.743(a)(3) (liquid-liquid material balance) shall...

  2. Elevated Mercury Concentrations in Humans of Madre de Dios, Peru

    PubMed Central

    Ashe, Katy

    2012-01-01

    The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population. PMID:22438911

  3. Elevated mercury concentrations in humans of Madre de Dios, Peru.

    PubMed

    Ashe, Katy

    2012-01-01

    The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population.

  4. Effect of variable water intake as mediated by dietary potassium carbonate supplementation on rumen dynamics in lactating dairy cows.

    PubMed

    Fraley, S E; Hall, M B; Nennich, T D

    2015-05-01

    Water is a critical nutrient for dairy cows, with intake varying with environment, production, and diet. However, little work has evaluated the effects of water intake on rumen parameters. Using dietary potassium carbonate (K2CO3) as a K supplement to increase water intake, the objective of this study was to evaluate the effect of K2CO3 supplementation on water intake and on rumen parameters of lactating dairy cows. Nine ruminally cannulated, late-lactation Holstein cows (207±12d in milk) were randomly assigned to 1 of 3 treatments in a replicated 3×3 Latin square design with 18-d periods. Dietary treatments (on a dry matter basis) were no added K2CO3 (baseline dietary K levels of 1.67% dietary K), 0.75% added dietary K, and 1.5% added dietary K. Cows were offered treatment diets for a 14-d adaption period followed by a 4-d collection period. Ruminal total, liquid, and dry matter digesta weights were determined by total rumen evacuations conducted 2h after feeding on d 4 of the collection period. Rumen fluid samples were collected to determine pH, volatile fatty acids, and NH3 concentrations, and Co-EDTA was used to determine fractional liquid passage rate. Milk samples were collected twice daily during the collection period. Milk, milk fat, and protein yields showed quadratic responses with greatest yields for the 0.75% added dietary K treatment. Dry matter intake showed a quadratic response with 21.8kg/d for the 0.75% added dietary K treatment and 20.4 and 20.5kg/d for control and the 1.5% added dietary K treatment, respectively. Water intake increased linearly with increasing K2CO3 supplementation (102.4, 118.4, and 129.3L/d) as did ruminal fractional liquid passage rate in the earlier hours after feeding (0.118, 0.135, and 0.141 per hour). Total and wet weights of rumen contents declined linearly and dry weight tended to decline linearly as dietary K2CO3 increased, suggesting that the increasing water intake and fractional liquid passage rate with increasing K2CO3 increased the overall ruminal turnover rate. Ruminal ammonia concentrations declined linearly and pH increased linearly as K supplementation increased. As a molar percentage of total volatile fatty acids, acetate increased linearly as dietary K increased, though propionate declined. Increasing dietary K2CO3 and total K in the diets of lactating dairy cows increased water consumption and modified ruminal measures in ways suggesting that both liquid and total ruminal turnover were increased as both water and K intake increased. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica.

    PubMed

    Choi, Eun-Sil; Chung, Hea-Jong; Kim, Myoung-Ju; Park, Seung-Moon; Cha, Byeong-Jin; Yang, Moon-Sik; Kim, Dae-Hyuk

    2005-05-01

    The Cryphonectria parasitica gene cpmk2, which encodes a mitogen-activated protein kinase belonging to the yeast extracellular signalling-regulated kinase (YERK1) subfamily, was isolated and its biological function was examined. Disruption of cpmk2 resulted in impaired pigmentation and abolished conidiation. Growth defects were observed in the cpmk2 mutant grown on solid plates, but growth of the mutant appeared normal in liquid media, including EP complete and PD broth, suggesting that the cpmk2 gene is involved in sensing and responding to growth conditions. The mutant's production of laccase, as measured by the size of the coloured area produced on tannic-acid-supplemented plates, was significantly reduced compared with the wild-type, but the intensity of the coloured area was unchanged, suggesting that the reduced laccase activity was owing to reduced growth on solid media rather than transcriptional downregulation. A dramatic reduction observed in the canker area produced by the cpmk2 mutant compared with the wild-type, even more severe than that of a hypovirulent strain, can also be ascribed to defective growth on solid surfaces rather than to impairments in a virulence factor(s). Downregulation of the pheromone gene Mf2/1 was also observed in the mutant, indicating a possible explanation for the regulation of the pheromone precursor gene in filamentous fungi and suggesting the presence of the yeast-like pheromone-responsive pathway in C. parasitica. Immunoblot analyses revealed that the phosphorylation level of CpMK2 increased in both virus-free and virus-containing strains in liquid cultures of up to 5 days old and decreased in older cultures. Moreover, the CpMK2 phosphorylation level increased in both strains after transfer from liquid to solid medium. However, levels of phosphorylated CpMK2 were similar in the two strains, suggesting that CpMK2, unlike CpMK1, is not under the direct control of a hypovirus.

  6. Porous metallosilicates for heterogeneous, liquid-phase catalysis: perspectives and pertaining challenges

    PubMed Central

    Padovan, Daniele; Tarantino, Giulia

    2018-01-01

    Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years. PMID:29515849

  7. Porous metallosilicates for heterogeneous, liquid-phase catalysis: perspectives and pertaining challenges

    NASA Astrophysics Data System (ADS)

    Hammond, Ceri; Padovan, Daniele; Tarantino, Giulia

    2018-02-01

    Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years.

  8. A fast response, low heat generating activation method for LHe level sensors

    NASA Astrophysics Data System (ADS)

    Choudhury, Anup; Sahu, Santosh; Kanjilal, Dinakar

    2018-06-01

    A superconducting liquid helium (LHe) level sensor of length 300 mm has been fabricated based on the principle of differential heat transfer characteristic in helium gas compared to that in liquid. The sensor wire used has a diameter of 38 μm, and the wire was obtained from a pack of multifilament wires. A full thermo-electrical characterisation of the sensor was carried out in a dedicated setup. Its dynamic thermal response was also studied to understand its timing characteristics at different liquid levels and excitation currents. Based on the sensor characterisation, a new level measurement technique is evaluated which can reduce the heat load going to LHe during sensor activation without compromising on its sensitivity or accuracy. The timing response with this technique will make the level detection faster compared to the conventional techniques.

  9. ASSESSMENT OF THE LIQUID WATER CONTENT OF SUMMERTIME AEROSOL IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    The concentration of aerosol liquid water mass represents an important parameter for understanding the physical properties of PM2.5 in the atmosphere. Increases in ambient relative humidity can increase aerosol liquid water and thus the composite particle mass and particle volu...

  10. Creation of energetic biothermite inks using ferritin liquid protein

    PubMed Central

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-01-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality. PMID:28447665

  11. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  12. Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Ahmed, Sudad S.; Ibrahim, Rawa K.; Al-Naimee, Kais; Naje, Asama N.; Ibrahim, Omar A.; Majeed, K. A.

    2018-05-01

    The electrical and optical properties results were studied for Cadmium Sulphide (CdS) Nanoparticles / Nematic liquid crystal (5CB) mixtures. Doping of CdS nanoparticles increases the spontaneous polarization and response time, the increase is due to large dipole-dipole interaction between the liquid crystal (LC) molecules and CdS nanoparticles, which increase the anchoring energy. The electro-optic measurements revealed a decrease (∼40%) in threshold voltage, and faster response time in doped sample cells than Pure 4'-n-pentyl-4-cyanobiphenyl (5CB) nematic liquid crystal.

  13. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, T. K., E-mail: tamal@vecc.gov.in; Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these threemore » cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.« less

  14. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  15. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  16. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  17. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  18. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  19. 46 CFR 98.25-45 - Liquid level gaging device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  20. 46 CFR 98.25-45 - Liquid level gaging device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  1. 46 CFR 98.25-45 - Liquid level gaging device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  2. 46 CFR 98.25-45 - Liquid level gaging device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  3. 46 CFR 98.25-45 - Liquid level gaging device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  4. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  5. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  6. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  7. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  8. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  9. An Electromagnetic Resonance Circuit for Liquid Level Detection

    ERIC Educational Resources Information Center

    Hauge, B. L.; Helseth, L. E.

    2012-01-01

    Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

  10. Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.

    PubMed

    Wang, P M; Lai-Fook, S J

    1997-01-01

    We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.

  11. Analysis of Phthalate Migration to Food Simulants in Plastic Containers during Microwave Operations

    PubMed Central

    Moreira, Miriany A.; André, Leiliane C.; Cardeal, Zenilda L.

    2013-01-01

    Phthalates used as plasticizers in the manufacture of household containers can potentially be transferred to foods that are stored or heated in these plastic containers. Phthalates are endocrine disruptor compounds (EDC) and are found in very low concentrations in foods, thus, highly sensitive analytical techniques are required for their quantification. This study describes the application of a new method developed for analyzing the migration of dibutylphthalate (DBP) and benzylbutylphthalate (BBP) from plastic food containers into liquid food simulants. This new method employs the technique of solid phase microextraction cooled with liquid nitrogen. The analysis was conducted by gas chromatography/mass spectrometry (GC/MS) using a polyacrylate fiber. Ultrapure water was used as a simulant for liquids foods, and both new and used plastic containers were placed in a domestic microwave oven for different periods of time at different power levels. The limits of detection for DBP and BBP were 0.08 µg/L and 0.31 µg/L, respectively. BBP was not found in the samples that were analyzed. DBP was found in concentrations ranging from

  12. Analysis of phthalate migration to food simulants in plastic containers during microwave operations.

    PubMed

    Moreira, Miriany A; André, Leiliane C; Cardeal, Zenilda L

    2013-12-30

    Phthalates used as plasticizers in the manufacture of household containers can potentially be transferred to foods that are stored or heated in these plastic containers. Phthalates are endocrine disruptor compounds (EDC) and are found in very low concentrations in foods, thus, highly sensitive analytical techniques are required for their quantification. This study describes the application of a new method developed for analyzing the migration of dibutylphthalate (DBP) and benzylbutylphthalate (BBP) from plastic food containers into liquid food simulants. This new method employs the technique of solid phase microextraction cooled with liquid nitrogen. The analysis was conducted by gas chromatography/mass spectrometry (GC/MS) using a polyacrylate fiber. Ultrapure water was used as a simulant for liquids foods, and both new and used plastic containers were placed in a domestic microwave oven for different periods of time at different power levels. The limits of detection for DBP and BBP were 0.08 µg/L and 0.31 µg/L, respectively. BBP was not found in the samples that were analyzed. DBP was found in concentrations ranging from

  13. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting.

  14. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Gong, Zhaoheng; Harder, Tristan H.

    The occurrence of non-liquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two Intensive Operating Periods (IOP1 and IOP2) that took place during the wet and dry seasons, respectively, of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional and continental scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, which is an indicator of the mix of physical states in a sampled particle population, was measured in real time atmore » ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered while non-liquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles were liquid as a campaign average, although this percentage dropped to as low as 60% during periods of anthropogenic influence. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, was the largest source of liquid PM. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of non-liquid PM correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Lastly, anthropogenic influences appear to favor non-liquid PM by providing molecular species that increase viscosity when internally mixed with background PM, by contributing non-liquid particles in external mixtures of PM, and a by combination of these effects under real-world conditions.« less

  15. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    DOE PAGES

    Bateman, Adam P.; Gong, Zhaoheng; Harder, Tristan H.; ...

    2016-08-17

    The occurrence of non-liquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two Intensive Operating Periods (IOP1 and IOP2) that took place during the wet and dry seasons, respectively, of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional and continental scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, which is an indicator of the mix of physical states in a sampled particle population, was measured in real time atmore » ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered while non-liquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles were liquid as a campaign average, although this percentage dropped to as low as 60% during periods of anthropogenic influence. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, was the largest source of liquid PM. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of non-liquid PM correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Lastly, anthropogenic influences appear to favor non-liquid PM by providing molecular species that increase viscosity when internally mixed with background PM, by contributing non-liquid particles in external mixtures of PM, and a by combination of these effects under real-world conditions.« less

  16. Active Co-Storage of Cryogenic Propellants for Lunar Explortation

    NASA Technical Reports Server (NTRS)

    Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth Departure Stage. The paper also reports on a subscale test of this active co-storage configuration. The test tank is 0.7 m in diameter, approximately one-third the dimension of tanks that would be needed in a lunar ascent module. A thin-walled fiberglass skirt supports and isolates the tank from a 100 K stage. A similar thin-walled skirt supports the lOOK stage from the ambient temperature structure. An aluminum shield with a heavy MLI blanket surrounds the tank and is attached at the 100 K stage. In this initial phase of the project, there is no tank on the 100 K stage, but it is actively cooled by a single-stage cryocooler similar in design to the one used on the RHESSI mission. The test configuration includes a number of innovative elements, including a helical support heat exchanger and an external thermodynamic vent/heat interception system. To avoid the complexity of an explosive gas handling system, testing will be done with liquid helium and liquid neon as simulant fluids. The properties of these fluids bracket the properties of liquid hydrogen. Instrumentation allows tank temperature and shield temperature profiles, tank liquid levels, and pressure drops through the flow lines, to be measured.

  17. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  18. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-06-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  19. The role of sugar-sweetened beverage consumption in adolescent obesity: a review of the literature.

    PubMed

    Harrington, Susan

    2008-02-01

    Soft drink consumption has increased by 300% in the past 20 years, and 56-85% of children in school consume at least one soft drink daily. The odds ratio of becoming obese among children increases 1.6 times for each additional can or glass of sugar-sweetened drink consumed beyond their usual daily intake of the beverage. Soft drinks currently constitute the leading source of added sugars in the diet and exceed the U.S. Department of Agriculture's recommended total sugar consumption for adolescents. With the increase in adolescent obesity and the concurrent increase in consumption of sugar-sweetened beverages (SSB), the assumption infers a relationship between the two variables. SSB, classified as high-glycemic index (GI) liquids, increase postprandial blood glucose levels and decrease insulin sensitivity. Additionally, high-GI drinks submit to a decreased satiety level and subsequent overeating. Low-GI beverages stimulate a delayed return of hunger, thereby prompting an increased flexibility in amounts and frequencies of servings. Single intervention manipulation, elimination, or marked reduction of SSB consumption may serve to decrease caloric intake, increase satiety levels, decrease tendencies towards insulin resistance, and simplify the process of weight management in this population.

  20. Air-liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2.

    PubMed

    Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze

    2017-01-01

    The intestinal porcine epithelial cell line IPEC-J2, cultured under the air-liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo . Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium-cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1 α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1 α , demonstrating a major change in the transcriptional response.

  1. Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2

    PubMed Central

    Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze

    2017-01-01

    The intestinal porcine epithelial cell line IPEC-J2, cultured under the air–liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo. Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium–cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1α, demonstrating a major change in the transcriptional response. PMID:28250970

  2. Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins

    PubMed Central

    Kistler, Kurt A.; Gillman, Gene; Voudris, Vassilis

    2015-01-01

    Introduction: The purpose of this study was to evaluate sweet-flavored electronic cigarette (EC) liquids for the presence of diacetyl (DA) and acetyl propionyl (AP), which are chemicals approved for food use but are associated with respiratory disease when inhaled. Methods: In total, 159 samples were purchased from 36 manufacturers and retailers in 7 countries. Additionally, 3 liquids were prepared by dissolving a concentrated flavor sample of known DA and AP levels at 5%, 10%, and 20% concentration in a mixture of propylene glycol and glycerol. Aerosol produced by an EC was analyzed to determine the concentration of DA and AP. Results: DA and AP were found in 74.2% of the samples, with more samples containing DA. Similar concentrations were found in liquid and aerosol for both chemicals. The median daily exposure levels were 56 μg/day (IQR: 26–278 μg/day) for DA and 91 μg/day (IQR: 20–432 μg/day) for AP. They were slightly lower than the strict NIOSH-defined safety limits for occupational exposure and 100 and 10 times lower compared with smoking respectively; however, 47.3% of DA and 41.5% of AP-containing samples exposed consumers to levels higher than the safety limits. Conclusions: DA and AP were found in a large proportion of sweet-flavored EC liquids, with many of them exposing users to higher than safety levels. Their presence in EC liquids represents an avoidable risk. Proper measures should be taken by EC liquid manufacturers and flavoring suppliers to eliminate these hazards from the products without necessarily limiting the availability of sweet flavors. PMID:25180080

  3. "Dilute & shoot" approach for rapid determination of trace amounts of nicotine in zero-level e-liquids by reversed phase liquid chromatography and hydrophilic interactions liquid chromatography coupled with tandem mass spectrometry-electrospray ionization.

    PubMed

    Kubica, Paweł; Kot-Wasik, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2013-05-10

    Two analytical procedures are proposed where HILIC and RPLC techniques are coupled with tandem mass spectrometry detection for rapid determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Samples are prepared on the basis of the approach "dilute & shoot" which makes this important step quick and not complicated. The chromatographic separation was carried out on a Zorbax XDB column (RPLC method) and Ascentis Si column (HILIC mode). Within-run precisions (CVs) measured at three concentration levels were as follows: 0.73%, 0.98% and 1.44% for RPLC method and 1.39%, 1.44% and 0.57% (HILIC mode). Between-run CVs were as follows: 1.94%, 1.02% and 1.22% for RPLC mode and 1.49%, 1.20% and 1.22% for HILIC mode. The detection limits of RPLC and HILIC modes were 4.08 and 3.90 ng/mL respectively. The proposed procedures are rapid, not complicated, sensitive and are suitable for fast determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impact of carrier doping on electrical properties of laser-induced liquid-phase-crystallized silicon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji

    2018-02-01

    Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.

  5. Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth

    2010-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.

  6. Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.

    2010-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.

  7. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  8. Glass-to-Metal Seal Against Liquid Helium

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Gatewood, John R.

    1987-01-01

    Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.

  9. An E-liquid Flavor Wheel: A Shared Vocabulary based on Systematically Reviewing E-liquid Flavor Classifications in Literature.

    PubMed

    Krüsemann, Erna Johanna Zegerina; Boesveldt, Sanne; de Graaf, Kees; Talhout, Reinskje

    2018-05-18

    E-liquids are available in a high variety of flavors. A systematic classification of e-liquid flavors is necessary to increase comparability of research results. In the food, alcohol and fragrance industry, flavors are classified using flavor wheels. We systematically reviewed literature on flavors related to e-cigarette use, to investigate how e-liquid flavors have been classified in research, and propose an e-liquid flavor wheel to classify e-liquids based on marketing descriptions. The search was conducted in May 2017 using PubMed and Embase databases. Keywords included terms associated with e-cigarettes, flavors, liking, learning, and wanting in articles. Results were independently screened and reviewed. Flavor categories used in the articles reviewed were extracted. Searches yielded 386 unique articles of which 28 were included. Forty-three main flavor categories were reported in these articles (e.g., tobacco, menthol, mint, fruit, bakery/dessert, alcohol, nuts, spice, candy, coffee/tea, beverages, chocolate, sweet flavors, vanilla, unflavored). Flavor classifications of e-liquids in literature showed similarities and differences across studies. Our proposed e-liquid flavor wheel contains 13 main categories and 90 subcategories, which summarize flavor categories from literature to find a shared vocabulary. For classification of e-liquids using our flavor wheel, marketing descriptions should be used. We have proposed a flavor wheel for classification of e-liquids. Further research is needed to test the flavor wheels' empirical value. Consistently classifying e-liquid flavors using our flavor wheel in research (e.g., experimental, marketing, or qualitative studies) minimizes interpretation differences and increases comparability of results. We reviewed e-liquid flavors and flavor categories used in research. A large variation in the naming of flavor categories was found and e-liquid flavors were not consistently classified. We developed an e-liquid flavor wheel and provided a guideline for systematic classification of e-liquids based on marketing descriptions. Our flavor wheel summarizes e-liquid flavors and categories used in literature in order to create a shared vocabulary. Applying our flavor wheel in research on e-liquids will improve data interpretation, increase comparability across studies, and support policy makers in developing rules for regulation of e-liquid flavors.

  10. Translations on Easten Europe, Scientific Affairs, Number 554

    DTIC Science & Technology

    1977-07-26

    absolutely essential to increase the democratic character of the institutional work, to improve the continuity and intensity of the committee-type...medium of liquid nitrogen vapors, at at least 248 degrees Farenheit . The first tests gave satisfactory results. However.... The truth is that the above...leukocytes reached zero level in peripheral circulation, practically, no white cells in the body. At that point we intra- venously injected the bone

  11. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer.

    PubMed

    Lin, Liang-Tzung; Lai, Ying-Jang; Wu, She-Ching; Hsu, Wei-Hsuan; Tai, Chen-Jei

    2018-01-01

    Cordycepin is one of the most crucial bioactive compounds produced by Cordyceps militaris and has exhibited antitumor activity in various cancers. However, industrial production of large amounts of cordycepin is difficult. The porcine liver is abundant in proteins, vitamins, and adenosine, and these ingredients may increase cordycepin production and bioconversion during C. militaris fermentation. We observed that porcine liver extracts increased cordycepin production. In addition, air supply (2 h/d) significantly increased the cordycepin level in surface liquid-cultured C. militaris after 14 days. Moreover, blue light light-emitting diode irradiation (16 h/d) increased cordycepin production. These findings indicated that these conditions are suitable for increasing cordycepin production. We used these conditions to obtain water extract from the mycelia of surface liquid-cultured C. militaris (WECM) and evaluated the anti-oral cancer activity of this extract in vitro and in vivo. The results revealed that WECM inhibited the cell viability of SCC-4 oral cancer cells and arrested the cell cycle in the G2/M phase. Oxidative stress and mitochondrial dysfunction (mitochondrial fission) were observed in SCC-4 cells treated with WECM for 12 hours. Furthermore, WECM reduced tumor formation in 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis through the downregulation of proliferating cell nuclear antigen, vascular endothelial growth factor, and c-fos expression. The results indicated that porcine liver extracts irradiated with blue light light-emitting diode and supplied with air can be used as a suitable medium for the growth of mycelia and production of cordycepin, which can be used in the treatment of oral cancer. Copyright © 2017. Published by Elsevier B.V.

  12. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects.

    PubMed

    Wang, Mei; Xie, Tingting; Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin's poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets.

  13. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects

    PubMed Central

    Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin’s poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets. PMID:26674103

  14. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-01

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  15. Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture.

    PubMed

    Huang, Ying; Benson, David R

    2012-01-01

    Filamentous actinobacteria from the genus Frankia grow by hyphal tip extension and branching. The growth kinetics and branching pattern of Frankia are not well studied, especially at the early stages of mycelial development. Here, we compare the growth of Frankia sp. strain CcI3 in liquid cultures with and without proteose peptone #3 (PP3) using time-lapse photomicrography and image analysis. Individual hyphae showed a pseudolinear increase in length at early stages of development, whereas at the mycelial level, the aggregate length of hyphae described an exponential rate before slowing. Growth based on optical density or microscopic observations was similar in medium with or without PP3. However, PP3 altered the pattern of mycelial development by increasing branching. Distances between the hyphal apex and first branches were on average shorter in PP3-containing media. The final interbranch distances were also shorter in PP3 medium indicating that hyphae tended to branch earlier and more often when supplemented with PP3 to give a more compact mycelium. Vesicle development in nitrogen-fixing cultures limited cell expansion as a result of vesicles truncating growth on new branches. The results provide some explanation for the growth kinetics of Frankia and some indication of how growth rates may be improved.

  16. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry.

    PubMed

    Zhao, Xinjie; Xu, Fang; Qi, Bing; Hao, Songli; Li, Yanjie; Li, Yan; Zou, Lihong; Lu, Caixia; Xu, Guowang; Hou, Lihui

    2014-02-07

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder, which produces in 5-10% reproductive age women. In this study, a nontargeted metabolomics approach based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry is used to investigate serum metabolic characteristics of PCOS. PCOS women and healthy control can be clustered into two distinct groups based on multivariate statistical analysis. Significant increase in the levels of unsaturated free fatty acids, fatty acid amides, sulfated steroids, glycated amino acid and the decrease in levels of lysophosphatidylcholines, lysophosphatidylethanolamines, etc., were found. These metabolites showed abnormalities of lipid- and androgen-metabolism, increase of stearoyl-CoA desaturase (SCD) activity and accumulation of advanced glycation end-products in PCOS patients. On the basis of the binary logistic regression model, free fatty acid (FFA) 18:1/FFA 18:0, FFA 20:3, dihydrotestosterone sulfate, glycated phenylalanine, and uridine were combined as a diagnostic biomarker. The area under the curve (AUC) of combinational biomarker was 0.839 in 131 discovery phase samples and 0.874 in 109 validation phase samples. The findings of our study offer a new insight to understand the pathogenesis mechanism, and the discriminating metabolites may provide a prospect for PCOS diagnosis.

  17. [Effect of the liquid milk nutritional supplement with enhanced content of whey protein on the nutritional status of the elderly].

    PubMed

    Rambousková, Jolana; Procházka, Bohumír; Binder, Michael; Anděl, Michal

    2014-01-01

    The aim of this study was to evaluate the effect of long-term administration of liquid nutritional supplement with increased amounts of whey protein and reduced amounts of lactose, produced in accordance with a new recipe "Nutrisen" on the elderly living in institutionalized care. The study was carried out from May to July, 2013, on 47 retirement home residents, living in Prague, all of which were 65 years or older. Supplemented group (n = 23) consumed (200 ml) milk drinks with three different flavours on a daily basis for eight weeks. The reference group was on a normal diet. There was no significant difference in baseline characteristics between participants in both groups. Anthropometric and biochemical indicators of nutritional status and tolerance of the nutritional supplement during long-term use were evaluated. Both compliance (daily intake program) and tolerance of the nutritionally defined supplement were very good. For the supplemented group, there was an average weight increased of 700 grams after the 8 week nutritional supplement test period. Average levels of albumin and prealbumin increased significantly (from the beginning to the end of the program), 35.5 ± 4.52 g/l vs 36.19 ± 4.1 g/l and 0.160 ± 0.05 vs 0.174 ± 0.04 g/l (p < 0.05), vitamin D levels increased from 31.2 ± 16.4 nmol/l to 36.8 ± 17.7 nmol/l (p < 0.001) and HDL-cholesterol levels increased from 1.29 ± 0.33 mmol/l to 1.35 ± 0.35 mmol/l (p < 0.001). The specific nutritionally defined milk drink (Nutrisen), used in this study, was well tolerated by the elderly study participants, over the eight-week clinical study. We observed a positive effect on the participants weight, serum albumin, prealbumin, vitamin D and HDL-cholesterol.

  18. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  19. Floating baffle to improve efficiency of liquid transfer from tanks

    NASA Technical Reports Server (NTRS)

    Howard, F. S. (Inventor)

    1973-01-01

    A floating baffle is described which rides up and down on a vertical shaft over a drain in a tank as the liquid level within the tank varies. When the baffle is in the raised position, the liquid is allowed to flow out of the drain at an unrestricted rate. When the baffle is in the lowered position, pull-through of air or gas that is above the liquid is presented, which would interfere and reduce the flow of liquid from the tank.

  20. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

Top