Sample records for increased oxygen affinity

  1. [Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].

    PubMed

    Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej

    2010-04-01

    One of the basic mechanisms of adapting to hypoxemia is a decrease in the affinity of hemoglobin for oxygen. This process occurs mainly due to the increased synthesis of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes, as well as through the Bohr effect. Hemoglobin with decreased affinity for oxygen increases the oxygenation of tissues, because it gives up oxygen more easily during microcirculation. In foetal circulation, however, at a partial oxygen pressure (pO2) of 25 mmHg in the umbilical vein, the oxygen carrier is type F hemoglobin which has a high oxygen affinity. The commonly accepted role for hemoglobin F is limited to facilitating diffusion through the placenta. Is fetal life the only moment when haemoglobin F is useful? THE AIM OF STUDY was to create a mathematical model, which would answer the question at what conditions an increase, rather than a decrease, in haemoglobin oxygen affinity is of benefit to the body. Using the kinetics of dissociation of oxygen from hemoglobin described by the Hill equation as the basis for further discussion, we created a mathematical model describing the pO2 value in the microcirculatory system and its dependence on arterial blood pO2. The calculations were performed for hemoglobin with low oxygen affinity (adult type) and high-affinity hemoglobin (fetal type). The modelling took into account both physiological and pathological ranges of acid-base equilibrium and tissue oxygen extraction parameters. It was shown that for the physiological range of acid-base equilibrium and the resting level of tissue oxygen extraction parameters, with an arterial blood pO2 of 26.8 mmHg, the higher-affinity hemoglobin becomes the more effective oxygen carrier. It was also demonstrated that the arterial blood pO2, below which the high-affinity hemoglobin becomes the more effective carrier, is dependent on blood pH and the difference between the arterial and venous oxygen saturation levels. Simulations performed for the pathological states showed that acidosis and increased tissue oxygen demand lead to a broadened arterial blood pO2 range, in which the high-affinity hemoglobin is more efficient. Contrary to the widely held view that the only response to hypoxemia is a decrease in haemoglobin oxygen affinity, it was shown that under extreme hypoxemic conditions, an increased haemoglobin oxygen affinity improves the oxygenation of tissues. It was also shown that the dominance of hemoglobin with a high oxygen affinity rapidly exceeds hemoglobin with low oxygen affinity in the case of acidosis with its accompanying high tissue oxygen extraction. In cases of extreme disruptions of the acid-base equilibrium, the dominance of high-oxygen-affinity hemoglobin spans over the entire possible range of pO2 in arterial blood.

  2. [Role of erythrocyte cytoplasmic structures in changes in the affinity of haemoglobin for oxygen].

    PubMed

    Bryzgalova, N Iu; Brazhe, N A; Iusipovich, A U; Maksimov, G V; Rubin, A B

    2009-01-01

    Changes in the refractive index of the cytoplasm and the affinity of haemoporphyrin of erythrocyte haemoglobin to oxygen (pH, 2,3-diphosphoglycerate) have been investigated using laser interference microscopy and Raman spectroscopy. It has been established that a decrease in pH and an increase in the content of 2,3-diphosphoglycerate are accompanied by changes in both the form of the cell and the refractive index of the cytoplasm and the affinity of haemoporphyrin of hemoglobin to oxygen. It has been shown that as pH is reduced, the capacity of haemoporphyrin for binding oxygen decreases and as the concentration of 2,3-diphosphoglycerate is increased, the ability of haemoporphyrin for oxygen reabsorption increases.

  3. Effects of acute hypoxic exposure on oxygen affinity of human red blood cells.

    PubMed

    Chowdhury, Aniket; Dasgupta, Raktim

    2017-01-20

    Adaptation of red blood cells subjected to acute hypoxia, crucial for managing high altitude syndrome and pulmonary diseases, has been investigated. For this, red blood cells were exposed to the acute hypoxic condition by purging nitrogen over increasing time periods from 15 to 60 min and thereafter equilibrated with atmospheric oxygen for 10 min. Raman spectra of these red blood cells were then recorded and analyzed to look for changes in the level of oxygenation compared to unexposed cells. A decreasing oxygen affinity for the cells was observed with increasing time of exposure to the hypoxic condition. This change in oxygen affinity for the red blood cells may result from metabolic adjustment of the cells under the hypoxic condition to promote increased concentration of intracellular 2, 3-diphosphoglycerate.

  4. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  5. Red cell 2,3-diphosphoglycerate and oxygen affinity.

    PubMed

    MacDonald, R

    1977-06-01

    The ease with which haemoglobin releases oxygen to the tissues is controlled by erythrocytic 2,3-diphosphoglycerate (2,3-DPG) such that an increase in the concentration of 2,3-DPG decreases oxygen affinity and vice versa. This review article describes the synthesis and breakdown of 2,3-DPG in the Embden-Meyerof pathway in red cells and briefly explains the molecular basis for its effect on oxygen affinity. Interaction of the effects of pH, Pco2, temperature and 2,3-DPG on the oxyhaemoglobin dissociation curve are discussed. The role of 2,3-DPG in the intraerythrocytic adaptation to various types of hypoxaemia is described. The increased oxygen affinity of blood stored in acid-citrate-dextrose (ACD) solution has been shown to be due to the decrease in the concentration of 2,3-DPG which occurs during storage. Methods of maintaining the concentration of 2,3-DPG in stored blood are described. The clinical implication of transfusion of elderly people, anaemic or pregnant patients with ACD stored blood to anaesthetically and surgically acceptable haemoglobin concentrations are discussed. Hypophosphataemia in association with parenteral feeding reduces 2,3-DPG concentration and so increases oxygen affinity. Since post-operative use of intravenous fluids such as dextrose or dextrose/saline also lead to hypophosphataemia, the addition of inorganic phosphorus to routine post-operative intravenous fluid may be advisable. Disorders of acid-base balance effect oxygen affinity not only by the direct effect of pH on the oxyhaemoglobin dissociation curve but by its control of 2,3-DPG metabolism. Management of acid-base disorders and pre-operative aklalinization of patients with sickle cell disease whould take account of this. It is known that anaesthesia alters the position of the oxyhaemoglobin dissociation curve, but it is thought that this is independent of any effects which anaesthetic agents may have on 2,3-DPG concentration. In vitro manipulation of 2,3-DPG concentration with steroids has already been carried out. Elucidation of the role of 2,3-DPG in the control of oxygen affinity may ultimately lead to iatrogenic manipulation of oxygen affinity in vivo.

  6. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity.

    PubMed

    Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P

    1999-10-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.

  7. Modulators of haemocyanin oxygen affinity in the hypoxia- and sulphide-tolerant Baltic isopod Saduria entomon (L.).

    PubMed

    Hagerman, L; Vismann, B

    2001-11-01

    Dialysed haemocyanin from the isopod Saduria entomon had a considerably increased oxygen affinity (lower P50) and Bohr factor (-1.71) compared to native haemocyanin (Bohr factor -1.36) indicating that dialysis removes a small molecule size modulating factor decreasing the affinity of native haemolymph. Dialysed haemocyanin had a slightly lower co-operativity (2.42 +/- 0.3) than native haemocyanin (2.9 +/- 0.2). L-Lactate (10 mmol l(-1)) improved oxygen affinity by 1-1.5 torr while urate had no effect. Mg2+ affected affinity in a pH-dependent manner (Bohr-factor increased to -1.67) while Ca2+ had no effect on the Bohr factor but increased affinity with ca 1 torr. Thiosulphate changed the Bohr factor to -1.75 to -1.82, similar to dialysed blood. Co-operativity was in neither case affected. The haemocyanin characteristics of S. entomon are similar to those of crustaceans from hydrothermal vents. These characteristics are probably general for crustaceans that are more or less permanently exposed to sulphide.

  8. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  9. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    PubMed Central

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  10. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity.

    PubMed Central

    Hebbel, R P; Eaton, J W; Kronenberg, R S; Zanjani, E D; Moore, L G; Berger, E M

    1978-01-01

    To assess the adaptive value of the right-shift of the oxyhemoglobin dissociation curve (decreased affinity for oxygen) observed in humans upon altitude exposure, the short-term physiologic responses to altitude-induced hypoxia were evaluated in two subjects with a high oxygen affinity hemoglobin (Hb Andrew-Minneapolis) and in two of their normal siblings. In striking contrast to normal subjects, at moderately high altitude (3,100 m) the high affinity subjects manifested: (a) lesser increments in resting heart rate; (b) minimal increases in plasma and urinary erythropoietin; (c) no decrement in maximal oxygen consumption; and (d) no thrombocytopenia. There was no difference between subject pairs in 2,3-diphosphoglycerate response to altitude exposure. These results tend to contradict the belief that a decrease in hemoglobin oxygen affinity is of adaptive value to humans at moderate altitudes. Rather, they support the hypothesis that, despite disadvantages at low altitude, a left-shifted oxyhemoglobin dissociation curve may confer a degree of preadaptation to altitude. PMID:29054

  11. Engineering cofactor and ligand binding in an artificial neuroglobin

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a large increase in water penetration into the protein core. The inability of the mutant protein may thus either be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors.

  12. Hemoglobin

    DTIC Science & Technology

    1993-03-08

    affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human

  13. Hb Potomac (101 Glu replaced by Asp): speculations on placental oxygen transport in carriers of high-affinity hemoglobins.

    PubMed

    Charache, S; Jacobson, R; Brimhall, B; Murphy, E A; Hathaway, P; Winslow, R; Jones, R; Rath, C; Simkovich, J

    1978-02-01

    Blood from a woman with unexplained erythrocytosis had increased oxygen affinity, but no abnormality could be detected by electrophoresis or chromatography of her hemolysate. Separation of the tryptic peptides of her beta chains disclosed two half-sized peaks in the regions of beta T-11. The faster of these was abnormal, with the structure beta 101 Glu replaced by Asp. The new hemoglobin was called "Potomac." Three of the proband's four surviving siblings and both of her children were carriers. Differences in the ratio of carrier: normal children born to male of female carriers of 23 other high-affinity hemoglobins were not significant. The high proportion of carriers in this kindred was probably due to chance alone, and not because high maternal oxygen affinity interfered with oxygen transport to fetuses with normal hemoglobin.

  14. Should modulation of p50 be a therapeutic target in the critically ill?

    PubMed

    Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J

    2017-05-01

    A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.

  15. Reaction rates of oxygen with hemoglobin measured by non-equilibrium facilitated oxygen diffusion through hemoglobin solutions.

    PubMed

    Bouwer, S T; Hoofd, L; Kreuzer, F

    2001-02-16

    The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.

  16. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia

    PubMed Central

    Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.

    1970-01-01

    Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181

  17. Approaching the evolutionary advantage of ancillary types of haemoglobin in Daphnia magna by simulation of oxygen supply.

    PubMed

    Moenickes, S; Richter, O; Pirow, R

    2010-02-01

    The planktonic crustacean Daphnia magna synthesizes haemoglobin (Hb) macromolecules of variant subunit composition and oxygen affinity. This is one of the strategies by which the animals cope with variations in environmental conditions such as ambient oxygen tension. The enrichment of high-affinity Hb molecules in the haemolymph of hypoxia-exposed animals is thought to reduce Hb synthesis costs due to an enhanced transport efficiency of these molecules in comparison to the low-affinity Hb molecules. How great this economic advantage is, and under which conditions this benefit disappears, is still not fully understood. Here we implemented a rigorously simplified model of the daphnid body and described the transport of oxygen from the environment via the haemolymph to the tissues in terms of the convection-diffusion-reaction equation. The model was validated by comparing various model predictions with experimental data. A sensitivity analysis was used to evaluate the influence of parameter uncertainties on the model predictions. Cost-benefit analysis revealed in which way at the system's level the increase in Hb oxygen affinity improves the oxygen loading at the respiratory surfaces and impairs the release of oxygen to the tissues. The benefit arising from the improved oxygen loading exceeds the disadvantage of impaired unloading only under conditions where the ambient oxygen tension is critically low and the Hb concentration is high. The low-affinity Hb, on the other hand, provides an advantage given that the Hb concentration is low and the ambient oxygen tension is well above the critical level. Computer-aided modelling and simulation therefore provide valuable mechanistic insights into the driving forces that could have shaped the evolution of globin genes in daphnids.

  18. Oxygen transport in blood at high altitude: role of the hemoglobin-oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function.

    PubMed

    Samaja, Michele; Crespi, Tiziano; Guazzi, Marco; Vandegriff, Kim D

    2003-10-01

    Altitude hypoxia is a major challenge to the blood O2 transport system, and adjustments of the blood-O2 affinity might contribute significantly to hypoxia adaptation. In principle, lowering the blood-O2 affinity is advantageous because it lowers the circulatory load required to assure adequate tissue oxygenation up to a threshold corresponding to about 5,000 m altitude, whereas at higher altitudes an increased blood-O2 affinity appears more advantageous. However, the rather contradictory experimental evidence raises the question whether other factors superimpose on the apparent changes of the blood-O2 affinity. The most important of these are as follows: (1) absolute temperature and temperature gradients within the body; (2) the intracapillary Bohr effect; (3) the red cell population heterogeneity in terms of O2 affinity; (4) control of altitude alkalosis; (5) the possible role of hemoglobin as a carrier of the vasodilator nitric oxide; (6) the effect of varied red cell transit times through the capillaries.

  19. Purification, crystallization and preliminary crystallographic studies of haemoglobin from mongoose (Helogale parvula) in two different crystal forms induced by pH variation.

    PubMed

    Mohamed Abubakkar, M; Saraboji, K; Ponnuswamy, M N

    2013-02-01

    Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively.

  20. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    PubMed Central

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  1. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  2. Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis.

    PubMed

    Busk, M; Overgaard, J; Hicks, J W; Bennett, A F; Wang, T

    2000-10-01

    Reptiles habitually ingest large meals at infrequent intervals, leading to changes in acid-base status as the net secretion of acid to the stomach causes a metabolic alkalosis (the alkaline tide). In chronically cannulated and undisturbed amphibians and reptiles, the pH changes in arterial blood are, nevertheless, reduced by a concomitant respiratory acidosis (increased P(CO2) caused by a relative hypoventilation). Alligators (Alligator mississippiensis) have been reported to exhibit exceptionally large increases in plasma [HCO3(-)] following feeding, but these studies were based on blood samples obtained by cardiac puncture, so stress and disturbance may have affected the blood gas levels. Furthermore, crocodilian haemoglobin is characterised by a unique binding of HCO3(-) that act to reduce blood oxygen-affinity, and it has been proposed that this feature safeguards oxygen offloading by counteracting pH effects on blood oxygen-affinity. Therefore, to study acid-base regulation and the interaction between the alkaline tide and oxygen transport in more detail, we describe the arterial blood gas composition of chronically cannulated and undisturbed alligators before and after voluntary feeding (meal size 7.5+/-1% of body mass). Digestion was associated with an approximately fourfold increase in metabolic rate (from 0.63+/-0.04 to 2.32+/-0.24 ml O(2) min(-1)kg(-1)) and was accompanied by a small increase in the respiratory gas exchange ratio. The arterial P(O2) of fasting alligators was 60.3+/-6.8 mmHg (1 mmHg = 0.133 kPa) and reached a maximum of 81.3+/-2.7 mmHg at 96 h following feeding; there was only a small increase in lactate levels, so the increased metabolic rate seems to be entirely aerobic. Plasma [HCO3(-)] increased from 24.4+/-1.1 to 36.9+/-1.7 mmol l(-1) (at 24 h), but since arterial P(CO2) increased from 29.0+/-1.1 to 36.8+/-1.3 mmHg, arterial pH remained virtually unaffected (changing from 7.51+/-0.01 to 7.58+/-0.01 at 24 h). The changes in plasma [HCO3(-)] were mirrored by equimolar reductions in plasma [Cl(-)]. The in vitro blood oxygen-affinity was reduced during the post-prandial period, whereas the estimated in vivo blood oxygen-affinity remained virtually constant. This supports the view that the specific HCO3(-) effect prevents an increased blood oxygen-affinity during digestion in alligators.

  3. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    PubMed Central

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.

    2017-01-01

    Background Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Results Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. Conclusions The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites. PMID:28362841

  4. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki

    2017-03-31

    Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetramericmore » hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.« less

  5. [Effect of almitrine administered by the oral route on levels of 2,3-diphosphoglycerate and on the affinity of hemoglobin for oxygen in healthy subjects].

    PubMed

    Clerbaux, T; Frans, A

    1985-02-01

    Clinical and pharmacological studies have shown that almitrine increased arterial blood oxygen partial pressure (PaO2) and tissular oxygenation. We have verified whether this drug could also increase the 2,3 diphosphoglycerate (DPG) level and so modify the oxyhemoglobin dissociation curve (ODC). Determinations performed 3 hours and 5 days after daily oral administration (1,5 mg/kg) of the drug showed no alterations of DPG and ODC in normal subjects. The presence of almitrine does not explain the observed PaO2 increase by means of a direct effect on the hemoglobin oxygen affinity. However, one cannot exclude almitrine long term effect; indeed, after 15 days, DPG levels and Hill coefficient increased significantly (p less than 0.05) but no the P50 (respectively + 1,5 mumole/gHb; +0.1 and 26.0 vs 26.5 mmHg).

  6. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?

    PubMed

    Oder, Esther; Safo, Martin K; Abdulmalik, Osheiza; Kato, Gregory J

    2016-10-01

    The hallmark of sickle cell disease is the polymerization of sickle haemoglobin due to a point mutation in the β-globin gene (HBB). Under low oxygen saturation, sickle haemoglobin assumes the tense (T-state) deoxygenated conformation that can form polymers, leading to rigid erythrocytes with impaired blood vessel transit, compounded or initiated by adhesion of erythrocytes to endothelium, neutrophils and platelets. This process results in vessel occlusion and ischaemia, with consequent acute pain, chronic organ damage, morbidity and mortality. Pharmacological agents that stabilize the higher oxygen affinity relaxed state (R-state) and/or destabilize the lower oxygen affinity T-state of haemoglobin have the potential to delay the sickling of circulating red cells by slowing polymerization kinetics. Relevant classes of agents include aromatic aldehydes, thiol derivatives, isothiocyanates and acyl salicylates derivatives. The aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF) increases oxygen affinity of sickle haemoglobin and reduces hypoxia-induced sickling in vitro and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials as treatment for sickle cell disease. A related molecule, GBT440, has shown R-state stabilization and increased oxygen affinity in preclinical testing. Allosteric modifiers of haemoglobin as direct anti-sickling agents target the fundamental pathophysiological mechanism of sickle cell disease. © 2016 John Wiley & Sons Ltd.

  7. Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease.

    PubMed

    Bonaventura, Celia; Godette, Gerald; Ferruzzi, Giulia; Tesh, Shirley; Stevens, Robert D; Henkens, Robert

    2002-07-10

    Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.

  8. Gel Filtration Of Dilute Human Embryonic Hemoglobins Reveals Basis For Their Increased Oxygen Binding

    PubMed Central

    Manning, Lois R.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, James M.

    2016-01-01

    This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. PMID:27965062

  9. Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding.

    PubMed

    Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C; Chait, Brian T; Manning, James M

    2017-02-15

    This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aniket; Dasgupta, Raktim; Majumder, Shovan K.

    2017-10-01

    Shape variations of red blood cells (RBCs) are known to occur upon exposure to various drugs or under diseased conditions. The commonly observed discocytic RBCs can be transformed to echinocytic or stomatocytic shape under such conditions. Raman spectra of the three major shape variations, namely discocyte, echinocyte, and stomatocyte, of RBCs were studied while subjecting the cells to oxygenated and deoxygenated conditions. Analysis of the recorded spectra suggests an increased level of hemoglobin (Hb)-oxygen affinity for the echinocytes. Also, some level of Hb degradation could be noticed for the deoxygenated echinocytes. The effects may arise from a reduced level of intracellular adenosine triphosphate in echinocytic cells and an increased fraction of submembrane Hb.

  11. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.#

    PubMed Central

    Bucci, Enrico

    2013-01-01

    Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673

  12. Haemoglobin Pierre-Benite--a high affinity variant associated with relative polycythaemia.

    PubMed

    Beard, M E; Potter, H C; Spearing, R L; Brennan, S O

    2001-12-01

    This is the second reported example of Hb Pierre--Benite (beta90 Glu-->Asp). This mutation is associated with increased oxygen affinity and polycythaemia. No instability was found and there was no charge shift detected by cellulose acetate electrophoresis at pH 8.3. The mutation was however, clearly indicated by electrospray ionization mass spectrometry (ESI MS), which showed an abnormal beta chain with a 14 Da decrease in mass. Blood volume studies documented a relative rather than a true polycythaemia and this finding has been reported in at least two other high affinity haemoglobin variants--Hb Heathrow and Hb Rahere. This finding led to delay in diagnosis because high oxygen affinity variants are conventionally considered to cause a true polycythaemia.

  13. Purification, crystallization and preliminary crystallographic studies of haemoglobin from mongoose (Helogale parvula) in two different crystal forms induced by pH variation

    PubMed Central

    Mohamed Abubakkar, M.; Saraboji, K.; Ponnuswamy, M. N.

    2013-01-01

    Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively. PMID:23385751

  14. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to increase O2 in tumors, enhancing the efficacy of radiation therapies.

  15. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis

    PubMed Central

    Bellingham, A. J.; Detter, J. C.; Lenfant, C.

    1971-01-01

    The recent reports of the effect of 2,3-diphosphoglycerate (2,3-DPG) on hemoglobin affinity for oxygen suggested that this substance may play a role in man's adaptation to acidosis and alkalosis. A study of the effect of induced acidosis and alkalosis on the oxyhemoglobin dissociation curve of normal man was therefore carried out, and the mechanisms involved in the physiological regulation of hemoglobin oxygen affinity examined. In acute changes of plasma pH there was no alteration in red cell 2,3-DPG content. However, there were changes in hemoglobin oxygen affinity and these correlated with changes in mean corpuscular hemoglobin concentration (MCHC). With maintained acidosis and alkalosis, red cell 2,3-DPG content was altered and correlated with the changes in hemoglobin oxygen affinity. Both of these mechanisms shift the hemoglobin oxygen dissociation curve opposite to the direct pH (Bohr) effect, and providing the rate of pH change is neither too rapid nor too large, they counteract the direct pH effect and the in vivo hemoglobin oxygen affinity remains unchanged. It is also shown that approximately 35% of the change in hemoglobin oxygen affinity resulting from an alteration in red cell 2,3-DPG, is explained by effect of 2,3-DPG on the red cell pH. PMID:5545127

  16. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  17. Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION

    PubMed Central

    Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.

    1973-01-01

    Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047

  18. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  19. Diagnostic approach to hemoglobins with high oxygen affinity: experience from France and Belgium and review of the literature.

    PubMed

    Orvain, Corentin; Joly, Philippe; Pissard, Serge; Badiou, Stéphanie; Badens, Catherine; Bonello-Palot, Nathalie; Couque, Nathalie; Gulbis, Béatrice; Aguilar-Martinez, Patricia

    2017-02-01

    Congenital causes of erythrocytosis are now more easily identified due to the improvement of the molecular characterization of many of them. Among these causes, hemoglobins with high oxygen affinity take a large place. The aim of this work was to reevaluate the diagnostic approach of these disorders. To assess the current practices, we sent a questionnaire to the expert laboratories in the diagnosis of hemoglobinopathies in France and Belgium. In parallel, we gathered the methods used for the diagnosis of the hemoglobins with high oxygen affinity indexed in the international database HbVar. Even though they remain a rare cause of erythrocytosis (1 to 5 positive diagnosis every year in each of the questioned specialized laboratories), hemoglobins with high oxygen affinity are increasingly suspected by clinicians. Phenotypic assessment by laboratory techniques remains a main step in their diagnosis as it enables the finding of 93% of them in the questioned laboratories (28 of the 30 variants diagnosed during the last 5 years). Among the 96 hemoglobin variants with high oxygen affinity indexed in the international database, 87% could be diagnosed with phenotypic techniques. A direct measure of the p50 with the Hemox-Analyzer is included in the diagnostic approach of half of the laboratories only, because of the poor availability of this apparatus. Comparatively, the estimation of p50 by blood gas analyzers on venous blood is a much more convenient and attractive method but due to the lack of proof as to its effectiveness in the diagnosis of hemoglobins with high oxygen affinity, it requires further investigations. Beta- and alphaglobin genes analysis by molecular biology techniques is essential as it either allows a quick and definite identification of the variant or definitely excludes the diagnosis. It is thus systematically performed as a first or second step method, according to the laboratory practice.

  20. Thiolation mediated pegylation platform to generate functional universal red blood cells.

    PubMed

    Nacharaju, Parimala; Manjula, Belur N; Acharya, Seetharama A

    2007-01-01

    The PEGylation that adds an extension arm on protein amino groups with the conservation of their positive charge masks the A and D antigens of erythrocytes efficiently. In the present study, the efficiency of masking the antigens of RBC by PEGylation protocols that do not conserve the charge with and without adding extension arms is compared. The conjugation of PEG-5000 to RBCs through the addition of extension arms masked the D antigen more efficiently than the other protocol. A combination of PEG-5 K and PEG-20 K is needed to mask the A antigen, irrespective of the PEGylation approach. The oxygen affinity of the PEGylated RBCs increased by the extension arm facilitated PEGylation. The protocol involving the conjugation of PEG-chains without adding extension arm did not alter the oxygen affinity of RBCs. A combination of PEGylation protocols is an alternate strategy to generate universal red blood cells with good levels of oxygen affinity.

  1. The effect of sustained hypoxia on the cardio-respiratory response of bowfin Amia calva: implications for changes in the oxygen transport system.

    PubMed

    Porteus, C S; Wright, P A; Milsom, W K

    2014-03-01

    This study examined mechanisms underlying cardio-respiratory acclimation to moderate sustained hypoxia (6.0 kPa for 7 days at 22° C) in the bowfin Amia calva, a facultative air-breathing fish. This level of hypoxia is slightly below the critical oxygen tension (pcrit ) of A. calva denied access to air (mean ± s.e. = 9.3 ± 1.0 kPa). Before exposure to sustained hypoxia, A. calva with access to air increased air-breathing frequency on exposure to acute progressive hypoxia while A. calva without access to air increased gill-breathing frequency. Exposure to sustained hypoxia increased the gill ventilation response to acute progressive hypoxia in A. calva without access to air, regardless of whether they had access to air or not during the sustained hypoxia. Additionally, there was a decrease in Hb-O2 binding affinity in these fish. This suggests that, in A. calva, acclimation to hypoxia elicits changes that increase oxygen delivery to the gas exchange surface for oxygen uptake and reduce haemoglobin affinity to enhance oxygen delivery to the tissues. © 2013 The Fisheries Society of the British Isles.

  2. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Docking model of the nicotinic acetylcholine receptor and nitromethylene neonicotinoid derivatives with a longer chiral substituent and their biological activities.

    PubMed

    Nagaoka, Hikaru; Nishiwaki, Hisashi; Kubo, Takuya; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro

    2015-02-15

    In the present study, nitromethylene neonicotinoid derivatives possessing substituents that contain a sulfur atom, oxygen atom or aromatic ring at position 5 on the imidazolidine ring were synthesized to evaluate their affinity for the nicotinic acetylcholine receptor (nAChR) and their insecticidal activity against adult female houseflies. Comparing the receptor affinity of the alkylated derivative with the receptor affinity of compounds possessing either ether or thioether groups revealed that conversion of the carbon atom to a sulfur atom did not influence the receptor affinity, whereas conversion to an oxygen atom was disadvantageous for the receptor affinity. The receptor affinity of compounds possessing a benzyl or phenyl group was lower than that of the unsubstituted compound. Analysis of the three-dimensional quantitative structure-activity relationship using comparative molecular field analysis demonstrated that steric hindrance of the receptor should exist around the C3 of an n-butyl group attached at position 5 on the imidazolidine ring. A docking study of the nAChR-ligand model suggested that the ligand-binding region expands as the length of the substituent increases by brushing against the amino acids that form the binding region. The insecticidal activity of the compounds was positively correlated with the receptor affinity by considering logP and the number of heteroatoms, including sulfur and oxygen atoms, in the substituents, suggesting that the insecticidal activity is influenced by the receptor affinity, hydrophobicity, and metabolic stability of the compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations.

    PubMed

    Park, H-D; Noguera, D R

    2007-05-01

    To obtain ammonia-oxidizing bacterial (AOB) strains inhabiting low dissolved oxygen (DO) environments and to characterize them to better understand their function and ecology. Using a serial dilution method, two AOB strains (ML1 and NL7) were isolated from chemostat reactors operated with low DO concentrations (0.12-0.24 mg l(-1)). Phylogenetically, strains ML1 and NL7 are affiliated to AOB within the Nitrosomonas europaea and Nitrosomonas oligotropha lineages, respectively. Kinetically, strain ML1 had high affinity for oxygen (0.24 +/- 0.13 mg l(-1)) and low affinity for ammonia (1.62 +/- 0.97 mg N l(-1)), while strain NL7 had high affinity for ammonia (0.48 +/- 0.35 mg l(-1)), but a surprisingly low affinity for oxygen (1.22 +/- 0.43 mg l(-1)). A co-culture experiment was used to iteratively estimate decay constants for both strains. The results indicated that AOB without high affinity for oxygen may have other mechanisms to persist in low DO environments, with high affinity for ammonia being important. This study provides a method to determine AOB growth kinetic parameters without assuming or neglecting decay constant. And, this is the first report on oxygen affinity constant of a N. oligotropha strain.

  5. Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin

    PubMed Central

    Omar, Abdelsattar M.; Mahran, Mona A.; Ghatge, Mohini S.; Bamane, Faida H. A.; Ahmed, Mostafa H.; El-Araby, Moustafa E.; Abdulmalik, Osheiza; Safo, Martin K.

    2017-01-01

    Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases. PMID:27529207

  6. Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation

    PubMed Central

    Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François

    2017-01-01

    Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036

  7. The role of hemoglobin oxygen affinity in oxygen transport at high altitude.

    PubMed

    Winslow, Robert M

    2007-09-30

    Hemoglobin is involved in the regulation of O(2) transport in two ways: a long-term adjustment in red cell mass is mediated by erythropoietin (EPO), a response to renal oxgyenation. Short-term, rapid-response adjustments are mediated by ventilation, cardiac output, hemoglobin oxygen affinity (P50), barriers to O(2) diffusion, and the control of local microvascular tissue perfusion. The distribution of O(2) between dissolved (PO2) and hemoglobin-bound (saturation) is the familiar oxygen equilibrium curve, whose position is noted as P50. Human hemoglobin is not genetically adapted for function at high altitude. However, more specialized species native to high altitudes (guinea pig and bar-headed goose, for example) seem to have a lower P50 than their sea level counterparts, an adaptation that presumably promotes O(2) uptake from a hypoxic environment. Humans, native to very high altitude either in the Andes or Himalayan mountains, also can increase O(2) affinity, not because of a fundamental difference in hemoglobin structure or function, but because of extreme hyperventilation and alkalosis.

  8. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  9. [2,3 diphosphoglycerate in preterm newborns].

    PubMed

    Scopesi, F; Canini, S; Mazzella, M; Arioni, C; Lantieri, P; Serra, G

    2000-01-01

    It has been largely shown that during the first month of life, in the preterm neonate Hb levels and Hct percentages rapidly decrease, high HbF concentration persists and a high oxygen affinity occurs. Data are needed to establish the level at which 2,3 dyphosphoglycerate (2,3 DPG) interacts with the regulation of oxygen affinity. 24 samples, from eight uncomplicated preterm newborns (34.1 +/- 1.83 GW, 1869 +/- +/- 291 BW) obtained at the same time as those required for the clinical management of the infants, were collected on the 2nd, 7th and 14th day of life. Blood gases, total hemoglobin and hematocrit were obtained from 0.3 ml arterialised capillary blood. Assays of 2,3 DPG were made separately on 0.4 ml venous blood. As expected tHb concentration and Hct percentages significantly decreased from day 2 to day 14 in all eight cases. On the contrary 2,3 DPG and p50 values remained stable. Subsequently throughout the study period all neonates had an increased 2,3 DPG/Hb ratio that was significantly related with p50 at standard conditions (p < 0.05). Stable 2,3 DPG concentrations during all study period have been detected. The subsequent significant increased 2.3 DPG/Hb, ratio related to increased p50 values, could have a key role in a physiological mechanism aimed to ensure adequate oxygen delivery to the tissues and to counteract the higher oxygen affinity of fetal hemoglobin. A wider sample is needed to validate this hypothesis.

  10. Development and validation of an oxygen dissociation assay, a screening platform for discovering, and characterizing hemoglobin-oxygen affinity modifiers.

    PubMed

    Patel, Mira P; Siu, Vincent; Silva-Garcia, Abel; Xu, Qing; Li, Zhe; Oksenberg, Donna

    2018-01-01

    Hemoglobin (Hb) is a critical molecule necessary for all vertebrates to maintain aerobic metabolism. Hb-oxygen (O 2 ) affinity modifiers have been studied to address various diseases including sickle cell disease, hypoxemia, tumor hypoxia, and wound healing. However, drug development of exogenous Hb modifiers has been hindered by the lack of a technique to rapidly screen compounds for their ability to alter Hb-O 2 affinity. We have developed a novel screening assay based upon the spectral changes observed during Hb deoxygenation and termed it the oxygen dissociation assay (ODA). ODA allows for the quantitation of oxygenated Hb at given time points during Hb deoxygenation on a 96-well plate. This assay was validated by comparing the ability of 500 Hb modifiers to alter the Hb-O 2 affinity in the ODA vs the oxygen equilibrium curves obtained using the industry standard Hemox Analyzer instrument. A correlation ( R 2 ) of 0.7 indicated that the ODA has the potential to screen and identify potent exogenous Hb modifiers. In addition, it allows for concurrent comparison of compounds, concentrations, buffers, or pHs on the level of Hb oxygenation. With a cost-effective, simple, rapid, and highly adaptable assay, the ODA will allow researchers to rapidly characterize Hb-O 2 affinity modifiers.

  11. Signal transduction and phosphoryl transfer by a FixL hybrid kinase with low oxygen affinity: importance of the vicinal PAS domain and receiver aspartate.

    PubMed

    Sousa, Eduardo H S; Tuckerman, Jason R; Gondim, Ana C S; Gonzalez, Gonzalo; Gilles-Gonzalez, Marie-Alda

    2013-01-22

    FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain-domain interactions on oxygen sensing and signal transduction, we characterized and investigated Rhizobium etli hybrid sensor ReFixL. In ReFixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length ReFixL as a soluble holoprotein with a single heme b cofactor. Despite a low affinity for oxygen (K(d) for O₂ of 738 μM), the kinase activity was completely switched off by O₂ at concentrations well below the K(d). A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl-aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect.

  12. Increased red cell 2,3-diphosphoglycerate levels in haemodialysis patients treated with erythropoietin.

    PubMed

    Horina, J H; Schwaberger, G; Brussee, H; Sauseng-Fellegger, G; Holzer, H; Krejs, G J

    1993-01-01

    The efficacy of recombinant human erythropoietin (rHuEpo) for the treatment of renal anaemia is well established. To assess the effect of rHuEpo treatment on physical performance we evaluated physical working capacity, oxygen uptake and red cell 2,3-diphosphoglycerate (DPG) values at rest and during and after exercise on a bicycle spiroergometer in eight chronically haemodialysed patients. Follow-up examination was carried out after a mean of 14 weeks (range 9-19 weeks), when mean haemoglobin had increased from 7.8 to a stable value of 13.0 g/dl in response to rHuEpo treatment (P < 0.001). Physical working capacity and oxygen uptake at the anaerobic threshold (4 mmol/l blood lactate concentration) increased from 68 +/- 12 to 80 +/- 16 watts and 0.95 +/- 0.14 to 1.10 +/- 0.20 l/min, respectively (P < 0.01). DPG, which determines oxygen affinity to haemoglobin in red cells, increased by 13% from 13.7 +/- 1.5 to 15.5 +/- 2.2 mumol/g Hb (P < 0.05). With maximal exercise mean DPG values significantly decreased to a much lower level without rHuEpo treatment than after correction of anaemia. Therefore rHuEpo treatment results both in better oxygen transport capacity and reduced intraerythrocytic oxygen affinity, which is followed by improved oxygen delivery to tissues per unit of haemoglobin. These effects may explain the improvement of exercise capacity observed in dialysis patients after rHuEpo treatment.

  13. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity.

    PubMed

    O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-08-07

    Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.

  14. Hemoglobin Hiroshima (β143 histidine → aspartic acid): a newly identified fast moving beta chain variant associated with increased oxygen affinity and compensatory erythremia

    PubMed Central

    Hamilton, Howard B.; Iuchi, Iwao; Miyaji, Takaoki; Shibata, Susumu

    1969-01-01

    During a survey for hemoglobinopathies in over 9000 residents of Hiroshima Prefecture, Japan, a fast moving hemoglobin was identified in eight members of three generations in a Japanese family. The abnormal hemoglobin, named Hb Hiroshima, constitutes about 50% of the total hemoglobin in hemolysates from the carriers who have a mild erythremia but are otherwise apparently clinically unaffected. All preparations of Hb Hiroshima have increased affinity for oxygen, by either tonometric or oxygen electrode determinations. At pH 7.0, the oxygen pressure, P50 required to half saturate an unfractionated hemolysate from a carrier was one-half that of Hb A, and the P50 of a purified sample containing no Hb A was one-fourth that of Hb A. The pH dependence of the oxygen equilibrium (Bohr effect) is below normal, as shown by the absolute value of the Bohr effect factor which is about half that of Hb A, in the pH range between 7.0 and 7.4. The Hill constant, n, for Hb Hiroshima between pH 7.0 and 7.4 is 2-2.4, compared to 2.8-3 for Hb A under the same conditions, indicating reduction of, but not complete abolition of heme-heme interaction. Urea dissociation and canine hybridization tests located the biochemical lesion in the beta chain. Fingerprints (Ingram), carboxypeptidase digestion, and amino acid analysis demonstrated that the substitution was at residue 143 in the beta chain, where histidine was replaced by aspartic acid. In contrast to other recently described high oxygen affinity mutants that show intact Bohr effects, all three of the major characteristics of the reversible combination of hemoglobin with oxygen (oxygen equilibrium, heme-heme interaction, and pH dependence) are affected in Hb Hiroshima. A tentative interpretation of these effects, relating structure to function, is offered in terms of recently developed models of normal hemoglobin. Images PMID:5773089

  15. Hemoglobin oxygen affinty in patients with low-output heart failure and cardiogenic shock after acute myocardial infaraction.

    PubMed

    Agostoni, A; Lotto, A; Stabilini, R; Bernasconi, C; Gerli, G; Gattinoni, L; Lapichino, G; Sslvadé, P

    1975-06-01

    The aim of this study was to determine the oxigen affinity actually present in vivo in blood from patients with acute myocardial infarction. Patients with uncomplicated acute myocardial infarction had normal value of P50 in vivo (partial pressure of oxygen at which 50 percent of the hemoglobin is saturated with oxygen at fixed levels of pHand PC02 present in vivo). Also the values of P50 in vivo of blood from patients with low cardiac output with mild or severe heart failured did not differ from the normal mean. This was the consequence of an increase of 2, 3-diphosphoglycerate levels (which reduces the oxygen affinity of hemoglobin) and of the immediate effect of alkalosis (Bohr effect). By contrast, the values of P50 in vivo were significantly increased in patients with cardiogenic shock. This could be ascribed to the state of acute acidiosis present in these patients. In these conditions the changes in the values of P50 in vivo play an important role in the oxygen delivery to the tissues. However, high values of P50 do not enhance oxygen delivery when a severe arterial hypoxemia (P02 smaller than 40-45 mm Hg) is also present.

  16. Single-cell measurement of red blood cell oxygen affinity.

    PubMed

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  17. Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear Ursus arctos.

    PubMed

    Revsbech, Inge G; Malte, Hans; Fröbert, Ole; Evans, Alina; Blanc, Stéphane; Josefsson, Johan; Fago, Angela

    2013-01-01

    During winter hibernation, brown bears (Ursus arctos) reduce basal O(2) consumption rate to ∼25% compared with the active state, while body temperature decreases moderately (to ∼30°C), suggesting a temperature-independent component in their metabolic depression. To establish whether changes in O(2) consumption during hibernation correlate with changes in blood O(2) affinity, we took blood samples from the same six individuals of hibernating and nonhibernating free-ranging brown bears during winter and summer, respectively. A single hemoglobin (Hb) component was detected in all samples, indicating no switch in Hb synthesis. O(2) binding curves measured on red blood cell lysates at 30°C and 37°C showed a less temperature-sensitive O(2) affinity than in other vertebrates. Furthermore, hemolysates from hibernating bears consistently showed lower cooperativity and higher O(2) affinity than their summer counterparts, regardless of the temperature. We found that this increase in O(2) affinity was associated with a significant decrease in the red cell Hb-cofactor 2,3-diphosphoglycerate (DPG) during hibernation to approximately half of the summer value. Experiments performed on purified Hb, to which DPG had been added to match summer and winter levels, confirmed that the low DPG content was the cause of the left shift in the Hb-O(2) equilibrium curve during hibernation. Levels of plasma lactate indicated that glycolysis is not upregulated during hibernation and that metabolism is essentially aerobic. Calculations show that the increase in Hb-O(2) affinity and decrease in cooperativity resulting from decreased red cell DPG may be crucial in maintaining a fairly constant tissue oxygen tension during hibernation in vivo.

  18. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, S.; Kawahara, T; Beltramini, M

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less

  19. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  20. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  1. Hb San Cataldo [β144(HC1)Lys→Thr; HBB: C.434A > C]: A New Hemoglobin Variant with Increased Affinity for Oxygen.

    PubMed

    Vinciguerra, Margherita; Passarello, Cristina; Cassarà, Filippo; Leto, Filippo; Cannata, Monica; Crivello, Anna; Di Salvo, Veronica; Maggio, Aurelio; Giambona, Antonino

    2016-08-01

    A 59-year-old Italian woman came to our center for revaluation of a previous diagnosis of polycythemia vera. The patient presented with a lifelong history of polycythemia, no increase in white blood cells (WBCs) and platelets, and a negative bone marrow biopsy. Analysis of hemoglobin (Hb) fractions showed an abnormal fast moving Hb component. We aimed to determine if this variant was the cause of polycythemia in this patient. A complete blood count (CBC) was performed by an automated cell counter and Hb fractions were determined by high performance liquid chromatography (HPLC). Standard stability tests and oxygen affinity evaluation were also performed. Genomic DNA was extracted from peripheral blood leukocytes using the phenol chloroform method and the entire β-globin gene was analyzed by direct sequencing. At the hematological level, no anemia or hemolysis was observed but an abnormal Hb fraction was detected using cation exchange HPLC. Molecular analysis of the β-globin gene showed heterozygosity for an AAG > ACG substitution at codon 144, resulting in a Lys→Thr amino acid replacement. We demonstrated that this is a new Hb variant with increased oxygen affinity. Its altered physiology is caused by the reduction of 2,3-diphosphoglycerate (2,3-DPG) effects, due to an amino acid substitution in the central pocket near the C-terminal of the β chain. We called this new variant Hb San Cataldo for the native city of proband.

  2. [Erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection].

    PubMed

    Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E

    2010-01-01

    We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.

  3. The Effect of Chronic Hypercapnia on Oxygen Affinity and 2, 3 Diphosphoglycerate as Related to Submarine Exposure

    DTIC Science & Technology

    The relationship between oxygen affinity and 2,3 diphosphoglycerate (2,3 DPG) in the red cell has been studied in chronic hypercapnia induced by...initial values after seven days of exposure. Both oxygen half-saturation pressure (P50) and the level of 2,3 DPG of the red cells followed the time

  4. Effect of melatonin on the blood oxygen transport during hypothermia and rewarming in rats.

    PubMed

    Hlutkin, S; Zinchuk, V

    2008-01-01

    We aimed to study effect of melatonin on the blood oxygen transport during hypothermia and rewarming in rats. Cold exposure was performed on male rats (body weight 220-270 g, n=48) for 120 minutes under the box water temperature of 19 degrees C; rewarming took the next 120 min, with a mean rate of 0.06 degrees C/min. Melatonin was administered intraperitoneally 30 min before the cold exposure (bolus doses of 0.1, 1 or 10 mg/kg, or 1 mg/kg*day for 4 days). Haemoglobin-oxygen affinity was evaluated by p50 (blood pO2 at its 50% O2 saturation) determined by the "mixing" method at 37 degrees C, pH 7.4 and pCO2 40 mm Hg (p50stand) and at actual pH, pCO2 and temperature (p50act). After hypothermia and rewarming, the values of p50stand and p50act were 31.5+/-0.28 and 30.2+/-0.61 mm Hg, respectively. The 0.1 mg/kg of melatonin virtually did not change these values, whereas the larger doses increased them. This effect was maximal after the prolonged (4 days) melatonin administration: p50stand rose by 5.4% (p<0.05) and p50act--by 12.9 (p<0.05) compared with rats without the melatonin treatment. Melatonin affected the mechanisms of O2 transport by decreasing the haemoglobin-oxygen affinity (shifting the oxygen dissociation curve of haemoglobin rightwards) and promoting the tissue oxygenation, thereby enhancing the body's resistance to cold. The melatonin effect mediated by haemoglobin-oxygen affinity change may be used for the correction of metabolic disorders and the improvement of the body's resistance to low environmental temperature.

  5. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  6. The interaction of 2,3-diphosphoglycerate with various human hemoglobins

    PubMed Central

    Bunn, H. Franklin; Briehl, Robin W.

    1970-01-01

    Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014

  7. Lanthanide ions induce hydrolysis of hemoglobin-bound 2,3-diphosphoglycerate (2,3-DPG), conformational changes of globin and bidirectional changes of 2,3-DPG-hemoglobin's oxygen affinity.

    PubMed

    Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K

    2001-02-14

    The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.

  8. Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus)

    PubMed Central

    Lu, Songsong; Xin, Ying; Tang, Xiaolong; Yue, Feng; Wang, Huihui; Bai, Yucheng; Niu, Yonggang; Chen, Qiang

    2015-01-01

    Phrynocephalus erythrurus (Lacertilia: Agamidae) is considered to be the highest living reptile in the world (about 4500-5000 m above sea level), whereas Phrynocephalus przewalskii inhabits low altitudes (about 1000-1500 m above sea level). Here, we report the differences in hematological traits between these two different Phrynocephalus species. Compared with P. przewalskii, the results indicated that P. erythrurus own higher oxygen carrying capacity by increasing red blood cell count (RBC), hemoglobin concentration ([Hb]) and hematocrit (Hct) and these elevations could promote oxygen carrying capacity without disadvantage of high viscosity. The lower partial pressure of oxygen in arterial blood (PaO2) of P. erythrurus did not cause the secondary alkalosis, which may be attributed to an efficient pulmonary system for oxygen (O2) loading. The elevated blood-O2 affinity in P. erythrurus may be achieved by increasing intrinsic O2 affinity of isoHbs and balancing the independent effects of potential heterotropic ligands. We detected one α-globin gene and three β-globin genes with 1 and 33 amino acid substitutions between these two species, respectively. Molecular dynamics simulation results showed that amino acids substitutions in β-globin chains could lead to the elimination of hydrogen bonds in T-state Hb models of P. erythrurus. Based on the present data, we suggest that P. erythrurus have evolved an efficient oxygen transport system under the unremitting hypobaric hypoxia. PMID:25955247

  9. Hypoxia delays hematopoiesis: retention of embryonic hemoglobin and erythrocytes in larval rainbow trout, Oncorhynchus mykiss, during chronic hypoxia exposure.

    PubMed

    Bianchini, Kristin; Wright, Patricia A

    2013-12-01

    In rainbow trout development, a switch occurs from high-affinity embryonic hemoglobin (Hb) and round, embryonic erythrocytes to lower-affinity adult Hb and oval, adult erythrocytes. Our study investigated the early ontogeny of rainbow trout blood properties and the hypoxia response. We hypothesized that hypoxia exposure would delay the ontogenetic turnover of Hb and erythrocytes because retention of high-affinity embryonic Hb would facilitate oxygen loading. To test this hypothesis we developed a method of efficiently extracting blood from individual embryos and larvae and optimized several techniques for measuring hematological parameters on microliter (0.5-2.0 μl) blood samples. In chronic hypoxia (30% of oxygen saturation), stage-matched embryos and larvae possessed half the Hb concentration, erythrocyte counts and hematocrit observed in normoxia. Hypoxia-reared larvae also had threefold to sixfold higher mRNA expression of the embryonic Hb α-1, β-1 and β-2 subunits relative to stage-matched normoxia-reared larvae. Furthermore, in hypoxia, the round embryonic erythrocytic shape persisted into later developmental stages. Despite these differences, Hb-oxygen affinity (P50), cooperativity and the Root effect were unaltered in hypoxia-reared O. mykiss. The data support our hypothesis that chronic hypoxia delays the ontogenetic turnover of Hb and erythrocytes, but without the predicted functional consequences (i.e. higher than expected P50). These results also suggest that the Hb-oxygen affinity is protected during development in chronic hypoxia to favor oxygen unloading at the tissues. We conclude that in early trout development, the blood-oxygen transport system responds very differently to chronic hypoxia relative to adults, possibly because respiration depends relatively more on oxygen diffusion than convection.

  10. Blood gas analysis and cooximetry in retired racing Greyhounds

    PubMed Central

    Zaldivar-Lopez, Sara; Chisnell, Hope K.; Guillermo Couto, C.; Westendorf-Stingle, Nicole; Marin, Liliana M.; Iazbik, Maria C.; Cooper, Edward S.; Wellman, Maxey L.; Muir, William W.

    2013-01-01

    Objective The purposes of this study were to evaluate the oxygen affinity of hemoglobin (Hb) in healthy retired racing Greyhounds via cooximetry, and to establish reference intervals for blood gases and cooximetry in this breed. Design Prospective clinical study. Setting University Teaching Hospital. Animals Fifty-seven Greyhounds and 30 non-Greyhound dogs. Interventions Venous blood samples were collected from the jugular vein and placed into heparinized tubes. The samples were analyzed within 30 minutes of collection using a blood gas analyzer equipped with a cooximeter. Measurements and Main Results Greyhounds had significantly higher pH, PO2, oxygen saturation, oxyhemoglobin, total Hb, oxygen content, and oxygen capacity and significantly lower deoxyhemoglobin and P50 when compared with non-Greyhound dogs. Conclusion These findings support the fact that this breed is able to carry a higher concentration of total oxygen in the blood. As reported previously, this breed also has lower P50 and, therefore, high oxygen affinity. In light of recent findings suggesting that in certain tissues a high affinity for oxygen is beneficial, this adaptation may be of benefit during strenuous exercise. PMID:21288290

  11. [Biochemical characteristics of compensation of posthemorrhagic anemia in patients presenting with nasal bleeding].

    PubMed

    Boĭko, N V; Kolmakova, T S; Bykova, V V

    2010-01-01

    This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.

  12. Austrian Moderate Altitude Study (AMAS 2000): erythropoietic activity and Hb-O(2) affinity during a 3-week hiking holiday at moderate altitude in persons with metabolic syndrome.

    PubMed

    Schobersberger, Wolfgang; Greie, Sven; Humpeler, Egon; Mittermayr, Markus; Fries, Dietmar; Schobersberger, Beatrix; Artner-Dworzak, Erika; Hasibeder, Walter; Klingler, Anton; Gunga, Hanns-Christian

    2005-01-01

    Moderate altitude hypoxia (1500 to 2500 m) is known to stimulate erythropoiesis and to improve oxygen transport to tissue by a reduction of Hb-O(2) affinity. Whether this adaptation also occurs in tourists with metabolic syndrome has not yet been investigated sufficiently. Thus, we performed a prospective field study to measure erythropoietic parameters and oxygen transport properties in 24 male volunteers with metabolic syndrome during a 3- week holiday program at 1700 m consisting of four guided, individually adapted hiking tours per week. The following examinations were performed: baseline investigations at 500 m (T1); examinations at moderate altitude on day 1 (T2), day 4 (T3), day 9 (T4), and day 19 (T5); and postaltitude tests (T6) 7 to 10 days after return. On day 1 and day 19, a walk on a standardized hiking test route with oxygen saturation (SpO(2)) measure points was performed. Hemoglobin, packed cell volume, and red cell count showed changes over time, with higher values at T5 as compared to baseline. Reticulocyte count and erythropoietin (EPO) were increased at T2 and increased further until T5. EPO declined toward prealtitude values. P50-value (blood PO(2) at 50% hemoglobin oxygen saturation at actual pH) increased during the altitude sojourn (maximum increase at T5 by +0.40 kPa). At T5 all volunteers had a higher SpO(2) before, during, and at the end of the test route compared to T1. During adaptation to moderate altitude, persons with metabolic syndrome exhibit an increase in EPO and a rightward shift of the oxygen dissociation curve that is similar to healthy subjects.

  13. [Change in the content of ATP and 2,3-diphosphoglycerate in the erythrocytes of rats adapted to hypoxia].

    PubMed

    Simanovskiĭ, L N

    1976-01-01

    It was shown that on the 30th-60th days of training rats to hypoxia under conditions of pressure chamber there was an increase in ATP and 2,3-diphosphoglycerate content in erythrocytes. By changing the affinity of hemoglobin to oxygen the mentioned shifts could play an important role in the improvement of oxygen supply to the tissues.

  14. Erythrocyte 2,3-diphosphoglycerate depletion associated with hypophosphatemia detected by routine arterial blood gas analysis.

    PubMed

    Larsen, V H; Waldau, T; Gravesen, H; Siggaard-Andersen, O

    1996-01-01

    To describe a clinical case where an extremely low erythrocyte 2,3-diphosphoglycerate concentration (2,3-DPG) was discovered by routine blood gas analysis supplemented by computer calculation of derived quantities. The finding of a low 2,3-DPG revealed a severe hypophosphatemia. Open uncontrolled study of a patient case. Intensive care observation during 41 days. A 44 year old woman with an abdominal abscess. Surgical drainage, antibiotics and parenteral nutrition. daily routine blood gas analyses with computer calculation of the hemoglobin oxygen affinity and estimation of the 2,3-DPG. An abrupt decline of 2,3-DPG was observed late in the course coincident with a pronounced hypophosphatemia. The fall in 2,3-DPG was verified by enzymatic analysis. 2,3-DPG may be estimated by computer calculation of routine blood gas data. A low 2,3-DPG which may be associated with hypophosphatemia causes an unfavorable increase in hemoglobin oxygen affinity which reduces the oxygen release to the tissues.

  15. [Effect of erythropoietin on blood oxygen transport in rats during cold exposure and subsequent rewarming].

    PubMed

    Zinchuk, V V; Glutkin, S V

    2010-07-01

    Effect of erythropoietin (EPO) preparation (epocrine) on the blood oxygen transport in rats exposed to cold (120 min in a water-cooled box at 19 degrees C) and then rewarmed (next 120 min at a mean heating rate of 0.06 degrees C/min) has been studied. The administration of EPO reduced the body temperature fall at the end of cold exposure and enhanced its rise during the rewarming stage. The effect of EPO in tested rats is associated with a decrease in the hemoglobin affinity to oxygen, which increases the oxygen supply of tissues and improves the organism adaptability to cold.

  16. Extension arm facilitated pegylation of alphaalpha-hemoglobin with modifications targeted exclusively to amino groups: functional and structural advantages of free Cys-93(beta) in the PEG-Hb adduct.

    PubMed

    Li, Dongxia; Hu, Tao; Manjula, Belur N; Acharya, Seetharama A

    2009-11-01

    Cys-93(beta) of hemoglobin (Hb) was reversibly protected as a mixed disulfide with thiopyridine during extension arm facilitated (EAF) PEGylation and its influence on the structural and functional properties of the EAF-PEG-Hb has been investigated. Avoiding PEGylation of Cys-93(beta) in the EAF-PEG-Hb lowers the level of perturbation of heme pocket, alpha1beta2 interface, autoxidation, heme loss, and the O(2) affinity, as compared to the EAF-PEG-Hb with PEGylation of Cys-93(beta).The structural and functional advantages of reversible protection of Cys-93(beta) during EAF PEGylation of oxy-Hb has been compared with Euro PEG-Hb generated by EAF PEGylation of deoxy Hb where Cys-93(beta) is free in the final product. The alphaalpha-fumaryl cross-linking and EAF PEGylation targeted exclusively to Lys residues has been combined together for generation of second-generation EAF-PEG-Hb with lower oxygen affinity. The PEG chains engineered on Lys as well as PEGylation of Cys-93(beta) independently contribute to the stabilization of oxy conformation of Hb and hence increase the oxygen affinity of Hb. However, oxygen affinity of the EAF-PEG-alphaalpha-Hb is more sensitive to the presence of PEGylation on Cys-93(beta) than that of the EAF-PEG-Hb. The present modified EAF PEGylation platform is expected to facilitate the design of novel versions of the EAF-PEG-Hbs that can now integrate the advantages of avoiding PEGylation of Cys-93(beta).

  17. Hemoglobin Brigham (α2Aβ2100 Pro→Leu). HEMOGLOBIN VARIANT ASSOCIATED WITH FAMILIAL ERYTHROCYTOSIS

    PubMed Central

    Lokich, Jacob J.; Moloney, William C.; Bunn, H. Franklin; Bruckheimer, Sally M.; Ranney, Helen M.

    1973-01-01

    Erythrocytosis associated with the presence of a hemoglobin with increased oxygen affinity has been reported for 10 hemoglobin variants, most of which demonstrate altered electrophoretic mobility. Several members of a family were found to have erythrocytosis, and both the whole blood and the hemoglobin exhibited increased oxygen affinity. Phosphate-free hemoglobin solutions had a normal Bohr effect and reactivity to 2,3-diphosphoglycerate. The electrophoretic properties of the hemoglobin were normal, but on peptide mapping of a tryptic digest of the isolated β-chains, a normal βT11 peptide and an abnormal βT11 with greater Rf were seen. Analysis of the abnormal peptide showed the substitution of leucine for the normal proline at β100 (helical residue G2). The hemoglobin variant, designated Hb Brigham, serves to emphasize the necessity for detailed evaluation of the structure and function of hemoglobin in familial erythrocytosis even with electrophoretically “normal” hemoglobin. PMID:4719677

  18. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure.

    PubMed

    Turko, Andy J; Robertson, Cayleih E; Bianchini, Kristin; Freeman, Megan; Wright, Patricia A

    2014-11-15

    Despite the abundance of oxygen in atmospheric air relative to water, the initial loss of respiratory surface area and accumulation of carbon dioxide in the blood of amphibious fishes during emersion may result in hypoxemia. Given that the ability to respond to low oxygen conditions predates the vertebrate invasion of land, we hypothesized that amphibious fishes maintain O2 uptake and transport while emersed by mounting a co-opted hypoxia response. We acclimated the amphibious fish Kryptolebias marmoratus, which are able to remain active for weeks in both air and water, for 7 days to normoxic brackish water (15‰, ~21kPa O2; control), aquatic hypoxia (~3.6kPa), normoxic air (~21 kPa) or aerial hypoxia (~13.6kPa). Angiogenesis in the skin and bucco-opercular chamber was pronounced in air- versus water-acclimated fish, but not in response to hypoxia. Aquatic hypoxia increased the O2-carrying capacity of blood via a large (40%) increase in red blood cell density and a small increase in the affinity of hemoglobin for O2 (P50 decreased 11%). In contrast, air exposure increased the hemoglobin O2 affinity (decreased P50) by 25% without affecting the number of red blood cells. Acclimation to aerial hypoxia both increased the O2-carrying capacity and decreased the hemoglobin O2 affinity. These results suggest that O2 transport is regulated both by O2 availability and also, independently, by air exposure. The ability of the hematological system to respond to air exposure independent of O2 availability may allow extant amphibious fishes, and may also have allowed primitive tetrapods to cope with the complex challenges of aerial respiration during the invasion of land. © 2014. Published by The Company of Biologists Ltd.

  19. A new β chain hemoglobin variant with increased oxygen affinity: Hb Santa Giusta Sardegna [β93(F9)Cys→Trp; HBB c.282T>G].

    PubMed

    Fais, Antonella; Sollaino, Maria Carla; Barella, Susanna; Perseu, Lucia; Era, Benedetta; Corda, Marcella

    2012-01-01

    During a screening program for the identification of β-thalassemia (β-thal) carriers in Sardinia, Italy, we identified two subjects with increased hemoglobin (Hb) levels and an abnormal Hb variant. The same variant was detected in a family member. DNA sequencing revealed a TGT > TGG mutation at codon 93 of the β-globin gene. Structural analysis demonstrated that the cystine residue at position 93 of the β chain was substituted by tryptophan. Since this amino acid substitution had not yet been reported, we designated this variant Hb Santa Giusta Sardegna for the place of birth of the subjects. This amino acid substitution occurs at the tyrosine pocket of the β chain as well as at the α1β2/α2β1 contact of the quaternary structure of the molecule. The presence of this Hb in the hemolysate causes an increased oxygen affinity, a slightly reduced Bohr effect and a reduced heme-heme interaction (n(50), Hill's constant) in comparison with those of Hb A.

  20. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID:10794410

  1. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

    PubMed

    Meir, Jessica U; Milsom, William K

    2013-06-15

    The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.

  2. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels

    PubMed Central

    Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose

    1968-01-01

    The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278

  3. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov; Chatake, Toshiyuki; Shibayama, Naoya

    2010-11-01

    Using neutron diffraction analysis, the protonation states of 35 of 38 histidine residues were determined for the deoxy form of normal human adult hemoglobin. Distal and buried histidines may contribute to the increased affinity of the deoxy state for hydrogen ions and its decreased affinity for oxygen compared with the oxygenated form. The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F{sub o} − F{sub c} and 2F{sub o}more » − F{sub c} neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α{sub 1}β{sub 1} heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK{sub a} between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure.« less

  4. The effect of 2,3-diphosphoglycerate on the oxygen dissociation curve of human haemoglobin.

    PubMed Central

    Goodford, P J; Norrington, F E; Paterson, R A; Wootton, R

    1977-01-01

    1. Oxygen dissociation curves for concentrated human haemoglobin solutions (1.6 mmol dm-3 in haem) have been measured by mixing known quantities of oxy- and deoxyhaemoglobin solutions and measuring the resulting partial pressure of oxygen with an oxygen electrode. 2. Observations in the presence of 2,3-diphosphoglycerate support previous conclusions derived from experiments at low haemoglobin concentrations, the validity of which has been questioned. 3. The two affinity state model of Monod, Wyman & Changeux (1965) does not fully describe the actions of 2,3-diphosphoglycerate and a model in which this allosteric effector not only binds preferentially to the T state but also lowers the oxygen affinity of this state gives an improved fit to the data. PMID:604451

  5. High affinity hemoglobin and Parkinson's disease.

    PubMed

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences.

    PubMed

    Oski, F A; Gottlieb, A J; Miller, W W; Delivoria-Papadopoulos, M

    1970-02-01

    Patients over 1 month of age with arterial oxygen pressures of less than 60 mm Hg were found to have elevated red cell 2,3-diphosphoglycerate (2,3-DPG) levels and blood with a decreased affinity for oxygen. The increase in 2,3-DPG was proportional to the degree of hypoxemia. In patients under 1 month of age this relationship was not observed. Red cells from adults, but not newborns, showed rapid increases in 2,3-DPG when incubated under nitrogen. Adult, but not fetal, deoxyhemoglobin was shown to facilitate in vitro synthesis of 2,3-DPG by binding this organic phosphate and relieving the product inhibition of 2,3-DPG mutase. Throughout a wide range change in oxygen affinity as measured by the P(50) is linear with respect to the 2,3-DPG concentration; a change of 430 mmumoles of 2,3-DPG/ml of red blood corpuscles (RBC) resulting in a change of the P(50) of 1 mm Hg. It appears that the 2,3-DPG of the adult's red cells responds rapidly to metabolic and environmental influences and in turn effects metabolism and the cellular environment. Many of these effects are not shared by the red cells of the newborn.

  7. Hereditary stomatocytosis: association of low 2,3-diphosphoglycerate with increased cation pumping by the red cell.

    PubMed

    Wiley, J S; Cooper, R A; Adachi, K; Asakura, T

    1979-01-01

    The levels of glycolytic intermediates have been measured in red cells from patients with both overhydrated and dehydrated varieties of the hereditary stomatocytosis syndrome. Red cell 2,3-diphosphoglycerate was reduced by 33% below normal in all patients with either stomatocyte or target cell morphologies (i.e. over or under hydrated varieties respectively). The relative decrement in 2,3-diphosphoglycerate was even greater when abnormal cells were compared with control cells with similar reticulocytosis. Red cell ADP concentrations in stomatocytosis were significantly increased above normal but ATP concentrations were not significantly changed. Whole blood oxygen affinity in stomatocytosis was increased in proportion to the lowered content of diphosphoglycerate. Some new parameters of membrane transport in hereditary stomatocytosis have been measured. Platelet K+ and Na+ concentrations and platelet K+ permeability were normal in stomatocytosis. The number of 3H-uridine transport sites in stomatocytes were increased by 9-39% above normal and this increment was the same as the increment in red cell lipids (0-38%). Hereditary stomatocytes contain 2-10-fold more cation pumps than normal and the increased active cation pumping may explain the high ADP, the low 2,3-diphosphoglycerate concentration and the increased oxygen affinity in this syndrome.

  8. Hemoglobin-based O2 carrier O2 affinity and capillary inlet pO2 are important factors that influence O2 transport in a capillary.

    PubMed

    Dimino, Michael L; Palmer, Andre F

    2007-01-01

    Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.

  9. Crystal structure analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin.

    PubMed

    Ganapathy, Jagadeesan; Palayam, Malathy; Pennathur, Gautam; Sanmargam, Aravindhan; Krishnasamy, Gunasekaran

    2018-06-20

    Hemoglobin (Hb) molecule consists of α2β2 dimers arranged in fashion having pseudo-222 symmetry. The subunits are composed of the specific functional prosthetic group "heme'' and a protein moiety "globin". Bird Hbs are functionally similar to mammalian Hbs and regulated by inositol pentaphosphate (IPP) but they are structurally dissimilar with mammalian Hbs in adaptation to vital environment such as high altitudes, high speed flights and oxygen affinity. The insufficient structural studies on avian Hbs limit us to understand their degree of adaptation to such critical environments. So far, detailed structural studies of bar-headed goose (BHG) and graylag goose (GLG) Hb structures were reported to expose their remarkable difference in molecular level adaptation. The striking contrasts to its close relative the bar headed goose, which lives at high altitude and capable of tolerating severe hypoxic environment is mainly due its structural features. The Great Cormorant (GCT) can fly and swim, the dual characteristic of GCT leads to study the details of adaptation of high oxygen affinity in avian species and to know about the role of amino acid substitutions at α1β1 interface, the crystal structure of Great cormorant is studied. The structure of GCT Hb has been solved at 3.5Å resolution and it is compared with the other high oxygen affinity Hb (graylag goose (GLG), bar headed goose (BHG) and human (HMN) hemoglobin) structures. To determine the crystal structure of Great Cormorant (GCT) Hemoglobin and to compare its three dimensional structure with other high and low oxygen affinity hemoglobin species to understand its characteristic features of high oxygen affinity. The GCT hemoglobin has been purified, crystallized and data sets were processed using iMosflm. The integrated data has been solved using Molecular replacement method using Graylag hemoglobin (1FAW) as the template. The structure refinement has been carried out using Refmac which reduced the Rwork and Rfree to 23% and 27% respectively. The structure has been deposited in Protein Data Bank with PDB code: 3WR1. The Great cormorant hemoglobin consists of 287 amino acids, two heme and one water molecule located in alpha heme site. The structure has been crystallized in a tetragonal system having half a molecule in the assymetric unit. In order to characterize the tertiary and quaternary structural differences, the structure of cormorant hemoglobin is compared with GLG, BHG and human Hb. The larger variation observed between GCT and human Hb indicates that GCT Hb differs remarkably from human. The α1β1 interface of Great cormorant Hb is similar to bar-headed goose Hb with few amino acid substitutions. It has been found that the interaction which is common among avian hemoglobins (α119 Pro- β55Leu) is altered by Ala 119 in GCT. This intra-dimer contact (α119 Pro - β 55 Leu) disruption leads to high oxygen affinity in BGH Hb. In cormorant, GLG and human the proline is unchanged but interestingly, in cormorant Hb, the β55 position was found to be Thr instead of Leu. Similar kind of substitutions (β 55 Leu - Ser) observed in Andean goose Hb structure leads to elevated oxygen affinity between Hb-O2. To our surprise, such type of substitution at β 55 (Thr) in cormorant Hb confirms that it is comparable with Andean goose Hb structure. Thus the sequence, structural differences at alpha, beta heme pocket and interface contacts confirms that GCT adopts high oxygen affinity conformation. The three dimensional structure of Great cormorant hemoglobin has been investigated to understand its unique structural features to adopt during hypoxia condition. The comparative studies of GCT's α, β heme pockets and the subunit interface with other Hbs reveal its similarities with goose Hbs. Also the loss of α119 - β55 contact in GCT and its unique mutation (Leu β55 Thr ) as in goose Hbs may play an important role in oxygen affinity. Thus by comparing the sequence and overall structural similarities with high and low oxygen affinity species, it appears that GCT has more possibilities to subsist with low oxygen demand. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Hemoglobin Function in Stored Blood.

    DTIC Science & Technology

    1974-08-01

    States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels

  11. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    PubMed

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  12. Respiratory properties of blood and arterial blood gases in the tegu lizard: effects of temperature and hypercapnia.

    PubMed

    Wood, S C; Glass, M L; Andersen, N A; Heisler, N

    1987-01-01

    The effects of body temperature and hypercapnia (7% inspired CO2) on arterial blood gases, plasma pH, and the characteristics of the blood oxygen dissociation curve were determined in Tegu lizards (Tupinambis nigropunctatus). Arterial pH fell from 7.59 to 7.50 when body temperature was increased from 25 to 35 degrees C. The pH/temperature coefficient (delta pH/delta t = -0.009 U/degrees C) was half of that predicted on the basis of 'constant relative alkalinity' and the alphastat hypothesis. The fall in plasma pH resulted from a decrease in plasma [HCO3-], and a rise in plasma Pco2. The O2 affinity of Tegu blood, expressed by the partial pressure at half saturation (P50), decreased with temperature in vitro from 42.3 to 49.6 torr at pH 7.4. The apparent enthalpy (delta H = -3.1 kcal/mol) is about 1/4 of that of human blood. In vivo, the arterial blood oxygen saturation decreased from 89% at 25 degrees to 82% at 35 degrees C. Arterial Po2 increased from 61 to 71 torr as expected from the right-shift of the oxygen dissociation curve. During environmental hypercapnia (7% CO2, 21% O2, 72% N2 inspired concentrations), arterial pH decreased to 7.28. Arterial O2 saturation remained constant and arterial Po2 increased from 61 to 85 torr due to the right-shift of the oxygen dissociation curve. The comparatively small effect of changes in temperature on the oxygen affinity of Tegu blood (directly according to the delta H value, and indirectly via changes in blood pH) results in a relatively small right shift of the oxygen dissociation curve, and accordingly in relatively high arterial and tissue Po2 values also at higher temperatures.

  13. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  14. Evidence of enzymatic catalysis of oxygen reduction on stainless steels under marine biofilm.

    PubMed

    Faimali, Marco; Benedetti, Alessandro; Pavanello, Giovanni; Chelossi, Elisabetta; Wrubl, Federico; Mollica, Alfonso

    2011-04-01

    Cathodic current trends on stainless steel samples with different surface percentages covered by biofilm and potentiostatically polarized in natural seawater were studied under oxygen concentration changes, temperature increases, and additions of enzymic inhibitors to the solution. The results showed that on each surface fraction covered by biofilm the oxygen reduction kinetics resembled a reaction catalyzed by an immobilised enzyme with high oxygen affinity (apparent Michaelis-Menten dissociation constant close to K(O(2))(M)  ≈ 10 μM) and low activation energy (W ≈ 20 KJ mole(-1)). The proposed enzyme rapidly degraded when the temperature was increased above the ambient (half-life time of ∼1 day at 25°C, and of a few minutes at 50°C). Furthermore, when reversible enzymic inhibitors (eg sodium azide and cyanide) were added, the cathodic current induced by biofilm growth was inhibited.

  15. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks.

    PubMed

    Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S

    2007-10-21

    A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.

  16. The influence of reducing fever on blood oxygen saturation in children.

    PubMed

    Goldberg, Shmuel; Heitner, Shmuel; Mimouni, Francis; Joseph, Leon; Bromiker, Reuben; Picard, Elie

    2018-01-01

    Laboratory-based studies on the oxyhemoglobin dissociation curve (ODC) suggest that high blood temperature decreases the affinity of hemoglobin for oxygen. The aim of the study was to evaluate the influence of pyrexia on oxygen saturation (SpO 2 ) in children presenting to the emergency department. Normoxemic children with body temperature at or above 38.5 °C were included. Patients with a dynamic respiratory disease were excluded. SpO 2 was measured before and after antipyretic treatment. The changes in body temperature and SpO 2 were assessed and compared to the changes predicted from the ODC. Thirty-four children completed the study. Mean temperature at presentation was 39.17 ± 0.549 °C and mean SpO 2 was 96.15 ± 2.21%. The mean decrease in temperature after antipyretic treatment was 1.71 ± 0.67 °C and mean increase in SpO 2 was 0.95 ± 1.76%. Among children in whom pyrexia decreased by 1.5 °C or more, the mean increase in SpO 2 was 1.45 ± 1.57%. The measured increase in SpO 2 was close to the increase anticipated from the ODC. Pyrexia was associated with decreased SpO 2 in normoxemic children. The influence of pyrexia in children with low-normal oxygen saturation is expected to be much higher because of the non-linear shape of the ODC. Physicians treating patients with fever should be aware of this effect, especially in patients with borderline hypoxia. What is Known: • High blood temperature decreases the affinity of oxygen to hemoglobin. • It is not known whether fever would decrease SpO 2 . What is New: • Fever is associated with decreased SpO 2 .

  17. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  18. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed Central

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A. PMID:3930571

  19. Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    PubMed Central

    2016-01-01

    ABSTRACT In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)–O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb–O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb–O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb–O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood–gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb–O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb–O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb–O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. PMID:27802149

  20. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    PubMed

    Storz, Jay F

    2016-10-15

    In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O 2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O 2 affinity should be expected to improve tissue O 2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O 2 loading and peripheral O 2 unloading. Theoretical results indicate that the optimal Hb-O 2 affinity varies as a non-linear function of environmental O 2 availability, and the threshold elevation at which an increased Hb-O 2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O 2 equilibration at the blood-gas interface is limited by the kinetics of O 2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O 2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O 2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O 2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.

  1. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  2. Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes

    PubMed Central

    2011-01-01

    Background Conjugation of human and animal hemoglobins with polyethylene glycol has been widely explored as a means to develop blood substitutes, a novel pharmaceutical class to be used in surgery or emergency medicine. However, PEGylation of human hemoglobin led to products with significantly different oxygen binding properties with respect to the unmodified tetramer and high NO dioxygenase reactivity, known causes of toxicity. These recent findings call for the biotechnological development of stable, low-affinity PEGylated hemoglobins with low NO dioxygenase reactivity. Results To investigate the effects of PEGylation on protein structure and function, we compared the PEGylation products of human hemoglobin and Trematomus bernacchii hemoglobin, a natural variant endowed with a remarkably low oxygen affinity and high tetramer stability. We show that extension arm facilitated PEGylation chemistry based on the reaction of T. bernacchii hemoglobin with 2-iminothiolane and maleimido-functionalyzed polyethylene glycol (MW 5000 Da) leads to a tetraPEGylated product, more homogeneous than the corresponding derivative of human hemoglobin. PEGylated T. bernacchii hemoglobin largely retains the low affinity of the unmodified tetramer, with a p50 50 times higher than PEGylated human hemoglobin. Moreover, it is still sensitive to protons and the allosteric effector ATP, indicating the retention of allosteric regulation. It is also 10-fold less reactive towards nitrogen monoxide than PEGylated human hemoglobin. Conclusions These results indicate that PEGylated hemoglobins, provided that a suitable starting hemoglobin variant is chosen, can cover a wide range of oxygen-binding properties, potentially meeting the functional requirements of blood substitutes in terms of oxygen affinity, tetramer stability and NO dioxygenase reactivity. PMID:22185675

  3. Preliminary Crystallographic Study of Hemoglobin from Buffalo (Bubalus bubalis): A Low Oxygen Affinity Species.

    PubMed

    Balasubramanian, Moovarkumudalvan; Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Ponnuswamy, Mondikalipudur Nanjappa Gounder

    2009-01-01

    Hemoglobin is a tetrameric, iron-containing metalloprotein, which plays a vital role in the transportation of oxygen from lungs to tissues and carbon dioxide back to lungs. Though good amount of work has already been done on hemoglobins, the scarcity of data on three dimensional structures pertaining to low oxygen affinity hemoglobins from mammalian species, motivated our group to work on this problem specifically. Herein, we report the preliminary crystallographic analysis of buffalo hemoglobin, which belongs to low oxygen affinity species. The buffalo blood was collected, purified by anion exchange chromatography and crystallized with PEG 3350 using 50mM phosphate buffer at pH 6.7 as a precipitant by hanging drop vapor diffusion method. Data collection was carried out using mar345dtb image plate detector system. Buffalo hemoglobin crystallizes in orthorhombic space group P2(1)2(1)2(1) with one whole biological molecule (alpha2beta2) in the asymmetric unit with cell dimensions a=63.064A, b=74.677A, c=110.224A.

  4. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  5. [Effect of simvastatin on the oxygen transport function and prooxidant - antioxidant balance in blood].

    PubMed

    Glutkina, N V

    2013-01-01

    The effects of simvastatin on the blood oxygen transport function and indices of prooxidant - antioxidant balance at incubation have been studied. Simvastatin at a concentration of 100 ng/ml increases p50 (the blood pO2 corresponding to its 50% oxygen saturation) at real values of pH and pCO2 from 39.53 + 2.41 (p <0.05) to 36.60 (36, 40, 37, 60) (p <0.05) mm Hg. An increase in the drug concentration led to a decrease in the level of this parameter, but in a dose-independent manner. In addition, the level of nitrates/nitrites in the blood plasma was also increased, which was evidence of increasing activity of the L-arginine-NO system. The indices of prooxidant - antioxidant balance exhibited no significant changes. The results demonstrate a new pleiotropic effect of simvastatin, which is realized via a change in the hemoglobin - oxygen affinity through modification of NO production. This effect must be taken into account in the treatment of pathology in the blood circulation.

  6. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    PubMed

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  7. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.

    PubMed

    Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A

    2009-12-01

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.

  8. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  9. The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences

    PubMed Central

    Oski, Frank A.; Gottlieb, Arlan J.; Miller, William W.; Delivoria-Papadopoulos, Maria

    1970-01-01

    Patients over 1 month of age with arterial oxygen pressures of less than 60 mm Hg were found to have elevated red cell 2,3-diphosphoglycerate (2,3-DPG) levels and blood with a decreased affinity for oxygen. The increase in 2,3-DPG was proportional to the degree of hypoxemia. In patients under 1 month of age this relationship was not observed. Red cells from adults, but not newborns, showed rapid increases in 2,3-DPG when incubated under nitrogen. Adult, but not fetal, deoxyhemoglobin was shown to facilitate in vitro synthesis of 2,3-DPG by binding this organic phosphate and relieving the product inhibition of 2,3-DPG mutase. Throughout a wide range change in oxygen affinity as measured by the P50 is linear with respect to the 2,3-DPG concentration; a change of 430 mμmoles of 2,3-DPG/ml of red blood corpuscles (RBC) resulting in a change of the P50 of 1 mm Hg. It appears that the 2,3-DPG of the adult's red cells responds rapidly to metabolic and environmental influences and in turn effects metabolism and the cellular environment. Many of these effects are not shared by the red cells of the newborn. PMID:5411790

  10. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  11. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.

    PubMed

    Baumann, R; Mazur, G; Braunitzer, G

    1984-04-01

    The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.

  12. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    NASA Astrophysics Data System (ADS)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  13. Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; Unold, T.; Berry, J.

    2016-01-11

    The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less

  14. Purification, crystallization and preliminary X-ray diffraction studies on goat (Capra hircus) hemoglobin - a low oxygen affinity species.

    PubMed

    Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Balasubramanian, Moovarkumudalvan; Ponnuswamy, Mondikalipudur Nanjappa Gounder

    2009-01-01

    Hemoglobin is a vital protein present in almost all higher species. It is a transport protein involved in carrying oxygen from lungs to tissues and carbon dioxide back to lungs by an intrinsically coordinated manner. Even though a good amount of work has been carried out in this direction there exists scarcity of structural insight on low oxygen affinity species. Attempts are being made to unravel the structural insight of this low oxygen affinity species. Goat blood plasma was collected, treated with EDTA to avoid blood clotting and purification was accomplished using DEAE-anion chromatographic column. The goat hemoglobin was crystallized using 50mM of phosphate buffer at pH 6.7 with 1M NaCl and PEG 3350 as precipitant by hanging drop vapor diffusion method. Crystals obtained are screened and suitable crystals are taken for data collection using mar345dtb as image plate detector system. Goat hemoglobin crystal diffracted up to 2.61 A resolution. Goat hemoglobin crystallizes in orthorhombic space group P212(1)2(1) as a whole biological molecule in the asymmetric unit with cell dimensions a=53.568A, b=67.365A, c=154.183A.

  15. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    DOE PAGES

    Mao, Bao-Hua; Crumlin, Ethan; Tyo, Eric C.; ...

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al 2O 3, ZnO and TiO 2 ultrathin films (~1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al 2O 3 and ZnO ultrathin films at RT. At 80°C, the magnitude of the upward band bending decreased, and the change in the electronmore » affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al 2O 3 > ZnO > TiO 2. This finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less

  16. The Impact of Vasoactive Drugs on Oxygenation and Tissue Perfusion

    DTIC Science & Technology

    1992-01-01

    blood. Diffusion defects are seen in patients with pulmonary fibrosis and adult respiratory distress syndrome among others (Von Rueden, 1989; Reischman...increased oxyhemoglobin affinity include alkalosis , hypocarbia, hypothermia, hypophosphatemia and decreased levels of 2,3 - DPG (Mims, 1989; Von Rueden...which cause degranulation of mast cells, basophils and neutrophils. Neutrophils are responsible for respiratory bursts. These bursts are actually

  17. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: kinetics, isotherms and thermodynamics.

    PubMed

    Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi

    2013-01-01

    The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.

  18. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    PubMed

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modulation of hemoglobin dynamics by an allosteric effector

    DOE PAGES

    Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...

    2016-12-15

    Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less

  20. Introduction of a new regulatory mechanism into human hemoglobin.

    PubMed

    Fronticelli, Clara; Bobofchak, Kevin M; Karavitis, Michael; Sanna, Maria Teresa; Brinigar, William S

    2002-07-10

    Previous studies on bovine hemoglobin (HbBv) have suggested amino acid substitutions, which might introduce into human hemoglobin (HbA) functional characteristics of HbBv, namely a low intrinsic oxygen affinity regulated by Cl(-). Accordingly, we have constructed and characterized a multiple mutant, PB5, [beta(V1M + H2 Delta + T4I + P5A + A76K)] replacing four amino acid residues of HbA with those present at structurally analogous positions in HbBv, plus an additional substitution, beta T4I, which does not occur in either HbBv or HbA. This 'pseudobovine' hemoglobin has oxygen binding properties very similar to those of HbBv: the P(50) of HbA, PB5 and HbBv in the absence of Cl(-) are 1.6, 4.6 and 4.8 torr, respectively, and in 100 mM Cl(-) are 3.7, 10.5 and 12 torr, respectively. Moreover, PB5 has 3-fold slower autoxidation rate compared to HbA and HbBv. These are desirable characteristics for a human hemoglobin to be considered for use as a clinical artificial oxygen carrier. Although the functional properties of PB5 and HbBv are similar, van't Hoff plots indicate that the two hemoglobins interact differently with water, suggesting that factors regulating the R to T equilibrium are not the same in the two proteins. A further indication that PB5 is not a functional mimic of HbBv derives from PB5(control), a human hemoglobin with the same substitutions as PB5, except the beta T4I replacement. PB5(control) has a high oxygen affinity (P(50)=2.3 torr) in the absence of Cl(-), but retains the Cl(-) effect of PB5. The Cl(-) regulation of oxygen affinity in PB5 involves lysine residues at beta 8 and beta 76. PB4, which has the same substitutions as PB5 except beta A76K, and PB6, which has all the substitutions of PB5 plus beta K8Q, both have a low intrinsic oxygen affinity, like HbBv and PB5, but exhibit a decreased sensitivity to Cl(-). Since HbBv has lysine residues at both beta 8 and beta 76, these results imply that Cl(-) regulation in HbBv likewise involves these two residues. The mechanism responsible for the low intrinsic oxygen affinity of HbBv remains unclear. It is suggested that residues peculiar to HbBv at the alpha(1)beta(1) interface may play a role.

  1. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties.

    PubMed

    Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U

    2005-05-01

    A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.

  2. Stability of oxyhemoglobin affinity in patients with obstructive sleep apnea-hypopnea syndrome without daytime hypoxemia.

    PubMed

    Clause, Didier; Detry, Bruno; Rodenstein, Daniel; Liistro, Giuseppe

    2008-12-01

    A decrease in hemoglobin affinity for oxygen is considered an adaptive mechanism against tissue hypoxia. Obstructive sleep apnea-hypopnea syndrome (OSAHS) is characterized by recurrent episodes of apnea and hypopnea resulting in arterial oxygen desaturations during sleep. Maillard et al. (10) observed a right shift of the oxyhemoglobin dissociation curve (ODC) and an increase in 2,3-diphosphoglycerate (2,3-DPG) concentration ([2,3-DPG]) in 15 patients with severe OSAHS, but some had slight daytime arterial hypoxemia while breathing room air. The aim of our study was to measure the ODC and 2,3-DPG concentrations in a group of subjects normoxemic during daytime referred to our sleep laboratory for suspicion of snoring or OSAHS. The patients were recruited during a period of 6 mo. All arterial and venous blood samples were taken early in the morning within 1 h of awakening following a full-night polysomnography. ODC and 2,3-DPG were analyzed in 88 patients: 56 OSAHS (oxygen desaturation index: 27.5 +/- 24.5) and 32 non-OSAHS. We found a significant correlation between the P50 and 2,3-DPG levels in the 88 patients: r = 0.502, P < 0.001. We observed no difference between OSAHS and non-OSAHS for the P50 and for [2,3-DPG]. There was no correlation between the severity of OSAHS and either P50 or [2,3-DPG]. Finally, there was no change in these parameters measured at baseline, after 3 days and after 1 mo of treatment by nasal continuous positive airway pressure in 7 patients with OSAHS. We conclude that patients with OSAHS who are normoxemic during daytime have comparable oxyhemoglobin affinity than nonapneic subjects.

  3. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    PubMed

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    PubMed

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. © 2014. Published by The Company of Biologists Ltd.

  6. A quantitative analysis of the effects of 2,3-diphosphoglycerate, adenosine triphosphate and inositol hexaphosphate on the oxygen dissociation curve of human haemoglobin.

    PubMed Central

    Goodford, P J; St-Louis, J; Wootton, R

    1978-01-01

    1. Oxygen dissociation curves have been measured for human haemoglobin solutions with different concentrations of the allosteric effectors 2,3-diphosphoglycerate, adenosine triphosphate and inositol hexaphosphate. 2. Each effector produces a concentration dependent right shift of the oxygen dissociation curve, but a point is reached where the shift is maximal and increasing the effector concentration has no further effect. 3. Mathematical models based on the Monod, Wyman & Changeux (1965) treatment of allosteric proteins have been fitted to the data. For each compound the simple two-state model and its extension to take account of subunit inequivalence were shown to be inadequate, and a better fit was obtained by allowing the effector to lower the oxygen affinity of the deoxy conformational state as well as binding preferentially to this conformation. PMID:722582

  7. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard

    PubMed Central

    Janecka, Jan E.; Nielsen, Simone S. E.; Andersen, Sidsel D.; Hoffmann, Federico G.; Weber, Roy E.; Anderson, Trevor; Storz, Jay F.; Fago, Angela

    2015-01-01

    ABSTRACT Genetically based modifications of hemoglobin (Hb) function that increase blood–O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood–O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. PMID:26246610

  8. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard.

    PubMed

    Janecka, Jan E; Nielsen, Simone S E; Andersen, Sidsel D; Hoffmann, Federico G; Weber, Roy E; Anderson, Trevor; Storz, Jay F; Fago, Angela

    2015-08-01

    Genetically based modifications of hemoglobin (Hb) function that increase blood-O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood-O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. © 2015. Published by The Company of Biologists Ltd.

  9. Use of erythropoietin and its effects on blood lactate and 2, 3-diphosphoglycerate in premature neonates.

    PubMed

    Soubasi, V; Kremenopoulos, G; Tsantali, C; Savopoulou, P; Mussafiris, C; Dimitriou, M

    2000-11-01

    The aim of this study was to investigate the effect of recombinant human erythropoietin (rHu-EPO) on oxygen affinity and adequate oxygen delivery to the tissues of stable premature infants. 36 very-low-birth-weight infants were randomly assigned to either receive rHu-EPO (200 units/kg every other day) or not, and both groups were supplemented with iron, folic acid and vitamin E. Arterial blood gases, oxygen saturation, complete blood counts, fetal haemoglobin, 2,3-diphosphoglycerate (2,3-DPG) and blood lactate were analysed weekly, from the 1st week till discharge. Patients in the two groups were comparable. There was a trend in increasing lactate values towards the 4th to 5th weeks of life, which did not reach statistical significance. There was no correlation between lactate values and the studied variables (pH, BE, oxygen saturation). In 35 transfusions, pre- and 24 h post-transfusion blood lactate status was studied. In 23 of them, a decrease in post-transfusion lactate was noticed, whilst an increased post-transfusion level was shown in 10 cases and no change in 2 cases. The mean pre-transfusion lactate value was significantly higher than the post-transfusion one (24.04 +/- 11.9 mg/dl before and 16.27 +/- 8.5 mg/dl after transfusion; p = 0.0025). In both groups there was a steady rise in 2,3-DPG concentration over the period of study, and the 2,3-DPG values at the end of our study were significantly increased in the rHu-EPO group (rHu-EPO 5.98 +/- 0.9, control 4.84 +/- 0.7; p = 0.04). In conclusion, the use of rHu-EPO did not affect blood lactate levels compared to the control group. Regarding oxygen affinity, it seems that rHu-EPO causes a shift of the oxy-haemoglobin dissociation curve to the right. This is a previously unreported effect of rHu-EPO and its clinical use may, thus, confer to preterm babies an added advantage.

  10. [The evaluation of the efficacy of antihypoxic agents lowering hemoglobin oxygen affinity in acute cerebral ischemia].

    PubMed

    Plotnikova, T M; Plotnikov, M B; Bazhenova, T G

    1991-02-01

    Influence of natrii hydroxybutyrate (100 mg/kg), ascorbate (100 mg/kg), cavinton (5 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) on Hb-O2 affinity and cortex PO2 after both carotid artery occlusion in rats was investigated. Correlation (r-0.87; P less than 0.05) between lowering of Hb-O2 affinity and antihypoxic effect was demonstrated in the line of these drugs.

  11. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  12. Impact of acellular hemoglobin-based oxygen carriers on brain apoptosis in rats.

    PubMed

    Vandegriff, Kim D; Malavalli, Ashok; Lohman, Jeff; Young, Mark A; Terraneo, Laura; Virgili, Eleonora; Bianciardi, Paola; Caretti, Anna; Samaja, Michele

    2014-08-01

    Extracellular hemoglobin (Hb)-based oxygen carriers (HBOCs) are under extensive consideration as oxygen therapeutics. Their effects on cellular mechanisms related to apoptosis are of particular interest, because the onset of proapoptotic pathways may give rise to tissue damage. The objective was to assess whether the properties of the Hb that replaces blood during an isovolemic hemodilution would modulate apoptotic-response mechanisms in rat brain and whether such signaling favors cytoprotection or damage. We exposed rats to exchange transfusion (ET; 50% blood volume and isovolemic replacement with Hextend [negative colloid control], MP4OX [PEGylated HBOC with high oxygen affinity], and ααHb [αα-cross-linked HBOC with low oxygen affinity; n=4-6/group]). Sham rats acted as control. Animals were euthanized at 2, 6, and 12 hours after ET; brain tissue was harvested and processed for analysis. In MP4OX animals, the number of neurons that overexpressed the hypoxia-inducible factor (HIF)-1α was higher than in ααHb, particularly at the early time points. In addition, MP4OX was associated with greater phosphorylation of protein kinase B (Akt), a well-known cytoprotective factor. Indeed, the degree of apoptosis, measured as terminal deoxynucleotidyl transferase-positive neurons and caspase-3 cleavage, ranked in order of MP4OX < Hextend < ααHb. Even though both HBOCs showed increased levels of HIF-1α compared to shams or Hextend-treated animals, differences in signaling events resulted in very different outcomes for the two HBOCs. ααHb-treated brain tissue showed significant neuronal damage, measured as apoptosis. This was in stark contrast to the protection seen with MP4OX, apparently due to recruitment of Akt and neuronal specific HIF-1α pathways. © 2014 Sangart, Inc. Transfusion © 2014 AABB.

  13. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulmalik, Osheiza; Ghatge, Mohini S.; Musayev, Faik N.

    2011-11-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also ledmore » to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.« less

  14. Role of β/δ101Gln in Regulating the Effect of Temperature and Allosteric Effectors on Oxygen Affinity in Woolly Mammoth Hemoglobin†

    PubMed Central

    Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Ho, Chien

    2013-01-01

    The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20–50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins. PMID:24228693

  15. Detection of haemoglobins with abnormal oxygen affinity by single blood gas analysis and 2,3-diphosphoglycerate measurement.

    PubMed

    Guerrini, G; Morabito, A; Samaja, M

    2000-10-01

    The aim is to determine if a single measurement of blood 2,3-diphosphoglycerate combined with gas analysis (pH, PCO2, PO2 and saturation) can identify the cause of an altered blood-oxygen affinity: the presence of an abnormal haemoglobin or a red cell disorder. The population (n=94) was divided into healthy controls (A, n=14), carriers of red cell disorders (B, n=72) and carriers of high oxygen affinity haemoglobins (C, n=8). Those variables were measured both in samples equilibrated at selected PCO2 and PO2 and in venous blood. In the univariable approach applied to equilibrated samples, we correctly identified C subjects in 93.6% or 96.8% of the cases depending on the selected variable, the standard P50 (PO2 at which 50% of haemoglobin is oxygenated) or a composite variable calculated from the above measurements. After introducing the haemoglobin concentration as a further discriminating variable, the A and B subjects were correctly identified in 91.9% or 94.2% of the cases, respectively. These figures become 93.0% or 86.1%, and 93.7% or 94.9% of the cases when using direct readings from venous blood, thereby avoiding the blood equilibration step. This test is feasible also in blood samples stored at 4 degrees C for 48 h, or at room temperature for 8 h.

  16. Oxygen binding to partially nitrosylated hemoglobin.

    PubMed

    Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia

    2013-09-01

    Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Purification, crystallization and preliminary crystallographic study of low oxygen-affinity haemoglobin from cat (Felis silvestris catus) in two different crystal forms.

    PubMed

    Balasubramanian, M; Moorthy, Pon Sathya; Neelagandan, K; Ponnuswamy, M N

    2009-03-01

    Haemoglobin is a metalloprotein which plays a major role in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs. The present work reports the preliminary crystallographic study of low oxygen-affinity haemoglobin from cat in different crystal forms. Cat blood was collected, purified by anion-exchange chromatography and crystallized in two different conditions by the hanging-drop vapour-diffusion method under unbuffered low-salt and buffered high-salt concentrations using PEG 3350 as a precipitant. Intensity data were collected using MAR345 and MAR345dtb image-plate detector systems. Cat haemoglobin crystallizes in monoclinic and orthorhombic crystal forms with one and two whole biological molecules (alpha(2)beta(2)), respectively, in the asymmetric unit.

  18. Microaerobic DO-induced microbial mechanisms responsible for enormous energy saving in upflow microaerobic sludge blanket reactor.

    PubMed

    Zheng, Shaokui; Cui, Cancan; Quan, Ying; Sun, Jian

    2013-07-01

    This study experimentally examined the microaerobic dissolved oxygen (DO)-induced microbial mechanisms that are responsible for enormous energy savings in the upflow microaerobic sludge blanket reactor (UMSB) for domestic wastewater treatment. Phylogenetic and kinetic analyses (as determined by clone library analyses and sludge oxygen affinity analyses) showed that the microaerobic conditions in the UMSB led to the proliferation and dominance of microaerophilic bacteria that have higher oxygen affinities (i.e., lower sludge oxygen half-saturation constant values), which assured efficient COD and NH3-N removals and sludge granulation in the UMSB similar as those achieved in the aerobic control. However, the microaerobic DO level in the UMSB achieved significant short-cut nitrification, a 50-90% reduction in air supply, and an 18-28% reduction in alkali consumption. Furthermore, the disappearance of sludge bulking in the UMSB when it was dominated by "bulking-induced" filamentous bacteria should be attributed to its upflow column-type configuration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Blood oxygen binding in hypoxaemic calves.

    PubMed

    Cambier, Carole; Clerbaux, Thierry; Detry, Bruno; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    Blood oxygen transport and tissue oxygenation were studied in 28 calves from the Belgian White and Blue breed (20 healthy and 8 hypoxaemic ones). Hypoxaemic calves were selected according to their high respiratory frequency and to their low partial oxygen pressure (PaO2) in the arterial blood. Venous and arterial blood samples were collected, and 2,3-diphosphoglycerate, adenosine triphosphate, chloride, inorganic phosphate and hemoglobin concentrations, and pH, PCO, and PO2 were determined. An oxygen equilibrium curve (OEC) was measured in standard conditions, for each animal. The arterial and venous OEC were calculated, taking body temperature, pH and PCO2 values in arterial and venous blood into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and the venous compartments, and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and venous OEC combined with the PO2 and hemoglobin concentration. In hypoxaemic calves investigated in this study, the hemoglobin oxygen affinity, measured under standard conditions, was not modified. On the contrary, in vivo acidosis and hypercapnia induced a decrease in the hemoglobin oxygen affinity in arterial blood, which combined to the decrease in PaO2 led to a reduced hemoglobin saturation degree in the arterial compartment. However, this did not impair the oxygen exchange fraction (OEF%), since the hemoglobin saturation degree in venous blood was also diminished.

  20. The hemoglobin system of the serpent eel Ophisurus serpens: structural and functional characterization.

    PubMed

    Manconi, Barbara; Pellegrini, Mariagiuseppina; Messana, Irene; Sanna, Maria Teresa; Castagnola, Massimo; Iavarone, Federica; Coluccia, Elisabetta; Giardina, Bruno; Olianas, Alessandra

    2013-10-01

    The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.

  1. Familial secondary erythrocytosis due to increased oxygen affinity is caused by destabilization of the T state of hemoglobin Brigham (α2β2Pro100Leu)

    PubMed Central

    Mollan, Todd L; Abraham, Bindu; Strader, Michael Brad; Jia, Yiping; Lozier, Jay N; Olson, John S; Alayash, Abdu I

    2012-01-01

    Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O2 affinity compared with normal cells (P50 = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O2 affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO2, decreasing the rate approximately twofold. These kinetic data help explain the high O2 affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure. PMID:22821886

  2. Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra.

    PubMed

    Jorge, S E; Bringas, M; Petruk, A A; Arrar, M; Marti, M A; Skaf, M S; Costa, F F; Capece, L; Sonati, M F; Estrin, D

    2018-01-01

    Human hemoglobin (Hb) Coimbra (βAsp99Glu) is one of the seven βAsp99 Hb variants described to date. All βAsp99 substitutions result in increased affinity for O 2 and decreased heme-heme cooperativity and their carriers are clinically characterized by erythrocytocis, caused by tissue hypoxia. Since βAsp99 plays an important role in the allosteric α1β2 interface and the mutation in Hb Coimbra only represents the insertion of a CH 2 group in this interface, the present study of Hb Coimbra is important for a better understanding of the global impact of small modifications in this allosteric interface. We carried out functional, kinetic and dynamic characterization of this hemoglobin, focusing on the interpretation of these results in the context of a growth of the position 99 side chain length in the α1β2 interface. Oxygen affinity was evaluated by measuring p50 values in distinct pHs (Bohr effect), and the heme-heme cooperativity was analyzed by determining the Hill coefficient (n), in addition to the effect of the allosteric effectors inositol hexaphosphate (IHP) and 2,3-bisphosphoglyceric acid (2,3-BPG). Computer simulations revealed a stabilization of the R state in the Coimbra variant with respect to the wild type, and consistently, the T-to-R quaternary transition was observed on the nanosecond time scale of classical molecular dynamics simulations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase.

    PubMed

    Gollock, M J; Currie, S; Petersen, L H; Gamperl, A K

    2006-08-01

    For fish to survive large acute temperature increases (i.e. >10.0 degrees C) that may bring them close to their critical thermal maximum (CTM), oxygen uptake at the gills and distribution by the cardiovascular system must increase to match tissue oxygen demand. To examine the effects of an acute temperature increase ( approximately 1.7 degrees C h(-1) to CTM) on the cardiorespiratory physiology of Atlantic cod, we (1) carried out respirometry on 10.0 degrees C acclimated fish, while simultaneously measuring in vivo cardiac parameters using Transonic probes, and (2) constructed in vitro oxygen binding curves on whole blood from 7.0 degrees C acclimated cod at a range of temperatures. Both cardiac output (Q) and heart rate (fh) increased until near the fish's CTM (22.2+/-0.2 degrees C), and then declined rapidly. Q(10) values for Q and fh were 2.48 and 2.12, respectively, and increases in both parameters were tightly correlated with O(2) consumption. The haemoglobin (Hb)-oxygen binding curve at 24.0 degrees C showed pronounced downward and rightward shifts compared to 20.0 degrees C and 7.0 degrees C, indicating that both binding capacity and affinity decreased. Further, Hb levels were lower at 24.0 degrees C than at 20.0 degrees C and 7.0 degrees C. This was likely to be due to cell swelling, as electrophoresis of Hb samples did not suggest protein denaturation, and at 24.0 degrees C Hb samples showed peak absorbance at the expected wavelength (540 nm). Our results show that cardiac function is unlikely to limit metabolic rate in Atlantic cod from Newfoundland until close to their CTM, and we suggest that decreased blood oxygen binding capacity may contribute to the plateau in oxygen consumption.

  4. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis.

    PubMed

    St Pierre, Kathryne A; Desiderio, Vincent J; Hall, Adam B

    2014-07-01

    The recovery of low molecular weight oxygenates in fire debris samples is severely compromised by the use of heated passive headspace concentration with an activated charcoal strip, as outlined in ASTM E-1412. The term "oxygenate" is defined herein as a small, polar, organic molecule, such as acetone, methanol, ethanol, or isopropanol, which can be employed as an ignitable liquid and referred to in the ASTM classification scheme as the "oxygenated solvents" class. Although a well accepted technique, the higher affinity of activated carbon strips for heavy molecular weight products over low molecular weight products and hydrocarbons over oxygenated products, it does not allow for efficient recovery of oxygenates such as low molecular weight alcohols and acetone. The objective of this study was to develop and evaluate a novel method for the enhanced recovery of oxygenates from fire debris samples. By optimizing conditions of the heated passive headspace technique, the utilization of zeolites allowed for the successful collection and concentration of oxygenates. The results demonstrated that zeolites increased the recovery of oxygenates by at least 1.5-fold compared to the activated carbon strip and may complement the currently used extraction technique. Copyright © 2014. Published by Elsevier Ireland Ltd.

  5. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    NASA Astrophysics Data System (ADS)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  6. [Hemoglobin oxygen transport capacity in surgical endotoxicosis ].

    PubMed

    Poryadin, G V; Vlasov, A P; Trofimov, V A; Vlasova, T I; Kamkina, O V; Grigoryev, A G; Vlasov, P A

    2016-01-01

    In surgical endointoxication hemoglobin oxygen transport capacity of red blood cells (hemoglobin affinity ligands: the ability to bind and release ligands) is reduced and is associated with the severity of endogenous intoxication. Violation of oxygen transport function of hemoglobin at endogenous intoxication is associated with conformational changes of a biomolecule, and its possible influence on reactive oxygen species, which confirmed in experiments in vitro: under the influence of oxygen-iron ascorbate ability of hemoglobin deteriorates. Largely similar structural and functional changes in hemoglobin occur in patients with surgical endotoxicosis.

  7. Detection of Hb Rothschild HBB: c.[112T>A or 112T>C], Through High Index of Suspicion on Abnormal Pulse Oximetry.

    PubMed

    Alli, Nazeer A; Wessels, Piet; Rampersad, Narisha; Clark, Barnaby E; Thein, Swee Lay

    2017-03-01

    We describe a case with a low oxygen affinity hemoglobin (Hb) variant who presented with cyanosis in the absence of cardiopulmonary disease. The patient, a 27-year-old pregnant female (P1G2), complained of a productive cough and bluish discoloration of the lips that started 3 days prior to seeking attention. She had no previous episodes and has generally been in good health. A positive family history of cyanosis was obtained in one sibling. Systematic examination, notably the cardiorespiratory system, revealed no abnormalities. The arterial Hb oxygen saturation (SpO 2 ) on pulse oximetry was 81.0% and Hb separation studies revealed an Hb variant identified as Hb Rothschild [β37(C3)Trp→Arg] (HBB: c.[112 T>A or 112 T>C]) by gene sequencing. The amino acid substitution (Trp→Arg) is an important contact point at the α1β2 interface and favors a T-quaternary state of the Hb tetramer. This leads to a low oxygen affinity state, which results in premature release of oxygen and drop in oxygen saturation. In the absence of cardiopulmonary disease, a decreased oxygen saturation reading, with or without cyanosis, should arouse suspicion for a possible dysHb.

  8. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  9. Retinal oxygen distribution and the role of neuroglobin.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.

  10. [THE INFLUENCE OF NITROGLYCERIN ON SPECTRAL AND OXYGEN-BINDING CHARACTERISTICS OF HUMAN INTRACELLULAR HEMOGLOBIN.

    PubMed

    Kalaeva, E A; Artyukhov, V G; Putintseva, O V; Polyubez'eva, A I

    2016-01-01

    The spectral and oxygen-binding characteristics of human intracellular hemoglobin in the presence of nitroglycerin at concentrations of 5 ng/mL and 5 μg/mL have been studied. Short incubation (20 min) of erythrocytes with the drug led increasing hemoglobin affinity to oxygen and weakening of cooperative interactions in hemoprotein molecules. As a result, the amount of O(2) supplied to tissues in the process of gas exchange decreased by 23.96% (5 ng/mL) and 26.68% (5 μg/ml), p < 0.05. Incubation of cells for 24 h resulted in oxidation of the heme iron atom, accumulation of methemoglobin, and partial hemolysis. Nitroglycerin reduces the intensity of oxidative processes. However, no dependence of the degree of changes in the physical and chemical properties of hemoglobin on the concentration of nitroglycerin was found.

  11. Electronic structure and reactivity of cobalt oxide dimers and their hexacarbonyl complexes: a density functional study.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2012-03-29

    The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area.

  12. Genetic Diversity of Coastal Bottlenose Dolphins Revealed by Structurally and Functionally Diverse Hemoglobins

    PubMed Central

    Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia

    2007-01-01

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574

  13. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    PubMed

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  14. Oxygen affinity and Bohr effect responses to 2,3-diphosphoglycerate in equine and human blood.

    PubMed

    diBella, G; Scandariato, G; Suriano, O; Rizzo, A

    1996-05-01

    The dependence of blood oxygen affinity and the Bohr effect on the concentration of 2,3-diphosphoglycerate (DPG) in erythrocytes was investigated in 24 trotter horses and 24 healthy men. The oxygen tension at half saturation and standard conditions (P50st at pH 7.4, PCO2(40) mmHg and 37 degrees C) and the carbon dioxide or fixed-acid-induced Bohr effect (dlogP50/dpH) were determined. Samples of fresh blood and blood depleted of or enriched with DPG were studied. In the absence of measurable DPG, the equine and human blood had similar mean (SD) values of P50st (16.6 [0.6] and 16.2 [0.7] mmHg, respectively). In both species these values increased with increasing DPG, but the response of equine blood was significantly lower, at least up to physiological values (P50st = 24.6 [0.6] and 26.2 [0.7]) mmHg; DPG = 14([1.8] and 12.8 [1.2] mumol gHb-1, respectively, in fresh blood). For concentrations above 20 to 25 mumol gHb-1 of DPG the difference between the values of P50st in the two species tended to decrease because the response in human blood reached a plateau. The interactions between the Bohr effect and the concentration of DPG showed that in the horses, as in the men, the level of DPG played an important role in governing the relative magnitude of carbon dioxide and fixed acid factors. The difference between them, which is associated with the oxylabile carbamino binding, was greatest in DPG-depleted blood, but whereas in the men the difference was suppressed by an above normal DPG concentration, in the horses it was still measurable.

  15. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.

    PubMed

    Cabrales, Pedro; Friedman, Joel M

    2013-06-10

    Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature.

  16. Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin.

    PubMed

    Jandaruang, Jinda; Siritapetawee, Jaruwan; Songsiriritthigul, Chomphunuch; Preecharram, Sutthidech; Azuma, Taoka; Dhiravisit, Apisak; Fukumori, Yoshihiro; Thammasirirak, Sompong

    2014-08-01

    Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P(50)) and 1.96 (n value), and a small Bohr effect (δH(+) = -0.29) at a pH of 6.9-8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O(2) affinity at P(50) of 2.5 mmHg which may assure efficient utilization of the lung O(2) reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10-13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl(2)·6H(2)O] solution at a pH of 7.0-8.5.

  17. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    PubMed

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  18. A mathematical and experimental simulation of the hematological response to weightlessness

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Leonard, J. I.; Johnson, P. C.

    1979-01-01

    A mathematical model of erythropoiesis control was used to simulate the effects of bedrest and zero-g on the circulating red cell mass. The model incorporates the best current understanding of the dynamics of red cell production and destruction and the associated feedback regulation. Specifically studied were the hemodynamic responses of a 28-day bedrest study devised to simulate Skylab experience. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. Model simulation suggested the possibilities that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reduction in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis.

  19. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    PubMed Central

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  20. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares).

    PubMed

    Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A

    2015-03-01

    Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding*

    PubMed Central

    Derbyshire, Emily R.; Deng, Sarah; Marletta, Michael A.

    2010-01-01

    Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of α1β1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain β1(1–385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (β1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat β1 distal heme pocket (Ile-145 → Tyr and Ile-149 → Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin FeII-O2 complexes and is likely the first observation of a FeII-O2 complex in the full-length α1β1 protein. Additionally, these data suggest that atypical sGCs stabilize O2 binding by a hydrogen bonding network involving tyrosine and glutamine. PMID:20231286

  2. Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity.

    PubMed

    Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L

    2017-10-01

    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    PubMed Central

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia. PMID:23986362

  4. Effect of the phenoxy groups on PDIB and its derivatives

    NASA Astrophysics Data System (ADS)

    Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai

    2016-10-01

    The anisotropic hole and electron mobilities in N,N‧-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus-Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N‧-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule.

  5. Effect of the phenoxy groups on PDIB and its derivatives

    PubMed Central

    Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai

    2016-01-01

    The anisotropic hole and electron mobilities in N,N′-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus–Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N′-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule. PMID:27759050

  6. Childhood polycythemias/erythrocytoses: classification, diagnosis, clinical presentation, and treatment.

    PubMed

    Cario, H

    2005-03-01

    Polycythemias or erythrocytoses in childhood and adolescence are very rare. Systematic data on the clinical presentation and laboratory evaluations as well as on treatment regimens are sparse. The diagnostic program in absolute erythrocytosis includes extensive clinical, hematological, biochemical, and molecular biological examinations which should be applied following a stepwise algorithm. Absolute erythrocytoses are usually subdivided into primary and secondary forms. Primary erythrocytosis is a condition in which the erythropoietic compartment is expanding independently of extrinsic influences or by responding inadequately to them. Primary erythrocytoses include primary familial and congenital polycythemia (PFCP) due to mutations of the erythropoietin (Epo) receptor gene and the myeloproliferative disorder polycythemia vera. Secondary erythrocytoses are driven by hormonal factors (predominantly by Epo) extrinsic to the erythroid compartment. The increased Epo secretion may represent either a physiologic response to tissue hypoxia, an abnormal autonomous Epo production, or a dysregulation of the oxygen-dependent Epo synthesis. Congenital secondary erythrocytoses are caused, e.g., by hemoglobin variants with increased oxygen affinity, by 2,3-bisphosphoglycerate deficiency, or by mutations in the von Hippel-Lindau gene associated with a disturbed oxygen-dependent regulation of Epo synthesis.

  7. Acid-base balance and changes in haemolymph properties of the South African rock lobsters, Jasus lalandii, a palinurid decapod, during chronic hypercapnia.

    PubMed

    Knapp, Jarred L; Bridges, Christopher R; Krohn, Janina; Hoffman, Louwrens C; Auerswald, Lutz

    2015-06-05

    Few studies exist reporting on long-term exposure of crustaceans to hypercapnia. We exposed juvenile South African rock lobsters, Jasus lalandii, to hypercapnic conditions of pH 7.3 for 28 weeks and subsequently analysed changes in the extracellular fluid (haemolymph). Results revealed, for the first time, adjustments in the haemolymph of a palinurid crustacean during chronic hypercapnic exposure: 1) acid-base balance was adjusted and sustained by increased bicarbonate and 2) quantity and oxygen binding properties of haemocyanin changed. Compared with lobsters kept under normocapnic conditions (pH 8.0), during prolonged hypercapnia, juvenile lobsters increased bicarbonate buffering of haemolymph. This is necessary to provide optimum pH conditions for oxygen binding of haemocyanin and functioning of respiration in the presence of a strong Bohr Effect. Furthermore, modification of the intrinsic structure of the haemocyanin molecule, and not the presence of molecular modulators, seems to improve oxygen affinity under conditions of elevated pCO2. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels.

    PubMed

    Terrell, James Ross; Gumpper, Ryan H; Luo, Ming

    2018-01-08

    Human hemoglobin (HbA) transports molecular oxygen (O 2 ) from the lung to tissues where the partial pressure of O 2 is lower. O 2 binds to HbA at the heme cofactor and is stabilized by a distal histidine (HisE7). HisE7 has been observed to occupy opened and closed conformations, and is postulated to act as a gate controlling the binding/release of O 2 . However, it has been suggested that HbA also contains intraprotein oxygen channels for entrances/exits far from the heme. In this study, we developed a novel method of crystal immersion in liquid oxygen prior to X-ray data collection. In the crystals immersed in liquid oxygen, the heme center was oxidized to generate aquomethemoglobin. Increases of structural flexibility were also observed in regions that are synonymous with previously postulated oxygen channels. These regions also correspond to medically relevant mutations which affect O 2 affinity. The way HbA utilizes these O 2 channels could have a profound impact on understanding the relationship of HbA O 2 transport within these disease conditions. Finally, the liquid oxygen immersion technique can be utilized as a new tool to crystallographically examine proteins and protein complexes which utilize O 2 for enzyme catalysis or transport. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  10. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  11. Oxygen binding properties, capillary densities and heart weights in high altitude camelids.

    PubMed

    Jürgens, K D; Pietschmann, M; Yamaguchi, K; Kleinschmidt, T

    1988-01-01

    The oxygen binding properties of the blood of the camelid species vicuna, llama, alpaca and dromedary camel were measured and evaluated with respect to interspecific differences. The highest blood oxygen affinity, not only among camelids but of all mammals investigated so far, was found in the vicuna (P50 = 17.6 Torr compared to 20.3-21.6 Torr in the other species). Low hematocrits (23-34%) and small red blood cells (21-30 microns 3) are common features of all camelids, but the lowest values are found in the Lama species. Capillary densities were determined in heart and soleus muscle of vicuna and llama. Again, the vicuna shows exceptional values (3720 cap/mm2 on average in the heart) for a mammal of this body size. Finally, heart weight as percent of body weight is higher in the vicuna (0.7-0.9%) than in the other camelids studied (0.5-0.7%). The possibility that these parameters, measured in New World tylopodes at sea level, are not likely to change considerably with transfer to high altitude, is discussed. In the vicuna, a unique combination of the following features seems to be responsible for an outstanding physical capability at high altitude: saturation of blood with oxygen in the lung is favored by a high blood oxygen affinity, oxygen supply being facilitated by low diffusion distances in the muscle tissue. Loading, as well as unloading, of oxygen is improved by a relatively high oxygen transfer conductance of the red blood cells, which is due to their small size and which compensates the negative effect of a low hematocrit on the oxygen conductance of blood.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Metal-loaded SBA-16-like silica - Correlation between basicity and affinity towards hydrogen

    NASA Astrophysics Data System (ADS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana-.; Azzouz, A.

    2017-07-01

    Nanoparticles of Cuo (CuNPs) and Feo (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  13. Electrode influence on the number of oxygen vacancies at the gate/high-κ dielectric interface in nanoscale MIM capacitors

    NASA Astrophysics Data System (ADS)

    Stojanovska-Georgievska, Lihnida

    2015-02-01

    In this paper, a particular attention has been paid in determining the impact of the type of top electrode (the gate), on the overall characteristics of the examined metal-insulator-metal structures, that contain doped Ta2O5:Hf high-κ dielectric as an insulator. For that purpose MIM capacitors with different metal gates (conventional Al and also W, Au, Pt, Mo, TiN, Ta) were formed. The results obtained, consider both the influence of metal work function and oxygen affinity, as possible reasons for increasing of number of oxygen vacancies at the gate/dielectric interface. Here we use capacitance-voltage alteration (C-V measurements) under constant current stress (CCS) conditions as characterization technique. The measurements show grater creation of positive oxygen vacancies in the case of metal electrodes with high work function, like Au and Pt, for almost one order of magnitude. It is also indicative that these metals have also the lowest values of heat of oxygen formation, which also favors the creation of oxygen vacancies. All results are discussed taking into consideration the nanoscale thickness of the dielectric layer (of the order of 8 nm), implicating the stronger effect of interface properties on the overall behavior rather than the one originating from the bulk of material.

  14. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility

    NASA Astrophysics Data System (ADS)

    Meng, Xiu-Qing; Fang, Yun-Zhang; Wu, Feng-Min

    2012-01-01

    The dispersibility of bio-molecules such as lecithins on the surface of ZnO nanowires are investigated for biosensor applications. Lecithins can be absorbed on an as-synthesized ZnO nanowire surface in the form of sub-micro sized clusters, while scattering well on those annealed under oxygen atmosphere. Wettability analysis reveals that the as-synthesized ZnO nanowires bear a super-hydrophobic surface, which convents to superhydrophilic after oxygen annealing. First-principles calculations indicate that the adsorption energy of ZnO with water is about 0.2 eV at a distance of 2 Å when it is superhydrophilic, suggesting that lecithin can be absorbed on the hydrophilic surface stably at this distance and the bio-affinity can be enhanced under this condition.

  15. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    PubMed

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    PubMed Central

    Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3− during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  17. A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix.

    PubMed

    van der Merwe, M M; Bandosz, T J

    2005-02-01

    A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.

  18. [Hypothermia and cerebral protection after head trauma. Influence of blood gases modifications].

    PubMed

    Odri, A; Geeraerts, T; Vigué, B

    2009-04-01

    The usefulness of therapeutic hypothermia is highly debated after traumatic brain injury. A neuroprotective effect has been demonstrated only in experimental studies: decrease in cerebral metabolism, restoration of ATP level, better control of cerebral edema and cellular effects. Despite negative multicenter clinical studies, therapeutic hypothermia is still used to a better control of intracranial pressure. However, important issues need to be clarified, particularly the level and duration of hypothermia, the depth and modalities of sedation. A clear understanding of blood gases variations induced by hypothermia is needed to understand the cerebral perfusion and oxygenation changes. It is essential to recognize and to use hypothermia-induced physiological hypocapnia and alkalosis under strict control of cerebral oxygen balance (jugular venous saturation or tissue PO(2)) and also to take into account the increased affinity of hemoglobin for oxygen. Management of post-traumatic intracranial hypertension using hypothermia, directed by intracranial pressure level, and consequently for long duration, is potentially beneficial but needs further clarification.

  19. Direct comparison of oligochaete erythrocruorins as potential blood substitutes

    PubMed Central

    Zimmerman, Devon; DiIusto, Matthew; Dienes, Jack; Abdulmalik, Osheiza

    2017-01-01

    Abstract While many blood substitutes are based on mammalian hemoglobins (e.g., human hemoglobin, HbA), the naturally extracellular hemoglobins of invertebrates (a.k.a. erythrocruorins, Ecs) are intriguing alternative oxygen carriers. Specifically, the erythrocruorin of Lumbricus terrestris has been shown to effectively deliver oxygen in mice and rats without the negative side effects observed with HbA. In this study, the properties of six oligochaete Ecs (Lumbricus terrestris, Eisenia hortensis, Eisenia fetida, Eisenia veneta, Eudrilus eugeniae, and Amynthas gracilis) were compared in vitro to identify the most promising blood substitute candidate(s). Several metrics were used to compare the Ecs, including their oxidation rates, dissociation at physiological pH, thermal stability, and oxygen transport characteristics. Overall, the Ecs of Lumbricus terrestris (LtEc) and Eisenia fetida (EfEc) were identified as promising candidates, since they demonstrated high thermal and oligomeric stability, while also exhibiting relatively low oxidation rates. Interestingly, the O2 affinity of LtEc (P 50 = 26.25 mmHg at 37 °C) was also observed to be uniquely lower than EfEc and all of the other Ecs (P 50 = 9.29–13.62 mmHg). Subsequent alignment of the primary sequences of LtEc and EfEc revealed several significant amino acid substitutions within the D subunit interfaces that may be responsible for this significant change in O2 affinity. Nonetheless, these results show that LtEc and EfEc are promising potential blood substitutes that are resistant to oxidation and denaturation, but additional experiments will need to be conducted to determine their safety, efficacy, and the effects of their disparate oxygen affinities in vivo. PMID:29313031

  20. The effect of biofiltration on red blood cells 2.3-diphosphoglycerate and pH.

    PubMed

    Umimoto, K; Hirai, Y; Hayashi, T; Tanaka, H

    2000-12-01

    To investigate the effect of biofiltration (BF) on the ability of blood to supply oxygen to the peripheral tissues, a 2 week crossover study was conducted with bicarbonate hemodialysis (BcHD) and BF using 5 male patients with diabetic renal failure as subjects. BcHD and BF were performed for 4 h and 3.5 h per session, respectively. Blood gases, the pH of red blood cells (RBC-pH), and 2. 3-diphosphoglycerate in RBC (RBC-2.3DPG) were measured during each treatment. After a 2 week BF treatment, the plasma HCO3- at the beginning of BF was significantly higher than that of BcHD (p < 0.01), and the blood pH improved with an elevated plasma bicarbonate level (p < 0.05). The RBC-pH at the beginning of BF was higher than that of BcHD (p < 0.05) although the RBC-pH at the end of both therapies increased to similar levels. The RBC-2.3DPG during BcHD remained unchanged, but during BF significantly increased (p < 0.05). Metabolic acidosis was significantly improved by BF with its effect reaching to the RBC intracellular level. The improved metabolic acidosis might occur as a result of the increase in RBC-2.3DPG during BF. This increase in RBC-2.3DPG has the effect of reducing the affinity of oxygen for hemoglobin and allows more oxygen to be delivered to the peripheral tissues although the increase in RBC-pH by dialysis restricts the dissociation of oxygen from hemoglobin.

  1. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE PAGES

    Alexandratos, Spiro D.; Zhu, Xiaoping

    2017-08-18

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  3. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandratos, Spiro D.; Zhu, Xiaoping

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  4. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it was shown that particles with thicker calcium phosphate coatings released smaller amounts of oxygen in a given timeframe. This study proved the hypothesis by showing a fundamental understanding of emulsion science, coating the flexible emulsion surface with a biocompatible material, and a strong particle performance with regard to stability and as an oxygen carrier.

  5. [Adaptive specific features of energy metabolism in fish ontogenesis].

    PubMed

    Ozerniuk, N D

    2011-01-01

    A review of data on the pattern of change of the intensity of oxygen consumption during early ontogenesis of different fish species (rainbow trout, loach, zebrafish, carp, and grass carp) is provided. It has a similar pattern: this index increases in the period of embryonic and larval development and, after passing of larvae to an active feeding, it begins to gradually decline. This dynamics is determined by specific features of an increase in the rate of oxygen uptake and body weight in the course of early stages of fish ontogenesis. For determining optimal temperature conditions of development, a method of total (for a definite stage of development) oxygen uptake was suggested, which makes it possible to determine minimal energy expenditures necessary for the process of a particular stage of embryogenesis to take place. Analysis of temperature dependence of kinetic properties of enzymes with reference to the Michaelis constant (Km) for lactate dehydrogenase demonstrated that minimal Km, corresponding to maximal enzyme-substrate affinity, for embryos of different fish species differs in correspondence with differences in temperature conditions of development of these species in nature. For embryos of one species developing at changing temperature conditions (salmonids), this index changes in accordance with a temperature drift in nature.

  6. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.

  7. The Antioxidation Mechanism of Polydimethylsiloxane in Oil.

    PubMed

    Yawata, Miho; Satoh, Tohru; Iwahashi, Maiko; Hori, Ryuji; Takeuchi, Shigeo; Shiramasa, Hiroshi; Totani, Nagao

    2015-01-01

    Strong and stable antioxidation effects of polydimethylsiloxane (PDMS) are widely accepted and utilized in commercial frying oil; however, the mechanism is not fully established. On the other hand, canola oil contains about 700 ppm (mg/kg-oil) of the natural antioxidant, tocopherol. Canola oil containing 0, 1 and 10 ppm added PDMS was heated at 180°C for 1 h under stirring, then left for 2-3 days at room temperature; this treatment was repeated 5 times. Compared to pure canola oil, PDMS-containing canola oil exhibited remarkably lower peroxide, p-anisidine and acid values, a lower decrease in tocopherol content but a higher oxygen content during the heating experiments, implicating low oxygen consumption for the oxidation. While PDMS has not been known to exhibit antioxidative effects at ambient temperatures, the present results show that PDMS prevents autoxidation as well as thermal oxidation. In addition, PDMS, not tocopherols, provided the major antioxidative effect during intermittent heating, and the decrease of tocopherols was significantly inhibited by PDMS. Phase contrast microscopy confirmed that PDMS contained in canola oil was suspended as particles. Also, the oxygen content in standing PDMS-containing canola oil decreased as the depth of oil increased, corresponding to the PDMS distribution, which also decreased as the depth of oil increased. Moreover, PDMS had a higher affinity for oxygen than canola oil in a mixture of canola oil/PDMS, 1:1 v/v. Thus, it is suggested that PDMS restricted the behavior of oxygen dissolved in canola oil by attracting oxygen in and around the PDMS particles, which is wholly different from the radical scavenging antioxidation of tocopherol.

  8. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose.

    PubMed

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan

    2017-11-22

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.

  9. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  10. HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species

    PubMed Central

    Friedman, Joel M.

    2013-01-01

    Abstract Significance: Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. Recent Advances: HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Critical Issues: Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Future Directions: Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature. Antioxid. Redox Signal. 18, 2284–2297. PMID:23249305

  11. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    PubMed

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased. It may be concluded that, despite reduced oxygen delivery, oxygen consumption is maintained during experimentally induced hypochloremic alkalosis in healthy 10-30 day old calves.

  12. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides.

    PubMed

    Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter

    2016-03-01

    Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.

  13. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    PubMed

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  15. Effect of hemodialysis on factors influencing oxygen transport.

    PubMed

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  16. Cyanobacteria in Sulfidic Spring Microbial Mats Can Perform Oxygenic and Anoxygenic Photosynthesis Simultaneously during an Entire Diurnal Period.

    PubMed

    Klatt, Judith M; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos

    2016-01-01

    We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H 2 S concentrations (1-2200 μM) and irradiances (4-52 μmol photons m -2 s -1 ) tested. AP increased with H 2 S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H 2 S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H 2 S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H 2 S-rich oceans.

  17. Cyanobacteria in Sulfidic Spring Microbial Mats Can Perform Oxygenic and Anoxygenic Photosynthesis Simultaneously during an Entire Diurnal Period

    PubMed Central

    Klatt, Judith M.; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos

    2016-01-01

    We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200 μM) and irradiances (4–52 μmol photons m-2 s-1) tested. AP increased with H2S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H2S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H2S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H2S-rich oceans. PMID:28018309

  18. Relationships between chemical structure and affinity for postganglionic acetylcholine receptors of the guinea-pig ileum

    PubMed Central

    Abramson, F.B.; Barlow, R.B.; Franks, Fiona M.; Pearson, J.D.M.

    1974-01-01

    1 Some phenylacetyl, diphenylacetyl, benziloyl and (±)-cyclohexylphenylglycolloyl esters have been made with 2- and 3-hydroxymethylpyrrolidines, 3-hydroxymethyl-N-methylpiperidine, piperidin-3-ols, piperidin-4-ols, 2,2,6,6-tetramethyl-N-methylpiperidin-4-ol, tropine, pseudotropine and quinuclidin-3-ol, and the affinity of these compounds and of their metho- and etho- derivatives has been measured for postganglionic acetylcholine receptors of the guinea-pig isolated ileum. 2 Some of the compounds were very active indeed; the benziloyl esters of N-methylpiperidin-4-ol methiodide, tropine methiodide, and quinculidin-3-ol, and the (±)-cyclohexylphenylglycolloyl esters of N-methylpiperidin-4-ol and its methiodide had affinity constants greater than 1010. 3 The effects of inserting an additional methylene group onto the nitrogen were extremely variable, ranging from a decrease in log K of 1.64 units to an increase of 0.97 units. The effects of replacing hydrogen by phenyl in the acid portion ranged from an increase of 1.04 units to an increase of 3.06 units and of replacing hydrogen by hydroxyl from a decrease of 0.09 units to an increase of 1.94 units. 4 The extent of the variation in the effects of a particular change in structure on affinity does not appear to be any different in these relatively rigid compounds from that observed with the same changes in open-chain aminoalcohols. 5 Reasons for the variable effects of groups on affinity are discussed. If differences in effects on preferred conformations of these particular compounds in solution are of secondary importance, the effect of a group on affinity will be the net result of what it could contribute to binding, offset by the disturbance it causes to existing binding. The maximum effect observed in a large number of comparisons may indicate the contribution in the absence of disturbance and for groups containing only carbon and hydrogen it appears to be related to size, assessed from the increments in apparent molal volume at infinite dilution. The variation in the effects of these groups also appears to be related to size. Changes involving groups containing oxygen can produce bigger contributions to binding, and a bigger variation in contribution, than would be expected from their size. 6 It is difficult to predict the extent to which groups may fail to produce their maximum effects. Variation is greatest with groups which could produce the biggest changes and so are of the greatest interest. 7 The relevance of the results to the successful prediction of biological activity is discussed. PMID:4441797

  19. High oxygen affinity hemoglobins.

    PubMed

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. [Catecholamine therapy in cardiogenic shock: helpful, useless or dangerous?].

    PubMed

    Schwertz, H; Müller-Werdan, U; Prondzinsky, R; Werdan, K; Buerke, M

    2004-09-10

    Cardiogenic shock is characterized by inadequate organ and tissue perfusion, due to cardiac dysfunction, predominantly following acute myocardial infarction. Mortality rates for patients with cardiogenic shock remain high, ranging from 50-70 % despite effective therapy. Rapid diagnostics, aggressive therapeutic approach (invasive or surgical revascularisation) and pharmacological support are currently used to improve the clinical outcome and survival. In the first line commonly sympathomimetics like dopamine, dobutamine, epinephrine and norepinephrine are used for the pharmacological treatment. They have a high affinity for alpha- and beta adrenergic receptors, leading to a positive inotropic cardiac function, an increase in heart rate, oxygen enhanced demand, and an increase in vasoconstriction. However, there are also some disadvantages in the use of sympathomimetics in patients with cardiogenic shock. Clearly, metabolic acidosis due to the increased oxygen demand can be observed. Vasoconstriction induced by sympathomimetics can lead to perfusion mismatch or even deficit within the microcirculation. Additionally, in some studies which give evidence that the use of sympathomimetics can directly lead to enhanced systemic inflammatory response due to an increased IL-6 expression. However, sympathomimetics are still first line therapeutics for treatment of cardiogenic shock -- with respect to dosage and duration of treatment.

  1. The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of the individual hemoglobin components.

    PubMed

    Weber, R E; Sullivan, B; Bonaventura, J; Bonaventura, C

    1976-05-20

    Blood from the primitive holostean fish, the bowfin, Amia calva, contains 2 mo of ATP per mol of hemoglobin. The hemolysates contain at least five tetrameric hemoglobin components which differ in their oxygen affinities and their response to cofactors such as ATP. The binding of oxygen by each chromatographically isolated component, including a cathodal component, is influenced by pH and organic phosphates; there is no significant differentiation of function or structure as seen in trout and certain other fish hemolysates. Kinetic analyses of ligand binding indicate that the Bohr and Root effects of Amia calva hemoglobins are best explained by changes in both the "on" and "off" constants. At low pH, the increase in the "off" constant is smaller than for most other Root hemoglobins. The hemoglobin system of Amina calva is functionally undifferentiated and may be representative of the ancestral condition in teleosts.

  2. Correlation of serum unconjugated oestriol to red cell 2,3-diphosphoglycerate levels in diabetic pregnancy.

    PubMed

    Madsen, H; Ditzel, J

    1983-03-01

    In order to evaluate the possible underlying factors for the increase in red cell 2,3-diphosphoglycerate content observed in late diabetic pregnancy, its relationship with serum unconjugated oestriol, human placental lactogen, haemoglobin and hydrogen ion concentrations was investigated in 42 pregnant diabetic women. A significant correlation was found between red cell 2,3-diphosphoglycerate and serum unconjugated oestriol (r = 0.54, p less than 0.001), whereas no correlation was present between 2,3-diphosphoglycerate and the following variables: arterial pH, haemoglobin concentration and human placental lactogen. The content of 2,3-diphosphoglycerate correlated significantly with haemoglobin-oxygen affinity expressed as P50 at pH 7.4 (r = 0.34, p less than 0.05). The results of this study indicate that serum unconjugated oestriol may participate in the regulation of red cell 2,3-diphosphoglycerate content and thereby of the maternal blood oxygen release to the fetus.

  3. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles

    PubMed Central

    Raven, John A.; Giordano, Mario; Beardall, John; Maberly, Stephen C.

    2012-01-01

    Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)–photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO2 assimilation. The high CO2 and (initially) O2-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO2 decreased and O2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO2 affinity and CO2/O2 selectivity correlated with decreased CO2-saturated catalytic capacity and/or for CO2-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco–PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO2 episode followed by one or more lengthy high-CO2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO2 ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762

  4. Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Sajid, Adeel; Arif Iftakher Mahmood, M.; Motasim Bellah, Mohammad; Allen, Peter B.; Kim, Young-Tae; Iqbal, Samir M.

    2015-06-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is a great challenge because of their exceedingly small concentration. There are only a few approaches sensitive enough to differentiate tumor cells from the plethora of other cells in a sample like blood. In order to detect CTCs, several antibodies and aptamers have already shown high affinity. Nanotexture can be used to mimic basement membrane to further enhance this affinity. This article reports an approach to fabricate nanotextured polydimethylsiloxane (PDMS) substrates using micro reactive ion etching (micro-RIE). Three recipes were used to prepare nanotextured PDMS using oxygen and carbon tetrafluoride. Micro-RIE provided better control on surface properties. Nanotexturing improved the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers against cell membrane overexpressed with epidermal growth factor receptors. In all cases, nanotexture of PDMS increased the effective surface area by creating nanoscale roughness on the surface. Nanotexture also enhanced the growth rate of cultured cells compared to plain surfaces. A comparison among the three nanotextured surfaces demonstrated an almost linear relationship between the surface roughness and density of captured tumor cells. The nanotextured PDMS mimicked biophysical environments for cells to grow faster. This can have many implications in microfluidic platforms used for cell handling.

  5. Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    PubMed Central

    Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A max) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K m) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor. PMID:24089597

  6. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations.

    PubMed

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5-2 kg COD m(-3) d(-1) with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m(-3) d(-1), biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A(max)) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K(m)) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.

  7. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.

    PubMed

    Zhang, Z; Fenter, P; Cheng, L; Sturchio, N C; Bedzyk, M J; Predota, M; Bandura, A; Kubicki, J D; Lvov, S N; Cummings, P T; Chialvo, A A; Ridley, M K; Bénézeth, P; Anovitz, L; Palmer, D A; Machesky, M L; Wesolowski, D J

    2004-06-08

    A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

  8. Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions

    PubMed Central

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

  9. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water

    PubMed Central

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-01-01

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799

  10. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    PubMed

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  11. Purification, crystallization and preliminary X-ray analysis of haemoglobin from ostrich (Struthio camelus).

    PubMed

    Sundaresan, S S; Ramesh, P; Sivakumar, K; Ponnuswamy, M N

    2009-07-01

    Haemoglobin is a tetrameric protein that carries oxygen from the lungs to tissues and carbon dioxide from tissues back to the lungs. The oxygen-binding properties of haemoglobin are regulated through the binding of allosteric effectors. The respiratory system of avian species is unique and complex in nature when compared with that of mammals. In avian species, inositol pentaphosphate (inositol-P(5)) is present in the erythrocytes of the adult and is thought to be the major factor responsible for the relatively high oxygen affinity of the whole blood. The ostrich (Struthio camelus) is a large flightless bird which contains inositol tetrakisphosphate (inositol-P(4)) in its erythrocytes and its whole blood oxygen affinity is higher. Efforts have been made to explore the structure-function relationship of ostrich haemoglobin. Ostrich haemoglobin was purified using ion-exchange chromatography. Haemoglobin crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant in 50 mM phosphate buffer pH 7.2. Data were collected using a MAR345 image-plate detector system. The crystals of ostrich haemoglobin diffracted to 2.2 A resolution. They belonged to the orthorhombic space group P2(1)2(1)2(1) with one whole biological molecule in the asymmetric unit; the unit-cell parameters were a = 80.93, b = 81.68, c = 102.05 A.

  12. The effect of impurities elements on titanium alloy (Ti-6Al-4V) MIM sintered part properties

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Azmirruddin; Jabir, M.; Johari, N.; Ibrahim, R.; Hamidi, N.

    2017-12-01

    The titanium alloys (Ti-6Al-4V) compact were fabricated by Metal Injection Molding (MIM). However, the real challenge of MIM processing for titanium alloy is its affinity to be contaminated by interstitial light elements such as oxygen and carbon which could degrade the mechanical properties of sintered titanium alloy such as its tensile strength and ductility. The sintering temperature effect on carbon and oxygen content that affects its physical and mechanical properties of the sintered titanium alloy was studied. The titanium MIM brown specimen was sintered at four different sintering temperatures which are 1100 °C, 1150 °C, 1200 °C and 1250 °C for 4 hours under furnace control atmosphere. The experimental result indicated that the specimen which has been made from 100% gas atomized powder have a relative density of 92.2 % - 97.6 %, the range of porosity percent around 2.38 %-3.84 %. Ultimate tensile strength of 873.11 MPa - 1007.19 MPa and ductility percent in range of 1.89 %-3.46 %. The titanium alloy MIM specimen which was sintered at 1150 °C contained 0.145 % of carbon and 0.143 % of oxygen possess the highest value of density and tensile strength, with value of 4.344 gcm-3 and 1007.2 MPa respectively. Meanwhile, the titanium alloy MIM specimen which was sintered at 1200 °C contains 0.130 % of carbon and 0.127 % of oxygen, has the highest percentage of ductility with 3.46 %. The carbon content level increased as the sintering temperature increased due to decomposition of high molecule weight of residue binder system which could not be eliminated during solvent extraction debinding process and sintered at low temperature. Contrarily, the oxygen content level indicates a decrease as the sintering temperature increased. Briefly, the sintering temperature could influence the physical and mechanical properties of titanium alloy MIM sintered specimen as it influences the oxygen and carbon content level in the alloys.

  13. Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart.

    PubMed

    Heinonen, Ilkka; Kudomi, Nobuyuki; Kemppainen, Jukka; Kiviniemi, Antti; Noponen, Tommi; Luotolahti, Matti; Luoto, Pauliina; Oikonen, Vesa; Sipilä, Hannu T; Kopra, Jaakko; Mononen, Ilkka; Duncker, Dirk J; Knuuti, Juhani; Kalliokoski, Kari K

    2014-07-01

    Highly endurance-trained athlete's heart represents the most extreme form of cardiac adaptation to physical stress, but its circulatory alterations remain obscure. In the present study, myocardial blood flow (MBF), blood mean transit time (MTT), oxygen extraction fraction (OEF) and consumption (MVO2), and efficiency of cardiac work were quantified in highly trained male endurance athletes and control subjects at rest and during supine cycling exercise using [(15)O]-labeled radiotracers and positron emission tomography. Heart rate and MBF were lower in athletes both at rest and during exercise. OEF increased in response to exercise in both groups, but was higher in athletes (70 ± 21 vs. 63 ± 11 % at rest and 86 ± 13 vs. 73 ± 10 % during exercise). MTT was longer and vascular resistance higher in athletes both at rest and during exercise, but arterial content of 2,3-diphosphoglycerate (oxygen affinity) was unchanged. MVO2 per gram of myocardium trended (p = 0.08) lower in athletes both at rest and during exercise, while myocardial efficiency of work and MVO2 per beat were not different between groups. Arterial levels of free fatty acids were ~twofold higher in athletes likely leading to higher myocardial fatty acid oxidation and hence oxygen cost, which may have blunted the bradycardia-induced decrease in MVO2. Finally, the observed group differences in MBF, OEF, MTT and vascular resistance remained significant also after they were controlled for differences in MVO2. In conclusion, in highly endurance-trained human heart, increased myocardial blood transition time enables higher oxygen extraction levels with a lower myocardial blood flow and higher vascular resistance. These physiological adaptations to exercise training occur independently of the level of oxygen consumption and together with training-induced bradycardia may serve as mechanisms to increase functional reserve of the human heart.

  14. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose†

    PubMed Central

    Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc

    2017-01-01

    To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen–HPTS (4,4′-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4–25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4′-o-BBV–HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc. PMID:29130464

  15. Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain.

    PubMed

    Donat, Cornelius K; Walter, Bernd; Kayser, Tanja; Deuther-Conrad, Winnie; Schliebs, Reinhard; Nieber, Karen; Bauer, Reinhard; Härtig, Wolfgang; Brust, Peter

    2010-02-01

    Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8+/-0.3atm) was induced in 15 female newborn piglets, monitored for 6h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase histochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for low-affinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2h after FP-TBI (P<0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P<0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  17. [Hemoglobin, from microorganisms to man: a single structural motif, multiple functions].

    PubMed

    Wajcman, Henri; Kiger, Laurent

    2002-12-01

    Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of legumes, where they are involved in nitrogen metabolism. In some species, haemoglobin was proposed to be an oxygen sensor bringing to the organism information to adjust metabolism or biosynthesis to the oxygen requirement. Elsewhere haemoglobin may act as final electron acceptors in oxido-reduction pathways. Evolution of haemoglobin in invertebrates followed a large variety of scenarios. Some surprising functions as sulphide acquisition in invertebrates living near hydrothermal vents, or a role in the phototrophism of worm need to be mentioned. In invertebrates, the size of haemoglobin varies from monomers to giant molecules associating up to 144 subunits, while in vertebrates it is always a tetramer. In some species, several haemoglobins, with completely different structure and function, may coexist. This demonstrates how hazardous may be to extrapolate the function of a protein from only structural data.

  18. Aged erythrocytes: a fine wine or sour grapes?

    PubMed

    Cohen, B; Matot, I

    2013-12-01

    Blood transfusion saves many lives but carries significant risk of injury. Currently, red blood cell (RBC) concentrates can be stored up to 42 days. Concerns have recently been raised about the safety and efficacy of transfusing stored RBCs. Refrigerated storage results in a 'storage lesion' that is reflected by metabolic derangements, RBC shape modification, rheological changes, oxidative injury to lipids and proteins, alterations in oxygen affinity and delivery, increased adhesion of RBCs to endothelial cells, and accumulation of bioactive substances in storage media. In animal models, transfusion of aged, but not fresh, RBCs induces organ injury, inflammation, coagulopathy, and impaired oxygen delivery. A number of clinical studies, mostly observational or retrospective and from a single centre, have reported an association between transfusion of older RBCs and increased clinically significant outcomes, such as increased morbidity and mortality in certain patient populations, including trauma, critical care, and cardiac surgery. Others, however, have failed to indicate an influence of RBC age on outcome. The quality of evidence is currently too poor to make recommendations to change current transfusion practice; however, the transfusion community looks forward to the results of randomized trials currently addressing the long-standing question regarding the effects of RBC storage on clinically significant outcomes.

  19. Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges.

    PubMed

    Revsbech, Inge G; Tufts, Danielle M; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F; Fago, Angela

    2013-11-15

    Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb-O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb-O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood-O2 affinity in hibernating ground squirrels.

  20. Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Pascher, K. M.; Hollis, C. J.; Bohaty, S. M.; Cortese, G.; McKay, R. M.; Seebeck, H.; Suzuki, N.; Chiba, K.

    2015-12-01

    The long-term cooling trend from middle to late Eocene was punctuated by several large-scale climate perturbations that culminated in a shift to "icehouse" climates at the Eocene-Oligocene transition. We present radiolarian micro-fossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) sites 277, 280, 281, and 283 and Ocean Drilling Project (ODP) Site 1172 to identify significant oceanographic changes in the southwest Pacific through this climate transition (~ 40-30 Ma). We find that the Middle Eocene Climatic Optimum at ~ 40 Ma, which is truncated but identified by a negative shift in foraminiferal δ18O values at Site 277, is associated with a small increase in radiolarian taxa with low-latitude affinities (5 % of total fauna). In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift at Site 277 is correlated with the Priabonian Oxygen Isotope Maximum (PrOM). Radiolarian abundance, diversity, and preservation increase within this cooling event at Site 277 at the same time as diatom abundance. A negative δ18O excursion above the PrOM is correlated with a late Eocene warming event (~ 36.4 Ma). Radiolarian abundance and diversity decline within this event and taxa with low-latitude affinities reappear. Apart from this short-lived warming event, the PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and early Oligocene (~ 38-30 Ma) at DSDP sites 280, 281, 283 and 1172 and are associated with very high diatom abundance. We therefore infer a northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau in the latest Eocene. In the early Oligocene there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms are scarce. These data indicate that, once the Antarctic Circumpolar Current was established in the early Oligocene (~ 30 Ma), a frontal system similar to present day developed, with nutrient-depleted Subantarctic waters bathing the area around DSDP Site 277, resulting in a more restricted siliceous plankton assemblage.

  1. Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix.

    PubMed

    Inoguchi, Noriko; Oshlo, Jake R; Natarajan, Chandrasekhar; Weber, Roy E; Fago, Angela; Storz, Jay F; Moriyama, Hideaki

    2013-04-01

    The deer mouse, Peromyscus maniculatus, exhibits altitude-associated variation in hemoglobin oxygen affinity. To examine the structural basis of this functional variation, the structure of the hemoglobin was solved. Recombinant hemoglobin was expressed in Escherichia coli and was purified by ion-exchange chromatography. Recombinant hemoglobin was crystallized by the hanging-drop vapor-diffusion method using polyethylene glycol as a precipitant. The obtained orthorhombic crystal contained two subunits in the asymmetric unit. The refined structure was interpreted as the aquo-met form. Structural comparisons were performed among hemoglobins from deer mouse, house mouse and human. In contrast to human hemoglobin, deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution. In addition, deer mouse hemoglobin has a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128.

  2. Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix

    PubMed Central

    Inoguchi, Noriko; Oshlo, Jake R.; Natarajan, Chandrasekhar; Weber, Roy E.; Fago, Angela; Storz, Jay F.; Moriyama, Hideaki

    2013-01-01

    The deer mouse, Peromyscus maniculatus, exhibits altitude-associated variation in hemoglobin oxygen affinity. To examine the structural basis of this functional variation, the structure of the hemoglobin was solved. Recombinant hemoglobin was expressed in Escherichia coli and was purified by ion-exchange chromatography. Recombinant hemoglobin was crystallized by the hanging-drop vapor-diffusion method using polyethylene glycol as a precipitant. The obtained orthorhombic crystal contained two subunits in the asymmetric unit. The refined structure was interpreted as the aquo-met form. Structural comparisons were performed among hemoglobins from deer mouse, house mouse and human. In contrast to human hemoglobin, deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution. In addition, deer mouse hemoglobin has a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128. PMID:23545644

  3. A Biochemical-Biophysical Study of Hemoglobins from Woolly Mammoth, Asian Elephant, and Humans†

    PubMed Central

    Yuan, Yue; Shen, Tong-Jian; Gupta, Priyamvada; Ho, Nancy T.; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Hofreiter, Michael; Cooper, Alan; Campbell, Kevin L.; Ho, Chien

    2011-01-01

    This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene Ice-ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A2 (a minor component of human Hb). We have obtained oxygen equilibrium curves and calculated O2 affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, 1H-NMR spectroscopy data indicates that both α1(β/δ)1 and α1(β/δ)2 interfaces in rHb WM and rHb AE are perturbed, whereas only the α1δ1 interface in Hb A2 is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment. PMID:21806075

  4. Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard, Varanus rosenbergi.

    PubMed

    Clark, T D; Wang, T; Butler, P J; Frappell, P B

    2005-04-01

    The majority of information concerning the cardio-metabolic performance of varanids during exercise is limited to a few species at their preferred body temperature (T(b)) even though, being ectotherms, varanids naturally experience rather large changes in T(b). Although it is well established that absolute aerobic scope declines with decreasing T(b), it is not known whether changes in cardiac output (V(b)) and/or tissue oxygen extraction, (Ca(O2) - Cv(O2)), are in proportion to the rate of oxygen consumption (Vo(2)). To test this, we studied six Rosenberg's goannas (Varanus rosenbergi) while at rest and while maximally exercising on a treadmill both at 25 and 36 degrees C. During maximum exercise both at 25 and 36 degrees C, mass-specific rate of oxygen consumption (Vo(2kg)) increased with an absolute scope of 8.5 ml min(-1) kg(-1) and 15.7 ml min(-1) kg(-1), respectively. Interestingly, the factorial aerobic scope was temperature-independent and remained at 7.0 which, at each T(b), was primarily the result of an increase in V(bkg), governed by approximate twofold increases both in heart rate (f(H)) and cardiac stroke volume (V(Skg)). Both at 25 degrees C and 36 degrees C, the increase in V(bkg) alone was not sufficient to provide all of the additional oxygen required to attain maximal Vo(2kg), as indicated by a decrease in the blood convection requirement V(bkg)/Vo(2kg); hence, there was a compensatory twofold increase in (Ca(O2) - Cv(O2)). Although associated with an increase in hemoglobin-oxygen affinity, a decrease in T(b) did not impair unloading of oxygen at the tissues and act to reduce (Ca(O2) - Cv(O2)); both Ca(O2)) and Cv(O2)) were maintained across T(b). The change in Vo(2kg) with T(b), therefore, is solely reliant on the thermal dependence of V(bkg). Maintaining a high factorial aerobic scope across a range of T(b) confers an advantage in that cooler animals can achieve higher absolute aerobic scopes and presumably improved aerobic performance than would otherwise be achievable.

  5. Physiological red cell, 2,3-diphosphoglycerate increase by the sixth hour after birth.

    PubMed

    Barretto, O C; Nonoyama, K; Deutsch, A D; Ramos, J L

    1995-01-01

    As the available hemoglobin A1 at birth ranges from 20 to 30% a possible mechanism to favor oxygen release to the tissues could be a decrease of hemoglobin A1 affinity to oxygen. This may be accomplished by an increase in blood pH soon after birth and by an elevation in red cell 2,3-diphosphoglycerate (2,3-DPG). This hypothesis is supported by Valleri and Hirsch, who described a rapid 2,3-DPG recovery of transfused depleted 2,3-DPG red cells. That being so, we carried out this current study by assaying the 2,3-DPG of cord blood from 22 newborns and at 6, 24 and 72 hours after birth, as well as those enzymes assumed to be envolved in the 2,3-DPG levels regulation. 2,3-DPG (nmoles g-1 Hb) demonstrated the following values: cord blood: 9,770 +/- 1,026; 6h: 12,773 +/- 1,726; 72 h: 11,990 +/- 728, unveiling a distinct behavior of a sharp increase of 30% by the sixth hour. This confirmed our hypothesis. Regarding the metabolic mechanisms which can account for the 2,3-DPG increase, besides the rise of blood pH, we detected a significant decrease of the 2,3-DPG phosphatase activity, which might diminish the 2,3-DPG breakdown.

  6. Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.

    PubMed

    Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E

    2018-05-21

    Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.

  7. A novel base change leading to Hb Vanderbilt [β89(F5)Ser→Arg, AGT>AGA].

    PubMed

    Goodyer, Matthew J; Elhassadi, Ezzat I; Percy, Melanie J; McMullin, Mary F

    2011-01-01

    We describe a high oxygen affinity hemoglobin (Hb) variant (Hb Vanderbilt) as a result of a heterozygous novel base change from T to A at codon 89 (AGT>AGA) leading to an amino acid change from serine to arginine.

  8. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle

    PubMed Central

    Tao, Xiaoxiao; Lin, Mike T.; Thorington, Glyne U.; Wilson, Sean M.; Longo, Lawrence D.

    2015-01-01

    Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K+ channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca2+ activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca2+ set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca2+ and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus. PMID:25599571

  9. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radogna, Flavia; Paternoster, Laura; Istitututo di Chimica Biologica, Universita di Urbino Carlo Bo

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not leadmore » to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.« less

  10. Computational and Experimental Study of Neuroglobin and Mutants

    NASA Astrophysics Data System (ADS)

    Nelson, Lauren; Cho, Samuel; Kim-Shaprio, Daniel

    Neuroglobin (Ngb) is a hexacoordinated heme protein that is closely related to hemoglobin and myoglobin and normally found in the brain and nervous systems. It is involved in cellular oxygen homeostasis and reversibly binds to oxygen with a higher binding affinity than hemoglobin. To protect the brain tissue from hypoxic or ischemic conditions, Ngb increases oxygen availability. We have previously shown that a mutant form of Ngb reduces nitrite to nitric oxide 50x faster than myoglobin and 500x faster than hemoglobin. It also tightly binds to carbon monoxide (CO) with an association rate that is 500x faster than hemoglobin. To analyze the structure of neuroglobin and the characteristics causing these phenomena, we performed 3 sets of 1 microsecond molecular dynamic (MD) simulations of wild-type oxidized and reduced human Ngb and their C46A, C55A, H64L, and H64Q mutants. We also directly compare our MD simulations with time-resolved absorption spectroscopy. These studies will help identify treatments for diseases involving low nitric oxide availability and carbon monoxide poisoning. This research was supported by an NIH NSRA predoctoral fellowship in the Structural and Computational Biophysics Program training Grant (T32GM095440-05).

  11. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE)

    NASA Astrophysics Data System (ADS)

    Maier, Claudia

    2016-03-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE adduction. Whereas, proteins associated with oxidative phosphorylation displayed retardation toward HNE adduction. We provide a list of 31 protein targets with a total of 61 modification sites that may guide future targeted LC-MS assays to monitor disease progression and/or intervention in preclinical models of ALD and possibly other liver diseases with oxidative stress component.

  12. Reaction of oxygen with the respiratory chain in cells and tissues.

    PubMed

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate of ATP production falls and energy conservation previously under the control of the ADP concentration will now be controlled by the diffusion of oxygen to the respiratory enzymes in the mitochondria. Under these conditions the rate of reaction of cytochrome oxidase with oxygen and the reaction of cytochromes with one another become of key importance. The rise of ADP and the depletion of energy reserves evoke glycolytic activity, and failure of biological function may result.

  13. Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod Hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, S.; Tanaka, N; Micetic, I

    2010-01-01

    Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H{sup +} and L-lactate. Isothermal titration calorimetric measurements showed that L-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant k{sub obs} obtained by flash photolysis showed a significant increase upon addition of L-lactate, whereas L-lactatemore » addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that L-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941-31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate.« less

  14. Correlations between oxygen affinity and sequence classifications of plant hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full length globins with the classical 8 helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobin...

  15. A Negative Ion Cookbook

    Science.gov Websites

    Acknowledgements Introduction Negative Ion Source Operating Conditions & Procedures Cathode Ionization Potentials & Electron Affinities A Negative-Ion Cookbook Roy Middleton Department Of Physics 3Li Lithium 4Be Beryllium 5B Boron 6C Carbon 7N Nitrogen 8O Oxygen 9F Fluorine 10Ne Neon 11Na Sodium

  16. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  17. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo

    2015-06-23

    Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.

  18. Increased blood glycohemoglobin A1c levels lead to overestimation of arterial oxygen saturation by pulse oximetry in patients with type 2 diabetes

    PubMed Central

    2012-01-01

    Background Non-enzymatic glycation increases hemoglobin-oxygen affinity and reduces oxygen delivery to tissues by altering the structure and function of hemoglobin. Objectives We investigated whether an elevated blood concentration of glycosylated hemoglobin (HbA1c) could induce falsely high pulse oximeter oxygen saturation (SpO2) in type 2 diabetic patients during mechanical ventilation or oxygen therapy. Methods Arterial oxygen saturation (SaO2) and partial pressure of oxygen (PO2) were determined with simultaneous monitoring of SpO2 in 261 type 2 diabetic patients during ventilation or oxygen inhalation. Results Blood concentration of HbA1c was >7% in 114 patients and ≤ 7% in 147 patients. Both SaO2 (96.2 ± 2.9%, 95% confidence interval [CI] 95.7-96.7% vs. 95.1 ± 2.8%, 95% CI 94.7-95.6%) and SpO2 (98.0 ± 2.6%, 95% CI 97.6-98.5% vs. 95.3 ± 2.8%, 95% CI 94.9-95.8%) were significantly higher in patients with HbA1c >7% than in those with HbA1c ≤ 7% (Data are mean ± SD, all p < 0.01), but PO2 did not significantly differ between the two groups. Bland-Altman analysis demonstrated a significant bias between SpO2 and SaO2 (1.83 ±0.55%, 95% CI 1.73% -1.94%) and limits of agreement (0.76% and 2.92%) in patients with HbA1c >7%. The differences between SpO2 and SaO2 correlated closely with blood HbA1c levels (Pearson’s r = 0.307, p < 0.01). Conclusions Elevated blood HbA1c levels lead to an overestimation of SaO2 by SpO2, suggesting that arterial blood gas analysis may be needed for type 2 diabetic patients with poor glycemic control during the treatment of hypoxemia. PMID:22985301

  19. Increased blood glycohemoglobin A1c levels lead to overestimation of arterial oxygen saturation by pulse oximetry in patients with type 2 diabetes.

    PubMed

    Pu, Li Jin; Shen, Ying; Lu, Lin; Zhang, Rui Yan; Zhang, Qi; Shen, Wei Feng

    2012-09-17

    Non-enzymatic glycation increases hemoglobin-oxygen affinity and reduces oxygen delivery to tissues by altering the structure and function of hemoglobin. We investigated whether an elevated blood concentration of glycosylated hemoglobin (HbA1c) could induce falsely high pulse oximeter oxygen saturation (SpO2) in type 2 diabetic patients during mechanical ventilation or oxygen therapy. Arterial oxygen saturation (SaO2) and partial pressure of oxygen (PO2) were determined with simultaneous monitoring of SpO2 in 261 type 2 diabetic patients during ventilation or oxygen inhalation. Blood concentration of HbA1c was >7% in 114 patients and ≤ 7% in 147 patients. Both SaO2 (96.2 ± 2.9%, 95% confidence interval [CI] 95.7-96.7% vs. 95.1 ± 2.8%, 95% CI 94.7-95.6%) and SpO2 (98.0 ± 2.6%, 95% CI 97.6-98.5% vs. 95.3 ± 2.8%, 95% CI 94.9-95.8%) were significantly higher in patients with HbA1c >7% than in those with HbA1c ≤ 7% (Data are mean ± SD, all p < 0.01), but PO2 did not significantly differ between the two groups. Bland-Altman analysis demonstrated a significant bias between SpO2 and SaO2 (1.83 ±0.55%, 95% CI 1.73% -1.94%) and limits of agreement (0.76% and 2.92%) in patients with HbA1c >7%. The differences between SpO2 and SaO2 correlated closely with blood HbA1c levels (Pearson's r = 0.307, p < 0.01). Elevated blood HbA1c levels lead to an overestimation of SaO2 by SpO2, suggesting that arterial blood gas analysis may be needed for type 2 diabetic patients with poor glycemic control during the treatment of hypoxemia.

  20. Physiological responses to temperature and haeme synthesis modifiers in earthworm Lumbricus terrestris (Annelida: Oligochaeta).

    PubMed

    Khan, M A Q; Khan, Munawwar Ali; Hurlock, Peter; Ahmed, S A

    2012-01-01

    Earthworms (Lumbricus terrestris) acclimated at 2° and 6°C above their average habitat temperature (10°C) had respectively 15 and 40% higher rate of respiration than those at habitat temperature. At 14°C, the rate of respiration and blood hemoglobin (Hb) concentration both increased by ∼60 and 50%, respectively, of the values at habitat temperature. At higher temperatures the rate of respiration and Hb synthesis started decreasing. At 20-23°C, the respiration and Hb concentration decreased respectively by about 85% and 35% of that at 14°C. Decrease in blood Hb concentration at higher temperatures appeared to be due to the lowering of the activity of blood enzyme δ-aminolaevulinic acid dehydratase (ALAD). Exposure of 20-23°C-acclimated pale worms to ALAD inhibitor (lead), lowered the already compromised rate of respiration and blood Hb concentration; while exposure to hexachlorobenzene (HCB, inducer of haeme synthesis) and ferric chloride (enhancer of haeme synthesis) did not overcome the inhibitory effect of high temperature on Hb synthesis. At 20-23°C the affinity of Hb for oxygen also decreased as indicated by the lowering of oxy-Hb (HbO) concentration in blood. The lowering of concentration of blood Hb and its affinity for oxygen may lower the amount of oxygen delivered to cells, which may limit the level of aerobic metabolism (glycolysis, oxidative phosphorylation), as indicated by an increase in blood glucose concentration and a decrease in in vitro activities of mitochondrial electron transport system components (ETS) namely NADH-cytochrome c reductase, succinate dehydrogenase, cytochrome c oxidase, and ATPases. Although the oxygen concentration in air, at sea level, does not decrease significantly from 6° to 20-23°C (lack of hypoxia), lowering of both Hb and HbO concentrations by high temperature may cause significant hypoxemia. The latter may lead to inhibition of the activity of muscle mitochondrial respiratory enzymes (ETS). The resulting inhibition of ATP synthesis and hydrolysis may cause deficit of energy needed for peristalsis/fictive locomotion of body and heart muscles (as indicated by a decrease in heart rate) to facilitate diffusion and transport of gases. The upper critical temperature (20-23°C) also slows down the heart rate and causes hyperosmotic stress (hypovolemia). Thus, a rise in soil temperature above 18°C, which inhibits Hb synthesis, Hb oxygenation, and mitochondrial ETS activity, and slows down the heart rate and causes hyperosmotic stress, can make this and higher temperatures lethal to populations of these earthworms, especially in the presence of metabolic inhibitors and respiratory poisons. Copyright © 2010 Wiley Periodicals, Inc.

  1. Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges

    PubMed Central

    Revsbech, Inge G.; Tufts, Danielle M.; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.; Fago, Angela

    2013-01-01

    SUMMARY Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb–O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb–O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood–O2 affinity in hibernating ground squirrels. PMID:24172889

  2. Distinctive Klf4 mutants determine preference for DNA methylation status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.

    Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resultedmore » in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.« less

  3. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    PubMed

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  5. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable.

    PubMed

    Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-06-10

    A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications.

  6. Computer-aided structure-affinity relationships in a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives binding to the μ-opioid receptor

    NASA Astrophysics Data System (ADS)

    Barlocco, Daniela; Cignarella, Giorgio; Greco, Giovanni; Novellino, Ettore

    1993-10-01

    Molecular modeling studies were carried out on a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives with the aim to highlight the main factors modulating their affinity for the μ-opioid receptor. Structure-affinity relationships were developed with the aid of molecular mechanics and semiempirical quantum-mechanics methods. According to our proposed pharmacodynamic model, the binding to the μ-receptor is promoted by the following physico-chemical features: the presence of hydrocarbon fragments on the nitrogen ring frame capable of interacting with one of two hypothesized hydrophobic receptor pockets; a `correct' orientation of an N-propionyl side chain so as to avoid a sterically hindered region of the receptor; the possibility of accepting a hydrogen bond from a receptor site complementary to the morphine phenol oxygen.

  7. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  8. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  9. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    PubMed Central

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID:23239893

  10. Oxygenation properties and isoform diversity of snake hemoglobins

    PubMed Central

    Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G.; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E.

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. PMID:26354849

  11. The effects of 2,3-diphosphoglycerate, adenosine triphosphate, and glycosylated hemoglobin on the hemoglobin-oxygen affinity of diabetic patients.

    PubMed

    Castilho, E M; Glass, M L; Manço, J C

    2003-06-01

    The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 mol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.

  12. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  13. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.

    PubMed

    Simonin, Vagner; Galina, Antonio

    2013-01-01

    NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.

  14. Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.

    PubMed

    Hyakutake, Toru; Kishimoto, Takumi

    2017-12-01

    The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.

  15. A systems analysis of the erythropoietic responses to weightlessness. Volume 2: Description of the model of erythropoiesis regulation. Part A: Model for regulation of erythropoiesis. Part B: Detailed description of the model for regulation of erythropoiesis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A mathematical model of the erythropoiesis on total red blood cell mass is presented. The loss of red cell mass has been a consistent finding during space flight. Computer simulation of this phenomenon required a model that could account for oxygen transport, red cell production, and red cell destruction. The elements incorporated into the feedback regulation loop of the model are based on the accepted concept that erythrocyte production is governed by the balance between oxygen supply and demand in the body. The mechanisms and pathways of the control circuit include oxygenation of hemoglobin and oxygenation of tissues by blood transport and diffusional processes. Other features of the model include a variable oxygen-hemoglobin affinity, and time delays which represent time for erythropoietin (erythrocyte-stimulating hormone) distribution in plasma, and time for maturation of the erythrocytes in bone marrow.

  16. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; de Vries-van Rossen, A; Offerijns, F G

    1977-03-11

    The influence of a 2,3-diphosphoglycerate (2,3-DPG)-induced displacement of the oxygen dissociation curve (O.D.C.) on the isolated perfused rat liver was studied at different levels of anaemic hypoxia. Rat livers were perfused either with fresh or with 2,3-DPG-depleted human erythrocytes at different haematocrit values (from 30% to 2.5%) at constant Po2 of the inflowing perfusate and at constant blood flow rate. The 2,3-DPG-induced difference in oxygen affinity of the red cells did not cause a significant difference in perfusion pressure during the perfusion experiments. Therefore, there is no evidence that 2,3-DPG did alter the vascular resistance of the liver, since blood flow rate could be adusted at equal values. The decrease in oxygen supply brought about by decrease of haematocrit caused a decrease of O2 consumption, of bile flow rate and of venous Po2 and an increase of lactate/pyruvate (L/P) ratio and of beta-hydroxybutyrate/acetoacetate (betaOH/Acac) ratio. There was no influence of a difference in 2,3-DPG content of the erythrocytes on the above-metioned parameters during severe anaemic hypoxia. At moderate anaemic hypoxia the venous Po2 was higher during perfusion with fresh erythrocytes than during perfusion with 2,3-DPG-depleted erythrocytes. Thus, although 2,3-DPG may play a compensatory role during conditions of mild anaemia, no such effects can be observed during conditions of severe hypoxia.

  17. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed

    2016-11-01

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  18. Modification of the photodynamic action of delta-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands.

    PubMed Central

    Ratcliffe, S. L.; Matthews, E. K.

    1995-01-01

    We have shown that addition of exogenous delta-aminolaevulinic acid (ALA) to rat pancreatoma AR4-2J cells in culture leads to the increased production of porphobilinogen (PBG) and the accumulation of photoactive protoporphyrin IX (PPix) in these cells. Exposure to light (lambda > 400 nm) at an intensity of 0.2 mW cm-2 for 8 min resulted in an ALA dose-dependent cytolysis of the cells, with an EC50 of 6.6 +/- 0.7 microM. This cytolytic effect was light intensity dependent, with greater cell destruction after exposure to light at an intensity of 0.47 mW cm-2 than at 0.2 mW cm-2; it was also dependent on the duration of illumination, cell survival decreasing with increasing illumination times. The photodestruction of the AR4-2J cells following exposure to ALA can be attributed to the production of endogenous PPix, a photoactive porphyrin that we have shown to generate singlet oxygen upon illumination, whereas ALA itself does not. Further investigation of the molecular mechanisms underlying the photodynamic action of ALA demonstrated the involvement of the mitochondrial (peripheral) benzodiazepine receptor (MBR), a high-affinity recognition site for dicarboxylic porphyrins, and especially PPix. The centrally acting benzodiazepine compounds clonazepam and flumazenil, which have negligible affinities for the MBR, had no effect on ALA-mediated phototoxicity. In contrast, both the isoquinoline carboxamide PK11195 and the benzodiazepine Ro 5-4864 ligands, displaying a high affinity for the MBR, did affect ALA-mediated phototoxicity, each markedly increasing the EC50 for cell photodestruction and thus exerting a photoprotective effect. It is concluded that the MBR may play an important role in the expression of ALA-mediated PPix phototoxicity and that MBR ligands, by diminishing the actions of endogenous PPix, have the potential to rescue cells from porphyrin-induced photolysis. PMID:7841044

  19. Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency

    PubMed Central

    Tharakaraman, Kannan; Robinson, Luke N.; Hatas, Andrew; Chen, Yi-Ling; Siyue, Liu; Raguram, S.; Sasisekharan, V.; Wogan, Gerald N.; Sasisekharan, Ram

    2013-01-01

    Affinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen–antibody interfaces to predict protein–protein interaction and mutations that confer increased affinity. We apply this approach to the design of affinity-enhancing mutations in 4E11, a potent cross-reactive neutralizing antibody to dengue virus (DV), without a crystal structure. Combination of predicted mutations led to a 450-fold improvement in affinity to serotype 4 of DV while preserving, or modestly increasing, affinity to serotypes 1–3 of DV. We show that increased affinity resulted in strong in vitro neutralizing activity to all four serotypes, and that the redesigned antibody has potent antiviral activity in a mouse model of DV challenge. Our findings demonstrate an empirical computational chemistry approach for improving protein–protein docking and engineering antibody affinity, which will help accelerate the development of clinically relevant antibodies. PMID:23569282

  20. High-altitude diving in river otters: coping with combined hypoxic stresses.

    PubMed

    Crait, Jamie R; Prange, Henry D; Marshall, Noah A; Harlow, Henry J; Cotton, Clark J; Ben-David, Merav

    2012-01-15

    River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O(2)) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl(-1)) than sea-level otters (15.6 g dl(-1)). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O(2) at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment.

  1. Pharmacological and gene regulation properties point to the SlHAK5 K+ transporter as a system for high-affinity Cs+ uptake in tomato plants.

    PubMed

    Ródenas, Reyes; Nieves-Cordones, Manuel; Rivero, Rosa M; Martinez, Vicente; Rubio, Francisco

    2018-04-01

    Potassium (K + ) and cesium (Cs + ) are chemically similar but while K + is an essential nutrient, Cs + can be toxic for living organisms, plants included. Two different situations could lead to problems derived from the presence of Cs + in agricultural systems: (1) presence of Cs + at high concentrations that could produce toxic effects on plants, (2) presence of micromolar concentrations of radiocesium, which can be accumulated in the plant and affect animal and human health through the food chain. While K + uptake has been well described in tomato plants, information on molecular mechanisms involved in Cs + accumulation in this species is absent. Here, we show that in tomato plants, high concentrations of Cs + produce deficiency of K + but do not induce high-affinity K + uptake or the gene encoding the high-affinity K + transporter SlHAK5. At these concentrations, Cs + uptake takes place through a Ca 2+ -sensitive pathway, probably a non-selective cation channel. At micromolar concentrations, Cs + is accumulated by a high-affinity uptake system upregulated in K + -starved plants. This high-affinity Cs + uptake shares features with high-affinity K + uptake. It is sensitive to NH 4 + and insensitive to Ba 2+ and Ca 2+ and its presence parallels the pattern of SlHAK5 expression. Moreover, blockers of reactive oxygen species and ethylene action repress SlHAK5 and negatively regulate both high-affinity K + and Cs + uptake. Thus, we propose that SlHAK5 contributes to Cs + uptake from micromolar concentrations in tomato plants and can constitute a pathway for radiocesium transfer from contaminated areas to the food chain. © 2017 Scandinavian Plant Physiology Society.

  2. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes.

    PubMed

    Ramandeep; Hwang, K W; Raje, M; Kim, K J; Stark, B C; Dikshit, K L; Webster, D A

    2001-07-06

    The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.

  3. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. Atmore » the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.« less

  4. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    PubMed

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  5. Long-term physiological effects of enhanced O/sub 2/ release by inositol hexaphosphate-loaded erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teisseire, B.; Ropars, C.; Villereal, M.C.

    1987-10-01

    A continuous lysing and resealing procedure with erythrocytes permitted incorporation in these cells of inositol hexaphosphate (InsP/sub 6/), a strong allosteric effector of Hb. This leads to significant rightward shifts of the HbO/sub 2/ dissociation curves with in vitro P/sub 50/, values increasing from 32.2 +/- 1.8 torr for control erythrocytes to 86 +/- 60 torr. The shape of the dissociation curve was still sigmoidal, although the Hill coefficient was decreased. The life span of InsP/sub 6/-loaded erythrocytes equaled that of control erythrocytes. Erythrocyte-survival studies were done using /sub 51/Cr labeling of cells. The long-term physiological effects of the InsP/submore » 6/-loaded erythrocytes on piglets were increased O/sub 2/ release and reduced cardiac output. The reduced O/sub 2/ affinity of the InsP/sub 6/-loaded erythrocytes was still effective 20 days after transfusion in awake piglets. The electrolyte concentration appeared stable over the 5-day observation period except for a transient, but significant, hyperkalemia immediately after transfusion. The reductions in the O/sub 2/ affinity of Hb reported here are large compared with previously reported values. Introduction of InsP/sub 6/ into viable erythrocytes improves tissue oxygenation when, for any reason, normal blood flow is impaired.« less

  6. Legacy and Emerging Perfluoroalkyl Substances Are ...

    EPA Pesticide Factsheets

    Long-chain per- and polyfluoroalkyl substances (PFASs) are being replaced by short-chain PFASs and fluorinated alternatives. For ten legacy PFASs and seven recently discovered perfluoroalkyl ether carboxylic acids (PFECAs), we report (1) their occurrence in the Cape Fear River (CFR) watershed, (2) their fate in water treatment processes, and (3) their adsorbability on powdered activated carbon (PAC). In the headwater region of the CFR basin, PFECAs were not detected in raw water of a drinking water treatment plant (DWTP), but concentrations of legacy PFASs were high. The U.S. Environmental Protection Agency’s lifetime health advisory level (70 ng/L) for perfluorooctanesulfonic acid and perfluorooctanoic acid (PFOA) was exceeded on 57 of 127 sampling days. In raw water of a DWTP downstream of a PFAS manufacturer, the mean concentration of perfluoro-2-propoxypropanoic acid (PFPrOPrA), a replacement for PFOA, was 631 ng/L (n = 37). Six other PFECAs were detected, with three exhibiting chromatographic peak areas up to 15 times that of PFPrOPrA. At this DWTP, PFECA removal by coagulation, ozonation, biofiltration, and disinfection was negligible. The adsorbability of PFASs on PAC increased with increasing chain length. Replacing one CF2 group with an ether oxygen decreased the affinity of PFASs for PAC, while replacing additional CF2 groups did not lead to further affinity changes. The USEPA’s recently completed Unregulated Contaminant Monitoring Rule 3 (UCMR3) p

  7. Oxygenation properties and isoform diversity of snake hemoglobins.

    PubMed

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.

  8. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters

    PubMed Central

    Bristow, Laura A.; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B.; Bertagnolli, Anthony D.; Wright, Jody J.; Hallam, Steven J.; Ulloa, Osvaldo; Canfield, Donald E.; Revsbech, Niels Peter; Thamdrup, Bo

    2016-01-01

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (<10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss. PMID:27601665

  9. Biophysical Properties and Oxygenation Potential of High-Molecular-Weight Glutaraldehyde-Polymerized Human Hemoglobins Maintained in the Tense and Relaxed Quaternary States

    PubMed Central

    Zhang, Ning; Jia, Yiping; Chen, Guo; Cabrales, Pedro

    2011-01-01

    Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O2 and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O2 to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O2 affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O2 affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O2 to cultured cells/tissues. PMID:20979534

  10. Tangential Flow Filtration of Hemoglobin

    PubMed Central

    Sun, Guoyong; Harris, David R.

    2009-01-01

    Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells (bRBCs and hRBCs, respectively) via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P50), and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (α) and beta (β) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the α and β globin chains agreed well with the calculated theoretical mass of the α-and β-globin chains. Taken together, our results demonstrate that HPLC grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers (HBOCs). PMID:19224583

  11. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring.

    PubMed

    de Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M Klatt, Judith

    2017-03-01

    Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Determination of the Bridging Ligand in the Active Site of Tyrosinase.

    PubMed

    Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun

    2017-10-28

    Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  13. Evidence for a Key Role of Cytochrome bo3 Oxidase in Respiratory Energy Metabolism of Gluconobacter oxydans

    PubMed Central

    Richhardt, Janine; Luchterhand, Bettina; Büchs, Jochen

    2013-01-01

    The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H+/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain. PMID:23852873

  14. Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin.

    PubMed

    Metcalf, Brian; Chuang, Chihyuan; Dufu, Kobina; Patel, Mira P; Silva-Garcia, Abel; Johnson, Carl; Lu, Qing; Partridge, James R; Patskovska, Larysa; Patskovsky, Yury; Almo, Steven C; Jacobson, Matthew P; Hua, Lan; Xu, Qing; Gwaltney, Stephen L; Yee, Calvin; Harris, Jason; Morgan, Bradley P; James, Joyce; Xu, Donghong; Hutchaleelaha, Athiwat; Paulvannan, Kumar; Oksenberg, Donna; Li, Zhe

    2017-03-09

    We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 ( 36 ), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 ( 36 ) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).

  15. Increased blood-oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m

    PubMed Central

    Simonson, T.S.; Wei, G.; Wagner, H.E.; Wuren, T.; Bui, A.; Fine, J.M.; Qin, G.; Beltrami, F.G.; Yan, M.; Wagner, P.D.; Ge, Ri Li

    2014-01-01

    High-altitude natives are challenged by hypoxia and a potential compensation could be reduced blood P50, as seen in several high-altitude mammalian species. In 21 Qinghai Tibetan males and 9 Han Chinese, all resident at 4200 m, standard P50 was calculated from measurements of arterial PO2 and forehead oximeter oxygen saturation (SpO2), which was validated in a separate examination of 13 healthy sea-level subjects. In both Tibetans and Han Chinese, standard P50 was 24.5 (± 1.4 and 2.0 mmHg, respectively) and was lower than in the sea-level subjects (26.2 ± 0.6 mm Hg, p < 0.01). There was no relationship between P50 and [Hb] (the latter ranging from 15.2 and 22.9 g/dl in Tibetans). During peak exercise, P50 was not associated with alveolar-arterial PO2 difference or VO2/kg. There appears to be no apparent benefit of a lower P50 in this adult high-altitude Tibetan population. PMID:25172885

  16. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  17. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease

    PubMed Central

    Mantena, Sudheer K; King, Adrienne L; Andringa, Kelly K; Landar, Aimee; Darley-Usmar, Victor; Bailey, Shannon M

    2007-01-01

    Mitochondrial dysfunction is known to be a contributing factor to a number of diseases including chronic alcohol induced liver injury. While there is a detailed understanding of the metabolic pathways and proteins of the liver mitochondrion, little is known regarding how changes in the mitochondrial proteome may contribute to the development of hepatic pathologies. Emerging evidence indicates that reactive oxygen and nitrogen species disrupt mitochondrial function through post-translational modifications to the mitochondrial proteome. Indeed, various new affinity labeling reagents are available to test the hypothesis that post-translational modification of proteins by reactive species contributes to mitochondrial dysfunction and alcoholic fatty liver disease. Specialized proteomic techniques are also now available, which allow for identification of defects in the assembly of multi-protein complexes in mitochondria and the resolution of the highly hydrophobic proteins of the inner membrane. In this review knowledge gained from the study of changes to the mitochondrial proteome in alcoholic hepatotoxicity will be described and placed into a mechanistic framework to increase understanding of the role of mitochondrial dysfunction in liver disease. PMID:17854139

  18. Adenylosuccinate synthetase: recent developments.

    PubMed

    Honzatko, R B; Stayton, M M; Fromm, H J

    1999-01-01

    By exerting strategic control on purine nucleotide biosynthesis, and by engaging GTP-dependent transphosphorylation of IMP to activate loss of an oxygen atom during catalysis, adenylosuccinate synthetase remains as enzyme that justifiably fascinates students of enzyme catalysis. This review describes how the balanced application of X-ray crystallography and enzyme kinetics has advanced the comprehension of the catalytic and regulatory properties of adenylosuccinate synthetase. Detailed analysis has demonstrated the formation of 6-phosphoryl-IMP, an intermediate originally postulated over 40 years ago on the basis of oxygen-18 exchange experiments showing that position-6 oxygen of IMP becomes incorporated into phosphate. Inferences about the participation of amino acid side-chains that stabilize 6-P-IMP during catalysis have also been confirmed by site-directed mutagenesis and examination of such mutations on various kinetic parameters. Moreover, the action of certain regulatory ligands have also been viewed at atomic level resolution. For example, magnesium ion and GDP can induce conformational changes linked to the stabilization of one of two known conformations of the so-called 40s loop. Another significant finding is that two magnesium ions play fundamental roles: one binding with high affinity to the substrate GTP, and a second binding with lower affinity to the co-substrate aspartate. These structural and kinetic studies have also formed the basis for clarifying the action of various inhibitors and potentially important pharmacologic agents with this key regulatory enzyme. Finally, this review explores the current status of investigations on gene structure and gene expression in a number of organisms.

  19. Bioactive products from singlet oxygen photooxygenation of cannabinoids.

    PubMed

    Galal Osman, Ahmed; Elokely, Khaled M; Yadav, Vivek K; Carvalho, Paulo; Radwan, Mohamed; Slade, Desmond; Gul, Waseem; Khan, Shabana; Dale, Olivia R; Husni, Afeef S; Klein, Michael L; Cutler, Stephen J; Ross, Samir A; ElSohly, Mahmoud A

    2018-01-01

    Photooxygenation of Δ 8 tetrahydrocannabinol (Δ 8 -THC), Δ 9 tetrahydrocannabinol (Δ 9 -THC), Δ 9 tetrahydrocannabinolic acid (Δ 9 -THCA) and some derivatives (acetate, tosylate and methyl ether) yielded 24 oxygenated derivatives, 18 of which were new and 6 were previously reported, including allyl alcohols, ethers, quinones, hydroperoxides, and epoxides. Testing these compounds for their modulatory effect on cannabinoid receptors CB 1 and CB 2 led to the identification of 7 and 21 as CB 1 partial agonists with Ki values of 0.043 μM and 0.048 μM, respectively and 23 as a cannabinoid with high binding affinity for CB 2 with Ki value of 0.0095 μM, but much less affinity towards CB 1 (Ki 0.467 μM). The synthesized compounds showed cytotoxic activity against cancer cell lines (SK-MEL, KB, BT-549, and SK-OV-3) with IC 50 values ranging from 4.2 to 8.5 μg/mL. Several of those compounds showed antimicrobial, antimalarial and antileishmanial activities, with compound 14 being the most potent against various pathogens. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability.

  1. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.

    PubMed

    Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C

    2015-07-05

    Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.

  2. Quantification of Changes in Oxygen Release from Red Blood Cells as a Function of Age Based on Magnetic Susceptibility Measurements

    PubMed Central

    Jin, Xiaoxia; Yazer, Mark H.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2013-01-01

    This study extends the in vitro understanding of the RBC storage lesion by serially analyzing the RBC’s magneophoretic mobility, a property dependent on the content and oxygenation or oxidation state of hemoglobin (Hb) iron, during storage. Four prestorage leukoreduced, AS-5 preserved RBC units were stored between 1–6°C for 42 days. Weekly starting on storage day 7, each unit was sampled, the aliquot divided into 3 portions and subjected to different reactions: one portion was exposed to room air to produce oxyhemoglobin (oxyHb), another portion was mixed with sodium nitrite to produce methemoglobin (metHb), while the third portion was desaturated of oxygen (deoxyhemoglobin, deoxyHb) using nitrogen gas. These portions were placed into a cell tracking velocimetry (CTV) apparatus which measured both the settling velocity (us) of the RBCs as well as their magnetically induced velocity (um). The um/us ratio depends on the oxygenation or oxidation state and quantity of iron within the RBC. RBC density was measured by percoll centrifugation. There was a significant reduction in the um/us ratio for the deoxyHb RBC portion as storage time elapsed, with a smaller but still significant reduction in the um/us ratio for the metHb portion. The average RBC density decreased very slightly during storage, as determined by percoll centrifugation technique, although the average settling velocity (another measure of cell density) seemed to fluctuate during storage. The decrease in magnetophoretic mobility of the deoxyHb portion, presented as the ratio of um/us, is explicable either by Hb’s increased affinity for oxygen during storage, or a loss of iron from the cells. PMID:21647486

  3. Paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern limit of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean (April 2012)

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, Laura; Ruvalcaba-Aroche, Erick D.; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Díaz-Viloria, Noe; Pacheco, María. R.

    2016-03-01

    The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed at the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific in April 2012. The upper limit of the oxygen minimum water (˜44 µmol/kg or 1 mL/L) rises from ˜100 m depth in the entrance of the Gulf of California to ˜20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline (˜20 to ˜50 m depth) and the sea surface, in the warmest (>19°C) oxygenated (>176 µmol/kg) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy (˜120 km diameter and >500 m deep), which contained lower-salinity water (<35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled nearshore. Almost no paralarvae were found in the north of the study area beyond the strong salinity front (˜34.8-35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower-salinity, oxygenated water, illustrated by the influence of the mesoscale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be concluded that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific may be increasing environmental stress on the paralarvae by vertically restricting their habitat, and so affecting their survival.

  4. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  5. Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins.

    PubMed

    Rifkind, J M; Lauer, L D; Chiang, S C; Li, N C

    1976-11-30

    Oxidation studies of hemoglobin by Cu(II) indicate that for horse hemoglobin, up to a Cu(II)/heme molar ratio of 0.5, all of the Cu(II) added is used to rapidly oxidize the heme. On the other hand, most of the Cu(II) added to human hemoglobin at low Cu(II)/heme molar ratios is unable to oxidize the heme. Only at Cu(II)/heme molar ratios greater than 0.5 does the amount of oxidation per added Cu(II) approach that of horse hemoglobin. At the same time, binding studies indicate that human hemoglobin has an additional binding site involving one copper for every two hemes, which has a higher copper affinity than the single horse hemoglobin binding site. The Cu(II) oxidation of human hemoglobin is explained utilizing this additional binding site by a mechanism where a transfer of electrons cannot occur between the heme and the Cu(II) bound to the high affinity human binding site. The electron transfer must involve the Cu(II) bound to the lower affinity human hemoglobin binding site, which is similar to the only horse hemoglobin site. The involvement of beta-2 histidine in the binding of this additional copper is indicated by a comparison of the amino acid sequences of various hemoglobins which possess the additional site, with the amino acid sequences of hemoglobins which do not possess the additional site. Zn(II), Hg(II), and N-ethylmaleimide (NEM) are found to decrease the Cu(II) oxidation of hemoglobin. The sulfhydryl reagents, Hg(II) and NEM, produce a very dramatic decrease in the rate of oxidation, which can only be explained by an effect on the rate for the actual transfer of electrons between the Cu(II) and the Fe(II). The effect of Zn(II) is much smaller and can, for the most part, be explained by the increased oxygen affinity, which affects the ligand dissociation process that must precede the electron transfer process.

  6. Restoration of blood 2,3-diphosphoglycerate levels in multi-transfused patients: effect of organic and inorganic phosphate.

    PubMed

    Iapichino, G; Radrizzani, D; Solca, M; Franzosi, M G; Pallavicini, F B; Spina, G; Scherini, A

    1984-01-01

    Blood stored in acid-citrate-dextrose (ACD) shows a progressive decrease in 2,3-diphosphoglycerate (DPG) content. Since the decrease in DPG increases hemoglobin oxygen affinity, which in turn may reduce tissue and venous PO2 and peripheral oxygen delivery, many efforts have been made to preserve or restore DPG levels in stored blood. An in vivo rejuvenating technique, employing fructose-1,6-diphosphate (FDP) at a mean dosage of 1 mmol kg-1 day-1 of phosphate, to increase the DPG circulating level in multi-transfused patients is proposed. Eighteen patients, who received at least one-third of their estimated blood volume (3990 +/- 480 (SEM) ml of ACD stored blood) in blood transfusion, were treated: nine with inorganic phosphate, and nine with FDP. Basal DPG was very low in both groups: 12.61 +/- 1.34 (SEM) and 10.42 +/- 0.98 (SEM) mumol g-1, respectively (normal value is 14.5 mumol g-1, at pH 7.40). However, DPG values increased significantly and promptly in patients receiving FDP, whereas in cases of inorganic phosphate administration, it was not significantly raised over the basal value until the third day. Phosphatemia remained normal and constant with FDP, but it rose significantly on the third day of treatment with inorganic phosphate. FDP appears to consistently and rapidly increase DPG levels after transfusion with blood stored in ACD, and to be particularly safe.

  7. A Role of Erythrocytes in Adenosine Monophosphate Initiation of Hypometabolism in Mammals*

    PubMed Central

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G.; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R.; Lee, Cheng Chi

    2010-01-01

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5′-AMP uptake by erythrocytes. Wild type, ecto-5′-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5′-AMP-induced hypometabolism in a similar fashion. Injection of 5′-AMP leads to two distinct declining phases of oxygen consumption (VO2). The phase I response displays a rapid and steep decline in VO2 that is independent of body temperature (Tb) and ambient temperature (Ta). It is followed by a phase II decline that is linked to Tb and moderated by Ta. Altering the dosages of 5′-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a Ta of 15 °C is effective for induction of DH with the appropriate dose of 5′-AMP. Erythrocyte uptake of 5′-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5′-AMP administration and is in parallel with the phase I decline in VO2. In summary, our investigations reveal that 5′-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5′-AMP. PMID:20430891

  8. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals.

    PubMed

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R; Lee, Cheng Chi

    2010-07-02

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5'-AMP uptake by erythrocytes. Wild type, ecto-5'-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5'-AMP-induced hypometabolism in a similar fashion. Injection of 5'-AMP leads to two distinct declining phases of oxygen consumption (VO(2)). The phase I response displays a rapid and steep decline in VO(2) that is independent of body temperature (T(b)) and ambient temperature (T(a)). It is followed by a phase II decline that is linked to T(b) and moderated by T(a). Altering the dosages of 5'-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a T(a) of 15 degrees C is effective for induction of DH with the appropriate dose of 5'-AMP. Erythrocyte uptake of 5'-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5'-AMP administration and is in parallel with the phase I decline in VO(2). In summary, our investigations reveal that 5'-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5'-AMP.

  9. The physiological basis of bird flight

    PubMed Central

    Butler, Patrick J.

    2016-01-01

    Flapping flight is energetically more costly than running, although it is less costly to fly a given body mass a given distance per unit time than it is for a similar mass to run the same distance per unit time. This is mainly because birds can fly faster than they can run. Oxygen transfer and transport are enhanced in migrating birds compared with those in non-migrators: at the gas-exchange regions of the lungs the effective area is greater and the diffusion distance smaller. Also, migrating birds have larger hearts and haemoglobin concentrations in the blood, and capillary density in the flight muscles tends to be higher. Species like bar-headed geese migrate at high altitudes, where the availability of oxygen is reduced and the energy cost of flapping flight increased compared with those at sea level. Physiological adaptations to these conditions include haemoglobin with a higher affinity for oxygen than that in lowland birds, a greater effective ventilation of the gas-exchange surface of the lungs and a greater capillary-to-muscle fibre ratio. Migrating birds use fatty acids as their source of energy, so they have to be transported at a sufficient rate to meet the high demand. Since fatty acids are insoluble in water, birds maintain high concentrations of fatty acid–binding proteins to transport fatty acids across the cell membrane and within the cytoplasm. The concentrations of these proteins, together with that of a key enzyme in the β-oxidation of fatty acids, increase before migration. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528774

  10. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    PubMed

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p < 0.001). RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p < 0.001). RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  11. Controllable positive exchange bias via redox-driven oxygen migration

    DOE PAGES

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; ...

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of Gd xFe 1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel andmore » cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  12. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers.

    PubMed

    Patton, Jaqunda N; Palmer, Andre F

    2006-01-01

    This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.

  13. A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man

    PubMed Central

    Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.

    1985-01-01

    A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762

  14. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  15. Correction of biochemical and functional disorders in brain ischaemia with laser therapy

    NASA Astrophysics Data System (ADS)

    Musienko, Julia I.; Nechipurenko, Natalia I.; Vasilevskaya, Ludmila A.

    2005-08-01

    Application of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with red helium-neon laser (HNL) with 630 nm wavelength and different powers on blood oxygen transport (BOT), cerebral and dermal microhaemodynamics (MGD), hydro-ion balance in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of BOT disturbance, ionic disbalance and edema in the ischemic brain region. Microcirculation disturbances with worsening of the cerebral and dermal MHD were revealed. ILIB with HNL radiation of 2.5 and 4.5 mW powers provokes dehydratation of brain structure alone with the K+, Na+ concentration decreasing and hemoglobin-oxygen affinity increasing in intact group of animals. There was not revealed marked changes of cerebral MHD condition here. Using of ILIB in rabbits after LIB contributes for improving function of BOT, normalizing of water content in all cerebral structures compared to operated animals. Preventive ILIB provoked improvement of speckl-optical parameters and marked protective effect on microhaemodynamics processes in superficial brain structures. HNL radiation with 1.0 mW power results in worsening of oxygen transport, cerebral and skin MHD, hydro-ion homeostasis in animals with LIB modeling. Thus, laser haemotherapy contributes for improving of hydro-ion status, blood oxygen transport and cerebral microcirculation in brain ischemia, what allows considering that helium-neon radiation with the pointed regimen is substantiated pathogenetically in brain ischaemia.

  16. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    PubMed

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  17. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  18. Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors.

    PubMed

    Klatt, Christian G; LaPara, Timothy M

    2003-05-05

    Membrane-coupled bioreactors (MBRs) offer many benefits compared to conventional biological wastewater treatment systems; however, their performance characteristics are poorly understood. Laboratory-scale MBRs were used to study bacterial adaptations in physiology and community structure. MBRs were fed a mixture of starch, gelatin, and polyoxyethylene-sorbitan monooleate to simulate the polysaccharide, protein, and lipid components of municipal wastewater. Physiological adaptations were detected by measuring ectoenzyme activity while structural dynamics were studied by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments. As cell biomass accumulated in the MBRs, pollutant removal efficiency initially improved and then stabilized with respect to effluent concentrations of chemical oxygen demand, protein, and carbohydrate. Comparison of the MBR effluent to filtered reactor fluid indicated that a portion of the observed pollutant removal was due to filtration by the membrane rather than microbial activity. The rates of ectoenzyme-mediated polysaccharide (alpha-glucosidase) and protein (leucine aminopeptidase) hydrolysis became relatively constant once pollutant removal efficiency stabilized. However, the maximum rate of lipid hydrolysis (heptanoate esterase) concomitantly increased more than 10-fold. Similarly, alpha-glucosidase and leucine aminopeptidase ectoenzyme affinities were relatively constant, while the heptanoate esterase affinity increased more than 30-fold. Community analysis revealed that a substantial community shift occurred within the first 7 days of operation. A Flavobacterium-like bacterial population dominated the community (>50% of total band intensity) and continued to do so for the remainder of the experiment. Copyright 2003 Wiley Periodicals, Inc.

  19. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin

    2007-03-16

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using {sup 19}F NMR and the O{sub 2} binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in {alpha}- and {beta}- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity inmore » deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O{sub 2} affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O{sub 2} affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O{sub 2} affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.« less

  20. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  1. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A [Dripping Springs, TX; Bierman, John C [Austin, TX

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  2. Determining Functional Aptamer-Protein Interaction by Biolayer Interferometry.

    PubMed

    Lou, Xinhui; Egli, Martin; Yang, Xianbin

    2016-12-01

    Short single-stranded nucleic acids called aptamers are widely being explored as recognition molecules of high affinity and specificity for binding a wide range of target molecules, particularly protein targets. In biolayer interferometry (BLI), a simple Dip-and-Read approach in which the aptamer-coated biosensors are dipped into microplate wells is used to study the interactions between an aptamer and its target protein. Here we describe the protocol for the analysis of the interaction between a well-characterized anti-thrombin RNA aptamer with thrombin (Basic Protocol). We also report on the protocol for the affinity screening of a panel of anti-thrombin RNA aptamers with a single phosphorodithioate (PS2) modification, whereby the position of the modification along the RNA backbone is varied systematically (Support Protocol). The PS2 modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphodiester backbone linkage. The PS2-modified RNAs are nuclease resistant and several in vitro and in vivo assays have demonstrated their biological activity. For example, combining the PS2 with the 2'-OMe modification affords increased loading of modified small interfering RNA (siRNA) duplexes into the RNA-induced silencing complex (RISC) as well as enhanced gene-silencing antitumor activity. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Stabilization of the T-state of human hemoglobin by proflavine, an antiseptic drug.

    PubMed

    Ascenzi, P; Colasanti, M; Fasano, M; Bertollini, A

    1999-06-01

    The effect of proflavine (3,6-diaminoacridine), an antiseptic drug, on the spectroscopic and oxygen binding properties of ferrous human adult hemoglobin (Hb) has been investigated. Upon binding of proflavine to the nitric oxide derivative of ferrous human adult hemoglobin (HbNO), the X-band EPR spectrum displays the characteristics which have been attributed to the T-state of the ligated tetramer. In parallel, oxygen affinity for the deoxygenated derivative of ferrous human adult Hb decreases in the presence of proflavine. The effect of proflavine on the spectroscopic and ligand binding properties of ferrous human adult Hb is reminiscent that of 2,3-D-glycerate bisphosphate, the physiological modulator of Hb action.

  4. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  5. Electrocatalyzed O2 response of myoglobin immobilized on multi-walled carbon nanotube forest electrodes.

    PubMed

    Pacios, M; del Valle, M; Bartroli, J; Esplandiu, M J

    2009-10-01

    Direct electrochemistry and activity of myoglobin (Mb) immobilized on carbon nanotube (CNT) forest electrodes were investigated by probing mainly its electrocatalytical response towards oxygen. The protein was anchored on the CNT electrodes through carbodiimide coupling, which was shown to provide long term stability. The electrochemical response was monitored as a function of oxygen concentration and pH. Conformational changes together with the consequent loss of oxygen affinity were recorded at low pH, which delimits the operative range of the Mb/CNT electrodes for sensing purposes. In general, it can be concluded that CNT forests constitute suitable platforms for Mb attachment without compromising the protein bioactivity and by keeping at the same time the direct electron exchange with the heme core. All these characteristics confer to the protein modified CNT system promising properties for the implementation of (bio)sensor devices with impact in the clinical and environmental field.

  6. Reverse engineering the cooperative machinery of human hemoglobin.

    PubMed

    Ren, Zhong

    2013-01-01

    Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.

  7. [Interaction of human factor X with thromboplastin].

    PubMed

    Kiselev, S V; Zubairov, D M; Timarbaev, V N

    2003-01-01

    The binding of 125I-labeled human factor X to native and papaine-treated tissue tromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard analysis suggests the existence of high (Kd=l,8 x10(-9) M) and low affinity binding sites on the thromboplastin surface. The removal of Ca2+ reduced affinity of factor X to the high affinity sites. This was accompanied by some increase of their number. Proteolysis by papaine decreased affinity of high affinity sites and caused the increase of their number in the presence of Ca2+. In the absence of Ca2+ the affinity remained unchanged, but the number of sites decreased. At low concentrations of factor X positive cooperativity for high affinity binding sites was observed. It did not depend on the presence of Ca2+. The results indirectly confirm the role of hydrophobic interactons in Ca2+ dependent binding of factor X to thromboplastin and the fact that heterogeneity of this binding is determined by mesophase structure of the thromboplastin phospholipids.

  8. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae.

    PubMed

    Nijland, J G; Shin, H Y; de Waal, P P; Klaassen, P; Driessen, A J M

    2018-02-01

    Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. Various libraries were transformed to a hexose transporter deletion strain, and shuffled genes were selected via growth on low concentrations of D-xylose. This screening yielded two homologous fusion proteins (fusions 9,4 and 9,6), both consisting of the major central part of Hxt2 and various smaller parts of other Hxt proteins. Both chimeric proteins showed the same increase in D-xylose affinity (8·1 ± 3·0 mmol l -1 ) compared with Hxt2 (23·7 ± 2·1 mmol l -1 ). The increased D-xylose affinity could be related to the C terminus, more specifically to a cysteine to proline mutation at position 505 in Hxt2. The Hxt2 C505P mutation increased the affinity for D-xylose for Hxt2, thus providing a way to increase D-xylose transport flux at low D-xylose concentration. The gene shuffling protocol using the highly homologues hexose transporters family provides a powerful tool to enhance the D-xylose affinity of Hxt transporters in S. cerevisiae, thus providing a means to increase the D-xylose uptake flux at low D-xylose concentrations. © 2017 The Society for Applied Microbiology.

  9. Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2018-09-01

    In this study, we have optimised the sterically directed attachment of biomolecules on the surface of coaxial membranes prepared by co-electrospinning which have been proved to be a material with very high performance for the development of biosensors with optical oxygen transduction. Uricase has been used as model enzyme. Two sterically directed strategies: a) covalent attachment via maleimide, and b) affinity bonding via biotin-streptavidin interaction, have been tested in order to preserve the enzymatic activity of uricase and to improve the analytical figures of merits on the determination of uric acid. The best results were obtained with biotin-streptavidin affinity interaction and using a biotinylation reagent containing a polyethylene glycol chain. The developed biosensor showed high sensitivity towards uric acid with a detection limit of 0.5 µM, a quantification limit of 1.8 µM and linear range from 1.8 to 250 µM. The applicability of the membrane as biosensor with optical oxygen transduction was proved by determining uric acid in serum samples. The obtained results showed a good correlation (0.999) with those obtained by an external reference laboratory. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  11. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    PubMed

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  12. A Distonic Radical-Ion for Detection of Traces of Adventitious Molecular Oxygen (O2) in Collision Gases Used in Tandem Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Jariwala, Freneil B.; Hibbs, John A.; Weisbecker, Carl S.; Ressler, John; Khade, Rahul L.; Zhang, Yong; Attygalle, Athula B.

    2014-09-01

    We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [•SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

  13. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  14. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis.

    PubMed

    Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico

    2013-05-14

    Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.

  15. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  16. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  17. Oxygenator Safety Evaluation: A Focus on Connection Grip Strength and Arterial Temperature Measurement Accuracy

    PubMed Central

    Newland, Richard F.; Baker, Robert A.; Sanderson, Andrew J.; Tuble, Sigrid C.; Tully, Phil J.

    2012-01-01

    Abstract: This report describes the assessment of three specific safety-related specifications in the consideration of an alternate oxygenator; first the grip strength relationship between various oxygenator connectors and SMARxT® tubing, second, the grip strength of various biopassive tubings and an isolated SMARxT® connector, and finally, the accuracy of the arterial outlet temperature measurement. Grip strength experiments for the connections between the SMARxT® tubing and the venous reservoir outlet and the oxygenator venous inlet and oxygenator arterial outlet of the Medtronic Affinity®, Sorin Synthesis®, Sorin Primox®, and Terumo Capiox® RX25 oxygenators were performed. In addition we compared the grip strength of polyvinyl chloride, Physio®, Trillium®, Carmeda®, X-Coating®, and SMARxT® tubing. The accuracy of the integrated arterial outlet temperature probes was determined by comparing the temperatures measured by the integrated probe with a precision reference thermometer. Connector grip strength comparisons for the evaluation oxygenators with SMARxT® tubing showed significant variation between oxygenators and connections (p = .02). Evaluation of the arterial outlet showed significant variation between evaluation oxygenators, while at the venous reservoir outlet and oxygenator inlet, there were no significant differences. Grip strength comparison data for the various tubing types demonstrated a main effect for tubing type F(5, 18) = 8.01, p = .002, ηp2 = .77. Temperature accuracy measurements demonstrated that all oxygenators overread the arterial outlet temperature at 15°C, whilst at temperatures ≥25°C, all oxygenators underread the arterial outlet temperature. The integrity of SMARxT® tubing connection is influenced by the connector type, and may decline over time, highlighting the importance to not consider interchanging components of the bypass circuit as inconsequential. PMID:22893983

  18. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    PubMed Central

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225

  19. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection.

    PubMed

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate-malate or N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)-ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate-malate as substrate. As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate-malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD-ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process.

  20. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

  1. Direct electron-transfer conduits constructed at the interface between multicopper oxidase and nanocrystalline semiconductive Fe oxides

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryuhei; Kamiya, Kazuhide; Hashimoto, Kazuhito

    2010-10-01

    Herein, the electron-transfer reactions occurring at the interface between bilirubin oxidase (BOD) and nanocrystalline hematite (α-Fe 2O 3) were characterized. Cyclic voltammograms indicated that BOD has an affinity for hematite surfaces and establishes a direct electron-transfer (DET) conduit between the primary electron acceptor T1 site and the conduction band of α-Fe 2O 3. DET was also confirmed photo-electrochemically, as cathodic photocurrents were generated when a nanocomposite of BOD and α-Fe 2O 3 was illuminated under oxygenated conditions. A proline residue displayed a high-binding affinity for hematite surfaces and is therefore likely part of an orientation-controlled motif which serves to locate BOD at the T1 site at a suitable distance for DET to α-Fe 2O 3.

  2. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  3. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate.

    PubMed

    Versmold, H T; Linderkamp, C; Döhlemann, C; Riegel, K P

    1976-06-01

    In 48 individuals (age 1 day to 13 years) with congenital heart disease, blood oxygen transport function was studied in order to evaluate adaptive changes in shunt hypoxemia and to investigate the in vivo regulation of erythrocyte 2, 3-diphosphoglycerate concentration (RBC 2, 3-DPG) in the presence of fetal hemoglobin (HbF). Arterial pO2 and oxygen content, oxygen capacity, acid base status, oxygen affinity, HbF fraction, plasma pH, red cell pH, and RBC 2, 3-DPG were determined. During the first 50 days of life values of standard P50 (stdP50) (37, pH 7.4), actual in vivo P50 (actP50), RBC 2, 3-DPG, O2 capacity, arterial plasma pH, and red cell pH were scattered around the normal range, although tending to low values for stdP50 and arterial plasma pH and to high values for O2 capacity. After the third month, stdP50 actP50, RBC 2, 3-DPG, O2 capacity, and red cell pH were found to be elevated. Plasma pH and actP50 were scattered around the normal range (Figs. 1 and 2). Intraerythrocytic pH in hypoxemic infants was increased compared with normal children when related to plasma pH (Fig. 3). A close to normal intraerythrocytic pH was therefore found in the hypoxemic infants with low plasma pH, and an increased intraerythrocytic pH in the hypoxemic children with normal plasma pH (Fig. 1). A significant negative correlation exists between erythrocyte H+ ion and 2, 3-DPG concentration (Fig. 5); regression constants derived from data at high (mean 47%) and low (mean 9%) fractions of HbF are not significantly different (Regression Equations 8 and 11 in Table 1). Thus, the known difference in 2, 3-DPG binding to fetal or adult deoxyhemoglobin does not measurably influence the erythrocyte 2, 3-DPG concentration, indicating that in vivo the 2, 3-DPG synthesis in hypoxia is virtually regulated by the erythrocyte pH, which in turn is determined by plasma pH and the oxygenation state of hemoglobin.

  4. Effects of addition of Ta and Y ions to InZnO thin film transistors by sol-gel process.

    PubMed

    Son, Dae-Ho; Kim, Dae-Hwan; Kim, Jung-Hye; Park, Si-Nae; Sung, Shi-Joon; Kang, Jin-Kyu

    2013-06-01

    We have investigated the effects of the addition of tantalum (Ta) and yttrium (Y) ions to InZnO thin film transistors (TFTs) using the sol-gel process. TaInZnO and YInZnO TFTs had significantly lower off current and higher on-to-off current ratio than InZnO TFTs. Ta and Y ions have strong affinity to oxygen and so suppress the formation of free electron carriers in thin films; they play an important role in enhancing the electrical characteristic due to their high oxygen bonding ability. The optimized TaInZnO and YInZnO TFTs showed high on/off ratio and low subthreshold swing.

  5. Hellebrin and its aglycone form hellebrigenin display similar in vitro growth inhibitory effects in cancer cells and binding profiles to the alpha subunits of the Na+/K+-ATPase

    PubMed Central

    2013-01-01

    Background Surface-expressed Na+/K+-ATPase (NaK) has been suggested to function as a non-canonical cardiotonic steroid-binding receptor that activates multiple signaling cascades, especially in cancer cells. By contrast, the current study establishes a clear correlation between the IC50in vitro growth inhibitory concentration in human cancer cells and the Ki for the inhibition of activity of purified human α1β1 NaK. Methods The in vitro growth inhibitory effects of seven cardiac glycosides including five cardenolides (ouabain, digoxin, digitoxin, gitoxin, uzarigenin-rhamnoside, and their respective aglycone forms) and two bufadienolides (gamabufotalin-rhamnoside and hellebrin, and their respective aglycone forms) were determined by means of the MTT colorimetric assay and hellebrigenin-induced cytotoxic effects were visualized by means of quantitative videomicroscopy. The binding affinity of ten of the 14 compounds under study was determined with respect to human α1β1, α2β1 and α3β1 NaK complexes. Lactate releases and oxygen consumption rates were also determined in cancer cells treated with these various cardiac glycosides. Results Although cardiotonic steroid aglycones usually display weaker binding affinity and in vitro anticancer activity than the corresponding glycoside, the current study demonstrates that the hellebrin / hellebrigenin pair is at odds with respect to this rule. In addition, while some cardiac steroid glycosides (e.g., digoxin), but not the aglycones, display a higher binding affinity for the α2β1 and α3β1 than for the α1β1 complex, both hellebrin and its aglycone hellebrigenin display ~2-fold higher binding affinity for α1β1 than for the α2β1 and α3β1 complexes. Finally, the current study highlights a common feature for all cardiotonic steroids analyzed here, namely a dramatic reduction in the oxygen consumption rate in cardenolide- and bufadienolide-treated cells, reflecting a direct impact on mitochondrial oxidative phosphorylation. Conclusions Altogether, these data show that the binding affinity of the bufadienolides and cardenolides under study is usually higher for the α2β1 and α3β1 than for the α1β1 NaK complex, excepted for hellebrin and its aglycone form, hellebrigenin, with hellebrigenin being as potent as hellebrin in inhibiting in vitro cancer cell growth. PMID:23621895

  6. Analysis of alpha hemoglobin stabilizing protein overexpression in murine β-thalassemia

    PubMed Central

    Nasimuzzaman, Md; Khandros, Eugene; Wang, Xiaomei; Kong, Yi; Zhao, Huifen; Weiss, David; Rivella, Stefano; Weiss, Mitchell J.; Persons, Derek A.

    2013-01-01

    Excess free α-globin is cytotoxic and contributes to the pathophysiology of β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds free α-globin to promote its folding and inhibit its ability to produce damaging reactive oxygen species. Reduced AHSP levels correlate with increased severity of β-thalassemia in some human cohorts, but causal mechanistic relationships are not established for these associations. We used transgenic and lentiviral gene transfer methods to investigate whether supraphysiologic AHSP levels could mitigate the severity of β-thalassemia intermedia by providing an increased sink for the excess pool of α-globin chains. We tested wild-type AHSP and two mutant versions with amino acid substitutions that confer 3- or 13-fold higher affinity for α-globin. Erythroid overexpression of these AHSP proteins up to 11-fold beyond endogenous levels had no major effects on hematologic parameters in β-thalassemic animals. Our results demonstrate that endogenous AHSP is not limiting for α-globin detoxification in a murine model of β-thalassemia. PMID:20815047

  7. Designed Proteins as Optimized Oxygen Carriers for Artificial Blood

    DTIC Science & Technology

    2013-02-01

    to the lower energy for electron transfer when coupled to a proton transfer from water (3). Thus we set out to compare the rate of solvent...binding affinities and reduction potentials are the sole result of differences in internal electric fields in these proteins wrought by the surface...serving as the source of potential energy for the hexa- to penta-coordinate conformational change, and one in which the b-position glutamates from

  8. Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life® in pig lung transplantation model.

    PubMed

    Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E

    2017-10-25

    We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.

  9. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups

    NASA Astrophysics Data System (ADS)

    Dang, Yong; Zhao, Lianming; Lu, Xiaoqing; Xu, Jing; Sang, Pengpeng; Guo, Sheng; Zhu, Houyu; Guo, Wenyue

    2017-11-01

    The CO2/CH4 adsorption behaviors in brown coal at the temperatures of 298, 313, and 373 K and in the pressure range of 0.005-10 MPa were investigated by molecular dynamics (MD), density functional theory (DFT), and grand canonical Monte Carlo (GCMC) simulations. The absolute adsorption isotherms of single-component CH4 and CO2 exhibit type-I Langmuir adsorption behavior showing a negative influence of temperature. For the binary CO2/CH4 mixture, brown coal shows super high selectivity of CO2 over CH4 at pressures below 0.2 MPa, which then decreases quickly and finally tends to be constant when the pressure increases. The high competitive adsorption of CO2 originates from the effects of (i) the large electrostatic contributions, (ii) the conducive micropore environment with pore sizes below 0.56 nm, and (iii) the stronger adsorption of CO2 with respect to CH4. These effects are strengthened by the high-density oxygen-containing, pyridine, and thiophene functional groups contained in brown coal, which provide abundant and strong adsorption sites for CO2, but show weaker affinity to CH4. Furthermore, the influence of various nitrogen- and sulfur-containing functional groups on the CO2 adsorption capacity was also investigated. The results indicate that the basicity of the oxygen- and nitrogen-containing groups has a large influence on the CO2 adsorption, while for the sulfur functional groups the determining factor is the polarity.

  10. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Victor; Louveau, Joy E.; Barton, John P.

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutationsmore » increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.« less

  11. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    DOE PAGES

    Ovchinnikov, Victor; Louveau, Joy E.; Barton, John P.; ...

    2018-02-14

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutationsmore » increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.« less

  12. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    PubMed Central

    2018-01-01

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed. PMID:29442996

  13. Structure-Guided Combinatorial Engineering Facilitates Affinity and Specificity Optimization of Anti-CD81 Antibodies.

    PubMed

    Nelson, Bryce; Adams, Jarrett; Kuglstatter, Andreas; Li, Zhijian; Harris, Seth F; Liu, Yang; Bohini, Sandya; Ma, Han; Klumpp, Klaus; Gao, Junjun; Sidhu, Sachdev S

    2018-07-06

    Hepatitis C viral infection is the major cause of chronic hepatitis that affects as many as 71 million people worldwide. Rather than target the rapidly shifting viruses and their numerous serotypes, four independent antibodies were made to target the host antigen CD81 and were shown to block hepatitis C viral entry. The single-chain variable fragment of each antibody was crystallized in complex with the CD81 large extracellular loop in order to guide affinity maturation of two distinct antibodies by phage display. Affinity maturation of antibodies using phage display has proven to be critical to therapeutic antibody development and typically involves modification of the paratope for increased affinity, improved specificity, enhanced stability or a combination of these traits. One antibody was engineered for increased affinity for human CD81 large extracellular loop that equated to increased efficacy, while the second antibody was engineered for cross-reactivity with cynomolgus CD81 to facilitate animal model testing. The use of structures to guide affinity maturation library design demonstrates the utility of combining structural analysis with phage display technologies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hemoglobin Affinity for Oxygen in the Anginal Syndrome with Normal Coronary Arteriograms

    PubMed Central

    Vokonas, Pantel S.; Cohn, Peter F.; Klein, Michael D.; Laver, Myron B.; Gorlin, Richard

    1974-01-01

    Oxyhemoglobin dissociation (OHD) curves were performed on whole blood (WB) from 20 patients with anginal pain, normal hemodynamics, and normal coronary arteries, as demonstrated by selective coronary cinearteriography. OHD curves in 19 of 20 patients, from zero to full saturation, were nearly identical to those in normal control subjects with values for P50 (Po2 at 50% saturation and pH 7.4) of 26.7±1.5 (mean±SD of the mean) torr (mm Hg) and red blood cell (RBC) levels of 2,3-diphosphoglyceric acid (2, 3-DPG) of 0.72±0.10 (mean±SD of the mean) M/M hemoglobin (Hb). Normal values for nonsmoking adults were: P50, 26.6±1.4 (mean±SD of the mean) torr: and RBC 2,3-DPG, 0.81±0.09 (mean±SD of the mean) M/M Hb. Mean levels of carbon monoxide were normal at 0.14±0.01 (mean±SEM) ml/100 ml WB in 10 patients who were nonsmokers and 0.45±0.15 (mean±SEM) ml/100 ml WB in 10 smokers. In one patient, a heavy smoker with markedly elevated blood carbon monoxide levels, an abnormal leftward shift of the OHD curve was observed. This was corrected after discontinuation of smoking. In utilizing these methods, we could not detect consistent abnormalities of Hb affinity for oxygen at rest in the patients studied, which suggests that a defect in oxygen transport at rest is an unlikely explanation for the symptoms of chest pain in patients with the anginal syndrome and normal coronary arteriograms. Images PMID:4847250

  15. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  16. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    PubMed

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L; Gloriam, David E

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  17. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  18. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  19. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    NASA Astrophysics Data System (ADS)

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  20. Two-dimensional Kinetics Regulation of αLβ2-ICAM-1 Interaction by Conformational Changes of the αL-Inserted Domain*

    PubMed Central

    Zhang, Fang; Marcus, Warren D.; Goyal, Nimita H.; Selvaraj, Periasamy; Springer, Timothy A.; Zhu, Cheng

    2006-01-01

    The leukocyte integrin αLβ2 mediates cell adhesion and migration during inflammatory and immune responses. Ligand binding of αLβ2 is regulated by or induces conformational changes in the inserted (I) domain. By using a micropipette, we measured the conformational regulation of two-dimensional (2D) binding affinity and the kinetics of cell-bound intercellular adhesion molecule-1 interacting with αLβ2 or isolated I domain expressed on K562 cells. Locking the I domain into open and intermediate conformations with a disulfide bond increased the affinities by ~8000- and ~30-fold, respectively, from the locked closed conformation, which has similar affinity as the wild-type I domain. Most surprisingly, the 2D affinity increases were due mostly to the 2D on-rate increases, as the 2D off-rates only decreased by severalfold. The wild-type αLβ2, but not its I domain in isolation, could be up-regulated by Mn2+ or Mg2+ to have high affinities and on-rates. Locking the I domain in any of the three conformations abolished the ability of divalent cations to regulate 2D affinity. These results indicate that a downward displacement of the I domain C-terminal helix, induced by conformational changes of other domains of the αLβ2, is required for affinity and on-rate up-regulation. PMID:16234238

  1. Studies on disease transmission in spacecraft environments. [as experienced onboard Skylab 1

    NASA Technical Reports Server (NTRS)

    Kenyon, A. J.

    1974-01-01

    The effects of the Skylab gas mixtures on general health and immunocompetence of mice and ferrets subjected to the Skylab space cabin environment (SCE) were initially studied in a stainless steel low pressure facility which was maintained at gas ratios of 30% nitrogen and 70% oxygen under 5 psia, and which consisted of two subchambers, that permitted mutual isolation of experimental groups and/or selective removal of animals without return of the entire cabin to ambient pressure was developed. The studies demonstrated that ferrets immunized with Brucella Strain 19 prior to being housed in SCE had decreased synthesis of IgG compared to their respective controls. The possibility of latent infections being responsible for stress-induced upper respiratory diseases of astronauts required that the role of neutralizing antibody as a function of antibody affinity/avidity be investigated. The model consisted of Aleutian disease virus (ADV) which infects ferrets and mink resulting in nonneutralized immune complexes. These studies demonstrated that early antibody to ADV had lower affinity/avidity than late antibody with respect to chronicity. These studies culminated in a description of antibody affinity, first isolation of ADV and its cultivation in vitro.

  2. Design, synthesis, biological evaluation, and modeling of a non-carbohydrate antagonist of the myelin-associated glycoprotein.

    PubMed

    Schwardt, Oliver; Koliwer-Brandl, Hendrik; Zimmerli, Raphael; Mesch, Stefanie; Rossato, Gianluca; Spreafico, Morena; Vedani, Angelo; Kelm, Sørge; Ernst, Beat

    2010-10-15

    Broad modifications of various positions of the minimal natural epitope recognized by the myelin-associated glycoprotein (MAG), a blocker of regeneration of neurite injuries, produced sialosides with nanomolar affinities. However, important pharmacokinetic issues, for example, the metabolic stability of these sialosides, remain to be addressed. For this reason, the novel non-carbohydrate mimic 3 was designed and synthesized from (-)-quinic acid. For the design of 3, previously identified beneficial modifications of side chains of Neu5Ac were combined with the replacement of the ring oxygen by a methylene group and the substitution of the C(4)-OH by an acetamide. Although docking experiments to a homology model of MAG revealed that mimic 3 forms all but one of the essential hydrogen bonds identified for the earlier reported lead 2, its affinity was substantially reduced. Extensive molecular-dynamics simulation disclosed that the missing hydrogen bond of the former C(8)-OH leads to a change of the orientation of the side chain. As a consequence, an important hydrophobic contact is compromised leading to a loss of affinity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Ga(+) Basicity and Affinity Scales Based on High-Level Ab Initio Calculations.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel

    2015-10-26

    The structure, relative stability and bonding of complexes formed by the interaction between Ga(+) and a large set of compounds, including hydrocarbons, aromatic systems, and oxygen-, nitrogen-, fluorine and sulfur-containing Lewis bases have been investigated through the use of the high-level composite ab initio Gaussian-4 theory. This allowed us to establish rather accurate Ga(+) cation affinity (GaCA) and Ga(+) cation basicity (GaCB) scales. The bonding analysis of the complexes under scrutiny shows that, even though one of the main ingredients of the Ga(+) -base interaction is electrostatic, it exhibits a non-negligible covalent character triggered by the presence of the low-lying empty 4p orbital of Ga(+) , which favors a charge donation from occupied orbitals of the base to the metal ion. This partial covalent character, also observed in AlCA scales, is behind the dissimilarities observed when GaCA are compared with Li(+) cation affinities, where these covalent contributions are practically nonexistent. Quite unexpectedly, there are some dissimilarities between several Ga(+) -complexes and the corresponding Al(+) -analogues, mainly affecting the relative stability of π-complexes involving aromatic compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action.

    PubMed

    Spoerlein-Guettler, Cornelia; Mahal, Katharina; Schobert, Rainer; Biersack, Bernhard

    2014-09-01

    A series of ferrocene and (arene)ruthenium(II) complexes attached to the naturally occurring anticancer naphthoquinones plumbagin and juglone was tested for efficacy against various cancer cell lines and for alterations in the mode of action. The plumbagin ferrocene and (p-cymene)Ru(II) conjugates 1c and 2a overcame the multi-drug drug resistance of KB-V1/Vbl cervix carcinoma cells and showed IC50 (72 h) values around 1 μM in growth inhibition assays using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT). They were further investigated for their influence on the cell cycle of KB-V1/Vbl and HCT-116 colon carcinoma cells, on the generation of reactive oxygen species (ROS) by the latter cell line, for their substrate character for the P-glycoprotein drug eflux pump via the calcein-AM efflux assays, and for DNA affinity by the electrophoretic mobility shift assay (EMSA). The derivatives 1c and 2a increased the number of dead cancer cells (sub-G0/G1 fraction) in a dose- and time-dependent manner. ROS levels were significantly increased upon treatment with 1c and 2a. These compounds also showed a greater affinity to linear DNA than plumbagin. While plumbagin did not affect calcein-AM transport by P-glycoprotein the derivatives 1c and 2a exhibited a 50% or 80% inhibition of the P-glycoprotein-mediated calcein-AM efflux relative to the clinically established sensitizer verapamil. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Detection of Serum Lysophosphatidic Acids Using Affinity Binding and Surface Enhanced Laser Desorption/Ionization (SELDI) Time of Flight Mass Spectrometry

    DTIC Science & Technology

    2005-04-01

    AD Award Number: DAIMD17-03-1-0222 TITLE: Detection of Serum Lysophosphatidic Acids Using Affinity Binding and Surface Enhanced Laser Desorption...Annual (1 Apr 04 - 31 Mar 05) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Detection of Serum Lysophosphatidic Acids Using Affinity DAMD17-03-1-0222...of multiple forms of lysophosphatidic acid (LPA). LPA increases proliferation, prevents apoptosis and anoikis, increases invasiveness, decreases

  6. Reproducing Crystal Binding Modes of Ligand Functional Groups using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations

    PubMed Central

    Raman, E. Prabhu; Yu, Wenbo; Guvench, Olgun; MacKerell, Alexander D.

    2011-01-01

    The applicability of a computational method, Site Identification by Ligand Competitive Saturation (SILCS), to identify regions on a protein surface with which different types of functional groups on low-molecular weight inhibitors interact is demonstrated. The method involves molecular dynamics (MD) simulations of a protein in an aqueous solution of chemically diverse small molecules from which probability distributions of fragments types, termed FragMaps, are obtained. In the present application, SILCS simulations are performed with an aqueous solution of 1 M benzene and propane to map the affinity pattern of the protein for aromatic and aliphatic functional groups. In addition, water hydrogen and oxygen atoms serve as probes for hydrogen bond donor and acceptor affinity, respectively. The method is tested using a set of 7 proteins for which crystal structures of complexes with several high affinity inhibitors are known. Good agreement is obtained between FragMaps and the positions of chemically similar functional groups in inhibitors as observed in the X-ray crystallographic structures. Quantitative capabilities of the SILCS approach are demonstrated by converting FragMaps to free energies, termed Grid Free Energies (GFE), and showing correlation between the GFE values and experimental binding affinities. For proteins for which ligand decoy sets are available, GFE values are shown to typically score the crystal conformation and conformations similar to it more favorable than decoys. Additionally, SILCS is tested for its ability to capture the subtle differences in ligand affinity across homologous proteins, information which may be of utility towards specificity-guided drug design. Taken together, our results show that SILCS can recapitulate the known location of functional groups of bound inhibitors for a number of proteins, suggesting that the method may be of utility for rational drug design. PMID:21456594

  7. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and adenylyl cyclase activity were similar in the three animal groups. In conclusion, our results support an important role for Akt/PKB in the regulation of myocardial contractility and mechanoenergetics. PMID:16094411

  8. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  9. Antarctic Meteorite Newsletter, Volume 29, Number 1

    NASA Technical Reports Server (NTRS)

    Satterwhite, Cecilia (Editor); Righter, Kevin (Editor)

    2006-01-01

    This newsletter contains classifications for 597 new meteorites from the 2003 and 2004 ANtarctic Search for METeorites (ANSMET) seasons. They include samples from the Cumulus Hills, Dominion Range, Grosvenor Mountains, LaPaz Icefield, MacAlpine Hills, and the Miller Range. Macroscopic and petrographic descriptions are given for 25 of the new meteorites: 1 acapulcoite/Iodranite, 1 howardite, 1 diogenite, 2 eucrites, 1 enstatite chondrite, four L3 and two H3 chondrites, 2 CM, 3 CK and 1 CV chondrites, three R chondrites, and four impact melt breccias (with affinities for H and L). Likely the most interesting sample announced in this newsletter is LAP04840, with affinity to R chondrites. This meteorite contains approximately 15% horneblende, and has mineral compositional ranges and oxygen isotopic values similar to those of R chondrites. The presence of an apparently hydrous phase in this petrologic grade 6 chondrite is very unusual, and should be of great interest to many meteoriticists.

  10. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    PubMed Central

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651

  11. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    PubMed

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Maria; Scigaj, Mateusz; Gazquez, Jaume

    Interfaces between (110) and (111)SrTiO 3 (STO) single crystalline substrates and amorphous oxide layers, LaAlO 3 (a-LAO), Y:ZrO 2 (a-YSZ), and SrTiO 3 (a-STO) become conducting above a critical thickness t c. Here we show that t c for a-LAO does not depend on the substrate orientation, i.e. t c (a-LAO/(110)STO) ≈ t c(a-LAO/(111)STO) interfaces, whereas it strongly depends on the composition of the amorphous oxide: t c(a-LAO/(110)STO) < t c(a-YSZ/(110)STO) < t c(a-STO/(110)STO). It is concluded that the formation of oxygen vacancies in amorphous-type interfaces is mainly determined by the oxygen affinity of the deposited metal ions, rather thanmore » orientation-dependent enthalpy vacancy formation and diffusion. Furthermore, scanning transmission microscopy characterization of amorphous and crystalline LAO/STO(110) interfaces shows much higher amount of oxygen vacancies in the former, providing experimental evidence of the distinct mechanism of conduction in these interfaces.« less

  13. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less

  14. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  15. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  16. Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.

    PubMed

    Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C

    2016-01-01

    Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.

  17. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514

  18. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family.

    PubMed

    Bustamante, Juan P; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A; Ten Have, Arjen; Martí, Marcelo A

    2016-01-01

    Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.

  19. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family

    PubMed Central

    Bustamante, Juan P.; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A.; ten Have, Arjen; Martí, Marcelo A.

    2016-01-01

    Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends. PMID:26788940

  20. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  1. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  2. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    NASA Astrophysics Data System (ADS)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  3. Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface.

    PubMed

    Ajo, Petri; Kornev, Iakov; Preis, Sergei

    2017-11-23

    The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.

  4. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    PubMed

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.

  5. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less

  6. Nuclear localization of human spermine oxidase isoforms – possible implications in drug response and disease etiology

    PubMed Central

    Murray-Stewart, Tracy; Wang, Yanlin; Goodwin, Andrew; Hacker, Amy; Meeker, Alan; Casero, Robert A.

    2013-01-01

    The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis. PMID:18422650

  7. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica.

    PubMed

    Pearson, Richard J; Morf, Laura; Singh, Upinder

    2013-02-08

    Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.

  8. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    NASA Astrophysics Data System (ADS)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  9. Regulation of H2O2 Stress-responsive Genes through a Novel Transcription Factor in the Protozoan Pathogen Entamoeba histolytica*

    PubMed Central

    Pearson, Richard J.; Morf, Laura; Singh, Upinder

    2013-01-01

    Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H2O2 exposure. We functionally characterized an H2O2-regulatory motif (HRM) (1AAACCTCAATGAAGA15), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H2O2-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H2O2-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease. PMID:23250742

  10. Relationships between chemical structure and affinity for acetylcholine receptors

    PubMed Central

    Abramson, F. B.; Barlow, R. B.; Mustafa, M. G.; Stephenson, R. P.

    1969-01-01

    1. Series of analogues of acetylcholine have been prepared in which the acetyl group was replaced by phenylacetyl, cyclohexylacetyl, diphenylacetyl, dicyclohexylacetyl, (±)-phenylcyclohexylacetyl, benziloyl and (±)-phenylcyclohexylhydroxyacetyl groups and the trimethylammonium group was replaced by Me2EtN+, MeEt2N+, Et3N+, [Formula: see text] Further series were prepared in which the acetoxyethyl group was replaced by ethoxyethyl, phenylethoxyethyl, cyclohexylethoxyethyl, diphenylethoxyethyl, and dicyclohexylethoxyethyl groups, and by n-pentyl, 5-phenylpentyl, 5-cyclohexylpentyl and 5:5-diphenylpentyl groups. 2. The ethoxyethyl and n-pentyl series contain some compounds which are agonists or partial agonists when tested on the isolated guinea-pig ileum, but all the other compounds are antagonists. 3. The affinity of the compounds for the postganglionic (“muscarinesensitive”) acetylcholine receptors has been measured in conditions in which the antagonists have been shown to be acting competitively. There were considerable differences between their affinities, the most active (log K, 9·8) having one million times the affinity of the least active (log K, 3·7). 4. The changes in affinity as the onium group was modified were not entirely independent of changes in the rest of the molecule. Increasing the size of the onium group, as judged from conductivity measurements on simpler onium salts, increased affinity in the series containing one large group (phenyl or cyclohexyl) but, in the series with two large groups, affinity declined when the size was increased beyond -+NMeEt2. 5. In general, the effects of changes in the rest of the molecule on affinity were bigger than the effects of changes in the onium group and there were bigger interactions. Affinity was increased to a greater extent by introducing one phenyl and one cyclohexyl group together than by introducing either two phenyl or two cyclohexyl groups; the increment was greater than the separate contributions made by one phenyl and one cyclohexyl group. 6. The factors which influence the binding of molecules to receptors are discussed. There is no evidence that the separation between the onium group and the group in the receptor with which it interacts is greater in compounds with high affinity nor is there any evidence, from the study of the series which contain agonists and partial agonists, that ability to activate receptors depends upon the onium group being able to come close to this charged group in the receptors. PMID:5343350

  11. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  12. Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips

    NASA Astrophysics Data System (ADS)

    Jin, Jiaying; Bai, Guohua; Zhang, Yujing; Peng, Baixing; Liu, Yongsheng; Ma, Tianyu; Yan, Mi

    2018-05-01

    La and Ce substitution for Nd in the 2:14:1-type sintered magnet is of commercial interest to reduce the material cost and to balance the utilization of rare earth (RE) sources. As hydrogen decrepitation (HD) is widely utilized to prepare the magnetic powders during magnets fabrication, incorporating La and Ce into the Nd-Fe-B permanent magnets, however, may exert complex influences on the decrepitation behavior. In the present work, through a comparative study of the HD behaviors between the (La, Ce)-Fe-B strips and the conventional Nd-Fe-B ones, we find that similar to the Nd-Fe-B system, increasing hydrogen pressures from 2.5 to 5.5 MPa do not break the 2:14:1 tetragonal structure of (La, Ce)-Fe-B strips. The enhanced hydrogen absorption behaviors are observed with increasing pressure, which are still inferior to that of the Nd-Fe-B strips. This should be ascribed to the higher oxygen affinity of La and Ce than that of Nd, leading to the decreased amount of active RE-rich phase and limited hydrogen diffusion channel. As a result, the hydrogen absorption of 2:14:1 matrix phase is significantly suppressed, dramatically weakening the exothermic effect. This finding suggests that La and Ce with stable 2:14:1 tetragonal structure upon HD process are promising alternatives for Nd, despite that more precise oxygen control is necessary for the microstructure modification and magnetic performance enhancement of (La, Ce)-Fe-B sintered magnets.

  13. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    NASA Astrophysics Data System (ADS)

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  14. Nanotechnologies: tools for sustainability in a new wave of water treatment processes.

    PubMed

    Bottero, Jean-Yves; Rose, Jerome; Wiesner, Mark Robert

    2006-10-01

    In the environmental technology industry alone, nanomaterials will enable new means of reducing the production of industrial wastes, using resources more sparingly, remediating industrial contamination, providing potable water, and improving the efficiency of energy production. This paper discusses three new kinds of nanotechnology materials that should be developed in the future: Membranes, oxidants, and adsorbents. Nanoscale control of membrane architecture may yield membranes of greater selectivity and lower cost in both water treatment and water fabrication. Fullerene-based oxidant nanomaterials such as C60 have a high electron affinity and reactivity, and are capable of producing reactive oxygen species such as singlet oxygen and superoxides. Fullerenes might be used in engineered systems to photocatalytically oxidize organic contaminants, or inhibit or inactivate microbes. The ability to tailor surfaces can help to increase adsorbing capacities or recognize specific contaminants. The potential environmental risks are that nanomaterials could interact with biota and that their toxicity adversely may affect ecosystems. As nanochemistry emerges as an important force behind new environmental technologies, we are also presented with the responsibility of considering the environmental implications of an emerging technology at its inception and taking every precaution to ensure that these technologies develop as tools of sustainability rather than becoming future liabilities.

  15. Adrenergic support in septic shock: a critical review.

    PubMed

    Póvoa, Pedro; Carneiro, António H

    2010-02-01

    The definition of septic shock includes sepsis-induced hypotension despite adequate fluid resuscitation, along with the presence of organ perfusion abnormalities, and ultimately cell dysfunction. To restore adequate organ perfusion and cell homeostasis, cardiac output should be restored with volume infusion plus vasopressor agents as indicated. Appropriate arterial pressure for each individual patient and proper arterial oxygen content are key elements to restoring perfusion. Tissue perfusion can be monitored by markers of organ and mitochondrial function, namely urine output, level of consciousness, peripheral skin perfusion, central or mixed venous oxygen saturation, and lactate. The hemodynamic effects of the different vasopressor agents depend on the relative affinity to adrenergic receptors. Those with predominant alpha-agonist activity produce more vasoconstriction (inoconstrictors) while those with predominant beta-agonist stimulation increase cardiac performance (inodilators). The debate about whether one vasopressor agent is superior to another is still ongoing. The Surviving Sepsis Campaign guidelines refer to either norepinephrine or dopamine as the first-choice vasopressor agent to correct hypotension in septic shock. However, recent data from observational and controlled trials have challenged these recommendations concerning different adrenergic agents. As a result, our view on the prescription of vasopressors has changed from a probably oversimplified "one-size-fits-all" approach to a multimodal approach in vasopressor selection.

  16. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India.

    PubMed

    Tyagi, Vinay Kumar; Bhatia, Akanksha; Gaur, Rubia Zahid; Khan, Abid Ali; Ali, Muntajir; Khursheed, Anwar; Kazmi, Absar Ahmad

    2012-12-01

    The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

  17. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).

    PubMed

    Sokolowski, A; Wolowicz, M; Hummel, H

    2001-10-01

    Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.

  18. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity.

    PubMed

    Lindberg, Hanna; Härd, Torleif; Löfblom, John; Ståhl, Stefan

    2015-09-01

    The amyloid hypothesis suggests that accumulation of amyloid β (Aβ) peptides in the brain is involved in development of Alzheimer's disease. We previously generated a small dimeric affinity protein that inhibited Aβ aggregation by sequestering the aggregation prone parts of the peptide. The affinity protein is originally based on the Affibody scaffold, but is evolved to a distinct interaction mechanism involving complex structural rearrangement in both the Aβ peptide and the affinity proteins upon binding. The aim of this study was to decrease the size of the dimeric affinity protein and significantly improve its affinity for the Aβ peptide to increase its potential as a future therapeutic agent. We combined a rational design approach with combinatorial protein engineering to generate two different affinity maturation libraries. The libraries were displayed on staphylococcal cells and high-affinity Aβ-binding molecules were isolated using flow-cytometric sorting. The best performing candidate binds Aβ with a KD value of around 300 pM, corresponding to a 50-fold improvement in affinity relative to the first-generation binder. The new dimeric Affibody molecule was shown to capture Aβ1-42 peptides from spiked E. coli lysate. Altogether, our results demonstrate successful engineering of this complex binder for increased affinity to the Aβ peptide. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. 2,3-Diphosphoglycerate: its role in health and disease.

    PubMed

    Juel, R

    1979-01-01

    2,3-Diphosphoglycerate (2,3-DPG) was first discovered and isolated in 1925. However, it was not until 1967 that the function of 2,3-DPG was explained. This resulted in multiple research projects devoted to elucidating the mechanism by which 2,3-DPG exerts it effect on the oxygen affinity of hemoglobin. In addition, a vast amount of research has been devoted to assessing the role of 2,3-DPG in oxygen transport in various physiological and pathophysiological states. In many instances, the results of this research have produced conflicting data which have dampened the initial enthusiasm which followed the discovery of the function of 2,3-DPG. However, much of this conflicting data can be explained by the fact that 2,3-DPG is only one of a number of factors influencing the transport of oxygen to the tissues. Several of these factors influence oxygen transport independently as well as by altering the synthesis of 2,3-DPG and modifying its effect on hemoglobin. In spite of the conflicting results, the overall data gathered thus far appears to be sound enough to warrant the extensive research now being done, particularly in the area of blood storage and transfusion therapy.

  20. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent

    2012-01-01

    Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652

  1. Gas Phase Ion-Molecule Chemistry of Carbon, Nitrogen and Oxygen Compounds.

    DTIC Science & Technology

    1985-01-29

    silyl anions aza allyl anion) phosphide anion sulfides) Reactivity; nitrite estersj electron affinityMechanism’, sulfur dioxidej. (cont’d) M L..J A6*rAcr...use of silane chemistry to attack a problem of fundamental importance to all organic chemistry, the relative acidity of the alkanes.20 While it is well...alkane lost are a measure of the relative acidity of RH. For example, because ethane is lost less easily than methane, we believe that the ethyl anion

  2. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  3. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  4. Blood Preservation Study.

    DTIC Science & Technology

    1979-04-30

    10. Wood, L.A. and Beutler, E.: The effect of periodic mixing on the preservation of 2,3- diphosphoglycerate (2,3-DPG)":’::’: levels in stored blood...patient. 1.1.3. .The 2,3- diphosphoglycerate (2,3-DPG) content of blood stored in ACD declines rapidly after one or two days of storage, while" in CPD the...decline of 2,3-DPG levels is delayed for only one week. 2,3-DPG is an important modulator of the affinity of hemoglobin for oxygen (5,6). When the

  5. The redox state of the mantle during and just after core formation.

    PubMed

    Frost, D J; Mann, U; Asahara, Y; Rubie, D C

    2008-11-28

    Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.

  6. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae

    PubMed Central

    Ebert, Matthias; Laaß, Sebastian; Thürmer, Andrea; Roselius, Louisa; Eckweiler, Denitsa; Daniel, Rolf; Härtig, Elisabeth; Jahn, Dieter

    2017-01-01

    The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated. PMID:28473807

  7. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  8. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    PubMed

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  9. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-04

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.

  10. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  11. The restoration in vivo of 2,3-diphosphoglycerate (2,3-DPG) in stored red cells, after transfusion. The levels of red cells 2,3-DPG.

    PubMed

    Stan, Ana; Zsigmond, Eva

    2009-01-01

    Since the main reason for transfusing preserved red cells is to increase the oxygen carrying capacity of the recipient, the circulating preserved red cells should have at the time of transfusion normal oxygen uptake and normal oxyhemoglobin dissociation characteristics. We evaluated the effectiveness of transfused red cells, through periodical determination of erythrocyte components, during 72 hours after transfusions of large quantities (3,000 mL) of blood. Three patients with massive hemorrhages, two after amputation and one after nephrectomy were given each 3,000 mL preserved blood (in ACD, 10 days, at 4 degrees C). Red cell 2,3-DPG and serum inorganic phosphorus were determined prior to transfusion and after, periodically, for three days. Red cell 2,3-DPG was determined by Krimsky's method and inorganic phosphorus by Kuttner and Lichtenstein's method. The in vivo restoration of 2,3-DPG--of transfused red cells is shown as a percentage of recipient's final 2,3-DPG level, and was calculated in each of the three patients. The level of erythrocyte 2,3-DPG was greater than 60% of the final level within 24 hours, after the end of transfusion. The in vivo rates of restoration of 2,3-DPG in transfused red cells for periods of 0-6, 6-24, 24-48 and 48-72 hours are 0.251, 0.238, 0.133, 0.120 mM/L cells/hour. The therapeutic significance of the increased oxygen affinity of stored blood becomes very important in clinical conditions, when large volumes of red cells are urgently needed. After massive transfusions, the restoration of 2,3-DPG in red cells produces a decrease of serum inorganic phosphorus through its consumption. The stored blood with low values of erythrocyte 2,3-DPG can be used without hesitation when correcting a chronic anemia for instance, but in acute situation, when the organism needs restoration of the oxygen releasing capacity within minutes, the resynthesis is obviously insufficient. In such situations, fresh blood or blood with a near normal 2,3-DPG content should be used.

  12. Getting the most from microfluidic platforms for biomedical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shen, Amy

    2016-03-01

    Microfluidics has emerged in recent years as a versatile method of manipulating fluids at small length-scales, and in particular, for generating and manipulating micron size droplets with controllable size and functionality. For example, many research groups developed microfluidics devices for cell encapsulation, and synthesizing functionalized polymer microspheres and inorganic nanoparticles with precise control over their shapes and sizes. In this talk, I will showcase 2 microfluidic platforms to highlight their versatility and potential biomedical applications. (1) Droplet microfluidic platforms (a) A droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. We can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing. (b) A novel droplet microfluidics method to image oxygen in single islets (pancreatic cells) for glucose sensing. Individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer microcapsule for insulin secretion monitoring. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. This approach should be applicable to other cell types and dyes sensitive to other biologically important molecules. (2) A microfluidic chamber to perform uniform electric field stimulation in circular shaped culturewares A 3D computer-aided designed (CAD) polymeric insert is designed and retrofitted to circular shaped culturewares in an integrated microfluidic electrical stimulation platform to generate uniform EF with higher cell yields. In particular, NIH/3T3 mouse embryonic fibroblast cells are used to validate the performance of the 3D designed Poly(methyl methacrylate) (PMMA) inserts in a circular-shaped 6-well plate. The CAD based inserts can be easily scaled up to further increase effective stimulation area percentages, and also be implemented in commercially available culturewares for a wide variety of EF-related research such as EF-cell interaction and tissue regeneration studies.

  13. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    PubMed Central

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  14. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    PubMed

    Chu, Xiakun; Wang, Jin

    2014-08-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  15. Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

    PubMed

    Sørensen, Hans Peter; Xu, Peng; Jiang, Longguang; Kromann-Hansen, Tobias; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2015-09-25

    We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigating the Affinities and Persistence of VX Nerve Agent in Environmental Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, A H; Vance, A L; Reynolds, J G

    2004-03-09

    Laboratory experiments were conducted to determine environmental variables that affect the affinities and persistence of the nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) at dilute concentrations in environmental matrices. Quantitative analyses of VX and its degradation products were performed using LC-MS. Batch hydrolysis experiments demonstrated an increasing hydrolysis rate as pH increased, as shown in previous studies, but also indicated that dissolved aqueous constituents can cause significant differences in the absolute hydrolysis rate. Adsorption isotherms from batch aqueous experiments revealed that VX has a high affinity for hydrophobic organics, a moderate affinity for montmorillonite clay, and a very low affinity formore » an iron-oxyhydroxide soil mineral, goethite. The adsorption on goethite was increased with the presence of dissolved organic matter in solution. VX degraded rapidly when dried onto goethite, when an inner-sphere complex was forced. No enhanced degradation occurred with goethite in small amounts water. These results suggest that aqueous conditions have important controls on VX adsorption and degradation in the environment and a more mechanistic understanding of these controls is needed in order to enable accurate predictions of its long-term fate and persistence.« less

  17. Differentiation of protonated aromatic regioisomers related to lignin by reactions with trimethylborate in a fourier-transform ion cyclotron resonance mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somuramasami, J; Duan, P; Amundson, Lucas M

    2011-04-06

    Several lignin model compounds were examined to test whether gas-phase ion–molecule reactions of trimethylborate (TMB) in a FTICR can be used to differentiate the ortho-, meta-, and para-isomers of protonated aromatic compounds, such as those formed during degradation of lignin. All three regioisomers could be differentiated for methoxyphenols and hydroxyphenols. However, only the differentiation of the ortho-isomer from the meta- and para-isomers was possible for hydroxyacetophenones and hydroxybenzoic acids. Consideration of the previously reported proton affinities at all basic sites in the isomeric hydroxyphenols, and the calculated proton affinities at all basic sites in the three methoxyphenol isomers, revealed thatmore » the proton affinities of the analytes relative to that of TMB play an important role in determining whether and how they react with TMB. The loss of two methanol molecules (instead of one) from the adducts formed with TMB either during ion–molecule reactions, or during sustained-off resonance irradiated collision-activated dissociation of the ion–molecule reaction products, revealed the presence of two functionalities in almost all the isomers. This finding supports earlier results suggesting that TMB can be used to count the functionalities in unknown oxygen-containing analytes.« less

  18. Structural Basis for High Affinity Volatile Anesthetic Binding in a Natural 4-helix Bundle Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,R.; Loll, P.; Eckenhoff, R.

    2005-01-01

    Physiologic sites for inhaled anesthetics are presumed to be cavities within transmembrane 4-{alpha}-helix bundles of neurotransmitter receptors, but confirmation of binding and structural detail of such sites remains elusive. To provide such detail, we screened soluble proteins containing this structural motif, and found only one that exhibited evidence of strong anesthetic binding. Ferritin is a 24-mer of 4-{alpha}-helix bundles; both halothane and isoflurane bind with K{sub A} values of {approx}10{sup 5} M{sup -1, } higher than any previously reported inhaled anesthetic-protein interaction. The crystal structures of the halothane/apoferritin and isoflurane/apoferritin complexes were determined at 1.75 Angstroms resolution, revealing a commonmore » anesthetic binding pocket within an interhelical dimerization interface. The high affinity is explained by several weak polar contacts and an optimal host/guest packing relationship. Neither the acidic protons nor ether oxygen of the anesthetics contribute to the binding interaction. Compared with unliganded apoferritin, the anesthetic produced no detectable alteration of structure or B factors. The remarkably high affinity of the anesthetic/apoferritin complex implies greater selectivity of protein sites than previously thought, and suggests that direct protein actions may underlie effects at lower than surgical levels of anesthetic, including loss of awareness.« less

  19. Complete Decomposition of Li2CO3 in Li-O2 Batteries Using Ir/B4C as Noncarbon-Based Oxygen Electrode.

    PubMed

    Song, Shidong; Xu, Wu; Zheng, Jianming; Luo, Langli; Engelhard, Mark H; Bowden, Mark E; Liu, Bin; Wang, Chong-Min; Zhang, Ji-Guang

    2017-03-08

    Instability of carbon-based oxygen electrodes and incomplete decomposition of Li 2 CO 3 during charge process are critical barriers for rechargeable Li-O 2 batteries. Here we report the complete decomposition of Li 2 CO 3 in Li-O 2 batteries using the ultrafine iridium-decorated boron carbide (Ir/B 4 C) nanocomposite as a noncarbon based oxygen electrode. The systematic investigation on charging the Li 2 CO 3 preloaded Ir/B 4 C electrode in an ether-based electrolyte demonstrates that the Ir/B 4 C electrode can decompose Li 2 CO 3 with an efficiency close to 100% at a voltage below 4.37 V. In contrast, the bare B 4 C without Ir electrocatalyst can only decompose 4.7% of the preloaded Li 2 CO 3 . Theoretical analysis indicates that the high efficiency decomposition of Li 2 CO 3 can be attributed to the synergistic effects of Ir and B 4 C. Ir has a high affinity for oxygen species, which could lower the energy barrier for electrochemical oxidation of Li 2 CO 3 . B 4 C exhibits much higher chemical and electrochemical stability than carbon-based electrodes and high catalytic activity for Li-O 2 reactions. A Li-O 2 battery using Ir/B 4 C as the oxygen electrode material shows highly enhanced cycling stability than those using the bare B 4 C oxygen electrode. Further development of these stable oxygen-electrodes could accelerate practical applications of Li-O 2 batteries.

  20. S-Glutathionylation of estrogen receptor α affects dendritic cell function.

    PubMed

    Zhang, Jie; Ye, Zhi-Wei; Chen, Wei; Manevich, Yefim; Mehrotra, Shikhar; Ball, Lauren; Janssen-Heininger, Yvonne; Tew, Kenneth D; Townsend, Danyelle M

    2018-03-23

    Glutathione S -transferase Pi (GSTP) is a thiolase that catalyzes the addition of glutathione (GSH) to receptive cysteines in target proteins, producing an S -glutathionylated residue. Accordingly, previous studies have reported that S -glutathionylation is constitutively decreased in cells from mice lacking GSTP ( Gstp1 / p2 -/- ). Here, we found that bone marrow-derived dendritic cells (BMDDCs) from Gstp1 / p2 -/- mice have proliferation rates that are greater than those in their WT counterparts ( Gstp1 / p2 +/+ ). Moreover, Gstp1 / p2 -/- BMDDCs had increased reactive oxygen species (ROS) levels and decreased GSH:glutathione disulfide (GSSG) ratios. Estrogen receptor α (ERα) is linked to myeloproliferation and differentiation, and we observed that its steady-state levels are elevated in Gstp1 / p2 -/- BMDDCs, indicating a link between GSTP and ERα activities. BMDDCs differentiated by granulocyte-macrophage colony-stimulating factor had elevated ERα levels, which were more pronounced in Gstp1 / p2 -/- than WT mice. When stimulated with lipopolysaccharide for maturation, Gstp1 / p2 -/- BMDDCs exhibited augmented endocytosis, maturation rate, cytokine secretion, and T-cell activation; heightened glucose uptake and glycolysis; increased Akt signaling (in the mTOR pathway); and decreased AMPK-mediated phosphorylation of proteins. Of note, GSTP formed a complex with ERα, stimulating ERα S -glutathionylation at cysteines 221, 245, 417, and 447; altering ERα's binding affinity for estradiol; and reducing overall binding potential (receptor density and affinity) 3-fold. Moreover, in Gstp1 / p2 -/- BMDDCs, ERα S -glutathionylation was constitutively decreased. Taken together, these findings suggest that GSTP-mediated S -glutathionylation of ERα controls BMDDC differentiation and affects metabolic function in dendritic cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria

    PubMed Central

    Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S

    2014-01-01

    Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908

  2. Lipophilicity as a determinant of thiazolidinedione action in vitro: findings from BLX-1002, a novel compound without affinity to PPARs.

    PubMed

    Brunmair, Barbara; Staniek, Katrin; Lehner, Zsuzsanna; Dey, Debendranath; Bolten, Charles W; Stadlbauer, Karin; Luger, Anton; Fürnsinn, Clemens

    2011-06-01

    The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.

  3. Cellular Targets of Dietary Polyphenol Resveratrol

    DTIC Science & Technology

    2005-03-01

    attempts to generate affinity columns tagged with other polyphenols, e.g., epigallocatechin gallate ( EGCG ). Conceivably such columns, if generated, would...Similar affinity chromatography with the related polyphenol Epigallocatechin gallate does not produce similar results.” Answer: We did not make...addition, the PI does not provid expression. If there is “increased ex many bind the resveratrol affinity co related polyphenol Epigallocatechin Response

  4. IA-2 autoantibody affinity in children at risk for type 1 diabetes.

    PubMed

    Krause, Stephanie; Chmiel, Ruth; Bonifacio, Ezio; Scholz, Marlon; Powell, Michael; Furmaniak, Jadwiga; Rees Smith, Bernard; Ziegler, Anette-G; Achenbach, Peter

    2012-12-01

    Autoantibodies to insulinoma-associated protein 2 (IA-2A) are associated with increased risk for type 1 diabetes. Here we examined IA-2A affinity and epitope specificity to assess heterogeneity in response intensity in relation to pathogenesis and diabetes risk in 50 children who were prospectively followed from birth. At first IA-2A appearance, affinity ranged from 10(7) to 10(11)L/mol and was high (>1.0×10(9)L/mol) in 41 (82%) children. IA-2A affinity was not associated with epitope specificity or HLA class II haplotype. On follow-up, affinity increased or remained high, and IA-2A were commonly against epitopes within the protein tyrosine phosphatase-like IA-2 domain and the homologue protein IA-2β. IA-2A were preceded or accompanied by other islet autoantibodies in 49 (98%) children, of which 34 progressed to diabetes. IA-2A affinity did not stratify diabetes risk. In conclusion, the IA-2A response in children is intense with rapid maturation against immunogenic epitopes and a strong association with diabetes development. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.

    PubMed

    Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen

    2017-05-01

    In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.

  6. The oxygen-binding properties of hemocyanin from the mollusk Concholepas concholepas.

    PubMed

    González, Andrea; Nova, Esteban; Del Campo, Miguel; Manubens, Augusto; De Ioannes, Alfredo; Ferreira, Jorge; Becker, María Inés

    2017-12-01

    Hemocyanins have highly conserved copper-containing active sites that bind oxygen. However, structural differences among the hemocyanins of various mollusks may affect their physicochemical properties. Here, we studied the oxygen-binding cooperativity and affinity of Concholepas concholepas hemocyanin (CCH) and its two isolated subunits over a wide range of temperatures and pH values. Considering the differences in the quaternary structures of CCH and keyhole limpet hemocyanin (KLH), we hypothesized that the heterodidecameric CCH has different oxygen-binding parameters than the homodidecameric KLH. A novel modification of the polarographic method was applied in which rat liver submitochondrial particles containing cytochrome c oxidase were introduced to totally deplete oxygen of the test solution using ascorbate as the electron donor. This method was both sensitive and reproducible. The results showed that CCH, like other hemocyanins, exhibits cooperativity, showing an inverse relationship between the oxygen-binding parameters and temperature. According to their Hill coefficients, KLH has greater cooperativity than CCH at physiological pH; however, CCH is less sensitive to pH changes than KLH. Appreciable differences in binding behavior were found between the CCH subunits: the cooperativity of CCH-A was not only almost double that of CCH-B, but it was also slightly superior to that of CCH, thus suggesting that the oxygen-binding domains of the CCH subunits are different in their primary structure. Collectively, these data suggest that CCH-A is the main oxygen-binding domain in CCH; CCH-B may play a more structural role, perhaps utilizing its surprising predisposition to form tubular polymers, unlike CCH-A, as demonstrated here using electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  8. Oxygen Binding and Redox Properties of the Heme in Soluble Guanylate Cyclase

    PubMed Central

    Makino, Ryu; Park, Sam-yon; Obayashi, Eiji; Iizuka, Tetsutaro; Hori, Hiroshi; Shiro, Yoshitugu

    2011-01-01

    Soluble guanylate cyclase is an NO-sensing hemoprotein that serves as a NO receptor in NO-mediated signaling pathways. It has been believed that this enzyme displays no measurable affinity for O2, thereby enabling the selective NO sensing in aerobic environments. Despite the physiological significance, the reactivity of the enzyme-heme for O2 has not been examined in detail. In this paper we demonstrated that the high spin heme of the ferrous enzyme converted to a low spin oxyheme (Fe2+-O2) when frozen at 77 K in the presence of O2. The ligation of O2 was confirmed by EPR analyses using cobalt-substituted enzyme. The oxy form was produced also under solution conditions at −7 °C, with the extremely low affinity for O2. The low O2 affinity was not caused by a distal steric protein effect and by rupture of the Fe2+-proximal His bond as revealed by extended x-ray absorption fine structure. The midpoint potential of the enzyme-heme was +187 mV, which is the most positive among high spin protoheme-hemoproteins. This observation implies that the electron density of the ferrous heme iron is relatively low by comparison to those of other hemoproteins, presumably due to the weak Fe2+-proximal His bond. Based on our results, we propose that the weak Fe2+-proximal His bond is a key determinant for the low O2 affinity of the heme moiety of soluble guanylate cyclase. PMID:21385878

  9. Opposing intermolecular tuning of Ca2+ affinity for Calmodulin by its target peptides

    NASA Astrophysics Data System (ADS)

    Cheung, Margaret

    We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca2+) by integrating coarse-grained models and all-atomistic simulations with non-equilibrium physics. We focused on binding between CaM and two specific targets, Ca2+/CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca2+ signaling pathways in neurons. It was shown experimentally that Ca2+/CaM binds to the CaMKII peptide with higher affinity than the Ng peptide. The binding of CaMKII peptide to CaM in return increases the Ca2+ affinity for CaM. However, this reciprocal relation was not observed in the Ng peptide, which binds to Ca2+-free CaM or Ca2+/CaM with similar binding affinity. Unlike CaM-CaMKII peptide that allowed structure determination by crystallography, the structural description of CaM-Ng peptide is unknown due to low binding affinity, therefore, we computationally generated an ensemble of CaM-Ng peptide structures by matching the changes in the chemical shifts of CaM upon Ng peptide binding from nuclear magnetic resonance experiments. We computed the changes in Ca2+ affinity for CaM with and without binding targets in atomistic models using Jarzynski's equality. We discovered the molecular underpinnings of lowered affinity of Ca2+ for CaM in the presence of Ng by showing that the N-terminal acidic region of Ng peptide pries open the β-sheet structure between the Ca2+ binding loops particularly at C-domain of CaM, enabling Ca2+release. In contrast, CaMKII increases Ca2+ affinity for the C-domain of CaM by stabilizing the two Ca2+ binding loops.

  10. Differential effects of ethanol and other inducers of drug metabolism on the two forms of hamster liver microsomal aniline hydroxylase.

    PubMed

    McCoy, G D

    1980-03-01

    The aniline hydroxylase activity of microsomes isolated from hamster liver can be differentiated kinetically into high affinity (low K(m), form I) and low affinity (high K(m), form II) forms. Microsomes isolated from uninduced animals contain slightly more form I activity. The activity of the low affinity form (form II) is preferentially enhanced by Aroclor or 3-methylcholanthrene treatment, while phenobarbital treatment increases the activity of both forms. Chronic ethanol consumption results in enhancement of only the high affinity form (form I).

  11. Cadmium accumulation characteristics of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don.

    PubMed

    Lin, Lijin; Shi, Jun; Liu, Qihua; Liao, Ming'an; Mei, Luoyin

    2014-07-01

    In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg(-1), respectively, at the soil Cd concentration of 50 mg kg(-1). Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.

  12. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.

    PubMed

    Hur, Jin; Park, Sung-Won; Kim, Min Chan; Kim, Han S

    2013-11-01

    Enhanced binding of hydrophobic organic contaminants (HOCs) with soil organic matter (SOM) by microwave (MW) irradiation was investigated in this study. We used fluorescence excitation emission matrix, humification index (HIX), and organic carbon partitioning coefficient (Koc) to examine characteristic changes in SOM and its sorptive capacity for HOCs. When MW was irradiated to soils, protein-like fluorescence decreased but fulvic- and humic-like fluorescence increased. The addition of activated carbon in the presence of oxygen facilitated the humification-like alteration of SOM more significantly, evidenced by increases in fulvic- and humic-like fluorescence signals. The extent of SOM-phenanthrene binding also increased with MW treatment, supported by a notable increase in Koc value from 1.8×10(4) to 7.3×10(5)Lkg(-1). Various descriptors indicating the physical and chemical properties of SOM along with the relative percentage of humic-like fluorescence and HIX values demonstrated strong linear relationships with Koc values. These linear relationships indicated that the increased binding affinity of SOM for phenanthrene was attributed to enhanced SOM humification, which was stimulated by MW irradiation. Thus, our results demonstrate that MW irradiation could be effectively used for remediation or for assessing the environmental risks of HOC-contaminated soils and groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer.

    PubMed

    Sin, Dong Hun; Jo, Sae Byeok; Lee, Seung Goo; Ko, Hyomin; Kim, Min; Lee, Hansol; Cho, Kilwon

    2017-05-31

    A mechanically and thermally stable and electron-selective ZnO/CH 3 NH 3 PbI 3 interface is created via hybridization of a polar insulating polymer, poly(ethylene glycol) (PEG), into ZnO nanoparticles (NPs). PEG successfully passivates the oxygen defects on ZnO and prevents direct contact between CH 3 NH 3 PbI 3 and defects on ZnO. A uniform CH 3 NH 3 PbI 3 film is formed on a soft ZnO:PEG layer after dispersion of the residual stress from the volume expansion during CH 3 NH 3 PbI 3 conversion. PEG also increases the work of adhesion of the CH 3 NH 3 PbI 3 film on the ZnO:PEG layer and holds the CH 3 NH 3 PbI 3 film with hydrogen bonding. Furthermore, PEG tailors the interfacial electronic structure of ZnO, reducing the electron affinity of ZnO. As a result, a selective electron-collection cathode is formed with a reduced electron affinity and a deep-lying valence band of ZnO, which significantly enhances the carrier lifetime (473 μs) and photovoltaic performance (15.5%). The mechanically and electrically durable ZnO:PEG/CH 3 NH 3 PbI 3 interface maintains the sustainable performance of the solar cells over 1 year. A soft and durable cathodic interface via PEG hybridization in a ZnO layer is an effective strategy toward flexible electronics and commercialization of the perovskite solar cells.

  14. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.

    PubMed

    Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon

    2018-03-19

    The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    PubMed

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Exploring Thermoresponsive Affinity Agents to Enhance Microdialysis Sampling Efficiency of Proteins

    NASA Astrophysics Data System (ADS)

    Vasicek, Thaddeus

    Affinity agents increase microdialysis protein relative recovery, yet they have not seen widespread use within the microdialysis community due to their additional instrumentation requirements and prohibitive cost. This dissertation describes new affinity agents for microdialysis that require no additional instrumentation to use, have nearly 100% particle recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand support due to their high surface area/volume ratio and colloidal stability. Poly (N-isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically stabilize the particles and to act as a generic, reversible protein capture agent. A method was developed to reproducibly vary and quantify poly (N-isopropylacrylamide) graft density from 0.09 to 0.40 ligands/nm2 on gold nanoparticles. During characterization of the polymer coated gold nanoparticles, irreversible particle agglomeration was observed at low polymer graft density in ionic solutions, which prevented further development as a protein capture agent. Poly (N-isopropylacrylamide) nanogels, which have low nonspecific adsorption, low interparticle attractive forces owing to the low curvature of the particle, and a low Hamaker constant, were synthesized to overcome the agglomeration problem. A generic protein affinity ligand cibacron blue, was immobilized to the nanogels, which enabled rapid determination of particle recovery. The perfusion of the nanogels through a microdialysis probe was optimized yielding 100% particle recovery using a combination of a syringe and peristaltic pump. The microdialysis collection efficiency of CCL2, a physiologically relevant cytokine, was increased 3-fold with addition of the nanogel to the microdialysis perfusion fluid. The reduction in instrumentation requirements, low cost, and low specificity obtained with the new affinity agents will lead to increased affinity agent use for microdiaylsis protein sampling.

  17. Effects of Hypoxia and Hypercapnic Hypoxia on Oxygen Transport and Acid-Base Status in the Atlantic Blue Crab, Callinectes sapidus, During Exercise.

    PubMed

    Lehtonen, Mark P; Burnett, Louis E

    2016-11-01

    The responses of estuarine invertebrates to hypoxic conditions are well established. However, many studies have investigated hypoxia as an isolated condition despite its frequent co-occurrence with hypercapnia (elevated CO 2 ). Although many studies suggest deleterious effects, hypercapnia has been observed to improve blue crab walking performance in hypoxia. To investigate the physiological effects of combined hypercapnic hypoxia, we measured Po 2 , pH, [l-lactate], Pco 2 , and total O 2 in pre- and postbranchial hemolymph sampled from blue crabs during walking exercise. Crabs walked at 8 m min -1 on an aquatic treadmill in normoxic (100% air saturation), moderately hypoxic (50%), and severely hypoxic (20%) seawater with and without the addition of hypercapnia (about 2% CO 2 ). Respiration was almost completely aerobic in normoxic conditions, with little buildup of lactate. During exercise under severe hypoxia, lactate increased from 1.4 to 11.0 mM, indicating a heavy reliance on anaerobic respiration. The O 2 saturation of arterial hemocyanin was 47% in severe hypoxia after 120 min, significantly lower than in normoxia (80%). However, the addition of hypercapnia significantly increased the percentage saturation of arterial hemocyanin in severe hypoxia to 92% after 120 min of exercise, equivalent to normoxic levels. Hypercapnia in severe hypoxia also caused a marked increase in hemolymph Pco 2 (around 1.1 kPa), but caused only a minor decrease in pH of 0.1 units. We suggest that the improved O 2 saturation at the gills results from a specific effect of molecular CO 2 on hemocyanin oxygen binding affinity, which works independently of and counter to the effects of decreased pH. © 2016 Wiley Periodicals, Inc.

  18. Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX).

    PubMed

    Keller, T C Stevenson; Butcher, Joshua T; Broseghini-Filho, Gilson Brás; Marziano, Corina; DeLalio, Leon J; Rogers, Stephen; Ning, Bo; Martin, Jennifer N; Chechova, Sylvia; Cabot, Maya; Shu, Xiahong; Best, Angela K; Good, Miranda E; Simão Padilha, Alessandra; Purdy, Michael; Yeager, Mark; Peirce, Shayn M; Hu, Song; Doctor, Allan; Barrett, Eugene; Le, Thu H; Columbus, Linda; Isakson, Brant E

    2016-12-01

    The ability of hemoglobin to scavenge the potent vasodilator nitric oxide (NO) in the blood has been well established as a mechanism of vascular tone homeostasis. In endothelial cells, the alpha chain of hemoglobin (hereafter, alpha globin) and endothelial NO synthase form a macromolecular complex, providing a sink for NO directly adjacent to the production source. We have developed an alpha globin mimetic peptide (named HbαX) that displaces endogenous alpha globin and increases bioavailable NO for vasodilation. Here we show that, in vivo, HbαX administration increases capillary oxygenation and blood flow in arterioles acutely and produces a sustained decrease in systolic blood pressure in normal and angiotensin II-induced hypertensive states. HbαX acts with high specificity and affinity to endothelial NO synthase, without toxicity to liver and kidney and no effect on p50 of O 2 binding in red blood cells. In human vasculature, HbαX blunts vasoconstrictive response to cumulative doses of phenylephrine, a potent constricting agent. By binding to endothelial NO synthase and displacing endogenous alpha globin, HbαX modulates important metrics of vascular function, increasing vasodilation and flow in the resistance vasculature. © 2016 American Heart Association, Inc.

  19. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    PubMed

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import

    PubMed Central

    Azimi, Mohammad; Mofrad, Mohammad R. K.

    2013-01-01

    Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617

  1. Vaccine Efficacy and Affinity Maturation

    NASA Astrophysics Data System (ADS)

    Lee, Hayoun; Deem, Michael W.

    2002-03-01

    We propose macroscopic equations to describe variable vaccine efficacy between repeated vaccinee and first time vaccinee. The main ingredients are antigenic distance between epidemic strain and vaccne strain, and affinity maturation dynamics which differs in primary and second response. Increase of affinity by repeated vaccine leads to localization in immune space. This localization decreases the ability of the immune system to response to distant, but related epidemic strains.

  2. The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish

    PubMed Central

    2014-01-01

    Background Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1β2 and α2β1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the αA and αD chains, respectively, of birds and reptiles. Results Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome β globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the β globins, except for the Leu replacement in the β1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod β1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122β(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. Conclusions The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122β1(GH5)Met and Met55β1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the intradimer contacts B12-GH5 and H2-D6, while amino acid replacements at these positions in avian hemoglobin seem to be evolutionary adaptive in air-breathing vertebrates. The results support the theory that adaptive changes in hemoglobin functions are caused by a few substitutions at key positions. PMID:24655798

  3. Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen

    PubMed Central

    1995-01-01

    To gain insight into the mechanism and limitations of antibody affinity maturation leading to memory B cell formation, we generated a phage display library of random mutants at heavy chain variable (V) complementarity determining region 2 positions 58 and 59 of an anti-p- azophenylarsonate (Ars) Fab. Single amino acid substitutions at these positions resulting from somatic hypermutation are recurrent products of affinity maturation in vivo. Most of the ex vivo mutants retained specificity for Ars. Among the many mutants displaying high Ars-binding activity, only one contained a position 58 and 59 amino acid combination that has been previously observed among the monoclonal antibodies (mAbs) derived from Ars-immunized mice. Affinity measurements on 14 of the ex vivo mutants with high Ars-binding activity showed that 11 had higher intrinsic affinities for Ars that the wild-type V region. However, nine of these Fabs also bound strongly to denatured DNA, a property neither displayed by the wild-type V region nor observed among the mutants characteristic of in vivo affinity maturation. These data suggest that ex vivo enhancement of mAb affinity via site-directed and random mutagenesis approaches may often lead to a reduction in antibody specificity that could complicate the use of the resulting mAbs for diagnostic and therapeutic applications. Moreover, the data are compatible with a hypothesis proposing that increased specificity for antigen, rather than affinity per se, is the driving force for formation of the memory B cell compartment. PMID:7650481

  4. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5.

    PubMed

    Nieves-Cordones, Manuel; Miller, Anthony J; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2008-12-01

    A chimeric CaHAK1-LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K(+) uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K(+) uptake shown by K(+)-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K(+) uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K(+) uptake was not correlated with the root K(+) content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K(+) starvation or growth in the presence of NH(4) (+), but which do not decrease the K(+) content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K(+) starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K(+) transporter.

  5. Oxygen transport of hemoglobin in high-altitude animals (Camelidae).

    PubMed

    Reynafarje, C; Faura, J; Villavicencio, D; Curaca, A; Reynafarje, B; Oyola, L; Contreras, L; Vallenas, E; Faura, A

    1975-05-01

    To clarify the mechanisms by which high-altitude Camelidae can adapt to hypoxia, the study of some blood characteristics were carried out in apacas and llamas. The results show that there is a peculiar dissociation curve of hemoglobin in alpacas which permits great affinity of hemoglobin for oxygen at lung level and the release of oxygen at the tissue level with a facility similar to that in man. Fetal hemoglobin was found high in adult alpacas (55 percent). Electrophoretic studies of hemoglobin showed that this pigment has two components, both of which have a very low mobility. Lactic dehydrogenase was found six times higher than in humans. RBC glucose-6-phosphate dehydrogenase was two times higher than in man living at the same altitude. Myoglobin was found to be higher than in man living at altitude. Alpacas have erythrocytes in which the amount of 2,3-DPG is approximately the same as in man. RBC are more resistent to hypotonic solutions than humans. The amount of lactic dehydrogenase, myoglobin, and glucose-6-phosphate dehydrogenase dimishes when alpacas are bought down to sea level.

  6. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    PubMed

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  7. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice

    PubMed Central

    Liu, Xiaojun; Jiang, Shuguang; Fang, Chongyun; Yang, Shiyu; Olalere, Devvora; Pequignot, Edward C.; Cogdill, Alexandria P.; Li, Na; Ramones, Melissa; Granda, Brian; Zhou, Li; Loew, Andreas; Young, Regina M.; June, Carl H.; Zhao, Yangbing

    2015-01-01

    Target-mediated toxicity is a major limitation in the development of chimeric antigen T cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues which express it at physiologic levels. A CAR-expressing T cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach. PMID:26330166

  8. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.

    PubMed

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang

    2014-09-06

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Identification of a New Zinc Binding Chemotype by Fragment Screening.

    PubMed

    Chrysanthopoulos, Panagiotis K; Mujumdar, Prashant; Woods, Lucy A; Dolezal, Olan; Ren, Bin; Peat, Thomas S; Poulsen, Sally-Ann

    2017-09-14

    The discovery of a new zinc binding chemotype from screening a nonbiased fragment library is reported. Using the orthogonal fragment screening methods of native state mass spectrometry and surface plasmon resonance a 3-unsubstituted 2,4-oxazolidinedione fragment was found to have low micromolar binding affinity to the zinc metalloenzyme carbonic anhydrase II (CA II). This affinity approached that of fragment sized primary benzenesulfonamides, the classical zinc binding group found in most CA II inhibitors. Protein X-ray crystallography established that 3-unsubstituted 2,4-oxazolidinediones bound to CA II via an interaction of the acidic ring nitrogen with the CA II active site zinc, as well as two hydrogen bonds between the oxazolidinedione ring oxygen and the CA II protein backbone. Furthermore, 3-unsubstituted 2,4-oxazolidinediones appear to be a viable starting point for the development of an alternative class of CA inhibitor, wherein the medicinal chemistry pedigree of primary sulfonamides has dominated for several decades.

  10. Arrestin binds to different phosphorylated regions of the thyrotropin-releasing hormone receptor with distinct functional consequences.

    PubMed

    Jones, Brian W; Hinkle, Patricia M

    2008-07-01

    Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.

  11. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer

    PubMed Central

    Sakurai, Hiroshi; Imai, Kiyohiro; Mizusawa, Naoki; Ogura, Takashi

    2015-01-01

    Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit. PMID:26244770

  12. [Oxygen-transport function of the blood and endothelial dysfunction in patients with angina pectoris and arterial hypertension].

    PubMed

    Iankovskaia, A V; Zinchuk, M A

    2007-01-01

    Parameters of oxygen-transport function of the blood and function of the endothelium were studied in 49 patients with stable angina pectoris of I and II functional class with or without concomitant 2nd degree arterial hypertension. All patients received pathogenetic therapy. Signs of endothelial dysfunction were found in group III in which endothelium dependent vasodilation (8.22 +/- 1.71%) was 73.4% (p1 < 0.001) lower than in control group and 47.2% (p3 < 0.05) lower than in patients with class I angina. In all groups baseline content of nitrates/nitrites was lower. Main parameters of acid-base balance were lowered in patients of group III evidencing for emergence of signs of metabolic acidosis and hypoxia. Lowering of hemoglobin affinity to oxygen and its rise after therapy was also revealed. Maximal lowering of this parameter (-10.2%, p2 < 0.05) reflecting shift of oxyhemoglobin dissociation curve to the right was noted in group II. Endothelium can participate in formation of these disturbances because its dysfunction is associated with deranged release of NO in various parts of vascular tree. This affects formation of various NO-derivatives of hemoglobin and oxygen transport system of the blood.

  13. A General Strategy for Targeting Drugs to Bone.

    PubMed

    Jahnke, Wolfgang; Bold, Guido; Marzinzik, Andreas L; Ofner, Silvio; Pellé, Xavier; Cotesta, Simona; Bourgier, Emmanuelle; Lehmann, Sylvie; Henry, Chrystelle; Hemmig, René; Stauffer, Frédéric; Hartwieg, J Constanze D; Green, Jonathan R; Rondeau, Jean-Michel

    2015-11-23

    Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. How Much Binding Affinity Can be Gained by Filling a Cavity?

    PubMed Central

    Kawasaki, Yuko; Chufan, Eduardo E.; Lafont, Virginie; Hidaka, Koushi; Kiso, Yoshiaki; Amzel, L. Mario; Freire, Ernesto

    2011-01-01

    Binding affinity optimization is critical during drug development. Here we evaluate the thermodynamic consequences of filling a binding cavity with functionalities of increasing van der Waals radii (-H, -F, -Cl and CH3) that improve the geometric fit without participating in hydrogen bonding or other specific interactions. We observe a binding affinity increase of two orders of magnitude. There appears to be three phases in the process. The first phase is associated with the formation of stable van der Waals interactions. This phase is characterized by a gain in binding enthalpy and a loss in binding entropy, attributed to a loss of conformational degrees of freedom. For the specific case presented in this paper, the enthalpy gain amounts to −1.5 kcal/mol while the entropic losses amount to +0.9 kcal/mol resulting in a net 3.5-fold affinity gain. The second phase is characterized by simultaneous enthalpic and entropic gains. This phase improves the binding affinity 25-fold. The third phase represents the collapse of the trend and is triggered by the introduction of chemical functionalities larger than the binding cavity itself (CH(CH3)2). It is characterized by large enthalpy and affinity losses. The thermodynamic signatures associated with each phase provide guidelines for lead optimization. PMID:20028396

  15. Effect of Red Blood Cell Storage on Cardiac Performance. Improved Myocardial Oxygen Delivery and Function during Constant Flow Coronary Perfusion with Low Oxy-Hemoglobin Affinity Human Red Blood Cells in Normothermic and Hypothermic Rabbit Hearts.

    DTIC Science & Technology

    1983-02-01

    with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve

  16. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  17. Neohemoglobins and Cross-Linked Hemoglobins as Blood Substitute.

    DTIC Science & Technology

    1982-12-01

    LRSSIFIEE F /G 6/1NL El." . 2 it-8 % 1.2 5. 1 1 Si. Hm MICROCOPY RESOLUTION TEST CHART NAIIONAL BUREAU Of SIANOAR DS 19 6 3 -A l...VDistribuxtion/. AvailabilltT C0409 ’Avall avd/Or Dist Spec al L 3 SUMMARY Starting from deuteroporphyrin we synthetized 2,4-dibromo, 2 (or 4)-monocyano and 2 ...were occupied by a proton. Figs. 2 and 3 show the oxygen affinity of the neohemoglobins as compared to that on normal human SFH either in 0.05 M

  18. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity.

    PubMed

    Dolot, Rafal; Lam, Curtis H; Sierant, Malgorzata; Zhao, Qiang; Liu, Feng-Wu; Nawrot, Barbara; Egli, Martin; Yang, Xianbin

    2018-05-18

    Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.

  19. Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: Molecular-scale ESI-MS studies

    NASA Astrophysics Data System (ADS)

    Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi

    2017-01-01

    We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).

  20. Model photoautrophs isolated from a Proterozoic ocean analog - aerobic life under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; de Beer, D.; Klatt, J.; Macalady, J.; Weber, M.; Lott, C.; Chennu, A.

    2016-12-01

    The 1-2 billion year delay before the final rise of oxygen at the end of the Proterozoic represents an important gap in our understanding of ancient biogeochemical cycling. Primary production fueled by sulfide-dependent anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, has been invoked as a mechanism for sustaining low atmospheric O2 throughout much of the Proterozoic. However, we understand very little about photoautotrophs that inhabit Proterozoic-like environments present on Earth today. Here we report on the isolation and characterization of a cyanobacterium and a green sulfur bacterium that are the dominant members of pinnacle mats in Little Salt Spring—a karst sinkhole in Florida with perennially low levels of dissolved oxygen and sulfide. The red pinnacle mats bloom in the anoxic basin of the sinkhole and receive light that is of very poor quality to support photosynthesis. Characterization of the isolates is consistent with observations of oxygenic and anoxygenic photosynthesis in situ—both organisms perform anoxygenic photosynthesis under conditions of very low light quality and quantity. Oxygenic photosynthesis by the cyanobacterium isolate is inhibited by the presence of sulfide and under optimal light conditions, rates of anoxygenic photosynthesis are nearly double that of oxygenic photosynthesis. The green sulfur bacterium is tolerant of oxygen and has a very low affinity for sulfide. In Little Salt Spring, oxygenic photosynthesis occurs for only four hours a day and the water column remains anoxic because of a continuous supply of sulfide. Isolation and characterization of these photoautotrophs combined with our high resolution microsensor data in situ highlight microbial biogeochemical cycling in this exceptional site where aerobic microorganisms persist in a largely anoxic ecosystem.

  1. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    PubMed

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  2. Nitrate supplementation and human exercise performance: too much of a good thing?

    PubMed

    Poortmans, Jacques R; Gualano, Bruno; Carpentier, Alain

    2015-11-01

    Ergogenic supplements in sport events are widely used by popular and competitive athletes to enhance performance and reduce oxygen cost. Beetroot juice and nitrate salts have been increasingly used for the past 5-6 years. The present review discusses the scientific background, the efficiency and potential adverse effects of excessive nitrate supplementation. There is clear evidence that nitrate from different food ingredients (such as beetroot juice and other vegetables) is converted into nitrite and possibly into nitric oxide, which may promote vasodilation, angiogenesis and mitochondrial biogenesis. The high affinity of nitric oxide towards different enzyme pathways inhibits excessive mitochondrial respiration and, therefore, tissue oxygen consumption. In addition, L-arginine supplements are proposed to stimulate nitric oxide synthesis in the endothelium. On the basis of these biochemical properties, nitrate supplementation has been suggested to athletes to enhance exercise performance. The recent publications in human individuals based on L-arginine, beetroot juice or nitrate supplementation revealed either a minor positive effect or no systematic effect on exercise performance, especially in trained athletes. Of note, the sugar content of whole beetroot juice might induce a slightly more pronounced effect. Although reasonable intake of nitrate salts (up to 1 g/day) has no detrimental effect on kidney function, the risk and benefit of higher nitrate intake needs to be evaluated to define the optimal range of supplementation.

  3. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    PubMed

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  4. Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity.

    PubMed

    Vanhoutte, G; Verhoye, M; Van der Linden, A

    2006-05-01

    This study was designed to determine brain activity in the hypothalamus-in particular the thermoregulatory function of the hypothalamic preoptic area (PO). We experimentally changed the body temperature in rats within the physiological range (37-39 degrees C) and monitored changes in blood oxygenation level-dependent (BOLD) MR signal. To explore PO activity we had to deal with general signal changes caused by temperature-dependent alterations in the affinity of oxygen for hemoglobin, which contributes to BOLD contrast because it is partly sensitive to the amount of paramagnetic deoxyhemoglobin in the voxel. To reduce these overall temperature-induced effects, we corrected the BOLD data using brain-specific correction algorithms. The results showed activity of the PO during body warming from 38 degrees C to 39 degrees C, supported by an increased BOLD signal after correction. This is the first fMRI study on the autonomous nervous system in which hypothalamic activity elicited by changes in the internal environment (body temperature) was monitored. In this study we also demonstrate 1) that any fMRI study of anesthetized small animals should guard against background BOLD signal drift, since animals are vulnerable to body temperature fluctuations; and 2) the existence of a link between PO activity and the sympathetically-mediated opening of the arteriovenous anastomoses in a parallel study on the rat tail, a peripheral thermoregulatory organ.

  5. Dietary nucleotide supplementation raises erythrocyte 2, 3-diphosphoglycerate concentration in neonatal rats.

    PubMed

    Scopesi, F; Verkeste, C M; Paola, D; Gazzolo, D; Pronzato, M A; Bruschettini, P L; Marinari, U M

    1999-03-01

    The present study was designed to test if dietary intake of nucleotides increases erythrocyte 2,3-diphosphoglycerate (2,3-DPG) in neonatal rats. To this end, rat pups were fed a nucleotide-supplemented formula (S, n = 14) from d 9 until d 16 after birth. The results were compared with those obtained from a group of breast-fed pups (C, n = 14) and a group of pups artificially fed with nucleotide-free formula (NS, n = 14). Neonatal weight, 2,3-DPG concentration, hematocrit (Hct) and hemoglobin concentration (Hb) were determined before the experiment (d 9) and after 7 d of treatment (d 16). In all groups, 2,3-DPG concentration was greater at d 16 than d 9, and the increase was greater in the S group than in the NS group. Alterations in neonatal weight, Hct and Hb concentration did not differ among the groups. On d 16 the 2, 3-DPG/Hb ratio, reflecting the affinity of hemoglobin for oxygen, was significantly higher in the C and S groups than in the NS group. We conclude that in neonatal rats, dietary nucleotides increase erythrocyte 2,3-DPG concentration. Studies need to be conducted in humans to assess the effect of this increase on both neonatal peripheral hemodynamics and metabolism in this species.

  6. Green reduction of graphene oxide via Lycium barbarum extract

    NASA Astrophysics Data System (ADS)

    Hou, Dandan; Liu, Qinfu; Cheng, Hongfei; Zhang, Hao; Wang, Sen

    2017-02-01

    The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may be due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials.

  7. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  8. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution

    NASA Astrophysics Data System (ADS)

    Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao

    2018-06-01

    Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Banerjee, Debasis; Liu, Jian

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulatedmore » breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.« less

  10. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  11. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  13. Relationships between Climate and Biodiversity of Fish Assemblages in the Southern California Current Region

    NASA Astrophysics Data System (ADS)

    McMonagle, H.; Koslow, J. A.; Watson, W.

    2016-02-01

    Climate has been shown to play a major role in the dynamics of fisheries and marine ecosystems. Previous studies of relationships between physical oceanography and fish population dynamics have focused primarily on commercially important species. However, as we move towards more comprehensive, ecosystem-based management of fisheries, it is important to understand how entire assemblages of fish, including ecologically important but noncommercial taxa, are influenced by climate. We used the ichthyoplankton time series maintained by the California Cooperative Oceanic Fisheries Investigations (CalCOFI) to examine changes in over 200 fish taxa from 1969 to 2011 in the Southern California Current region. We used several indices of species richness and evenness, as well as graphical approaches, to examine potential changes in the diversity of regional fish assemblages in relation to interannual and decadal-scale climate variability. These include El Niño-La Niña events, changes in deepwater oxygen concentration and long-term ocean warming. Richness was positively correlated with deepwater oxygen concentration, consistent with the strong correlation between midwater fish abundance and oxygen. Diversity (a measurement of both richness and evenness) was positively correlated with sea surface temperature. Diversity decreased as the abundance of a diverse midwater fish assemblage declined, and it increased as a dominant assemblage of common, coldwater fish declined. This latter pattern may be due to the strong dominance of species with cold water affinities when conditions were favorable, which reduced evenness in the community. Trends in deoxygenation and warming are predicted to continue due to climate change. A better understanding of the relationships between the diversity of fish communities and climate could lead to improved indicators of ecosystem status and the ability to predict trends in fish communities related to climate change.

  14. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.

  15. Modulation of Conformational Equilibria in the S-Adenosylmethionine (SAM) II Riboswitch by SAM, Mg(2+), and Trimethylamine N-Oxide.

    PubMed

    McPhie, Peter; Brown, Patrick; Chen, Bin; Dayie, Theodore K; Minton, Allen P

    2016-09-13

    The dependence of the conformation of the S-adenosylmethionine (SAM) II riboswitch on the concentration of added Mg(2+) ions and SAM, individually and in mixtures, was monitored by circular dichroism (CD) spectroscopy and by measurement of the diffusion coefficient. The results are analyzed in the context of two complementary quantitative models, both of which are consistent with a single underlying physical model. Magnesium binding sites in the open state have an affinity on average higher than the affinity of those in the compact state, but formation of the compact state is accompanied by an increase in the number of binding sites. Consequently, at low Mg(2+) concentrations, Mg(2+) binds preferentially to the open state, favoring its formation, but at high concentrations, Mg(2+) binds preferentially to the compact state. The affinity of the riboswitch for SAM increases drastically with an increased level of binding of Mg(2+) to the compact pseudoknot conformation. The effect of increasing concentrations of trimethylamine N-oxide (TMAO), a well-studied molecular crowding agent, on the conformation of the riboswitch and its affinity for SAM were also monitored by CD spectroscopy and measurement of diffusion. In the absence of added Mg(2+), high concentrations of TMAO were found to induce a conformational change compatible with the formation of the pseudoknot form but have only a small effect on the affinity of the RNA for SAM.

  16. Cytokine refacing effect reduces granulocyte macrophage colony-stimulating factor susceptibility to antibody neutralization

    PubMed Central

    Heinzelman, Pete; Carlson, Sharon J.; Cox, George N.

    2015-01-01

    Crohn's Disease (CD) afflicts over half a million Americans with an annual economic impact exceeding $10 billion. Granulocyte macrophage colony-stimulating factor (GM-CSF) can increase patient immune responses against intestinal microbes that promote CD and has been effective for some patients in clinical trials. We have made important progress toward developing GM-CSF variants that could be more effective CD therapeutics by virtue of being less prone to neutralization by the endogenous GM-CSF autoantibodies that are highly expressed in CD patients. Yeast display engineering revealed mutations that increase GM-CSF variant binding affinity by up to ∼3-fold toward both GM-CSF receptor alpha and beta subunits in surface plasmon resonance experiments. Increased binding affinity did not reduce GM-CSF half-maximum effective concentration (EC50) values in conventional in vitro human leukocyte proliferation assays. Affinity-enhancing mutations did, however, promote a ‘refacing effect’ that imparted all five evaluated GM-CSF variants with increased in vitro bioactivity in the presence of GM-CSF-neutralizing polyclonal antisera. The most improved variant, H15L/R23L, was 6-fold more active than wild-type GM-CSF. Incorporation of additional known affinity-increasing mutations could augment the refacing effect and concomitant bioactivity improvements described here. PMID:25855658

  17. Molecular regulation of aluminum resistance and sulfur nutrition during root growth.

    PubMed

    Alarcón-Poblete, Edith; Inostroza-Blancheteau, Claudio; Alberdi, Miren; Rengel, Zed; Reyes-Díaz, Marjorie

    2018-01-01

    Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al 3+ ) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al 3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al 3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al 3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.

  18. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  19. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  20. Affinity Maturation of a Cyclic Peptide Handle for Therapeutic Antibodies Using Deep Mutational Scanning*

    PubMed Central

    van Rosmalen, Martijn; Janssen, Brian M. G.; Hendrikse, Natalie M.; van der Linden, Ardjan J.; Pieters, Pascal A.; Wanders, Dave; de Greef, Tom F. A.; Merkx, Maarten

    2017-01-01

    Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging, and therapeutic drug monitoring. Here we show that the affinity of a recently reported meditope for cetuximab can be substantially enhanced using a combination of yeast display and deep mutational scanning. Deep sequencing was used to construct a fitness landscape of this protein-peptide interaction, and four mutations were identified that together improved the affinity for cetuximab 10-fold to 15 nm. Importantly, the increased affinity translated into enhanced cetuximab-mediated recruitment to EGF receptor-overexpressing cancer cells. Although in silico Rosetta simulations correctly identified positions that were tolerant to mutation, modeling did not accurately predict the affinity-enhancing mutations. The experimental approach reported here should be generally applicable and could be used to develop meditope peptides with low nanomolar affinity for other therapeutic antibodies. PMID:27974464

  1. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  2. PubMed Central

    Clerbaux, T; Serteyn, D; Willems, E; Brasseur, L

    1986-01-01

    The equine blood oxyhemoglobin dissociation curve has been traced in its entirety in standard conditions and the effects of temperature, pH and 2,3-diphosphoglycerate on this curve have been measured. When compared to that of human blood, the curve showed a higher oxygen affinity of hemoglobin (23.8 +/- 0.8 versus 26.6 mm Hg). The effect of the pH, expressed by d log P50/dpH, was found to be identical in man and horse (-0.47). The effect of temperature, however, expressed by d log P50/dT, proved to be lower in the horse (0.016 versus 0.024). The P50 showed an increase of 1 mm Hg each time 2,3-diphosphoglycerate was experiencing an elevation of 4 mumol/gHb in the horse. The results obtained from this experiment are intended for the replacement of the values related to the human blood which have been found to be somewhat inadequate for the horse blood, when the data of blood gases are given in algorithms. PMID:3756672

  3. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate.

    PubMed

    Miao, Lei; Zhang, Qiong; Wang, Shuying; Li, Baikun; Wang, Zhong; Zhang, Sujian; Zhang, Man; Peng, Yongzhen

    2018-02-01

    The biofilm system is beneficial for Anammox process designed to treat landfill leachate. In this study, the composition of extracellular polymeric substances (EPS) and the microbial community in an Anammox biofilm system were analyzed to determine the functions driving the biofilm's ability to treat landfill leachate. The results demonstrated that increasing influent carbon oxygen demand (COD) could stimulate EPS production. EPS helped enrich Anammox bacteria and supplied them with nutrients and enzymes, facilitating effective nitrogen removal (approximately 95%). The variation in Anammox bacteria was similar to the variation in EPS composition. In the tested Anammox Sequencing Biofilm Batch Reactor (SBBR) system, Candidatus Kuenenia was dominant among known Anammox genus, because of its high substrate affinity and because it adapts better to landfill leachate. The relative abundance of Candidatus Kuenenia in the biofilm rose from 3.26% to 12.38%, illustrating the protection and enrichment offered by the biofilm in carrying out Anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  5. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    PubMed

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-11-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes.

  6. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    PubMed Central

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-01-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes. Images PMID:152321

  7. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis

    PubMed Central

    Tiller, Kathryn E.; Chowdhury, Ratul; Li, Tong; Ludwig, Seth D.; Sen, Sabyasachi; Maranas, Costas D.; Tessier, Peter M.

    2017-01-01

    The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies. PMID:28928732

  8. Species-specific patterns of diel migration into the Oxygen Minimum Zone by euphausiids in the Humboldt Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Antezana, Tarsicio

    2009-12-01

    A series of stratified bongo net samples taken over a 2 day period at ca. 18°S, about 20 nm off the coast of Peru, South America, suggest species-specific patterns of diel vertical migration into the Oxygen Minimum Zone (OMZ) of the Humboldt Current Ecosystem (HCE). The OMZ was the most dramatic feature of the water column and seemed to determine the extent of migration: Stylocheiron affine migrated only to the shallow oxycline; whereas Euphausia mucronata, Euphausia eximia, Euphausia distinguenda and Euphausia tenera migrated to the core of the OMZ; and Nematoscelis gracilis to beneath the core of the OMZ. Some differences were also found in the timing and duration of the ascent and descent, and residence times in shallow and deep layers. E. mucronata, N. gracilis and E. distinguenda displayed a normal descent during sunrise, and ascent during sunset. E. eximia and E. tenera also descended during sunrise but seemed to begin their ascent earlier in the afternoon and consequently shortened their deep residence times. S. affine showed the most extended residence times at the shallow layer and the shortest vertical displacement. Day and night vertical stratification and differences in the timing of migration into and out of the OMZ of the HCE suggest a community structure based on habitat partitioning whereby species avoided co-occurrence in time and space. Species-specific patterns of vertical stratification and migratory chronology are examined with regard to body and gill sizes, feeding adaptations of euphausiids, and potential food resources at the OMZ.

  9. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less

  10. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  11. Associations of teacher credibility and teacher affinity with learning outcomes in health classrooms

    PubMed Central

    Anderman, Eric M.; O’Connell, Ann A.

    2011-01-01

    In the present study (N = 633), we examine the role of teacher credibility and teacher affinity in classrooms. We explore the relations among these two characteristics and student gains in knowledge and valuing of learning about HIV and pregnancy prevention across high school classrooms. Results marshaled support for the notion that teacher characteristics are associated with classroom-level gains in learning outcomes. Above and beyond student-level predictors, teacher credibility (aggregated to the classroom level) was positively related to increases in knowledge across classrooms, whereas aggregated teacher affinity was positively related to an increased valuing of learning about HIV and pregnancy prevention across classrooms. Future directions and implications for practice are discussed. PMID:24876800

  12. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    PubMed Central

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  13. Exploring Girls' Science Affinities Through an Informal Science Education Program

    NASA Astrophysics Data System (ADS)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  14. Alpha-actinin binding kinetics modulate cellular dynamics and force generation

    PubMed Central

    Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.

    2015-01-01

    The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384

  15. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less

  16. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE PAGES

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; ...

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less

  17. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    NASA Astrophysics Data System (ADS)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  18. High-Affinity Interactions of Beryllium(2+) with Phosphatidylserine Result in a Cross-Linking Effect Reducing Surface Recognition of the Lipid.

    PubMed

    Ermakov, Yuri A; Kamaraju, Kishore; Dunina-Barkovskaya, Antonina; Vishnyakova, Khava S; Yegorov, Yegor E; Anishkin, Andriy; Sukharev, Sergei

    2017-10-10

    Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be 2+ -induced abnormal immune responses have recently been linked to a specific MHC-II allele, the nature of long-lasting granulomas is not fully understood. Here we show that Be 2+ binds with a micromolar affinity to phosphatidylserine (PS), the major surface marker of apoptotic cells. Isothermal titration calorimetry indicates that, like that of Ca 2+ , binding of Be 2+ to PS liposomes is largely entropically driven, likely by massive desolvation. Be 2+ exerts a compacting effect on PS monolayers, suggesting cross-linking through coordination by both phosphates and carboxyls in multiple configurations, which were visualized in molecular dynamics simulations. Electrostatic modification of PS membranes by Be 2+ includes complete neutralization of surface charges at ∼30 μM, accompanied by an increase in the boundary dipole potential. The data suggest that Be 2+ can displace Ca 2+ from the surface of PS, and being coordinated in a tight shell of four oxygens, it can mask headgroups from Ca 2+ -mediated recognition by PS receptors. Indeed, 48 μM Be 2+ added to IC-21 cultured macrophages specifically suppresses binding and engulfment of PS-coated silica beads or aged erythrocytes. We propose that Be 2+ adsorption at the surface of apoptotic cells may potentially prevent normal phagocytosis, thus causing accumulation of secondary necrotic foci and the resulting chronic inflammation.

  19. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning

    PubMed Central

    Azarov, Ivan; Wang, Ling; Rose, Jason J.; Xu, Qinzi; Huang, Xueyin N.; Belanger, Andrea; Wang, Ying; Guo, Lanping; Liu, Chen; Ucer, Kamil B.; McTiernan, Charles F.; O’Donnell, Christopher P.; Shiva, Sruti; Tejero, Jesús; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2016-01-01

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxy-hemoglobin to 0.11 and 0.41 minutes, respectively, from a value that is ≥ 200 minutes when the hemoglobin or cells are only exposed to air. Infusions of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and were followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity such as our mutant five-coordinate Ngb are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO. PMID:27928027

  20. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity, may help minimize branchial O 2 loss in armoured catfish while air breathing in aquatic hypoxia.

  1. Overproduction of alpha chains provides a proton-insensitive component to the bluefish hemoglobin system.

    PubMed

    Bonaventura, Celia; Godette, Gerald; Stevens, Robert; Brenowitz, Michael; Henkens, Robert

    2005-12-09

    Expression of alpha and beta chains and their post-translational assembly into alpha(2)beta(2) tetramers is fundamental to the formation and function of most vertebrate hemoglobins. There is a strong evolutionary bias that favors expression of equal amounts of the two types of chains, because cooperativity, pH sensitivity, and anionic control of function occurs only for the alpha(2)beta(2) tetramers. Remarkably, an over-production of alpha chains, as in the pathological condition known as beta thalassemia in humans, is adaptive rather than pathological in the bluefish hemoglobin system. The thalassemia of the bluefish is a novel means of providing for oxygen uptake and delivery when low pH conditions incapacitate the highly pH-sensitive Root effect hemoglobins of the fish. Although fish often have pH-insensitive along with highly pH-sensitive hemoglobins, having pH-insensitive alpha chain monomers in circulation is an unusual structural variation. The role of bluefish alpha chains in oxygen transport is enabled by their remarkably lower oxygen affinity relative to human alpha chains. This is the first reported case of a thalassemic condition that is maintained in a species as an adaptive advantage.

  2. In vivo system for analyzing the function of the PsbP protein using Chlamydomonas reinhardtii.

    PubMed

    Nishimura, Taishi; Sato, Fumihiko; Ifuku, Kentaro

    2017-09-01

    The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically developed in green-plant species including land plants and green algae. The protein-protein interactions involving PsbP and its effect on oxygen evolution have been investigated in vitro using isolated PSII membranes. However, the importance of those interactions needs to be examined at the cellular level. To this end, we developed a system expressing exogenous PsbP in the background of the Chlamydomonas BF25 mutant lacking native PsbP. Expression of His-tagged PsbP successfully restored the oxygen-evolving activity and photoautotrophic growth of the mutant, while PsbP-∆15 lacking the N-terminal 15 residues, which are crucial for the oxygen-evolving activity of spinach PSII in vitro, only partially did. This demonstrated the importance of N-terminal sequence of PsbP for the photosynthetic activity in vivo. Furthermore, the PSII-LHCII supercomplex can be specifically purified from the Chlamydomonas cells having His-tagged PsbP using a metal affinity chromatography. This study provides a platform not only for the functional analysis of PsbP in vivo but also for structural analysis of the PSII-LHCII supercomplex from green algae.

  3. Effect of Processing and Storage on RBC function in vivo

    PubMed Central

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  4. Decreasing the Hydroxylation Affinity of La 1–x Sr x MnO 3 Perovskites To Promote Oxygen Reduction Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Hong, Wesley T.; Wang, Xiao Renshaw

    Understanding the interaction between oxides and water is critical to design many of their functionalities, including the electrocatalysis of molecular oxygen reduction. In this study, we probed the hydroxylation of model (001)-oriented La(1-x)SrxMnO3 (LSMO) perovskite surfaces, where the electronic structure and manganese valence was controlled by five substitution levels of lanthanum with strontium, using ambient pressure X-ray photoelectron spectroscopy in a humid environment. The degree of hydroxyl formation on the oxide surface correlated with the proximity of the valence band center relative to the Fermi level. LSMO perovskites with a valence band center closer to the Fermi level were moremore » reactive toward water, forming more hydroxyl species at a given relative humidity. More hydroxyl species correlate with greater electron-donating character to the surface free energy in wetting, and reduce the activity to catalyze oxygen reduction reaction (ORR) kinetics in basic solution. New strategies to design more active catalysts should include design of electronically conducting oxides with lower valence band centers relative to the Fermi level at ORR-relevant potentials.« less

  5. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin.

    PubMed

    Tamburrini, M; Condò, S G; di Prisco, G; Giardina, B

    1994-04-15

    The functional properties of the single haemoglobin (Hb) of Emperor penguin (Aptenodytes forsteri) have been investigated at different temperatures as a function of proton and organic phosphate concentration. The complete amino acid sequence has been established. Comparison with that of human HbA shows 12 substitutions in the contact regions of alpha beta dimers. In addition to overall similarities shared with most of the avian Hbs previously described, this Hb shows significant differences, which could be related to the peculiar behaviour of this penguin. In particular we may consider that: (1) the shape of the Bohr effect curve seems well adapted for gas exchange during very prolonged dives, preserving penguin Hb from a sudden and not controlled stripping of oxygen; (2) the very minor enthalpy change observed at lower pH could be an example of molecular adaptation, through which oxygen delivery becomes essentially insensitive to exposure to the extremely low temperatures of the environment. Moreover, the small alkaline Bohr effect has been found to be only chloride-linked, since the pH dependence of the oxygen affinity is totally abolished in the absence of this ion. These functional characteristics are discussed on the basis of the primary structure of alpha and beta-chains.

  6. Adsorptive fractionation of dissolved organic matter (DOM) by carbon nanotubes.

    PubMed

    Engel, Maya; Chefetz, Benny

    2015-02-01

    Dissolved organic matter (DOM) and carbon nanotubes are introduced into aquatic environments. Thus, it is important to elucidate whether their interaction affects DOM amount and composition. In this study, the composition of DOM, before and after interactions with single-walled carbon nanotubes (SWCNTs), was measured and the adsorption affinity of the individual structural fractions of DOM to SWCNTs was investigated. Adsorption of DOM to SWCNTs was dominated by the hydrophobic acid fraction, resulting in relative enhancement of the hydrophilic character of non-adsorbed DOM. The preferential adsorption of the HoA fraction was concentration-dependent, increasing with increasing concentration. Adsorption affinities of bulk DOM calculated as the normalized sum of affinities of the individual structural fractions were similar to the measured affinities, suggesting that the structural fractions of DOM act as independent adsorbates. The altered DOM composition may affect the nature and reactivity of DOM in aquatic environments polluted with carbon nanotubes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity

    PubMed Central

    Zandvakili, Arya; Campbell, Ian; Weirauch, Matthew T.

    2018-01-01

    Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and produce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, discriminating functional TF binding sites (TFBSs) from background sequences represents a significant challenge. Here, we show that a Drosophila regulatory element that activates Epidermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs (Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting such low-affinity TFBSs. To better define parameters that increase accuracy, we developed a method that systematically selects subsets of TFBSs based on predicted affinity to generate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degenerate PWMs produced from datasets depleted of high-affinity sequences were more accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs. Taken together, these findings reveal how TFBS arrangement can be constrained by competition rather than cooperativity and that degenerate models of TF binding preferences can improve identification of biologically relevant low affinity TFBSs. PMID:29617378

  8. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.

    PubMed

    Fink, R D; McClay, D R

    1985-01-01

    At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.

  9. Atypical hematological response to combined calorie restriction and chronic hypoxia in Biosphere 2 crew: a possible link to latent features of hibernation capacity.

    PubMed

    Paglia, Donald E; Walford, Roy L

    2005-01-01

    Eight humans were isolated for 2 years in Biosphere 2, a sealed airtight habitat with recycled air, food, water, and wastes. A combination of conditions led to selective decline of oxygen (O2) in the internal atmosphere from 21% to 14%, inducing symptoms of high-altitude sickness but with little or no compensatory increase in red cell production. All crew members exhibited significant decreases in both erythrocyte 2,3-bisphosphoglycerate (2,3-BPG) concentrations and P50 [partial pressure of O2 for 50% hemoglobin (Hb) saturation] values, changes opposite those expected in adaptation to high-altitude hypoxia. Lower P50 with increased Hb-O2 affinity induced by low 2,3-BPG is a characteristic of hibernating species and could be advantageous in O2-impoverished environments. The mechanisms underlying these changes in the Biosphere 2 crew remain obscure but could be related to low-calorie diet (1750-2100 kcal/day). Because the combination of hypoxia and limited caloric intake is also characteristic of hibernation, this unusual response may represent a cross-adaptation phenomenon in which certain features of hibernation capability are expressed in humans.

  10. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  11. Fabrication of Polyimide Membrane Incorporated with Functional Graphene Oxide for CO2 Separation: The Effects of GO Surface Modification on Membrane Performance.

    PubMed

    Wang, Ting; Cheng, Cheng; Wu, Li-Guang; Shen, Jiang-Nan; Van der Bruggen, Bart; Chen, Qian; Chen, Di; Dong, Chun-Ying

    2017-06-06

    Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO 2 and N 2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO 2 played a major role in the increase in the separation performance of the hybrid membranes for CO 2 , although the diffusion coefficients for CO 2 also increased. Both the higher condensability and the strong affinity between CO 2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.

  12. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production.

    PubMed

    Zhou, Yipin; Cabrales, Pedro; Palmer, Andre F

    2012-03-01

    A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Homophyly/Kinship Model: Naturally Evolving Networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  14. Homophyly/Kinship Model: Naturally Evolving Networks

    PubMed Central

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-01-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network. PMID:26478264

  15. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  16. Structure and stability of human hemoglobin microparticles prepared with a double emulsion technique.

    PubMed

    Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P

    1997-09-01

    Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.

  17. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  18. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  19. Hydride affinity scale of various substituted arylcarbeniums in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Wang, Chun-Hua

    2010-12-23

    Combined with the integral equation formalism polarized continuum model (IEFPCM), the hydride affinities of 96 various acylcarbenium ions in the gas phase and CH(3)CN were estimated by using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d), and BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) methods for the first time. The results show that the combination of the BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) method and IEFPCM could successfully predict the hydride affinities of arylcarbeniums in MeCN with a precision of about 3 kcal/mol. On the basis of the calculated results from the BLYP method, it can be found that the hydride affinity scale of the 96 arylcarbeniums in MeCN ranges from -130.76 kcal/mol for NO(2)-PhCH(+)-CN to -63.02 kcal/mol for p-(Me)(2)N-PhCH(+)-N(Me)(2), suggesting most of the arylcarbeniums are good hydride acceptors. Examination of the effect of the number of phenyl rings attached to the carbeniums on the hydride affinities shows that the increase of the hydride affinities takes place linearly with increasing number of benzene rings in the arylcarbeniums. Analyzing the effect of the substituents on the hydride affinities of arylcarbeniums indicates that electron-donating groups decrease the hydride affinities and electron-withdrawing groups show the opposite effect. The hydride affinities of arylcarbeniums are linearly dependent on the sum of the Hammett substituent parameters σ(p)(+). Inspection of the correlation of the solution-phase hydride affinities with gas-phase hydride affinities and aqueous-phase pK(R)(+) values reveals a remarkably good correspondence of ΔG(H(-)A)(R(+)) with both the gas-phase relative hydride affinities only if the α substituents X have no large electron-donating or -withdrawing properties and the pK(R)(+) values even though the media are dramatically different. The solution-phase hydride affinities also have a linear relationship with the electrophilicity parameter E, and this dependence can certainly serve as one of the most effective ways to estimate the new E values from ΔG(H(-)A)(R(+)) or vice versa. Combining the hydride affinities and the reduction potentials of the arylcarbeniums, we obtained the bond homolytic dissociation Gibbs free energy changes of the C-H bonds in the corresponding hydride adducts in acetonitrile, ΔG(HD)(RH), and found that the effects of the substituent on ΔG(HD)(RH) are very small. Simple thermodynamic analytic platforms for the three C-H cleavage modes were constructed. It is evident that the present work would be helpful in understanding the nature of the stabilities of the carbeniums and mechanisms of the hydride transfers between carbeniums and other hydride donors.

  20. Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.

    PubMed

    Nadler, J V; Shelton, D L; Cotman, C W

    1979-03-23

    After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.

Top