Science.gov

Sample records for increased plasma membrane

  1. Elevated cAMP increases aquaporin-3 plasma membrane diffusion.

    PubMed

    Marlar, Saw; Arnspang, Eva C; Koffman, Jennifer S; Løcke, Else-Merete; Christensen, Birgitte M; Nejsum, Lene N

    2014-03-15

    Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water exits via basolateral AQP3 and AQP4. Upon long-term stimulation with AVP or during thirst, expression levels of both AQP2 and AQP3 are increased; however, there is so far no evidence for short-term AVP regulation of AQP3 or AQP4. To facilitate the increase in transepithelial water transport, AQP3 may be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58% from 0.0147 ± 0.0082 μm(2)/s (control) to 0.0232 ± 0.0085 μm(2)/s (forskolin, P < 0.05). Quantum dot-conjugated antibody labeling also revealed a significant increase in AQP3 diffusion upon forskolin treatment by 44% [0.0104 ± 0.0040 μm(2)/s (control) vs. 0.0150 ± 0.0016 μm(2)/s (forskolin, P < 0.05)]. Immunoelectron microscopy showed no obvious difference in AQP3-EGFP expression levels or localization in the plasma membrane upon forskolin stimulation. Thus AQP3-EGFP diffusion is altered upon increased cAMP, which may correspond to basolateral adaptations in response to the increased apical water readsorption.

  2. Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane.

    PubMed

    Ren, Huiwen; Yang, Baoxue; Ruiz, Joseph A; Efe, Orhan; Ilori, Titilayo O; Sands, Jeff M; Klein, Janet D

    2016-12-01

    Vasopressin triggers the phosphorylation and apical plasma membrane accumulation of aquaporin 2 (AQP2), and it plays an essential role in urine concentration. Vasopressin, acting through protein kinase A, phosphorylates AQP2. However, the phosphorylation state of AQP2 could also be affected by the action of protein phosphatases (PPs). Rat inner medullas (IM) were incubated with calyculin (PP1 and PP2A inhibitor, 50 nM) or tacrolimus (PP2B inhibitor, 100 nM). Calyculin did not affect total AQP2 protein abundance (by Western blot) but did significantly increase the abundances of pS256-AQP2 and pS264-AQP2. It did not change pS261-AQP2 or pS269-AQP2. Calyculin significantly enhanced the membrane accumulation (by biotinylation) of total AQP2, pS256-AQP2, and pS264-AQP2. Likewise, immunohistochemistry showed an increase in the apical plasma membrane association of pS256-AQP2 and pS264-AQP2 in calyculin-treated rat IM. Tacrolimus also did not change total AQP2 abundance but significantly increased the abundances of pS261-AQP2 and pS264-AQP2. In contrast to calyculin, tacrolimus did not change the amount of total AQP2 in the plasma membrane (by biotinylation and immunohistochemistry). Tacrolimus did increase the expression of pS264-AQP2 in the apical plasma membrane (by immunohistochemistry). In conclusion, PP1/PP2A regulates the phosphorylation and apical plasma membrane accumulation of AQP2 differently than PP2B. Serine-264 of AQP2 is a phosphorylation site that is regulated by both PP1/PP2A and PP2B. This dual regulatory pathway may suggest a previously unappreciated role for multiple phosphatases in the regulation of urine concentration. Copyright © 2016 the American Physiological Society.

  3. Surfactant-Increased Glyphosate Uptake into Plasma Membrane Vesicles Isolated from Common Lambsquarters Leaves.

    PubMed

    Riechers, D. E.; Wax, L. M.; Liebl, R. A.; Bush, D. R.

    1994-08-01

    Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake.

  4. Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts

    PubMed Central

    Sommer, Aniela; Geist, Birgit; Da Ines, Olivier; Gehwolf, Renate; Schäffner, Anton R.; Obermeyer, Gerhard

    2010-01-01

    Summary To investigate the role of aquaporin-mediated water transport during pollen grain germination and tube growth, Arabidopsis thaliana plasma membrane intrinsic proteins (PIPs) were expressed in pollen of Lilium longiflorum (lily). Successful expression of AtPIPs in particle-bombarded lily pollen grains was monitored by co-expression with fluorescent proteins and single-cell RT-PCR, and by measuring the water permeability coefficient (Pos) in swelling assays using protoplasts prepared from transformed pollen grains and tubes. Expression of AtPIP1;1 and AtPIP1;2 in pollen grains resulted in Pos values similar to those measured in nontransformed pollen grain protoplasts (6.65 ± 2.41 μm s−1), whereas expression of AtPIP2 significantly increased Pos (AtPIP2;1, 13.79 ± 6.38; AtPIP2;2, 10.16 ± 3.30 μm s−1). Transformation with combinations of AtPIP1 and AtPIP2 did not further enhance Pos. Native pollen tube protoplasts showed higher Pos values (13.23 ± 4.14 μm s−1) than pollen grain protoplasts but expression of AtPIP2;1 (18.85 ± 7.60 μm s−1) did not significantly increase their Pos values. Expression of none of the tested PIPs had any effect on pollen tube growth rates. The ectopic expression of AtPIP2s in lily pollen increased the water permeability of the plasma membrane in pollen grains, but not in pollen tubes. The measured endogenous water permeability does not limit water uptake during tube growth, but has to be regulated to prevent tube bursting. PMID:18761636

  5. Increase in cis-dichlorodiammineplatinum (II) cytotoxicity upon reversible electropermeabilization of the plasma membrane in cultured human NHIK 3025 cells.

    PubMed

    Melvik, J E; Pettersen, E O; Gordon, P B; Seglen, P O

    1986-12-01

    A series of brief electrical high-voltage discharges were given to cultured NHIK 3025 cells to render the plasma membrane transiently permeable to drugs. Using [14C]sucrose as an inert marker which normally does not cross plasma membranes, increased permeability could be demonstrated for no longer than 10 min following electrical treatment, indicating that the permeabilization was entirely reversible. The reversibility of the treatment was further demonstrated by a lack of effect on cell growth and colony-forming ability. When cells were given electrical discharges immediately before or during exposure to cis-dichlorodiammineplatinum(II)(cis-DDP) the cytotoxic drug effect increased. By using electrical discharges during a 2 hr drug treatment period the cytotoxicity was enhanced to an extent corresponding to at least a 3-fold increase in drug uptake relative to unpermeabilized cells. This increase in drug uptake was confirmed by direct measurements of the amount of cell-associated Pt by atomic absorbtion spectroscopy. The results suggest that uptake across the plasma membrane may be the rate-limiting factor in the cytotoxic effect of cis-DDP. Furthermore, the methodology applied in the present study may prove useful in assessing the influence of membrane permeability on the effect of other cytotoxic drugs.

  6. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β.

    PubMed

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd; Goriely, Stanislas; Frøkiaer, Hanne

    2016-11-01

    Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane. © 2016 John Wiley & Sons Ltd.

  7. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    PubMed Central

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; de Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-01-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature. PMID:27703233

  8. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability.

    PubMed

    Palomba, R; Parodi, A; Evangelopoulos, M; Acciardo, S; Corbo, C; de Rosa, E; Yazdi, I K; Scaria, S; Molinaro, R; Furman, N E Toledano; You, J; Ferrari, M; Salvatore, F; Tasciotti, E

    2016-10-05

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  9. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    NASA Astrophysics Data System (ADS)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  10. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    PubMed

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  11. Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in wistar rats.

    PubMed

    Morato, Priscila Neder; Lollo, Pablo Christiano Barboza; Moura, Carolina Soares; Batista, Thiago Martins; Camargo, Rafael Ludemann; Carneiro, Everardo Magalhães; Amaya-Farfan, Jaime

    2013-01-01

    Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane.

  12. Increased expression of plasma membrane Ca(2+)ATPase 4b in platelets from hypertensives: a new sign of abnormal thrombopoiesis?

    PubMed

    Dally, Saoussen; Chaabane, Chiraz; Corvazier, Elisabeth; Bredoux, Raymonde; Bobe, Regis; Ftouhi, Bochra; Slimane, Hedia; Raies, Aly; Enouf, Jocelyne

    2007-11-01

    Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression. In the present study we looked for further similarities between diabetic and hypertensive patients. We first confirmed a decrease in Ca(2+)ATPase activity (mean 55 + 7%) in mixed platelet membranes isolated from 10 patients with hypertension compared with those from 10 healthy controls. In addition, the decreased Ca(2+)ATPase activity correlated with the DBP of the different patients, as expected for PMCA activity. Second, we performed a pilot study of six hypertensives to examine their expressions of PMCA and SERCA mRNA and proteins. Like the diabetic patients, 100% of hypertensives were found to present a major increase in PMCA4b expression (mean value of 218 +/- 21%). We thus determined that platelets from diabetic and hypertensive patients showed similar increased PMCA4b isoform. Since increased PMCA4b expression was recently found to be associated with a perturbation of megakaryocytopoiesis, these findings may also point to an abnormality in platelet maturation in hypertension.

  13. ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane.

    PubMed

    Stange, B C; Rowland, R E; Rapley, B I; Podd, J V

    2002-07-01

    Vicia faba seedlings, subjected to a 10 microT 50 Hz square wave magnetic field for 40 min together with a radioactive pulse, showed a marked increase in amino acid uptake into intact roots. A more modest increase was observed with a 100 microT 50 Hz square wave. An increase in media conductivity at low field intensities from 10 microT 50 Hz square wave, 100 microT 50 Hz sine wave, and 100 microT 60 Hz square wave fields, indicated an alteration in the movement of ions across the plasma membrane, most likely due to an increase in net outflow of ions from the root cells. Similarly, marked elevation in media pH, indicating increased alkalinity, was observed at 10 and 100 microT for both square and sine waves at both 50 and 60 Hz. Our data would indicate that low magnetic field intensities of 10 and 100 microT at 50 or 60 Hz can alter membrane transport processes in root tips. Copyright 2002 Wiley-Liss, Inc.

  14. Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance.

    PubMed

    Velázquez-Villegas, Laura A; Tovar-Palacio, Claudia; Palacios-González, Berenice; Torres, Nimbe; Tovar, Armando R; Díaz-Villaseñor, Andrea

    2017-10-01

    Hyperglucagonemia contributes to hyperglycemia in type 2 diabetes (T2D). Previously, we have found that soy protein normalized fasting hyperglucagonemia in obese Zucker (fa/fa) rats, sensitizing the HSL-lipolytic signaling pathway in white adipose tissue (WAT), however the mechanism remains unknown. Zucker (fa/fa) rats were fed casein or soy protein diet in combination with soybean or coconut oil. Glucagon receptor (GR) was increased at the plasma membrane of adipocytes of rats fed soy protein compared to those fed casein, without changes in total GR abundance. The protein abundance of Rab4, a GTPase involved in GR fast recycling, was dramatically up-regulated in adipocytes of rats fed soy protein. The proportion of GR bound to Rab4 or to RAMP2, involved in promoting GR ligand-binding and G protein selectivity, increased when soy protein was combined with soybean oil as fat source. In rats fed soy protein with coconut oil, Rab11 levels, a protein involved in the slow recycling of GR, was also increased. Soy protein increases GR recycling to the membrane of adipocytes and its ligand-binding and G protein selectivity, suggesting, it could be used in T2D dietary treatment to reestablish glucagon sensitivity in WAT, leading to the regulation of circulating glucagon levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval.

    PubMed

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Sato, J Denry; Chapline, M Christine; Stanton, Bruce A

    2014-01-01

    Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane.

  16. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.

    PubMed

    Chen, Yi-Yung; Rosario, Fredrick J; Shehab, Majida Abu; Powell, Theresa L; Gupta, Madhulika B; Jansson, Thomas

    2015-12-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (-72%, P<0.0001) and SNAT-1 (-42%, P<0.05) and SNAT-2 (-31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. © 2015 Authors; published by Portland Press Limited.

  17. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR

    PubMed Central

    Rosario, Fredrick J.; Shehab, Majida Abu; Powell, Theresa L.; Gupta, Madhulika B.; Jansson, Thomas

    2015-01-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (–72%, P<0.0001) and SNAT-1 (–42%, P<0.05) and SNAT-2 (–31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. PMID:26374858

  18. Criticality in Plasma Membranes

    NASA Astrophysics Data System (ADS)

    Machta, Ben; Sethna, James; Veatch, Sarah; Papanikolaou, Stefanos

    2010-03-01

    Recent work in giant plasma membrane vesicles (GPMVs) isolated from living cells demonstrated that they can be tuned with a single parameter (temperature) to criticality, not far from in vivo temperatures [1,2]. Criticality requires the fine-tuning of two parameters suggesting important biological function, and its presence resolves many of the paradoxes associated with putative lipid rafts. Here we present a minimal model of membrane inhomogeneities. We incorporate criticality using a conserved order parameter Ising model coupled to a simple actin cytoskeleton interacting through fields which act as point-like pinning sites. Using this model we make a host of experimentally testable predictions that are in line with recent published findings. At physiological temperatures we find inhomogeneities in the form of critical fluctuations with a length scale of roughly 20nm. Individual constituents making up these liquid domains are mobile, though they diffuse anomalously, but the correlated regions themselves can last as long as the cytoskeleton persists. We explain this by considering the effective long ranged interaction mediated by the Ising order parameter. In general we find Ising criticality organizes and spatially segregates membrane components by providing a channel for interaction over large distances. [1] Veatch et al., ACS Chem Biol. 2008 3(5):287-93 [2] Honerkamp-Smith, Veatch, and Keller, Biochim Biophys Acta. 2008 (in press)

  19. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  20. Protein expression of Fatty acid transporter 2 is polarized to the trophoblast basal plasma membrane and increased in placentas from overweight/obese women

    PubMed Central

    Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Jang, Brian; Jansson, Thomas; Powell, Theresa L.

    2016-01-01

    Background Obese and overweight women are more likely to deliver a large infant or an infant with increased adiposity, however the underlying mechanisms are not well established. We tested the hypothesis that placental capacity to transport fatty acid is increased in overweight/obese women. Methods Fifty-seven pregnant women with body mass index (BMI) ranging from 18.4 to 54.3 kg/m2 and with uncomplicated term pregnancies were recruited for collection of blood samples and placental tissue. Maternal and fetal levels of non-esterified fatty acids (NEFAs) were measured in plasma. The expression and localization of CD36/fatty acid translocase (FAT), fatty acid transport protein (FATP)2, and FATP4 was determined in fixed placental tissue and in isolated syncytiotrophoblast plasma membranes from normal and high BMI mothers. Results Maternal and fetal plasma NEFA levels did not correlate (n=42). FATP2 and FATP4 expressions were approximately four-fold higher in the basal plasma membrane (BPM) compared to the microvillous membrane (P<0.001; n=7) per unit membrane protein. BPM expression of FATP2 correlated with maternal BMI (P<0.01; n=30); there was no association between CD36/FAT or FATP4 expression and maternal BMI. Conclusion The polarization of FATPs to the BPM will facilitate fatty acid transfer across the placenta. In overweight/obese pregnancies, the increased FATP2 expression could contribute to increased fatty acid delivery to the fetus and while we have no direct data we speculate that this could lead accelerated fetal growth or increased fat deposition. PMID:27016784

  1. Effect of gamma radiation on resting B lymphocytes. I. Oxygen-dependent damage to the plasma membrane results in increased permeability and cell enlargement

    SciTech Connect

    Ashwell, J.D.; Schwartz, R.H.; Mitchell, J.B.; Russo, A.

    1986-05-15

    Although the susceptibility of resting B lymphocytes to radiation-induced interphase death is well known, the mechanism by which this occurs is not understood. In this report, we use three measures of plasma membrane integrity (increase in cell volume, uptake of trypan blue, and release of /sup 51/Cr) to assess the effect of radiation on the resting B cell plasma membrane. The delivery of 500 to 1000 rad caused the majority of resting B cells to enlarge slightly, whereas 3000 rad caused virtually all of the cells to approximately double in size within 3 to 4 hr. Measurement of the release of /sup 51/Cr from resting B cells revealed a similar relationship between the dose of radiation and the loss of radioactive label. Trypan blue exclusion was also found to diminish as a function of radiation dose. An analysis of a variety of lymphoid cells suggested that sensitivity to the membrane damaging effects of gamma radiation was in the order of resting B cells greater than resting T cells greater than a long-term L3T4+ T cell clone greater than a B cell lymphoma. LPS-induced B cell blasts treated with 3000 rad were equivalent to 1000 rad-treated resting B cells. The effects of the gamma radiation could be ameliorated by excluding oxygen at the time of irradiation, or by adding the free radical scavenging agent cysteamine. These data are compatible with the hypothesis that gamma radiation results in damage to the plasma membrane of resting lymphocytes via the generation of highly reactive free radical species. This damage is reflected in a rapid increase in plasma membrane permeability and swelling of the cells, and may play a major role in causing interphase death.

  2. Liver plasma membranes: an effective method to analyze membrane proteome.

    PubMed

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  3. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  4. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  5. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  6. Cellular membrane collapse by atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  7. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle.

    PubMed

    Turcotte, L P; Raney, M A; Todd, M K

    2005-06-01

    The purpose of this experiment was to investigate the role of extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in the contraction-induced increase in muscle FA uptake. Male Wistar rats (n = 41) were randomly assigned to either a resting or stimulated group. Within each group, animals were randomly assigned to receive PD-98059, an inhibitor of MAP/ERK kinase 1/2 (MEK1/2), a kinase upstream of ERK1/2 and perfused with 550 microM palmitate, [(14)C]palmitate, 7 mM glucose, and no insulin. In the stimulated group, electrical stimulation (ES) of supramaximal trains of 100 ms was delivered every 2 s for 20 min. ERK1/2 phosphorylation was increased by 50% (P < 0.05) during ES but the contraction-induced increase was prevented by the addition of PD-98059. Glucose uptake increased by 3.6-fold (P < 0.05) from rest to ES in muscle perfused without PD-98059 and was not affected by the addition of PD-98059 either at rest (P > 0.05) or during ES (P > 0.05). For a matched palmitate delivery, ES increased palmitate uptake by 35% (P < 0.05). PD-98059 had no effect on palmitate uptake at rest but completely abolished the increase in palmitate uptake during ES. Plasma membrane FAT/CD36 protein content was increased by 38% during ES (P < 0.05) but the contraction-induced increase was prevented by the addition of PD-98059. AMPK activity was increased by ES (P < 0.05) but was unaffected by PD-98059. These results show for the first time that the increase in FA uptake and in plasma membrane FAT/CD36 protein content is mediated, at least in part, by the ERK1/2 signalling pathway during muscle contraction.

  8. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets.

    PubMed

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia

    2016-08-01

    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  10. Developmental increase in ecto-5'-nucleotidase activity overlaps with appearance of two immunologically distinct enzyme isoforms in rat hippocampal synaptic plasma membranes.

    PubMed

    Grkovic, Ivana; Bjelobaba, Ivana; Nedeljkovic, Nadezda; Mitrovic, Natasa; Drakulic, Dunja; Stanojlovic, Milos; Horvat, Anica

    2014-09-01

    Ecto-5'-nucleotidase (e-5NT), a glycosylphosphatidylinositol-linked membrane protein, catalyzes a conversion of AMP to adenosine, which influences nearly every aspect of brain physiology, including embryonic and postnatal brain development. The present study aimed to investigate a pattern of expression, activity and kinetic properties of e-5NT in the hippocampal formation and synaptic plasma membrane (SPM) preparations in rats at postnatal days (PDs) 7, 15, 20, 30 and 90. By combining gene expression analysis and enzyme histochemistry, we observed that e-5NT mRNA reached the adult level at PD20, while the enzyme activity continued to increase beyond this age. Further analysis revealed that hippocampal layers rich in synapses expressed the highest levels of e-5NT activity, while in layers populated with neuronal cell bodies, the enzyme activity was weak or absent. Therefore, activity and expression of e-5NT were analyzed in SPM preparations isolated from rats at different ages. The presence of two protein bands of about 65 and 68 kDa was determined by immunoblot analysis. The 65-kDa band was present at all ages, and its abundance increased from PD7 to PD20. The 68-kDa band appeared at PD15 and increased until PD30, coinciding with the increase of e-5NT activity, substrate affinity and enzymatic efficiency. Since distinct e-5NT isoforms may derive from different patterns of the enzyme protein N-glycosylation, we speculate that long-term regulation of e-5NT activity in adulthood may be effectuated at posttranslational level and without overall change in the gene and protein expression.

  11. The loss of plasma membrane lysopip and an increase of PIP sub 2 result from treatment of carrot cells with fungal enzymes

    SciTech Connect

    Chen, Q.; Boss, W.F. )

    1989-04-01

    The plasma membranes of carrot cells grown in suspension culture are enriched with PIP, lysoPIP, and PIP{sub 2}. To determine whether or not these lipids are involved in signal transduction, we have challenged the cells with a mixture of fungal cellulases, Driselase, and monitored the changes in the phosphoinositides and in the phosphoinositide kinase activity. With cell prelabeled with ({sup 3}H)inositol, two major changes are observed: (1) lysoPIP decreases 30% compared to the sorbitol control and (2) PIP{sub 2} doubles. There is no increase in IP, IP{sub 2}, or IP{sub 3}. In vitro phosphorylation studies using ({gamma}-{sup 32}P)ATP indicate that the increase in PIP{sub 2} is due in part to activation of the PIP kinase. These data suggest that the role of the polyphosphoinositides in signal transduction in plants may involve activation of the PIP kinase and/or activation of A type phospholipases rather than C type phospholipases.

  12. Lectin-Magnetic Beads for Plasma Membrane Isolation.

    PubMed

    Lee, Yu-Chen; Liu, Hsuan-Chen; Chuang, Carol; Lin, Sue-Hwa

    2015-07-01

    Plasma membrane proteins mainly function to transmit external signals into the cell. Many plasma membrane receptor tyrosine kinases (e.g., HER2 and EGFR) are known to mediate oncogenic progression, making them prime targets for cancer therapy. Recently, it has become important to identify plasma membrane proteins that are differentially expressed in normal versus cancer cells, in drug-sensitive versus drug-resistant cells, or among tumor cells that metastasize to different organ sites because these differentially expressed membrane proteins may lead to the identification of therapeutic targets or diagnostic markers. In addition, there is an increased interest in identifying cell-surface proteins that could serve as markers for stem cells, progenitor cells, or cells of different lineages. Traditionally, membrane isolation requires multiple centrifugation steps to isolate different organelles based on their density. With the advent of affinity matrix technology, it is possible to separate organelles based on their molecular differences. A defining characteristic of the plasma membrane is that plasma membrane proteins are more extensively glycosylated than are intracellular membrane proteins. As a result, affinity chromatography employing lectin, a carbohydrate-binding protein, is commonly used to isolate plasma membrane proteins. We have extended this concept for plasma membrane isolation by using concanavalin A (ConA), a lectin with mannose specificity. Here we describe a protocol that uses immobilized ConA bound to magnetic beads to isolate plasma membranes from homogenized cell lysates. The captured plasma membrane proteins are then solubilized from the ConA-magnetic beads by detergents in the presence of a competing sugar, methyl α-mannopyranoside.

  13. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na(+)/K(+)-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    PubMed

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na(+)/K(+)-ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na(+)/K(+)-ATPase level was determined by [(3)H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na(+)/K(+)-ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na(+)/K(+)-ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na(+)/K(+)-ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plasma membrane reorganization induced by chemical transformation in cultura

    SciTech Connect

    Packard, B.S.

    1984-04-01

    Induction of increased rigidity in the plasma membrane paralleling properties associated with a transformed state was suggested by two experiments. Fluorescence recovery after photobleaching (FRAP) indicated the induction of an environment in the plasma membrane where the synthetic fluorescent phospholipid collarein was immobile on the FRAP timescale. The other technique revealed the binding of epidermal growth factor (EGF) to a cryptic class of receptors which become accessible upon chemical transformation. These two lines of evidence are consistent with a reorganization of the plasma membrane induced by tumor promoters. 110 references, 38 figures, 4 tables.

  15. Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane

    PubMed Central

    Weber, Pascal; Batoulis, Helena; Rink, Kerstin M; Dahlhoff, Stefan; Pinkwart, Kerstin; Söllner, Thomas H; Lang, Thorsten

    2017-01-01

    The SNAREs SNAP25 and SNAP23 are proteins that are initially cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins for the target membrane. In experiments with rat neuroendocrine cells, we find that a few basic amino acids in the cysteine-rich region of SNAP25 and SNAP23 are essential for plasma membrane targeting. Reconstitution of membrane-protein binding in a liposome assay shows that the mechanism involves protein electrostatics between basic amino acid residues and acidic lipids such as phosphoinositides that play a primary role in these interactions. Hence, we identify an electrostatic anchoring mechanism underlying initial plasma membrane contact by SNARE proteins, which subsequently become palmitoylated at the plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.19394.001 PMID:28240595

  16. Giant plasma membrane vesicles: models for understanding membrane organization.

    PubMed

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. HeLa cell plasma membranes. I. 5'-Nucleotidase and ouabain-sensitive ATPase as markers for plasma membranes.

    PubMed

    Johnsen, S; Stokke, T; Prydz, H

    1974-11-01

    A method for the preparation of HeLa cell plasma membrane ghosts is described. The purity of the plasma membrane fraction was examined by phase contrast and electron microscopy, by chemical analysis, and by assay of marker enzymes. Data on the composition of the plasma membrane fraction are given. It was observed that the distribution pattern of 5'-nucleotidase activity among the subcellular fractions differed from that of ouabain-sensitive ATPase. In addition, the specific activity of 5'-nucleotidase did not follow the distribution of the membrane ghosts. Thus, this enzyme would seem unsuitable as a plasma membrane marker. A complete balance sheet for marker enzyme activities during the fractionation is necessary for the calculation of increase in specific activity because the activities of both 5'-nucleotidase and ouabain-sensitive ATPase might change during the fractionation procedures.

  18. CHANGING ELECTRICAL CONSTANTS OF THE FUNDULUS EGG PLASMA MEMBRANE

    PubMed Central

    Kao, C. Y.

    1956-01-01

    Electrical constants of the plasma membrane of the Fundulus egg have been measured with microelectrodes by the transient method. No consistent and significant membrane potential was measured. Membrane capacity averages 0.63 µF/cm.2 for both unactivated and activated eggs. Membrane resistance averages 3450 ohm-cm.2 in the unactivated eggs, but increases 2 to 7 times to an average of 13,290 ohm-cm.2 in the fully activated state. In a hypertonic sucrose solution, the swelling of the egg proper is accompanied by a rapid fall of membrane resistance towards that in the unactivated state. The changes of the membrane resistance are interpreted as probably caused by alterations in the effective pore size in the plasma membrane. PMID:13357740

  19. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  20. ISOLATION OF RAT LIVER PLASMA MEMBRANES

    PubMed Central

    Touster, Oscar; Aronson, N. N.; Dulaney, John T.; Hendrickson, Herman

    1970-01-01

    Nucleotide pyrophosphatase and phosphodiesterase I of rat liver have been found to be localized primarily in cell particulates highly enriched with respect to the most commonly accepted plasma membrane marker, 5'-nucleotidase, and therefore should themselves be assigned a plasma membrane localization. The observation that plasma membranes sediment in isotonic sucrose with both nuclear and microsomal fractions was exploited to obtain plasma membrane preparations from each fraction. Both preparations are similar in chemical and enzymic composition. Moreover, the preparative method developed in this study appears to give the best combination of yield, purity, and reproducibility available. The question of the possible identity of nucleotide pyrophosphatase and phosphodiesterase I is considered, and evidence is presented suggesting that these activities may be manifestations of the same enzyme. PMID:5497542

  1. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  2. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  3. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants.

    PubMed

    Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli

    2015-01-01

    Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

  4. ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS

    PubMed Central

    Boone, Charles W.; Ford, Lincoln E.; Bond, Howard E.; Stuart, Donald C.; Lorenz, Dianne

    1969-01-01

    A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells. PMID:4239370

  5. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  6. Plasma Membrane Ca-ATPase of Radish Seedlings 1

    PubMed Central

    Rasi-Caldogno, Franca; Carnelli, Antonella; De Michelis, Maria I.

    1992-01-01

    The effect of calmodulin on the activity of the plasma membrane Ca-ATPase was investigated on plasma membranes purified from radish (Raphanus sativus L.) seedlings. Calmodulin stimulated the hydrolytic activity and the transport activity of the plasma membrane Ca-ATPase to comparable extents in a manner dependent on the free Ca2+ concentration. Stimulation was marked at low, nonsaturating Ca2+ concentrations and decreased increasing Ca2+, so that the effect of calmodulin resulted in an increase of the apparent affinity of the enzyme for free Ca2+. The pattern of calmodulin stimulation of the plasma membrane Ca-ATPase activity was substantially the same at pH 6.9 and 7.5, in the presence of ATP or ITP, and when calmodulin from radish seeds was used rather than that from bovine brain. At pH 6.9 in the presence of 5 micromolar free Ca2+, stimulation of the plasma membrane Ca-ATPase was saturated by 30 to 50 micrograms per milliliter bovine brain calmodulin. The calmodulin antagonist calmidazolium inhibited both basal and calmodulin-stimulated plasma membrane Ca-ATPase activity to comparable extents. PMID:16668747

  7. Plasma membrane disruption: repair, prevention, adaptation

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  8. Plasma membrane disruption: repair, prevention, adaptation

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  9. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance

    PubMed Central

    2012-01-01

    Background The mechanisms by which nitrate is transported into the roots have been characterized both at physiological and molecular levels. It has been demonstrated that nitrate is taken up in an energy-dependent way by a four-component uptake machinery involving high- and low- affinity transport systems. In contrast very little is known about the physiology of nitrate transport towards different plant tissues and in particular at the leaf level. Results The mechanism of nitrate uptake in leaves of cucumber (Cucumis sativus L. cv. Chinese long) plants was studied and compared with that of the root. Net nitrate uptake by roots of nitrate-depleted cucumber plants proved to be substrate-inducible and biphasic showing a saturable kinetics with a clear linear non saturable component at an anion concentration higher than 2 mM. Nitrate uptake by leaf discs of cucumber plants showed some similarities with that operating in the roots (e.g. electrogenic H+ dependence via involvement of proton pump, a certain degree of induction). However, it did not exhibit typical biphasic kinetics and was characterized by a higher Km with values out of the range usually recorded in roots of several different plant species. The quantity and activity of plasma membrane (PM) H+-ATPase of the vesicles isolated from leaf tissues of nitrate-treated plants for 12 h (peak of nitrate foliar uptake rate) increased with respect to that observed in the vesicles isolated from N-deprived control plants, thus suggesting an involvement of this enzyme in the leaf nitrate uptake process similar to that described in roots. Molecular analyses suggest the involvement of a specific isoform of PM H+-ATPase (CsHA1) and NRT2 transporter (CsNRT2) in root nitrate uptake. At the leaf level, nitrate treatment modulated the expression of CsHA2, highlighting a main putative role of this isogene in the process. Conclusions Obtained results provide for the first time evidence that a saturable and substrate

  10. Isolation of plasma membrane-associated membranes from rat liver.

    PubMed

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  11. Enhancement of polycarbonate membrane permeability due to plasma polymerization precursors

    NASA Astrophysics Data System (ADS)

    Çökeliler, Dilek

    2013-03-01

    The diffusivity of different species through a membrane depends on several factors to illustrate the structure of the matrix, molecular size and concentration of the species and temperature. This study concerns the use of the low-pressure plasma process with different monomers to confer surface chemical character to polycarbonate membranes without altering their bulk properties for change membrane permeability. Track-etched polycarbonate membranes with 0.03 μm pore sizes were modified by plasma polymerization technique with two precursors; acrylic acid and allylamine in radio frequency discharge at certain plasma process conditions (discharge power: 20 W, exposure time: 10 min, frequency: 13.56 MHz). The transport properties of model organic acid (citric acid) was studied through unmodified and modified polycarbonate membranes by using diffusion cell system. Such plasma treated membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and surface energy changes were studied by static contact angle measurements. These results showed that the change of surface properties could be used to improve the transport properties of the target substrates. The diffusion of citric acid through plasma treated polycarbonate membrane was increased about 54.1 ± 3.5% with precursor: allylamine while it was decreased 48.7 ± 2.5% with precursor acrylic acid. It was observed that the presences of proper functional group (like amino) in surfaces of pores can raise the affinity to citric acid and improve its transport rate.

  12. Plasma membrane appearance of phosphatidylethanolamine in stimulated macrophages

    SciTech Connect

    Sandra, A.; Cai, J. )

    1991-07-01

    Mouse peritoneal macrophages were labeled with (1-3H)ethanolamine, and the presence of radioactive (3H)phosphatidylethanolamine (PE) at the plasma membrane was monitored by reacting the cells with trinitrobenzene sulfonic acid (TNBS) under nonpenetrating conditions. Macrophages stimulated with either the calcium ionophore A23187 or zymosan demonstrated a larger proportion of radiolabeled PE in the plasma membrane than control, nonstimulated cells. In experiments in which macrophages were labeled with ethanolamine for increasing times, appearance of membrane 3(H)PE was stimulated as early as after 2 hr of labeling. Macrophages labeled for 24 hr, then stimulated and returned to fresh medium still reflected a higher amount of membrane 3(H)PE at 2 hr after the stimulation, suggesting stimulation results in long-term alterations in plasma membrane lipids. Protease-peptone-elicited macrophages, which are not stimulated by zymosan or ionophore, did not exhibit an increase in membrane 3(H)PE upon stimulation. The size of the TNBS-accessible radiolabeled PE pool increased proportionately with a second stimulation; however, a subsequent labeling of the cells with TNBS after brief warming increased the TNBS-accessible pool in control cells only. As shown in previous studies, macrophage stimulation resulted in an increased incorporation of lipid precursors into phospholipid. The mass of plasma membrane Tnp-PE relative to mass of PE was not increased in ionophore-treated macrophages in contrast to a small (approximately 22%) increase in zymosan-treated cells. These results are suggestive of alterations in lipid synthesis in stimulated macrophages and possible long-term changes in the structure and function of the plasma membrane of macrophages following stimulation.

  13. Cisplatin cytotoxicity: DNA and plasma membrane targets.

    PubMed

    Rebillard, Amélie; Lagadic-Gossmann, Dominique; Dimanche-Boitrel, Marie-Thérèse

    2008-01-01

    Most current anticancer therapies induce tumor cell death through apoptosis where its specific involved pathways are poorly understood. For example, for many DNA-damaging agents, the specific biochemical lesions (DNA adducts) are associated with the induction of apoptosis via the mitochondria death pathway. However, several of these DNA-damaging agents like cisplatin induce apoptosis through plasma membrane disruption, triggering the Fas death receptor pathway. In this review, we focus on the role of early plasma membrane events in cisplatin-induced apoptosis. Special attention is given to changes in plasma membrane fluidity, inhibition of NHE1 exchanger, activation of acid sphingomyelinase and their consequences on the Fas death pathway in response to cisplatin.

  14. Fluidity of pea root plasma membranes under altered gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  15. Effect of BCD Plasma on a Bacteria Cell Membrane

    NASA Astrophysics Data System (ADS)

    Nasrin, Navabsafa; Hamid, Ghomi; Maryam, Nikkhah; Soheila, Mohades; Hossein, Dabiri; Saeed, Ghasemi

    2013-07-01

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma.

  16. Plasma membrane regulates Ras signaling networks

    PubMed Central

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms. PMID:27054048

  17. Plasma membrane regulates Ras signaling networks.

    PubMed

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

  18. PLASMA SPHINGOSINE 1-PHOSPHATE IS A MAJOR CHEMOATTRACTANT THAT DIRECTS EGRESS OF HEMATOPOIETIC STEM PROGENITOR CELLS FROM BONE MARROW AND ITS LEVEL IN PERIPHERAL BLOOD INCREASES DURING MOBILIZATION DUE TO ACTIVATION OF COMPLEMENT CASCADE/MEMBRANE ATTACK COMPLEX

    PubMed Central

    Ratajczak, Mariusz Z.; Lee, HakMo; Wysoczynski, Marcin; Wan, Wu; Marlicz, Wojciech; Laughlin, Mary J.; Kucia, Magda; Janowska-Wieczorek, Anna; Ratajczak, Janina

    2010-01-01

    Complement cascade (CC) becomes activated and its cleavage fragments play a crucial role in the mobilization of hematopoietic stem/progenitor cells (HSPCs). Here, we sought to determine which major chemottractant present in peripheral blood (PB) is responsible for the egress of HSPCs from the BM. We noticed that normal and mobilized plasma strongly chemoattracts HSPCs in a stromal derived factor-1 (SDF-1)-independent manner because i) plasma SDF-1 level does not correlate with mobilization efficiency, ii) the chemotactic plasma gradient is not affected in the presence of AMD3100, and iii) it is resistant to denaturation by heat. Surprisingly, the observed loss of plasma chemotactic activity after charcoal stripping suggested involvement of bioactive lipids and we focused on sphingosine-1 phosphate (S1P), a known chemoattracant of HSPCs. We found that S1P i) creates in plasma a continuously present gradient for BM-residing HSPCs, ii) is at physiologically relevant concentrations a chemoattractant several magnitudes stronger than SDF-1, and iii) its plasma level increases during mobilization due to CC activation and the interaction of membrane attack complex (MAC) with erythrocytes that are a major reservoir of S1P. We conclude and propose a new paradigm that S1P is a crucial chemoattractant for BM-residing HSPCs and that CC via MAC induces release of S1P from erythrocytes for optimal egress/mobilization of HSPCs. PMID:20357827

  19. Sulfate transport in Penicillium chrysogenum plasma membranes.

    PubMed Central

    Hillenga, D J; Versantvoort, H J; Driessen, A J; Konings, W N

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion. PMID:8682803

  20. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    PubMed

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  1. Plant plasma membrane proteomics for improving cold tolerance.

    PubMed

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2013-01-01

    Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation). One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  2. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  3. Ras Diffusion Is Sensitive to Plasma Membrane Viscosity

    PubMed Central

    Goodwin, J. Shawn; Drake, Kimberly R.; Remmert, Catha L.; Kenworthy, Anne K.

    2005-01-01

    The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC16 and DiIC18. However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-β-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane. PMID:15923235

  4. Ras diffusion is sensitive to plasma membrane viscosity.

    PubMed

    Goodwin, J Shawn; Drake, Kimberly R; Remmert, Catha L; Kenworthy, Anne K

    2005-08-01

    The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.

  5. Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons.

    PubMed

    Ghosh, Biswarup; Li, Yan; Thayer, Stanley A

    2011-02-16

    The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.

  6. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    PubMed

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2017-03-13

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH3)-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  7. PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b.

    PubMed

    Padányi, Rita; Pászty, Katalin; Strehler, Emanuel E; Enyedi, Agnes

    2009-06-01

    Besides the control of global calcium changes, specific plasma membrane calcium ATPase (PMCA) isoforms are involved in the regulation of local calcium signals. Although local calcium signaling requires the confinement of signaling molecules into microdomains, little is known about the specific organization of PMCA molecules within the plasma membrane. Here we show that co-expression with the postsynaptic density-95 (PSD-95) scaffolding protein increased the plasma membrane expression of PMCA4b and redistributed the pump into clusters. The clustering of PMCA4b was fully dependent on the presence of its PDZ-binding sequence. Using the fluorescence recovery after photobleaching (FRAP) technique, we show that the lateral membrane mobility of the clustered PMCA4b is significantly lower than that of the non-clustered molecules. Disruption of the actin-based cytoskeleton by cytochalasin D resulted in increased cluster size. Our results suggest that PSD-95 promotes the formation of high-density PMCA4b microdomains in the plasma membrane and that the membrane cytoskeleton plays an important role in the regulation of this process.

  8. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  9. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed

    Yu, Q C; McNeil, P L

    1992-12-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis.

  10. Autocrine insulin increases plasma membrane K(ATP) channel via PI3K-VAMP2 pathway in MIN6 cells.

    PubMed

    Xu, Shanhua; Kim, Ji-Hee; Hwang, Kyu-Hee; Das, Ranjan; Quan, Xianglan; Nguyen, Tuyet Thi; Kim, Soo-Jin; Cha, Seung-Kuy; Park, Kyu-Sang

    2015-12-25

    Regulation of ATP-sensitive inwardly rectifying potassium (KATP) channel plays a critical role in metabolism-secretion coupling of pancreatic β-cells. Released insulin from β-cells inhibits insulin and glucagon secretion with autocrine and paracrine modes. However, molecular mechanism by which insulin inhibits hormone secretion remains elusive. Here, we investigated the effect of autocrine insulin on surface abundance of KATP channel in mouse clonal β-cell line, MIN6. High glucose increased plasmalemmal sulfonylurea receptor 1 (SUR1), a component of KATP channel as well as exogenous insulin treatment. SUR1 trafficking by high glucose or insulin was blocked by inhibition of phosphoinositide 3-kinase (PI3K) with wortmannin. Pretreatment with brefeldin A or silencing of vesicle-associated membrane protein 2 (VAMP2) abolished insulin-mediated upregulation of surface SUR1. Functionally, glucose-stimulated cytosolic Ca(2+) ([Ca(2+)]i) increase was blunted by insulin or diazoxide, a KATP channel opener. Insulin-induced suppression of [Ca(2+)]i oscillation was prevented by an insulin receptor blocker. These results provide a novel molecular mechanism for autocrine negative feedback regulation of insulin secretion.

  11. Preparation of pure and intact Plasmodium falciparum plasma membrane vesicles and partial characterisation of the plasma membrane ATPase.

    PubMed

    Elandalloussi, Laurence M; Smith, Pete J

    2002-04-26

    In host erythrocytes, the malaria parasite must contend with ion and drug transport across three membranes; its own plasma membrane, the parasitophorous membrane and the host plasma membrane. Isolation of pure and intact Plasmodium falciparum plasma membrane would provide a suitable model to elucidate the possible role played by the parasite plasma membrane in ion balance and drug transport. This study describes a procedure for isolating parasite plasma membrane from P. falciparum-infected erythrocytes. With this method, the trophozoites released by saponin treatment were cleansed of erythrocyte membranes using anti-erythrocyte antibodies fixed to polystyrene beads. These trophozoites were then biotinylated and the parasite plasma membrane was disrupted by nitrogen cavitation. This process allows the membranes to reform into vesicles. The magnetic streptavidin beads bind specifically to the biotinylated parasite plasma membrane vesicles facilitating their recovery with a magnet. These vesicles can then be easily released from the magnetic beads by treatment with dithiotreithol. The parasite plasma membrane showed optimal ATPase activity at 2 mM ATP and 2 mM Mg2+. It was also found that Ca2+ could not substitute for Mg2+ ATPase activity in parasite plasma membranes whereas activity was completely preserved when Mn2+ was used instead of Mg2+. Other nucleoside triphosphates tested were hydrolysed as efficiently as ATP, while the nucleoside monophosphate AMP was not. We have described the successful isolation of intact P. falciparum plasma membrane vesicles free of contaminating organelles and determined the experimental conditions for optimum ATPase activity.

  12. Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses

    PubMed Central

    Corrotte, M.; Castro-Gomes, T.; Koushik, A.B.; Andrews, N.W.

    2016-01-01

    Rapid plasma membrane repair is essential to restore cellular homeostasis and improve cell survival after injury. Several mechanisms for plasma membrane repair have been proposed, including formation of an intracellular vesicle patch, reduction of plasma membrane tension, lesion removal by endocytosis, and/or shedding of the wounded membrane. Under all conditions studied to date, plasma membrane repair is strictly dependent on the entry of calcium into cells, from the extracellular medium. Calcium-dependent exocytosis of lysosomes is an important early step in the plasma membrane repair process, and defects in plasma membrane repair have been observed in cells carrying mutations responsible for serious lysosomal diseases, such as Chediak–Higashi (Huynh, Roth, Ward, Kaplan, & Andrews, 2004) and Niemann–Pick Disease type A (Tam et al., 2010). A functional role for release of the lysosomal enzyme acid sphingomyelinase, which generates ceramide on the cell surface and triggers endocytosis, has been described (Corrotte et al., 2013; Tam et al., 2010). Therefore, procedures for measuring the extent of lysosomal fusion with the plasma membrane of wounded cells are important indicators of the cellular repair response. The importance of carefully selecting the methodology for experimental plasma membrane injury, in order not to adversely impact the membrane repair machinery, is becoming increasingly apparent. Here, we describe physiologically relevant methods to induce different types of cellular wounds, and sensitive assays to measure the ability of cells to secrete lysosomes and reseal their plasma membrane. PMID:25665445

  13. Proteomic approaches to identify cold-regulated plasma membrane proteins.

    PubMed

    Takahashi, Daisuke; Nakayama, Takato; Miki, Yushi; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze-thaw cycle. Changes in the plasma membrane proteins have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran-polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.

  14. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings).

    PubMed Central

    Rasi-Caldogno, F.; Carnelli, A.; De Michelis, M. I.

    1993-01-01

    The effects of calmodulin and of controlled trypsin treatments on the activity of the Ca2+ pump were investigated in plasma membrane purified from radish (Raphanus sativus L.) seedlings. Treatment of the plasma membrane with ethylenediaminetetra-acetate (EDTA), which removed about two-thirds of the plasma membrane-associated calmodulin, markedly increased the stimulation of the Ca2+ pump by calmodulin. In EDTA-treated plasma membrane, stimulation by calmodulin of the Ca2+ pump activity was maximal at low free Ca2+ (2-5 [mu]M) and decreased with the increase of free Ca2+ concentration. The Ca2+ pump activity was stimulated also by a controlled treatment of the plasma membrane with trypsin: the effect of trypsin treatment depended on the concentration of both trypsin and plasma membrane proteins and on the duration of incubation. Stimulation of the Ca2+ pump activity by trypsin treatment of the plasma membrane was similar to that induced by calmodulin both in extent and in dependence on the free Ca2+ concentration in the assay medium. Moreover, the Ca2+ pump of trypsin-treated plasma membrane was insensitive to further stimulation by calmodulin, suggesting that limited proteolysis preferentially cleaves a regulatory domain of the enzyme that is involved in its activation by calmodulin. PMID:12231945

  15. Protein quality control at the plasma membrane

    PubMed Central

    Okiyoneda, Tsukasa; Apaja, Pirjo M.; Lukacs, Gergely L.

    2011-01-01

    Cellular proteostasis (or protein homeostasis) depends on the timely folding and disposal of conformationally damaged polypeptides during their life span at all subcellular locations. This process is particularly important for membrane proteins confined to the cell surface with critical regulatory role in cellular homoeostasis and intercellular communication. Accumulating evidences indicate that membrane proteins exported from the endoplasmic reticulum (ER) are subjected to peripheral quality control (QC) along the late secretory and endocytic pathways, as well as at the plasma membrane (PM). Recently identified components of the PM QC recognition and effector mechanisms responsible for ubiquitination and lysosomal degradation of conformationally damaged PM proteins uncovered striking similarities to and differences from that of the ER QC machinery. Possible implications of the peripheral protein QC activity in phenotypic modulation of conformational diseases are also outlined. PMID:21571517

  16. Protein quality control at the plasma membrane.

    PubMed

    Okiyoneda, Tsukasa; Apaja, Pirjo M; Lukacs, Gergely L

    2011-08-01

    Cellular proteostasis (or protein homeostasis) depends on the timely folding and disposal of conformationally damaged polypeptides during their life span at all subcellular locations. This process is particularly important for membrane proteins confined to the cell surface with crucial regulatory role in cellular homoeostasis and intercellular communication. Accumulating evidences indicate that membrane proteins exported from the endoplasmic reticulum (ER) are subjected to peripheral quality control (QC) along the late secretory and endocytic pathways, as well as at the plasma membrane (PM). Recently identified components of the PM QC recognition and effector mechanisms responsible for ubiquitination and lysosomal degradation of conformationally damaged PM proteins uncovered striking similarities to and differences from that of the ER QC machinery. Possible implications of the peripheral protein QC activity in phenotypic modulation of conformational diseases are also outlined. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca(2+) dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  18. Remodeling of the postsynaptic plasma membrane during neural development

    PubMed Central

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B.; Farley, Madeline M.; Chan, Robin B.; Di Paolo, Gilbert; Levental, Kandice R.; Waxham, M. Neal; Levental, Ilya

    2016-01-01

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. PMID:27535429

  19. Mechanical properties of the plasma membrane of isolated plant protoplasts

    SciTech Connect

    Wolfe, J.; Steponkus, P.L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law--the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  20. Labeling the plasma membrane with TMA-DPH.

    PubMed

    Chazotte, Brad

    2011-05-01

    INTRODUCTION TMA-DPH (trimethylamine-diphenylhexatriene) is a fluorescent membrane probe that has classically been used to label the outer leaflet of a membrane bilayer, to label the outer leaflet of the plasma membrane in cells, and to report on membrane dynamics using the techniques of fluorescence polarization and/or fluorescence lifetime. This probe has also been used to follow exocytosis and endocytosis of labeled plasma membranes. The interaction of the aqueous environment with mitochondrial inner membrane dynamics has also been studied following the fluorescence polarization and the lifetime of TMA-DPH. This protocol describes the use of TMA-DPH to label the plasma membrane.

  1. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  2. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH.

    PubMed Central

    Morsomme, P; de Kerchove d'Exaerde, A; De Meester, S; Thinès, D; Goffeau, A; Boutry, M

    1996-01-01

    In plants, the proton pump-ATPase (H(+)-ATPase) of the plasma membrane is encoded by a multigene family. The PMA2 (plasma membrane H(+)-ATPase) isoform from Nicotiana plumbaginifolia was previously shown to be capable of functionally replacing the yeast H(+)-ATPase, provided that the external pH was kept above pH 5.5. In this study, we used a positive selection to isolate 19 single point mutations of PMA2 which permit the growth of yeast cells at pH 4.0. Thirteen mutations were restricted to the C-terminus region, but another six mutations were found in four other regions of the enzyme. Kinetic studies determined on nine mutated PMA2 compared with the wild-type PMA2 revealed an activated enzyme characterized by an alkaline shift of the optimum pH and a slightly higher specific ATPase activity. However, the most striking difference was a 2- to 3-fold increase of H(+)-pumping in both reconstituted vesicles and intact cells. These results indicate that point mutations in various domains of the plant H(+)-ATPase improve the coupling between H(+)-pumping and ATP hydrolysis, resulting in better growth at low pH. Moreover, the yeast cells expressing the mutated PMA2 showed a marked reduction in the frequency of internal membrane proliferation seen with the strain expressing the wild-type PMA2, indicating a relationship between H(+)-ATPase activity and perturbations of the secretory pathway. Images PMID:8896445

  3. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  4. The mitochondria-plasma membrane contact site.

    PubMed

    Westermann, Benedikt

    2015-08-01

    Mitochondria are dynamic organelles that are highly motile and frequently fuse and divide. It has recently become clear that their complex behavior is governed to a large extent by interactions with other cellular structures. This review will focus on a mitochondria-plasma membrane tethering complex that was recently discovered and molecularly analyzed in budding yeast, the Num1/Mdm36 complex. This complex attaches mitochondria to the cell cortex and ensures that a portion of the organelles is retained in mother cells during cell division. At the same time, it supports mitochondrial division and integrates mitochondrial dynamics into cellular architecture. Recent evidence suggests that similar mechanisms might exist also in mammalian cells.

  5. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  6. SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling.

    PubMed

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E; Zhu, Michael X; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F

    2015-08-21

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.

  7. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    PubMed

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  8. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Characterization of plant plasma membrane antigens. Progress report

    SciTech Connect

    Galbraith, D.W.

    1986-01-01

    The library of monoclonal antibodies, which are directed against membrane bound antigens of protoplast plasma membrane, are being characterized by immunoprecipitation, immunoaffinity chromatography, and by Western blotting of SDS gels. Progress on these studies is reported here. (DT)

  10. A plasma membrane template for macropinocytic cups

    PubMed Central

    Veltman, Douwe M; Williams, Thomas D; Bloomfield, Gareth; Chen, Bi-Chang; Betzig, Eric; Insall, Robert H; Kay, Robert R

    2016-01-01

    Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role. New macropinocytic cups predominantly form by splitting from existing ones. We propose that cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3, which recruit a ring of actin nucleators to their periphery. DOI: http://dx.doi.org/10.7554/eLife.20085.001 PMID:27960076

  11. Inside job: ligand-receptor pharmacology beneath the plasma membrane.

    PubMed

    Babcock, Joseph J; Li, Min

    2013-07-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon.

  12. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    PubMed Central

    Babcock, Joseph J; Li, Min

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon. PMID:23685953

  13. Spatiotemporal Analysis of Differential Akt Regulation in Plasma Membrane Microdomains

    PubMed Central

    Gao, Xinxin

    2008-01-01

    As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane. PMID:18701703

  14. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    PubMed

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  15. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    PubMed

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles

    PubMed Central

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine

    2013-01-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353

  17. β-Glucan Synthetases of Plasma Membrane and Golgi Apparatus from Onion Stem 1

    PubMed Central

    Van Der Woude, William J.; Lembi, Carole A.; Morré, D. James; Kindinger, Jaunita I.; Ordin, Lawrence

    1974-01-01

    Biosynthesis of glucans occurred in cell-free fractions isolated from onion stem (Allium cepa L.) enriched in either dictyosomes or plasma membranes. β-1,3- and β-1, 4-Glucans were synthesized in differing proportions and at different rates as the concentration of uridine diphosphoglucose or the proportion of dictyosomes or plasma membrane varied. At low (1.5 μm) UDP-glucose concentrations synthesis of alkali-insoluble glucan was correlated with abundance of dicytosomes; most of the substrate utilized by plasma membrane was for glycolipid synthesis. At high (1 mm) UDP-glucose concentration, the synthesis of alkali-insoluble glucans correlated with the abundance of plasma membrane. Substrate enhancement of β-1, 4-glucan synthesis in dictyosome fractions was less than proportional to increases in substrate concentration. In contrast, β-1, 4-glucan synthesis by plasma membrane was more than proportionately increased. At high substrate concentrations the synthesis of β-1, 3-glucans predominated in both dictyosome and plasma membrane fractions. The results show that the capacity to synthesize glucans resides in both Golgi apparatus and plasma membranes of onion stem, but that the plasma membrane has the greatest capacity for synthesis of alkali-insoluble glucans at high UDP-glucose concentrations. Images PMID:16658884

  18. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  19. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  20. Remodeling of the postsynaptic plasma membrane during neural development.

    PubMed

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Plant plasma membrane protein extraction and solubilization for proteomic analysis.

    PubMed

    Santoni, Véronique

    2007-01-01

    The plasma membrane (PM) exists as the interface between the cytosol and the environment in all living cells and is one of the most complex and differentiated membrane. The identification and characterization of membrane proteins (either extrinsic or intrinsic) is a crucial challenge since many of these proteins are involved in essential cellular functions such as cell signaling, osmoregulation, nutrition, and metabolism. Methods to isolate PM fractions vary according to organisms, tissues, and cell type. This chapter emphasizes isolation, from the model plant Arabidopsis thaliana, of PM fractions from a microsomal membrane fraction by two-phase partitioning, a methodology that utilizes the different surface properties of membranes. PM proteins that do not span the lipid bilayer are generally well recovered after 2D gel electrophoresis. By contrast, the recovery of transmembrane proteins requires first the depletion of the PM fraction from soluble proteins, being either cytosolic contaminants or functionally associated proteins, and second, to the use of specific solubilization procedures. This chapter presents protocols to strip PM based on alkaline treatment of membranes and to solubilize hydrophobic proteins to increase their recovery on 2D gels. Aquaporins that are highly hydrophobic proteins are used to probe the relevance of the procedures.

  2. Rapid Response of the Yeast Plasma Membrane Proteome to Salt Stress*

    PubMed Central

    Szopinska, Aleksandra; Degand, Hervé; Hochstenbach, Jean-François; Nader, Joseph; Morsomme, Pierre

    2011-01-01

    The plasma membrane separates the cell from the external environment and plays an important role in the stress response of the cell. In this study, we compared plasma membrane proteome modifications of yeast cells exposed to mild (0.4 m NaCl) or high (1 m NaCl) salt stress for 10, 30, or 90 min. Plasma membrane-enriched fractions were isolated, purified, and subjected to iTRAQ labeling for quantitative analysis. In total, 88–109 plasma membrane proteins were identified and quantified. The quantitative analysis revealed significant changes in the abundance of several plasma membrane proteins. Mild salt stress caused an increase in abundance of 12 plasma membrane proteins, including known salt-responsive proteins, as well as new targets. Interestingly, 20 plasma membrane proteins, including the P-type H+-ATPase Pma1, ABC transporters, glucose and amino acid transporters, t-SNAREs, and proteins involved in cell wall biogenesis showed a significant and rapid decrease in abundance in response to both 0.4 m and 1 m NaCl. We propose that rapid protein internalization occurs as a response to hyper-osmotic and/or ionic shock, which might affect plasma membrane morphology and ionic homeostasis. This rapid response might help the cell to survive until the transcriptional response takes place. PMID:21825281

  3. Plasma membrane ATPase of red beet forms a phosphorylated intermediate.

    PubMed

    Briskin, D P; Poole, R J

    1983-03-01

    When a plasma membrane-enriched fraction isolated from red beet (Beta vulgaris L.) was incubated in the presence of 40 micromolar [gamma-(32)P] ATP, 40 micromolar MgSO(4) at pH 6.5, a rapidly turning over phosphorylated protein was formed. Phosphorylation of the protein was substrate-specific for ATP, sensitive to diethylstilbestrol and vanadate, but insensitive to azide. When the dephosphorylation reaction was specifically studied, KCl was found to increase the turnover of the phosphorylated protein consistent with its stimulatory effect upon plasma membrane ATPase. The protein-bound phosphate was found to be most stable at a pH between 2 and 3 and under cold temperature, suggesting that the protein phosphate bond was an acyl-phosphate. When the phosphorylated protein was analyzed with lithium dodecyl sulfate gel electrophoresis, a labeled polypeptide with a molecular weight of about 100,000 daltons was observed. Phosphorylation of this polypeptide was rapidly turning over and Mg-dependent. It is concluded that the phosphorylation observed represents a reaction intermediate of the red beet plasma membrane ATPase.

  4. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.

    PubMed

    Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève

    2004-07-01

    Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.

  5. Rotation of plasma membrane proteins measured by polarized fluorescence depletion

    NASA Astrophysics Data System (ADS)

    Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.

    1990-05-01

    We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.

  6. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    PubMed Central

    Grossmann, Guido; Malinsky, Jan; Stahlschmidt, Wiebke; Loibl, Martin; Weig-Meckl, Ina; Frommer, Wolf B.; Opekarová, Miroslava; Tanner, Widmar

    2008-01-01

    In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins. PMID:19064668

  7. [Updated detection of the function of sperm plasma membrane].

    PubMed

    Zhou, Xin; Xia, Xin-Yi; Huang, Yu-Feng

    2010-08-01

    The sperm plasma membrane is rich in polyunsaturated fatty acids and a variety of proteins, and its function is associated with sperm capacitation, acrosome reaction and sperm-egg fusion. Sperm fertilizability can be predicted by detecting the function of the sperm plasma membrane, which is performed mainly with the following five techniques: sperm hypoosmotic swelling test, Eosin gamma water test, sperm membrane lipid peroxidation determination, seminal plasma superoxide dismutase determination, and flow cytometry. The evaluation of the function of sperm plasma membrane can be applied in detecting semen quality, selecting semen centrifugation, assessing the quality and fertilizability of sex-sorted sperm, improving cryopreservation, and guiding the optimization of intracytoplasmic sperm injection. This review presents an update on the principles, methods and steps of the detection of sperm plasma membrane function, as well as an overview of its status quo and application.

  8. Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins.

    PubMed

    Elovson, J

    1980-06-25

    As a preliminary to a study of the biogenesis of individual plasma membrane glycoproteins, the marker enzyme nucleotide pyrophosphatase (NPPase) and a major rat liver plasma membrane sialoprotein, subsequently found to be identical with the enzyme dipeptidyl peptidase IV (DPP IV), were purified 10,000- and 2,000-fold, respectively, from rat liver. Both were amphipathic proteins which formed defined micellar complexes with detergents and aggregated in their absence. Gel filtration, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the Triton X-100 complex of NPPase to contain a single 150,000-dalton peptide, while that of DPP IV was composed of two 120,000-dalton subunits; each complex also contained about 150,000-dalton Triton X-100. Trypsin cleaved the detergent complexes with release of major hydrophilic fragments which no longer bound detergent micelles; the accompanying change in peptide size was small for NPPase and undetectable for DPP IV, which also retained the dimer structure of its native form. DPP IV was the only major glycoprotein in rat liver plasma membrane which bound strongly to wheat germ agglutinin. Monospecific rabbit antibodies against NPPase and DPP IV precipitated the antigens without affecting their enzymatic activities.

  9. Selectivity of alkali cation influx across the plasma membrane of oat roots: cation specificity of the plasma membrane ATPase.

    PubMed

    Sze, H; Hodges, T K

    1977-04-01

    Influx of alkali cations (Li(+), Na(+), K(+), Rb(+), Cs(+)) across plasma membranes of cells of excised roots of Avena sativa cv. Goodfield was selective, but different, in the absence and in the presence of 1 mm CaSO(4). Ca(2+) reduced the influx rates of all of the alkali cations-especially Na(+) and Li(+). Transport selectivity changed as the external concentrations of the alkali cations increased.Plasma membrane ATPase, purified from Avena sativa roots, was differentially stimulated by alkali cations. This specificity, however, was not altered by Ca(2+) or the external cation concentrations. A close correspondence existed between the relative influx rates of K(+), Rb(+), and Cs(+) and the relative stimulation of the ATPase by these cations. A similar correspondence did not occur for Na(+) and Li(+).Selective cation transport in oat roots could result, in part, from the specificity of the plasma membrane ATPase, but other factors such as specific carriers or porters or differential diffusion rates must also be involved.

  10. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  11. Quantitative changes in adipocyte plasma membrane in response to nutritional manipulations

    SciTech Connect

    Lewis, D.S.; Masoro, E.J.; Yu, B.P.

    1981-09-01

    The effects of changes in adipocyte size and the effects of nutritional manipulations on the quantity of plasma membrane per adipocyte were investigated. A method for estimating the quantity of plasma membrane was developed based on the specific labeling of adipocyte plasma membrane protein with the nonpermeable labeling agent 125I-labeled diazotized diiodosulfanilic acid. By studying rats (ranging in age from 50 to 125 days) fed a standard laboratory chow or a low fat diet or a high fat diet, a wide range of mean fat cell sizes was obtained. It was found that as the volume of the fat cell increased, the amount of plasma membrane increased in a linear fashion and that this linear relationship had the same slope whether the size of the adipocyte increased slowly with age or rapidly in response to a high fat diet. In contrast, fasting for up to 3 days caused a marked decrease in the mean volume of the adipocytes, but either no change or much less change in the amount of plasma membrane per cell than would have been predicted from the linear relationship between adipocytes, but either no change or much less change in the amount of plasma membrane per cell than would have been predicted form the linear relationship between adipocyte volume and amount of plasma membrane per cell obtained with fed rats, i.e., adipocytes from fasted rats contain more plasma membrane per cell than do fat cells of the same size from fed rats. Neither feeding a high fat diet nor fasting caused detectable changes in the protein and lipid composition of the adipocyte plasma membrane.

  12. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum.

    PubMed

    Larsson, Karin E; Kjellberg, J Magnus; Tjellström, Henrik; Sandelius, Anna Stina

    2007-11-28

    The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane, or in both. We suggest that

  13. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum

    PubMed Central

    Larsson, Karin E; Kjellberg, J Magnus; Tjellström, Henrik; Sandelius, Anna Stina

    2007-01-01

    Background The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. Results The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. Conclusion We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane

  14. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  15. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  16. The chloride channel blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) uncouples mitochondria and increases the proton permeability of the plasma membrane in phagocytic cells.

    PubMed

    Lukacs, G L; Nanda, A; Rotstein, O D; Grinstein, S

    1991-08-19

    We present evidence that the potent chloride channel blocker NPPB has protonophoric activity in the mitochondria and across the plasma membrane of phagocytic cells. The resting O2 consumption of murine peritoneal macrophages was stimulated up to 2.5-fold in the presence of NPPB, with a K0.5 of 15 microM. The stimulatory effect of NPPB on O2 consumption, like that of the classical protonophore CCCP, was prevented by the mitochondrial respiratory chain inhibitors antimycin A, rotenone or cyanide. NPPB also mediated rheogenic proton transport across the plasma membrane of human neutrophils and macrophages in the direction dictated by the electrochemical proton gradient. As a consequence of its protonophoric activity, NPPB uncoupled mitochondrial ATP synthesis, resulting in partial depletion of cellular ATP. These observations indicate that, at the concentrations frequently used for blockade of anion channels, NPPB acts as an effective protonophore, potentially disturbing cytosolic pH and mitochondrial ATP synthesis.

  17. Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction.

    PubMed

    Maximyuk, O; Khmyz, V; Lindskog, C-J; Vukojević, V; Ivanova, T; Bazov, I; Hauser, K F; Bakalkin, G; Krishtal, O

    2015-03-12

    Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.

  18. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  19. The plasma membrane calcium ATPase and disease.

    PubMed

    Tempel, B L; Shilling, D J

    2007-01-01

    The plasma membrane calcium ATPase (PMCA) uses energy to pump calcium (Ca2+) ions out of the cytosol into the extracellular milieu, usually against a strong chemical gradient. This energy expenditure is necessary to maintain a relatively low intracellular net Ca2+ load. Mammals have four genes (ATP2B1-ATP2B4), encoding the proteins PMCA1 through PMCA4. Transcripts from each of these genes are alternatively spliced to generate several variant proteins that are in turn post-translationally modified in a variety of ways. Expressed ubiquitously and with some level of functional redundancy in most vital tissues, only one of the four genes--Atp2b2--has been causally linked through naturally occuring mutations to disease in mammals: specifically to deafness and ataxia in spontaneous mouse mutants. In humans, a missense amino acid substitution in PMCA2 modifies the severity of hearing loss. Targeted null mutations of the Atp2b1 and Atp2b4 genes in mouse are embryonic lethal and cause a sperm motility defect, respectively. These phenotypes point to complex human diseases like hearing loss, cardiac function and infertility. Changes in PMCA expression are associated with other diseases including cataract formation, carciniogenesis, diabetes, and cardiac hypertension and hypertrophy. Severity of these diseases may be affected by subtle changes in expression of the PMCA isoforms expressed in those tissues.

  20. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    PubMed

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  1. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly

    PubMed Central

    Sardo, Luca; Hatch, Steven C.; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C.; Chen, De; Westlake, Christopher J.; Lockett, Stephen; Pathak, Vinay K.

    2015-01-01

    ABSTRACT To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. IMPORTANCE Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the

  2. Proton Pumping of the Yeast Plasma Membrane H+-ATPase

    DTIC Science & Technology

    1993-08-16

    function of the yeast plasma membrane H+- ATPase. This ATPase is a P-type cation transporter composed of a single protein of 100,000 Da molecular...August 16, 1993 ] Final 25 Sep 89 - 14 May 94 / 4. TITLE AND SUBTITLE S UDN UBR Proton Pumping of the Yeast Plasma Membrane HW-AT~ase G. AUTOR(S)DAALO3...Maximum 200 words) This proposal was to study the structure and function of the yeast plasma membrane H+-ATPase. We I proposed to study I )the

  3. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    PubMed

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 < 1 min) between the plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  4. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Plasma Membrane H+-ATPase in Maize Roots Induced for NO3- Uptake.

    PubMed Central

    Santi, S.; Locci, G.; Pinton, R.; Cesco, S.; Varanini, Z.

    1995-01-01

    Plasma membrane H+-ATPase was studied in maize (Zea mays L.) roots induced for NO3- uptake. Membrane vesicles were isolated by means of Suc density gradient from roots exposed for 24 h either to 1.5 mM NO3- or 1.5 mM SO4-. The two populations of vesicles had similar composition as shown by diagnostic inhibitors of membrane-associated ATPases. However, both ATP-dependent intravesicular H+ accumulation and ATP hydrolysis were considerably enhanced (60-100%) in vesicles isolated from NO3--induced roots. Km for Mg:ATP and pH dependency were not influenced by NO3- treatment of the roots. ATP hydrolysis in plasma membrane vesicles for both control and NO3--induced roots was not affected by 10 to 150 mM NO3- or Cl-. On the other hand, kinetics of NO3-- or Cl--stimulated ATP-dependent intravesicular H+ accumulation were modified in plasma membrane vesicles isolated from NO3-- induced roots. Immunoassays carried out with polyclonal antibodies against plasma membrane H+-ATPase revealed an increased steady-state level of the enzyme in plasma membrane vesicles isolated from NO3--induced roots. Results are consistent with the idea of an involvement of plasma membrane H+-ATPase in the overall response of roots to NO3-. PMID:12228668

  6. Plasma Membrane H+-ATPase in Maize Roots Induced for NO3- Uptake.

    PubMed

    Santi, S.; Locci, G.; Pinton, R.; Cesco, S.; Varanini, Z.

    1995-12-01

    Plasma membrane H+-ATPase was studied in maize (Zea mays L.) roots induced for NO3- uptake. Membrane vesicles were isolated by means of Suc density gradient from roots exposed for 24 h either to 1.5 mM NO3- or 1.5 mM SO4-. The two populations of vesicles had similar composition as shown by diagnostic inhibitors of membrane-associated ATPases. However, both ATP-dependent intravesicular H+ accumulation and ATP hydrolysis were considerably enhanced (60-100%) in vesicles isolated from NO3--induced roots. Km for Mg:ATP and pH dependency were not influenced by NO3- treatment of the roots. ATP hydrolysis in plasma membrane vesicles for both control and NO3--induced roots was not affected by 10 to 150 mM NO3- or Cl-. On the other hand, kinetics of NO3-- or Cl--stimulated ATP-dependent intravesicular H+ accumulation were modified in plasma membrane vesicles isolated from NO3-- induced roots. Immunoassays carried out with polyclonal antibodies against plasma membrane H+-ATPase revealed an increased steady-state level of the enzyme in plasma membrane vesicles isolated from NO3--induced roots. Results are consistent with the idea of an involvement of plasma membrane H+-ATPase in the overall response of roots to NO3-.

  7. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  8. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  9. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion.

    PubMed

    Petkovic, Maja; Jemaiel, Aymen; Daste, Frédéric; Specht, Christian G; Izeddin, Ignacio; Vorkel, Daniela; Verbavatz, Jean-Marc; Darzacq, Xavier; Triller, Antoine; Pfenninger, Karl H; Tareste, David; Jackson, Catherine L; Galli, Thierry

    2014-05-01

    Development of the nervous system requires extensive axonal and dendritic growth during which neurons massively increase their surface area. Here we report that the endoplasmic reticulum (ER)-resident SNARE Sec22b has a conserved non-fusogenic function in plasma membrane expansion. Sec22b is closely apposed to the plasma membrane SNARE syntaxin1. Sec22b forms a trans-SNARE complex with syntaxin1 that does not include SNAP23/25/29, and does not mediate fusion. Insertion of a long rigid linker between the SNARE and transmembrane domains of Sec22b extends the distance between the ER and plasma membrane, and impairs neurite growth but not the secretion of VSV-G. In yeast, Sec22 interacts with lipid transfer proteins, and inhibition of Sec22 leads to defects in lipid metabolism at contact sites between the ER and plasma membrane. These results suggest that close apposition of the ER and plasma membrane mediated by Sec22 and plasma membrane syntaxins generates a non-fusogenic SNARE bridge contributing to plasma membrane expansion, probably through non-vesicular lipid transfer.

  10. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    PubMed

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  11. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats

    SciTech Connect

    Lei, K.Y.; Rosenstein, F.; Shi, F.; Hassel, C.A.; Carr, T.P.; Zhang, J. )

    1988-07-01

    In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.

  12. Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane

    PubMed Central

    Khatibzadeh, Nima; Gupta, Sharad; Farrell, Brenda; Brownell, William E.; Anvari, Bahman

    2012-01-01

    In this study, we investigated the effects of membrane cholesterol content on the mechanical properties of cell membranes by using optical tweezers. We pulled membrane tethers from human embryonic kidney cells using single and multi-speed protocols, and obtained time-resolved tether forces. We quantified various mechanical characteristics including the tether equilibrium force, bending modulus, effective membrane viscosity, and plasma membrane-cytoskeleton adhesion energy, and correlated them to the membrane cholesterol level. Decreases in cholesterol concentration were associated with increases in the tether equilibrium force, tether stiffness, and adhesion energy. Tether diameter and effective viscosity increased with increasing cholesterol levels. Disruption of cytoskeletal F-actin significantly changed the tether diameters in both non-cholesterol and cholesterol-manipulated cells, while the effective membrane viscosity was unaffected by F-actin disruption. The findings are relevant to inner ear function where cochlear amplification is altered by changes in membrane cholesterol content. PMID:23227105

  13. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  14. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Insulin Stimulates Membrane Fusion and GLUT4 Accumulation in Clathrin Coats on Adipocyte Plasma Membranes▿ †

    PubMed Central

    Huang, Shaohui; Lifshitz, Larry M.; Jones, Christine; Bellve, Karl D.; Standley, Clive; Fonseca, Sonya; Corvera, Silvia; Fogarty, Kevin E.; Czech, Michael P.

    2007-01-01

    Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane. PMID:17339344

  16. S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice.

    PubMed

    Horiuchi, Hiroko; Usami, Atsuko; Shirai, Rie; Harada, Naoki; Ikushiro, Shinichi; Sakaki, Toshiyuki; Nakano, Yoshihisa; Inui, Hiroshi; Yamaji, Ryoichi

    2017-09-01

    Background:S-equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear.Objective: We investigated the effects of S-equol on pancreatic β-cell function.Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S-equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S-equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S-equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies.Results:S-equol administration for 7 d increased Ki67-positive β-cells by 27% (P < 0.01) in mice. S-equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% (P < 0.001). In INS-1 cells, S-equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S-equol effects were diminished by inhibiting protein kinase A. The effective concentration of S-equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S-equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S-equol gavage treatment resulted in an increase in β-cell mass of 104% (P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S-equol administration significantly increased the

  17. Decreases in Plasma Membrane Ca2+-ATPase in Brain Synaptic Membrane Rafts from Aged Rats

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Galeva, Nadezhda A.; Williams, Todd D.; Michaelis, Elias K.; Michaelis, Mary L.

    2012-01-01

    Precise regulation of free intracellular Ca2+ concentrations [Ca2+]i is critical for normal neuronal function, and alterations in Ca2+ homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca2+]i is the plasma membrane Ca2+-ATPase (PMCA), the high affinity transporter that fine tunes the cytosolic nanomolar levels of Ca2+. We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In the present study, we isolated raft and non-raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised of all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess CaM to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age-related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity. PMID:22889001

  18. Paracrine signaling through plasma membrane hemichannels☆

    PubMed Central

    Wang, Nan; De Bock, Marijke; Decrock, Elke; Bol, Mélissa; Gadicherla, Ashish; Vinken, Mathieu; Rogiers, Vera; Bukauskas, Feliksas F.; Bultynck, Geert; Leybaert, Luc

    2013-01-01

    Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cell’s interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1–2 kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD+ or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. PMID:22796188

  19. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    SciTech Connect

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  20. An effective plasma membrane proteomics approach for small tissue samples

    PubMed Central

    Smolders, Katrien; Lombaert, Nathalie; Valkenborg, Dirk; Baggerman, Geert; Arckens, Lutgarde

    2015-01-01

    Advancing the quest for new drug targets demands the development of innovative plasma membrane proteome research strategies applicable to small, functionally defined tissue samples. Biotinylation of acute tissue slices and streptavidin pull-down followed by shotgun proteomics allowed the selective extraction and identification of >1,600 proteins of which >60% are associated with the plasma membrane, including (G-protein coupled) receptors, ion channels and transporters, and this from mm3-scale tissue. PMID:26047021

  1. Gravity Responsive NADH Oxidase of the Plasma Membrane

    NASA Technical Reports Server (NTRS)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  2. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2014-01-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794

  3. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  5. Huntingtin associates with acidic phospholipids at the plasma membrane.

    PubMed

    Kegel, Kimberly B; Sapp, Ellen; Yoder, Jennifer; Cuiffo, Benjamin; Sobin, Lindsay; Kim, Yun J; Qin, Zheng-Hong; Hayden, Michael R; Aronin, Neil; Scott, David L; Isenberg, Gerhard; Goldmann, Wolfgang H; DiFiglia, Marian

    2005-10-28

    We have identified a domain in the N terminus of huntingtin that binds to membranes. A three-dimensional homology model of the structure of the binding domain predicts helical HEAT repeats, which emanate a positive electrostatic potential, consistent with a charge-based mechanism for membrane association. An amphipathic helix capable of inserting into pure lipid bilayers may serve to anchor huntingtin to the membrane. In cells, N-terminal huntingtin fragments targeted to regions of plasma membrane enriched in phosphatidylinositol 4,5-bisphosphate, receptor bound-transferrin, and endogenous huntingtin. N-terminal huntingtin fragments with an expanded polyglutamine tract aberrantly localized to intracellular regions instead of plasma membrane. Our data support a new model in which huntingtin directly binds membranes through electrostatic interactions with acidic phospholipids.

  6. Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membranes.

    PubMed Central

    Bruno, M; Brightman, A O; Lawrence, J; Werderitsh, D; Morré, D M; Morre, D J

    1992-01-01

    Plasma membranes of rat liver isolated by aqueous two-phase partition exhibited basal levels of NADH oxidase activity that were increased approx. 2-fold by addition of hormones and growth factors to which liver cells were known to respond. In contrast, hepatoma plasma membranes demonstrated an intrinsically increased level of NADH oxidase, which was not stimulated further by addition of growth factors. The results suggest that the NADH oxidase of the hepatoma plasma membrane is no longer correctly coupled to hormone and growth-factor receptors. This biochemical defect may parallel the loss of growth control that is characteristic of neoplastic transformation in hepatocarcinogenesis and other transformation systems. Images Fig. 3. PMID:1622384

  7. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H(2)O plasma treatment.

    PubMed

    Yu, Hai-Yin; Tang, Zhao-Qi; Huang, Lei; Cheng, Gang; Li, Wei; Zhou, Jin; Yan, Meng-Gang; Gu, Jia-Shan; Wei, Xian-Wen

    2008-10-01

    To improve the antifouling characteristics of polypropylene hollow fiber macroporous membranes in a submerged membrane-bioreactor for wastewater treatment, the membranes were surface modified by H(2)O plasma treatment. Structural and morphological changes on the membrane surface were characterized by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurement. The static water contact angle of the modified membrane reduced obviously with the increase of plasma treatment time. The total surface free energy and its dispersive component decreased, while the polar component increased with the increase of treatment time. The relative pure water flux for the modified membranes increased gradually with the increase of plasma treatment time. The tensile strength and the tensile elongation at break for the membranes decreased after plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 68 h, flux recovery after water and caustic cleaning, flux ratio after fouling were improved by 2.0, 3.6 and 22.0%, while reduction of flux was reduced by 1.1% for the 1 min H(2)O plasma treated membrane, compared to those of the unmodified membrane.

  8. The structure and characteristics of polypropylene hollow fiber membrane plasma separator.

    PubMed

    Sakai, Masamune; Matsunami, Satoshi

    2003-02-01

    Propylex is a membrane type plasma separator using a polypropylene hollow fiber membrane with regular and orderly rectangular pores, which has been developed and manufactured by Ube Industries, Ltd. This product is of its polypropylene membrane; (ii) little damage to blood cells even under high transmembrane pressure due to its characteristic pore structure; and (iii) slight fluctuations in the sieving coefficients for substances with high and low molecular weights even with increased throughput, which allows stable clinical use.

  9. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  10. Preparation of Artificial Plasma Membrane Mimicking Vesicles with Lipid Asymmetry

    PubMed Central

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes “artificial plasma membrane mimicking” (“PMm”) vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes. PMID:24489974

  11. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    PubMed

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  12. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

    PubMed

    Astro, Veronica; de Curtis, Ivan

    2015-03-10

    Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms. Copyright © 2015, American Association for the Advancement of Science.

  13. Biphasic changes in the level and composition of Dunaliella salina plasma membrane diacylglycerols following hypoosmotic shock

    SciTech Connect

    Ha, Kwonsoo; Thompson, G.A. )

    1992-01-21

    Hypoosmotic shock has been shown to trigger an immediate and selective increase of plasma membrane diacylglycerols (DAG) in the green alga Dunaliella salina, coinciding with an approximately equivalent loss of phosphatidylinositol 4,5-bisphosphate from this membrane. Following a slight decline in amount, DAG levels of the plasma membrane resumed their rise by 2 min after the shock and by 40 min had achieved a maximum concentration equivalent to 230% of DAG levels in unstressed cells. This second, more sustained increase of plasma membrane DAG was matched by a DAG increase in the microsome-enriched cytoplasmic membrane fraction, commencing at 2 min and peaking at 140% of control values. The changing pattern of DAG molecular species produced in the plasma membrane during the early phases of hypoosmotic stress was compatible with their derivation from phospholipase C hydrolysis of inositol phospholipids and phophatidylcholine. From 8 min following hypoosmotic shock, as relatively larger scale DAG accumulations developed in the cytoplasmic membranes, the molecular species composition changed to reflect a marked increase in de novo synthesis of sn-1-oleoyl, sn-2-palmitoylglycerol, and dioleoylglycerol. The radioisotope labeling data with Na{sub 2} {sup 14}CO{sub 3} confirmed that the biphasic formation of DAG triggered by hypoosmotic shock culminates in a large-scale de novo synthesis of DAG. This is the first clear evidence for de novo synthesis as a source of DAG following PIP{sub 2}-mediated signaling.

  14. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases.

  15. Plasma membrane-localized transporter for aluminum in rice

    PubMed Central

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-01-01

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al–citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles. PMID:20937890

  16. Plasma membrane-localized transporter for aluminum in rice.

    PubMed

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-10-26

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al-citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles.

  17. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane.

    PubMed

    Irani, Niloufer G; Di Rubbo, Simone; Mylle, Evelien; Van den Begin, Jos; Schneider-Pizoń, Joanna; Hniliková, Jaroslava; Šíša, Miroslav; Buyst, Dieter; Vilarrasa-Blasi, Josep; Szatmári, Anna-Mária; Van Damme, Daniël; Mishev, Kiril; Codreanu, Mirela-Corina; Kohout, Ladislav; Strnad, Miroslav; Caño-Delgado, Ana I; Friml, Jiří; Madder, Annemieke; Russinova, Eugenia

    2012-05-06

    Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.

  18. Plasma Membrane Repair in Health and Disease

    PubMed Central

    Demonbreun, Alexis R.; McNally, Elizabeth M.

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15-homology domain (EHD)-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4, 5 bisphosphate, as well as Ca2+, are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury. PMID:26781830

  19. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  20. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  1. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  2. Evidence for annexin A6-dependent plasma membrane remodelling of lipid domains

    PubMed Central

    Alvarez-Guaita, Anna; Vilà de Muga, Sandra; Owen, Dylan M; Williamson, David; Magenau, Astrid; García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Cairns, Rose; Cornely, Rhea; Tebar, Francesc; Grewal, Thomas; Gaus, Katharina; Ayala-Sanmartín, Jesús; Enrich, Carlos; Rentero, Carles

    2015-01-01

    Background and Purpose Annexin A6 (AnxA6) is a calcium-dependent phospholipid-binding protein that can be recruited to the plasma membrane to function as a scaffolding protein to regulate signal complex formation, endo- and exocytic pathways as well as distribution of cellular cholesterol. Here, we have investigated how AnxA6 influences the membrane order. Experimental Approach We used Laurdan and di-4-ANEPPDHQ staining in (i) artificial membranes; (ii) live cells to investigate membrane packing and ordered lipid phases; and (iii) a super-resolution imaging (photoactivated localization microscopy, PALM) and Ripley's K second-order point pattern analysis approach to assess how AnxA6 regulates plasma membrane order domains and protein clustering. Key Results In artificial membranes, purified AnxA6 induced a global increase in membrane order. However, confocal microscopy using di-4-ANEPPDHQ in live cells showed that cells expressing AnxA6, which reduces plasma membrane cholesterol levels and modifies the actin cytoskeleton meshwork, displayed a decrease in membrane order (∼15 and 30% in A431 and MEF cells respectively). PALM data from Lck10 and Src15 membrane raft/non-raft markers revealed that AnxA6 expression induced clustering of both raft and non-raft markers. Altered clustering of Lck10 and Src15 in cells expressing AnxA6 was also observed after cholesterol extraction with methyl-β-cyclodextrin or actin cytoskeleton disruption with latrunculin B. Conclusions and Implications AnxA6-induced plasma membrane remodelling indicated that elevated AnxA6 expression decreased membrane order through the regulation of cellular cholesterol homeostasis and the actin cytoskeleton. This study provides the first evidence from live cells that support current models of annexins as membrane organizers. PMID:25409976

  3. Neomycin inhibits the phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate stimulation of plasma membrane ATPase activity

    SciTech Connect

    Chen, Qiuyun; Boss, W.F. )

    1991-05-01

    The inositol phospholipids, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP{sub 2}), have been shown to increase the vanadate-sensitive ATPase activity of plant plasma membranes. In this paper, the authors show the effect of various concentrations of phosphatidyinositol, PIP, and PIP{sub 2} on the plasma membrane vanadate-sensitive ATPase activity. PIP and PIP{sub 2} at concentrations at 10 nanomoles per 30 microgram membrane protein per milliliter of reaction mixture caused a twofold and 1.8-fold increase in the ATPase activity, respectively. The effect of these negatively charged phospholipids on the ATPase activity was inhibited by adding the positively charged aminoglycoside, neomycin. Neomycin did not affect the endogenous plasma membrane ATPase activity in the absence of exogenous lipids.

  4. Fluconazole treatment hyperpolarizes the plasma membrane of Candida cells.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2013-11-01

    Five pathogenic Candida species were compared in terms of their osmotolerance, tolerance to toxic sodium and lithium cations, and resistance to fluconazole. The species not only differed, in general, in their tolerance to high osmotic pressure (C. albicans and C. parapsilosis being the most osmotolerant) but exhibited distinct sensitivities to toxic sodium and lithium cations, with C. parapsilosis and C. tropicalis being very tolerant but C. krusei and C. dubliniensis sensitive to LiCl. The treatment of both fluconazole-susceptible (C. albicans and C. parapsilosis) and fluconazole-resistant (C. dubliniensis, C. krusei and C. tropicalis) growing cells with subinhibitory concentrations of fluconazole resulted in substantially elevated intracellular Na(+) levels. Using a diS-C3(3) assay, for the first time, to monitor the relative membrane potential (ΔΨ) of Candida cells, we show that the fluconazole treatment of growing cells of all five species results in a substantial hyperpolarization of their plasma membranes, which is responsible for an increased non-specific transport of toxic alkali metal cations and other cationic drugs (e.g., hygromycin B). Thus, the combination of relatively low doses of fluconazole and drugs, whose import into the tested Candida strains is driven by the cell membrane potential, might be especially potent in terms of its ability to inhibit the growth of or even kill various Candida species.

  5. The human plasma membrane peripherome: visualization and analysis of interactions.

    PubMed

    Nastou, Katerina C; Tsaousis, Georgios N; Kremizas, Kimon E; Litou, Zoi I; Hamodrakas, Stavros J

    2014-01-01

    A major part of membrane function is conducted by proteins, both integral and peripheral. Peripheral membrane proteins temporarily adhere to biological membranes, either to the lipid bilayer or to integral membrane proteins with noncovalent interactions. The aim of this study was to construct and analyze the interactions of the human plasma membrane peripheral proteins (peripherome hereinafter). For this purpose, we collected a dataset of peripheral proteins of the human plasma membrane. We also collected a dataset of experimentally verified interactions for these proteins. The interaction network created from this dataset has been visualized using Cytoscape. We grouped the proteins based on their subcellular location and clustered them using the MCL algorithm in order to detect functional modules. Moreover, functional and graph theory based analyses have been performed to assess biological features of the network. Interaction data with drug molecules show that ~10% of peripheral membrane proteins are targets for approved drugs, suggesting their potential implications in disease. In conclusion, we reveal novel features and properties regarding the protein-protein interaction network created by peripheral proteins of the human plasma membrane.

  6. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3.

    PubMed

    Li, Caiyue; Ma, Wenbo; Yin, Shikui; Liang, Xin; Shu, Xiaodong; Pei, Duanqing; Egan, Terrance M; Huang, Jufang; Pan, Aihua; Li, Zhiyuan

    2016-05-01

    The trafficking of ion channels to/from the plasma membrane is considered an important mechanism for cellular activity and an interesting approach for disease therapies. The transient receptor potential vanilloid 3 (TRPV3) ion channel is widely expressed in skin keratinocytes, and its trafficking mechanism to/from the plasma membrane is unknown. Here, we report that the vesicular trafficking protein sorting nexin 11 (SNX11) downregulates the level of the TRPV3 plasma membrane protein. Overexpression of SNX11 causes a decrease in the level of TRPV3 current and TRPV3 plasma membrane protein in TRPV3-transfected HEK293T cells. Subcellular localizations and western blots indicate that SNX11 interacts with TRPV3 and targets it to lysosomes for degradation, which is blocked by the lysosomal inhibitors chloroquine and leupeptin. Both TRPV3 and SNX11 are highly expressed in HaCaT cells. We show that TRPV3 agonists-activated Ca(2+) influxes and the level of native TRPV3 total protein in HaCaT cells are decreased by overexpression of SNX11 and increased by knockdown of SNX11. Our findings reveal that SNX11 promotes the trafficking of TRPV3 from the plasma membrane to lysosomes for degradation via protein-protein interactions, which demonstrates a previously unknown function of SNX11 as a regulator of TRPV3 trafficking from the plasma membrane to lysosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ex vivo preclinical evaluation of membrane plasma separators.

    PubMed

    Matsubara, S; Wojcicki, J M; Sueoka, A; Horiuchi, T; Matsugane, T; Starre, J J; Smith, J W; Malchesky, P S; Nosé, Y

    1984-05-01

    Four different types of hollow-fiber membrane plasma separators, constructed of cellulose acetate, polyvinyl alcohol, polyethylene, and polymethylmethacrylate membranes, were evaluated in ex vivo dog perfusions under conditions simulating their clinical use. An arteriovenous (A-V) fistula constructed in the dogs for blood access enabled repeated access to be achieved without surgical intervention. All modules produced transient leukopenia and a reduction of platelet counts. The polymethylmethacrylate module showed minimum reductions of white blood cell counts and CH50. The early leukocyte count reduction in membrane plasmapheresis is most likely related to the magnitude of complement activation by the membrane, as is seen with hemodialysis.

  8. [Isolation and characteristics of the plasma membrane fraction from the swine myometrium].

    PubMed

    Kondratiuk, T P; Bychenok, S F; Prishchepa, L A; Babich, L G; Kurskiĭ, M D

    1986-01-01

    An accelerated method is developed for isolating a fraction of plasma membranes of pig myometrium using ultracentrifugation within the sucrose density gradient (15% and 30%). The membranes possessed the high activity of 5'-nucleotidase and Na+, K+-ATPase and the low activity of rhotenon-insensitive NADH-cytochrome c reductase. The vesicularized preparations of plasma membranes are able of ATP-dependent accumulation of Ca2+ (7.5 +/- 0.3 nmol. 45Ca2+ per 1 mg of protein for 15 min). Phosphate increases the calcium accumulation in the presence of ATP and Mg2+. Ionophore A 23187 promotes a complete and rapid release of the previously active-accumulated calcium. The release of 45Ca2+ accumulated by the membrane fraction may be reached by introduction of 1 mM EGTA or DS-Na into the incubation medium, that evidences for the cation accumulation inside closed structures. Using concanavalin-A-sepharose 4B it is shown that 60% of membrane vesicles are turned inside out. The low saponine concentrations (0.0005%) which inhibit Ca2+-accumulation by plasma membranes but not by the endoplasmic reticulum inhibit this process by 60-70% in preparations of the isolated membrane fraction. The method has certain advantages over the previously applied methods used for isolating of plasma membrane fragments from smooth muscles.

  9. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  10. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions

    PubMed Central

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-01-01

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid–lipid interactions, lipid–protein interactions and protein–protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca2+ in membrane protein organization. We find that Ca2+ at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca2+ influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca2+ strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes. PMID:21364530

  11. Plasma Membrane Ca-ATPase of Radish Seedlings 1

    PubMed Central

    Carnelli, Antonella; De Michelis, Maria I.; Rasi-Caldogno, Franca

    1992-01-01

    In this work, we exploited the capability of the plasma membrane Ca-ATPase to utilize ITP as a substrate to study its characteristics in plasma membrane vesicles purified from radish (Raphanus sativus L.) seedlings. The majority of the ITPase activity of plasma membrane was Ca2+-dependent. The Ca2+-dependent ITPase activity was Mg2+-dependent and was stimulated by the calcium ionophore A23187. It was inhibited by erythrosin B (concentration giving 50% inhibition, 50 nanomolar) and by vanadate (concentration giving 50% inhibition, 3 micromolar) and displayed a broad pH optimum around pH 7.2 to 7.5. Both the hydrolytic and the transport activity of the plasma membrane Ca-ATPase were half-saturated by Ca2+ in the micromolar concentration range. No major effect of EGTA on the saturation kinetics of the enzyme was observed. The affinity of the plasma membrane Ca-ATPase for Ca2+ was about fourfold higher at pH 7.5 than at pH 6.9. The Ca2+-dependent ITPase activity was stimulated about twofold by polyoxyethylene 20 cetyl ether, although it was inhibited by Triton X-100 and by lysolecithin. PMID:16668746

  12. Facilitative plasma membrane transporters function during ER transit.

    PubMed

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  13. Protein Targeting to Exosomes/Microvesicles by Plasma Membrane Anchors*

    PubMed Central

    Shen, Beiyi; Wu, Ning; Yang, Jr-Ming; Gould, Stephen J.

    2011-01-01

    Animal cells secrete small vesicles, otherwise known as exosomes and microvesicles (EMVs). A short, N-terminal acylation tag can target a highly oligomeric cytoplasmic protein, TyA, into secreted vesicles (Fang, Y., Wu, N., Gan, X., Yan, W., Morell, J. C., and Gould, S. J. (2007) PLoS Biol. 5, 1267–1283). However, it is not clear whether this is true for other membrane anchors or other highly oligomeric, cytoplasmic proteins. We show here that a variety of plasma membrane anchors can target TyA-GFP to sites of vesicle budding and into EMVs, including: (i) a myristoylation tag; (ii) a phosphatidylinositol-(4,5)-bisphosphate (PIP2)-binding domain; (iii), a phosphatidylinositol-(3,4,5)-trisphosphate-binding domain; (iv) a prenylation/palmitoylation tag, and (v) a type-1 plasma membrane protein, CD43. However, the relative budding efficiency induced by these plasma membrane anchors varied over a 10-fold range, from 100% of control (AcylTyA-GFP) for the myristoylation tag and PIP2-binding domain, to one-third or less for the others, respectively. Targeting TyA-GFP to endosome membranes by fusion to a phosphatidylinositol 3-phosphate-binding domain induced only a slight budding of TyA-GFP, ∼2% of control, and no budding was observed when TyA-GFP was targeted to Golgi membranes via a phosphatidylinositol 4-phosphate-binding domain. We also found that a plasma membrane anchor can target two other highly oligomeric, cytoplasmic proteins to EMVs. These observations support the hypothesis that plasma membrane anchors can target highly oligomeric, cytoplasmic proteins to EMVs. Our data also provide additional parallels between EMV biogenesis and retrovirus budding, as the anchors that induced the greatest budding of TyA-GFP are the same as those that mediate retrovirus budding. PMID:21300796

  14. Characterization of Membrane Protein Interactions in Plasma Membrane Derived Vesicles with Quantitative Imaging FRET

    PubMed Central

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2016-01-01

    CONSPECTUS Here we describe an experimental tool, termed Quantitative Imaging Förster Resonance Energy Transfer (QI-FRET), which enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles which bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), an RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor

  15. Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation.

    PubMed

    Minami, Anzu; Furuto, Akari; Uemura, Matsuo

    2010-09-01

    Plants increase their freezing tolerance upon exposure to low, non-freezing temperatures, which is known as cold acclimation. Cold acclimation results in a decrease in the proportion of sphingolipids in the plasma membrane in many plants including Arabidopsis thaliana. The decrease in sphingolipids has been considered to contribute to the increase in the cryostability of the plasma membrane through regulating membrane fluidity. Recently we have proposed a possibility of another important sphingolipid function associated with cold acclimation. In animal cells, it has been known that the plasma membrane contains microdomains due to the chanracteristics of sphingolipids and sterols, and the sphingolipid- and sterol-enriched microdomains are thought to function as platforms for cell signaling, membrane trafficking and pathogen response. In our research on characterization of microdomain-associated lipids and proteins in Arabidopsis, cold-acclimation-induced decrease in sphingolipids resulted in a decrease of microdomains in the plasma membrane and there were considerable changes in membrane transport-, cytoskeleton- and endocytosis-related proteins in the microdomains during cold acclimation. Based on these results, we discuss a functional relationship between the changes in microdomain components and plant cold acclimation.

  16. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.

    PubMed

    Kawamura, Yukio; Uemura, Matsuo

    2003-10-01

    Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.

  17. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  18. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  19. Essentially All Excess Fibroblast Cholesterol Moves from Plasma Membranes to Intracellular Compartments

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2014-01-01

    It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients. PMID:25014655

  20. Embryonal cell surface recognition. Extraction of an active plasma membrane component.

    PubMed

    Merrell, R; Gottlieb, D I; Glaser, L

    1975-07-25

    Plasma membranes obtained from different neural regions of the chicken embryo have previously been shown to specifically bind to homotypic cells and prevent cell aggregation (Merrell, R., and Glaser, L. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 2794-2798). Proteins responsible for the specific inhibition of cell aggregation have been solubilized from the plasma membrane of neural retina and optic tectum by delipidation with acetone followed by extraction with lithium diiodosalicylate. The extracts show the same regional and temporal specificity as previously shown for plasma membrane recognition by the same cells (Gottlieb, D. I., Merrell, R., and Glaser, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1800-1802). Two micrograms of the most purified protein fraction inhibits the aggregation of 2.5 times 10(-4) cells under standard assay conditions. This represents a 20-fold increase in specific activity compared to whole membranes.

  1. Reversal of carbon tetrachloride induced changes in microviscosity and lipid composition of liver plasma membrane by colchicine in rats.

    PubMed Central

    Solis-Herruzo, J A; De Gando, M; Ferrer, M P; Hernandez Muñoz, I; Fernandez-Boya, B; De la Torre, M P; Muñoz-Yague, M T

    1993-01-01

    Colchicine is beneficial in the treatment of cirrhotic patients, it prevents changes in plasma membrane bound enzymes induced by CCl4 intoxication. In this study, lipid composition and microviscosity were measured in liver plasma membranes isolated from rats given CCl4. Microviscosity values increased in rats given CCl4 for six weeks but fell considerably in those given CCl4 for 10 weeks. Both these changes were absent when colchicine was given with CCl4. The cholesterol/phospholipid molar ratios and lipid peroxide values increased but plasma membrane phospholipids, the length of fatty acyl chains, and the unsaturation index fell significantly after CCl4 intoxication. Colchicine treatment also prevented these changes. Changes in the lipid composition of liver plasma membranes were significantly correlated with lipid peroxidation. Colchicine prevents changes in the physicochemical properties of liver plasma membranes induced by longterm CCl4 treatment, probably by blocking peroxidation of unsaturated fatty acids. PMID:8244117

  2. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    PubMed Central

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  3. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization.

    PubMed

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2(•-)), and extremely-short-lived (e.g., (•)OH). The concentration of plasma-produced (•)OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of (•)OHaq, resulting from the center-peaked distribution of (•)OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that (•)OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization.

  4. Changes in Rat Myometrial Plasma Membrane Protein Kinase A are Confined to Parturition

    PubMed Central

    Ku, Chun-Ying; Murtazina, Dilyara A.; Kim, Yoon-Sun; Garfield, Robert E.; Sanborn, Barbara M.

    2010-01-01

    We have previously shown that pregnant rat myometrial plasma membrane-associated cAMP-dependent protein kinase A (PKA) decreases prior to delivery, coincident with a decline in the inhibitory effect of cAMP on contractant-stimulated parameters. We now find that rat myometrial membrane-associated PKA concentrations in early to mid-pregnancy are equivalent to those in cycling rats. Following the decline associated with parturition, membrane PKA recovers within 1–2 days postpartum. Treatment with the antiprogestin onapristone caused a decrease in myometrial membrane PKA-catalytic and regulatory subunits compared to untreated controls by 12 h. This coincided temporally with recently reported increases in electrical and contractile activity. In unilaterally pregnant rats, the decline in plasma membrane PKA was observed in both nonpregnant and pregnant horns but was more rapid in the pregnant horns. These data indicate that the myometrial plasma membrane PKA pattern before and during most of pregnancy is not consistent with progesterone exerting a primary influence on PKA membrane localization. Rather, the fall in membrane PKA associated with parturition may contribute to or be influenced by the increased contractile and electrical activity of labor that is a consequence of the loss of progesterone influence and is not absolutely dependent on the presence of fetuses. PMID:20457802

  5. Plasma membrane organization and function: moving past lipid rafts.

    PubMed

    Kraft, Mary L

    2013-09-01

    "Lipid raft" is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein-protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.

  6. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  7. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  8. Endosomal recycling controls plasma membrane area during mitosis.

    PubMed

    Boucrot, Emmanuel; Kirchhausen, Tomas

    2007-05-08

    The shape and total surface of a cell and its daughters change during mitosis. Many cells round up during prophase and metaphase and reacquire their extended and flattened shape during cytokinesis. How does the total area of plasma membrane change to accommodate these morphological changes and by what mechanism is control of total membrane area achieved? Using single-cell imaging methods, we have found that the amount of plasma membrane in attached cells in culture decreases at the beginning of mitosis and recovers rapidly by the end. Clathrin-based endocytosis is normal throughout all phases of cell division, whereas recycling of internalized membranes back to the cell surface slows considerably during the rounding up period and resumes at the time at which recovery of cell membrane begins. Interference with either one of these processes by genetic or chemical means impairs cell division. The total cell-membrane area recovers even in the absence of a functional Golgi apparatus, which would be needed for export of newly synthesized membrane lipids and proteins. We propose a mechanism by which modulation of endosomal recycling controls cell area and surface expression of membrane-bound proteins during cell division.

  9. Palmitoylation of POTE family proteins for plasma membrane targeting

    SciTech Connect

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-11-23

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.

  10. Preparation of immuno-affinity membranes for cholesterol removal from human plasma.

    PubMed

    Denizli, Adil

    2002-06-05

    Anti-low density lipoprotein antibody (anti-LDL) immobilized polyhydroxyethylmethacrylate (pHEMA) based membrane was prepared for selective removal of cholesterol from hypercholesterolemic human plasma. In order to further increase blood-compatibility, a newly synthesized comonomer, methacryloylamidophenylalanine (MAPA) was included in the membrane formulation. p(HEMA-MAPA) membranes were produced by a photopolymerization and then characterized by swelling tests, SEM and contact angle studies. Blood-compatibility tests were also investigated. The water swelling ratio of the p(HEMA-MAPA) membrane increases significantly (133.2.9%) compared with pHEMA (58%). p(HEMA-MAPA) membranes have large pores around in the range of 5-10 microm. All the clotting times increased when compared with pHEMA membranes. Loss of platelets and leukocytes was very low. The maximum anti-LDL antibody immobilization was achieved around pH 7.0. Immobilization of anti-LDL antibody was 12.6 mg/ml. There was a very low non-specific cholesterol adsorption onto the plain p(HEMA-MAPA) membranes, about 0.36 mg/ml. Anti-LDL antibody immobilized membranes adsorbed in the range of 4.5-7.2 mg cholesterol/ml from hypercholesterolemic human plasma. Up to 95% of the adsorbed LDL antibody was desorbed. The adsorption-desorption cycle was repeated 10 times using the same membrane. There was no significant loss in the adsorption capacity.

  11. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  12. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    NASA Astrophysics Data System (ADS)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  13. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  14. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    NASA Astrophysics Data System (ADS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; da Silva Zambom, Luis; Mansano, Ronaldo Domingues

    2007-10-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells.

  15. Changes in lipid composition of hepatocyte plasma membrane induced by overfeeding in duck.

    PubMed

    Molee, W; Bouillier-Oudot, M; Auvergne, A; Babilé, R

    2005-08-01

    This experiment was carried out to examine the influence of overfeeding ducks with corn on the lipid composition of hepatocyte plasma membrane. Seventy-day-old male Mule ducks (Cairina moschata x Anas platyrhynchos) were overfed with corn for 12.5 days in order to induce fatty livers. The cholesterol and phospholipid contents were approximately 50% higher in hepatocyte plasma membranes from fatty livers compared to those of lean livers obtained from non-overfed ducks. However, the cholesterol/phospholipids molar ratio did not differ between both groups. Overfeeding induced a significant change in phospholipid composition of hepatocyte plasma membrane with a decrease in phosphatidylcholine proportion and conversely an increase in phosphatidylethanolamine. The fatty acid profile of phospholipids was also altered. In fatty hepatocyte plasma membrane, the overall proportion of polyunsaturated fatty acids (PUFA) was decreased and this was due to the decrease of some of, but not all, the PUFA. In addition, the proportions of oleic acid and n-9 series unsaturated fatty acids were higher in fatty than in lean liver membranes. This study provides evidence that overfeeding with a carbohydrate-rich corn-based diet induces a de novo hepatic lipogenesis in Mule duck which predominates over dietary lipid intake to change the lipid composition of the hepatocyte plasma membrane.

  16. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    PubMed

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells.

  17. Binding of parathyroid hormone to bovine kidney-cortex plasma membranes

    PubMed Central

    Sutcliffe, H. S.; Martin, T. J.; Eisman, J. A.; Pilczyk, R.

    1973-01-01

    1. Plasma membranes were purified from bovine kidney cortex, with a fourfold increase in specific activity of parathyroid hormone-sensitive adenylate cyclase over that in the crude homogenate. The membranes were characterized by enzyme studies. 2. Parathyroid hormone was labelled with 125I by an enzymic method and the labelled hormone shown to bind to the plasma membranes and to be specifically displaced by unlabelled hormone. Parathyroid hormone labelled by the chloramine-t procedure showed no specific binding. 75Se-labelled human parathyroid hormone, prepared in cell culture, also bound to the membranes. 3. Parathyroid hormone was shown to retain biological activity after iodination by the enzymic method, but no detectable activity remained after chloramine-t treatment. 4. High concentration of pig insulin inhibited binding of labelled parathyroid hormone to plasma membranes and partially inhibited the hormone-sensitive adenylate cyclase activity in a crude kidney-cortex preparation. 5. EDTA enhanced and Ca2+ inhibited binding of labelled parathyroid hormone to plasma membranes. 6. Whereas rat kidney homogenates were capable of degrading labelled parathyroid hormone to trichloroacetic acid-soluble fragments, neither crude homogenates nor purified membranes from bovine kidney showed this property. 7. Binding of parathyroid hormone is discussed in relation to metabolism and initial events in hormone action. PMID:4202755

  18. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation.

    PubMed

    Fujimoto, Toyoshi; Parmryd, Ingela

    2016-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.

  19. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    SciTech Connect

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max (L.) Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with (1-/sup 14/C) acetate, 1 mM Na acetate and 50 ..mu..g/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction.

  20. Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major Players in Plasma Membrane Nanodomain Formation

    PubMed Central

    Fujimoto, Toyoshi; Parmryd, Ingela

    2017-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence. PMID:28119914

  1. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  2. Electrogenic Transport of Protons Driven by the Plasma Membrane ATPase in Membrane Vesicles from Radish 1

    PubMed Central

    Rasi-Caldogno, Franca; Pugliarello, Maria Chiara; De Michelis, Maria Ida

    1985-01-01

    Mg:ATP-dependent H+ pumping has been studied in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings by monitoring both intravesicular acidification and the building up of an inside positive membrane potential difference (Δ ψ). ΔpH was measured as the decrease of absorbance of Acridine orange and Δ ψ as the shift of absorbance of bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol. Both Mg:ATP-dependent Δ pH and Δ ψ generation are completely inhibited by vanadate and insensitive to oligomycin; moreover, Δ pH generation is not inhibited by NO3−. These findings indicate that this membrane preparation is virtually devoid of mitochondrial and tonoplast H+-ATPases. Both intravesicular acidification and Δ ψ generation are influenced by anions: Δ pH increases and Δ ψ decreases following the sequence SO42−, Cl−, Br−, NO3−. ATP-dependent H+ pumping strictly requires Mg2+. It is very specific for ATP (apparent Km 0.76 millimolar) compared to GTP, UTP, CTP, ITP. Δ pH generation is inhibited by CuSO4 and diethylstilbestrol as well as vanadate. Δ pH generation is specificially stimulated by K+ (+ 80%) and to a lesser extent by Na+ and choline (+28% and +14%, respectively). The characteristics of H+ pumping in these microsomal vesicles closely resemble those described for the plasma membrane ATPase partially purified from several plant materials. PMID:16664008

  3. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  4. Therapeutic plasmapheresis using membrane plasma separation.

    PubMed

    Sinha, Aditi; Tiwari, Anand Narain; Chanchlani, Rahul; Seetharamanjaneyulu, V; Hari, Pankaj; Bagga, Arvind

    2012-08-01

    The authors present their experience with therapeutic plasmapheresis (TPE) using membrane filters at the pediatric dialysis unit of a referral center. Between January 2006 and December 2010, 486 sessions of TPE were performed in 39 patients (range 6-17 y), chiefly for atypical hemolytic uremic syndrome (HUS, n = 22), crescentic glomerulonephritis (n = 8) and focal segmental glomerulosclerosis (n = 5). Satisfactory response was noted in 32 patients, particularly with HUS (n = 22) or crescentic glomerulonephritis (n = 6). Adverse effects included chills or urticaria (n = 8 sessions), hypocalcemia (n = 6) and hypotension (n = 5). The present findings highlight the safety, efficacy and feasibility of TPE using membrane filtration.

  5. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies

    PubMed Central

    Zidovetzki, Raphael

    2007-01-01

    The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol. PMID:17493580

  6. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  7. An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast.

    PubMed

    Luo, W j; Chang, A

    2000-02-01

    The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.

  8. Estradiol's interesting life at the cell's plasma membrane.

    PubMed

    Caldwell, J D; Gebhart, V M; Jirikowski, G F

    2016-07-01

    Clearly, we have presented here evidence of a very complex set of mechanisms and proteins involved with various and intricate actions of steroids at the plasma membrane. Steroids do MUCH more at the plasma membrane than simply passing passively through it. They may sit in the membrane; they are bound by numerous proteins in the membrane, including ERs, SHBG, steroid-binding globulin receptors, and perhaps elements of cellular architecture such as tubulin. It also seems likely that the membrane itself responds graphically to the presence of steroids by actually changing its shape as well, perhaps, as accumulating steroids. Clara Szego suggested in the 1980s that actions of E2 at one level would act synergistically with its actions at another level (e.g. membrane actions would complement nuclear actions). Given the sheer number of proteins involved in steroid actions, just at the membrane level, it seems unlikely that every action of a steroid on every potential protein effector will act to the same end. It seems more likely that these multiple effects and sites of effect of steroids contribute to the confusion that exists as to what actions steroids always have. For example, there is confusion with regard to synthetic agents (SERMs etc.) that have different and often opposite actions depending on which organ they act upon. A better understanding of the basic actions of steroids should aid in understanding the variability of their clinical effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cortical actin and the plasma membrane: inextricably intertwined.

    PubMed

    Köster, Darius V; Mayor, Satyajit

    2016-02-01

    The plasma membrane serves as a barrier, separating the cell from its external environment. Simultaneously it acts as a site for information transduction, entry of nutrients, receptor signaling, and adapts to the shape of the cell. This requires local control of organization at multiple scales in this heterogeneous fluid lipid bilayer with a plethora of proteins and a closely juxtaposed dynamic cortical cytoskeleton. New membrane models highlight the influence of the underlying cortical actin on the diffusion of membrane components. Myosin motors as well as proteins that remodel actin filaments have additionally been implicated in defining the organization of many membrane constituents. Here we provide a perspective of the intimate relationship of the membrane lipid matrix and the underlying cytoskeleton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  11. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  12. Charged ultrafiltration membranes increase the selectivity of whey protein separations.

    PubMed

    Bhushan, S; Etzel, M R

    2009-04-01

    Ultrafiltration is widely used to concentrate proteins, but fractionation of one protein from another is much less common. This study examined the use of positively charged membranes to increase the selectivity of ultrafiltration and allow the fractionation of proteins from cheese whey. By adding a positive charge to ultrafiltration membranes, and adjusting the solution pH, it was possible to permeate proteins having little or no charge, such as glycomacropeptide, and retain proteins having a positive charge. Placing a charge on the membrane increased the selectivity by over 600% compared to using an uncharged membrane. The data were fit using the stagnant film model that relates the observed sieving coefficient to membrane parameters such as the flux, mass transfer coefficient, and membrane Peclet number. The model was a useful tool for data analysis and for the scale up of membrane separations for whey protein fractionation.

  13. Modification of plasma membrane organization in tobacco cells elicited by cryptogein.

    PubMed

    Gerbeau-Pissot, Patricia; Der, Christophe; Thomas, Dominique; Anca, Iulia-Andra; Grosjean, Kevin; Roche, Yann; Perrier-Cornet, Jean-Marie; Mongrand, Sébastien; Simon-Plas, Françoise

    2014-01-01

    Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.

  14. AQP2 Plasma Membrane Diffusion Is Altered by the Degree of AQP2-S256 Phosphorylation.

    PubMed

    Arnspang, Eva C; Login, Frédéric H; Koffman, Jennifer S; Sengupta, Prabuddha; Nejsum, Lene N

    2016-10-28

    Fine tuning of urine concentration occurs in the renal collecting duct in response to circulating levels of arginine vasopressin (AVP). AVP stimulates intracellular cAMP production, which mediates exocytosis of sub-apical vesicles containing the water channel aquaporin-2 (AQP2). Protein Kinase A (PKA) phosphorylates AQP2 on serine-256 (S256), which triggers plasma membrane accumulation of AQP2. This mediates insertion of AQP2 into the apical plasma membrane, increasing water permeability of the collecting duct. AQP2 is a homo-tetramer. When S256 on all four monomers is changed to the phosphomimic aspartic acid (S256D), AQP2-S256D localizes to the plasma membrane and internalization is decreased. In contrast, when S256 is mutated to alanine (S256A) to mimic non-phosphorylated AQP2, AQP2-S256A localizes to intracellular vesicles as well as the plasma membrane, with increased internalization from the plasma membrane. S256 phosphorylation is not necessary for exocytosis and dephosphorylation is not necessary for endocytosis, however, the degree of S256 phosphorylation is hypothesized to regulate the kinetics of AQP2 endocytosis and thus, retention time in the plasma membrane. Using k-space Image Correlation Spectroscopy (kICS), we determined how the number of phosphorylated to non-phosphorylated S256 monomers in the AQP2 tetramer affects diffusion speed of AQP2 in the plasma membrane. When all four monomers mimicked constitutive phosphorylation (AQP2-S256D), diffusion was faster than when all four were non-phosphorylated (AQP2-S256A). AQP2-WT diffused at a speed similar to that of AQP2-S256D. When an average of two or three monomers in the tetramer were constitutively phosphorylated, the average diffusion coefficients were not significantly different to that of AQP2-S256D. However, when only one monomer was phosphorylated, diffusion was slower and similar to AQP2-S256A. Thus, AQP2 with two to four phosphorylated monomers has faster plasma membrane kinetics, than the

  15. AQP2 Plasma Membrane Diffusion Is Altered by the Degree of AQP2-S256 Phosphorylation

    PubMed Central

    Arnspang, Eva C.; Login, Frédéric H.; Koffman, Jennifer S.; Sengupta, Prabuddha; Nejsum, Lene N.

    2016-01-01

    Fine tuning of urine concentration occurs in the renal collecting duct in response to circulating levels of arginine vasopressin (AVP). AVP stimulates intracellular cAMP production, which mediates exocytosis of sub-apical vesicles containing the water channel aquaporin-2 (AQP2). Protein Kinase A (PKA) phosphorylates AQP2 on serine-256 (S256), which triggers plasma membrane accumulation of AQP2. This mediates insertion of AQP2 into the apical plasma membrane, increasing water permeability of the collecting duct. AQP2 is a homo-tetramer. When S256 on all four monomers is changed to the phosphomimic aspartic acid (S256D), AQP2-S256D localizes to the plasma membrane and internalization is decreased. In contrast, when S256 is mutated to alanine (S256A) to mimic non-phosphorylated AQP2, AQP2-S256A localizes to intracellular vesicles as well as the plasma membrane, with increased internalization from the plasma membrane. S256 phosphorylation is not necessary for exocytosis and dephosphorylation is not necessary for endocytosis, however, the degree of S256 phosphorylation is hypothesized to regulate the kinetics of AQP2 endocytosis and thus, retention time in the plasma membrane. Using k-space Image Correlation Spectroscopy (kICS), we determined how the number of phosphorylated to non-phosphorylated S256 monomers in the AQP2 tetramer affects diffusion speed of AQP2 in the plasma membrane. When all four monomers mimicked constitutive phosphorylation (AQP2-S256D), diffusion was faster than when all four were non-phosphorylated (AQP2-S256A). AQP2-WT diffused at a speed similar to that of AQP2-S256D. When an average of two or three monomers in the tetramer were constitutively phosphorylated, the average diffusion coefficients were not significantly different to that of AQP2-S256D. However, when only one monomer was phosphorylated, diffusion was slower and similar to AQP2-S256A. Thus, AQP2 with two to four phosphorylated monomers has faster plasma membrane kinetics, than the

  16. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    PubMed

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  17. Mammalian gamete plasma membranes re-assessments and reproductive implications

    USDA-ARS?s Scientific Manuscript database

    Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...

  18. Exclusive photorelease of signalling lipids at the plasma membrane

    PubMed Central

    Nadler, André; Yushchenko, Dmytro A.; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-01-01

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems. PMID:26686736

  19. Selective association of lipoprotein cholesteryl esters with liver plasma membranes.

    PubMed

    Rinninger, F; Jaeckle, S; Greten, H; Windler, E

    1993-02-24

    High-density lipoprotein (HDL) cholesteryl esters are taken up by hepatocytes without parallel uptake of HDL apolipoproteins. This selective uptake of HDL cholesteryl esters is mediated by a non-endocytotic mechanism. Recently, selective uptake of cholesteryl esters also from low-density lipoprotein (LDL) was demonstrated. In this study, the role of the plasma membrane in selective uptake by the liver was investigated. Plasma membranes were prepared from rat liver or from human Hep G2 hepatoma cells. Human HDL3 (d = 1.125-1.21 g/ml) was either radioiodinated or labeled with [3H]cholesteryl oleate. Human low-density lipoprotein (d = 1.019-1.05 g/ml) was labeled in its protein and in its lipid moiety as well. Labeled lipoproteins, unlabeled lipoproteins and membranes were incubated. After separation by ultracentrifugation, apparent lipoprotein particle association with membranes was determined. Plasma membranes from rat liver and Hep G2 cells bound 125I-HDL3, indicating specific HDL3 particle binding. With both types of membrane, apparent HDL3 particle association according to [3H]cholesteryl oleate-labeled HDL3 was in significant excess on that due to 125I-HDL3. This indicates selective, i.e., particle binding independent, association of cholesteryl esters with the membrane. Excess unlabeled HDL3 competed for selective association, indicating a specific process. Selective association of HDL3 cholesteryl esters was concentration-, time-, temperature-dependent; however, parameters differed from HDL3 particle binding. HDL3 was modified by nitration; this modification inhibited HDL3 particle binding in contrast to unchanged selective association. These results suggested distinct membrane sites for HDL3 particle binding and selective cholesteryl ester association. Regulation of selective association was investigated. Hep G2 cells were cholesterol-loaded or cholesterol-depleted. Cellular cholesterol-loading down-regulated selective association of HDL3 cholesteryl esters

  20. Distribution of adenylate cyclase and GTP-binding proteins in hepatic plasma membranes.

    PubMed

    Dixon, B S; Sutherland, E; Alexander, A; Nibel, D; Simon, F R

    1993-10-01

    Hepatic membrane subfractions prepared from control rats demonstrated forskolin (FSK)-stimulated adenylate cyclase activity in the basolateral (sinusoidal) but not apical (canalicular) plasma membrane. After bile duct ligation (BDL) for 12 or 24 h, there was an increase in FSK-stimulated adenylate cyclase activity in the apical membrane (54.2 +/- 3.9 pmol.mg-1 x min-1). The mechanism for this increase was explored further. ATP hydrolysis was found to be much higher in the apical than the basolateral membrane. Increasing the ATP levels in the assay enhanced apical membrane adenylate cyclase activity (10.5 +/- 0.2 pmol.mg-l.min-1); however, total adenosinetriphosphatase (ATPase) activity was not altered after BDL. Extraction of the apical membrane with bile acids or other detergents resulted in a two- to threefold increase in adenylate cyclase activity (30.6 +/- 3.6 pmol.mg-1 x min-1; detergent C12E8) This suggested that bile duct ligation was acting via the detergent-like action of bile acids to uncover latent adenylate cyclase activity on apical membranes. Further studies demonstrated that both BDL and detergent extraction also enhanced toxin-directed ADP-ribosylation of Gs alpha (cholera toxin) and Gi alpha (pertussis toxin) in the apical but not the basolateral membrane. After BDL, Gi alpha was found to be twofold greater in the apical membrane than the basolateral membrane. Immunoblotting using specific G protein antibodies further confirmed that apical membranes from control rats had a higher concentration of Gi1, 2 alpha and beta and slightly elevated levels of Gi3 alpha and Gs alpha compared with the basolateral membrane. The results demonstrate that adenylate cyclase and heterotrimeric GTP-binding proteins are present on the apical membrane, but measurement of their functional activity requires detergent permeabilization of apical membrane vesicles and is limited by the presence of high ATPase activity.

  1. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  2. Fc gamma-receptor activity of isolated human placental syncytiotrophoblast plasma membrane.

    PubMed Central

    Brown, P J; Johnson, P M

    1981-01-01

    Fc gamma-receptor activity of isolated human placental syncytiotrophoblast microvillous plasma membrane (StMPM) vesicle preparations has been determined in an immunoradiometric assay using Sepharose-immobilized protein A to separate free 125I-labelled human IgG from membrane-bound 125I-IgG. This receptor assay has been optimalized in terms of buffer pH and molarity, and used to demonstrate that prior 60 min washing of isolated membranes in 3 M KCl to remove extrinsic membrane-bound protein substantially increases the membrane-binding capacity for IgG. Inhibition studies have determined the syncytiotrophoblast Fc gamma-receptor equilibrium constant for association (Ka) as 4.0 x 10(7) M-1 at 37 degrees and the number of available Fc gamma-receptor sites as 1.5 x 10(14) per mg membrane protein. PMID:7461733

  3. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  4. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    PubMed

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  5. Biochemical properties of platelet microparticle membranes formed during exocytosis resemble organelles more than plasma membrane.

    PubMed

    Olas, Beata; Lundell, Kerstin; Holmsen, Holm; Fukami, Miriam H

    2002-08-14

    Studies of [3H]glycerol turnover in phosphatidylcholine (PC) in platelets revealed two metabolic pools, a 'low turnover PC' in collagen-induced microparticles with specific radioactivity only 10% of that found in the 'high turnover PC' of bulk platelet PC. Isolated organelle fractions of [3H]glycerol-labelled platelets contained [3H]PC with specific radioactivities about 20% of that in membrane fractions. These results together with studies on distribution of concanavalin A-FITC and GPlb, a plasma membrane receptor, indicate that microparticles formed during exocytosis are not simple vesiculations of plasma membrane, but they seem rather to originate from a relatively metabolically static membrane pool not accessible to extracellular reagents.

  6. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels.

    PubMed

    Fröhlich, Florian; Christiano, Romain; Olson, Daniel K; Alcazar-Roman, Abel; DeCamilli, Pietro; Walther, Tobias C

    2014-09-15

    The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain-containing proteins Pil1 and Lsp1, is poorly understood. Here we show that eisosomes interact with the PI(4,5)P2 phosphatase Inp51/Sjl1, thereby recruiting it to the plasma membrane. Pil1 is essential for plasma membrane localization and function of Inp51 but not for the homologous phosphatidylinositol bisphosphate phosphatases Inp52/Sjl2 and Inp53/Sjl3. Consistent with this, absence of Pil1 increases total and available PI(4,5)P2 levels at the plasma membrane. On the basis of these findings, we propose a model in which the eisosomes function in maintaining PI(4,5)P2 levels by Inp51/Sjl1 recruitment. © 2014 Fröhlich et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Bovine plasma proteins increase virulence of Haemophilus somnus in mice.

    PubMed

    Geertsema, Roger S; Kimball, Richard A; Corbeil, Lynette B

    2007-01-01

    The role of bovine serum or plasma proteins in Haemophilus somnus virulence was investigated in a mouse model of septicemia. An increase in virulence was detected when the organism was pre-incubated for 5 min and inoculated with fetal calf serum. When purified bovine serum or plasma proteins were pre-incubated with H. somnus before inoculating into mice, transferrin was found to increase virulence. Bovine lactoferrin was also noted to increase virulence, but to a lesser extent and had a delayed time course when compared with transferrin. Using an ELISA assay, an increased amount of H. somnus whole cells and culture supernatant bound to bovine transferrin when the organism was grown in iron-restricted media. Lactoferrin also bound to H. somnus, but binding was not affected by growth in iron-restricted media and it was eliminated with 2M NaCl, which reversed charge mediated binding. Transferrin, but not lactoferrin, supported growth of H. somnus on iron-depleted agar based media using a disk assay. Therefore, lactoferrin increased virulence by an undetermined mechanism whereas transferrin increased virulence of H. somnus by binding to iron-regulated outer-membrane proteins (IROMPs) and providing iron to the pathogen.

  8. Significance of the plasma membrane for the nerve cell function, development and plasticity.

    PubMed

    Mourek, Jindrich; Langmeier, Milos; Pokorny, Jaroslav

    2009-01-01

    Lipoid character of plasma membrane namely the presence of polyenic fatty acids enables to interact with membrane proteins and in certain extent also to modulate their function. During the development, molecules of membrane fatty acids become more and more complex, and the ratio of polyenic fatty acids/saturated fatty acids in the brain rises, while the concentration of monoenic fatty acids remained relatively stable. This phenomenon is apparent also in the ratio of unsaturated fatty acids OMEGA-3 in plasma of newborns which correlates with the birth weight. Plasma membrane reflects local specializations of nerve cells. Its composition varies in functionally specialized regions called domains. Specialized domains of nerve cells determine the function of dendrites, soma, axon, axon hillock ect. Premature weaning of laboratory rats results in structural changes and in the increase of excitability of neuronal circuits in hypothalamus, septum and hippocampus which indicate the possibility of membrane composition changes. In synapses, transport proteins of synaptic vesicles, act together with the specific proteins of the presynaptic membrane. Membrane proteins determine the release of neurotransmitter at different conditions of synaptic activity, and they can contribute to the recovery of neurotransmitter content after the repeated hyperactivity. In the model of experimental kindling, repeated seizures bring about decreases and distribution changes of synaptic vesicles.

  9. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  10. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    PubMed

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  11. The Nogo-B receptor promotes Ras plasma membrane localization and activation.

    PubMed

    Zhao, B; Hu, W; Kumar, S; Gonyo, P; Rana, U; Liu, Z; Wang, B; Duong, W Q; Yang, Z; Williams, C L; Miao, Q R

    2017-06-15

    The localization of prenylated Ras at the plasma membrane promotes activation of Ras by receptor tyrosine kinases and stimulates oncogenic signaling by mutant Ras. The Nogo-B receptor (NgBR) is a transmembrane receptor that contains a conserved hydrophobic pocket. Here, we demonstrate that the NgBR promotes the membrane accumulation of Ras by directly binding prenylated Ras at the plasma membrane. We show that NgBR knockdown diminishes the membrane localization of Ras in multiple cell types. NgBR overexpression in NIH-3T3 fibroblasts increases membrane-associated Ras, induces the transformed phenotype in vitro, and promotes the formation of fibrosarcoma in nude mice. NgBR knockdown in human breast cancer cells reduces Ras membrane localization, inhibits epidermal growth factor (EGF)-stimulated Ras signaling and diminishes tumorigenesis of xenografts in nude mice. Our data demonstrate that NgBR is a unique receptor that promotes accumulation of prenylated Ras at the plasma membrane and promotes EGF pathways.

  12. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O2-plasma treated PLA membranes

  13. Characterization of plasma membrane H(+)-ATPase from salt-tolerant yeast Candida versatilis.

    PubMed

    Watanabe, Y; Yamaguchi, M; Sakamoto, J; Tamai, Y

    1993-03-01

    Plasma membrane was isolated from the salt-tolerant yeast Candida versatilis and the ATPase in plasma membrane was characterized. The ATPase was a typical H(+)-ATPase with similar properties to the Saccharomyces cerevisiae and Zygosaccharomyces rouxii enzymes. It was reacted with antibody (IgG) raised against S. cerevisiae plasma membrane H(+)-ATPase. The ATPase activity was not changed by adding NaCl and KCl to the assay solutions, but was increased by NH4+, especially by ammonium sulfate. In vivo stimulation of ATPase activity was observed by the addition of NaCl into the culture medium, as observed in Z. rouxii. No in vivo activation of H(+)-ATPase by glucose metabolism was observed in C. versatilis cells and the activity was independent of the growth phase, like Z. rouxii and unlike S. cerevisiae cells.

  14. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids.

    PubMed

    Cao, Jing; Schwichtenberg, Kerry A; Hanson, Naomi Q; Tsai, Michael Y

    2006-12-01

    The sum of eicosapentaenoic acid (EPA, 20:5 omega3) and docosahexaenoic acid (DHA, 22:6 omega3) in erythrocyte membranes, termed the omega-3 index, can indicate suboptimal intake of omega-3 fatty acids, a risk factor for cardiovascular disease (CVD). To study the effects of fatty acid supplementation, we investigated the rate of incorporation and clearance of these fatty acids in erythrocyte membranes and plasma after intake of supplements. Twenty study participants received supplementation with either fish oil (1296 mg EPA + 864 mg DHA/day) or flaxseed oil (3510 mg alpha-linolenic acid + 900 mg linoleic acid/day) for 8 weeks. We obtained erythrocyte membrane and plasma samples at weeks 0, 4, 8, 10, 12, 14, 16, and 24 and extracted and analyzed fatty acids by gas chromatography. After 8 weeks of fish oil supplementation, erythrocyte membrane EPA and DHA increased 300% (P < 0.001) and 42% (P < 0.001), respectively. The mean erythrocyte omega-3 index reached a near optimal value of 7.8%, and remained relatively high until week 12. EPA and DHA showed greater increases and more rapid washout period decreases in plasma phospholipids than in erythrocyte membranes. Flaxseed oil supplementation increased erythrocyte membrane EPA to 133% (P < 0.05) and docosapentaenoic acid (DPA, 22:5 omega3) to 120% (P < 0.01) of baseline, but DHA was unchanged. In plasma phospholipids, EPA, DPA, and DHA showed a slight but statistically insignificant increase. Erythrocyte membrane EPA+DHA increases during relatively short intervals in response to supplementation at rates related to amount of supplementation. These results may be useful to establish appropriate dosage for omega-3 fatty acid supplementation.

  15. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.

    PubMed

    Kusumi, Akihiro; Shirai, Yuki M; Koyama-Honda, Ikuko; Suzuki, Kenichi G N; Fujiwara, Takahiro K

    2010-05-03

    Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.

  16. Plant cell plasma membrane structure and properties under clinostatting

    NASA Astrophysics Data System (ADS)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  17. Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Murdock, David R.; Ermilov, Sergey A.; Qian, Feng; Brownell, William E.; Anvari, Bahman

    2004-06-01

    An optical tweezers system was used to study the mechanical characteristics of the outer hair cell (OHC) lateral wall by forming plasma membrane tethers. A 2nd order generalized Kelvin model was applied to describe the viscoelastic behavior of OHC membrane tethers. The measured parameters included equilibrium tethering force, (Feq), force relaxation times (τ), stiffness values (κ), and coefficients of friction (μ). An analysis of force relaxation in membrane tethers indicated that the force decay is a biphasic process containing both an elastic and a viscous phase. In general, we observed an overall negative trend in the measured parameters upon application of the cationic amphipath chlorpromazine (CPZ). CPZ was found to cause up to a 40 pN reduction in Feq in OHCs. A statistically significant reduction in relaxation times and coefficients of friction was also observed, suggesting an increase in rate of force decay and a decrease in plasma membrane viscosity.

  18. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane

    PubMed Central

    Iaea, David B.; Mao, Shu; Lund, Frederik W.; Maxfield, Frederick R.

    2017-01-01

    Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC. PMID:28209730

  19. Nonidet P-40 extraction of lymphocyte plasma membrane. Characterization of the insoluble residue.

    PubMed

    Davies, A A; Wigglesworth, N M; Allan, D; Owens, R J; Crumpton, M J

    1984-04-01

    Purified preparations of lymphocyte plasma membrane were extracted exhaustively with Nonidet P-40 in Dulbecco's phosphate-buffered saline medium. The insoluble fraction, as defined by sedimentation at 10(6) g-min, contained about 10% of the membrane protein as well as cholesterol and phospholipid. The lipid/protein ratio, cholesterol/phospholipid ratio and sphingomyelin content were increased in the residue. Density-gradient centrifugation suggested that the lipid and protein form a common entity. As judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Nonidet P-40-insoluble fractions of the plasma membranes of human B lymphoblastoid cells and pig mesenteric lymph-node lymphocytes possessed similar qualitative polypeptide compositions but differed quantitatively. Both residues comprised major polypeptides of Mr 28 000, 33 000, 45 000 and 68 000, together with a prominent band of Mr 120 000 in the human and of Mr 200 000 in the pig. The polypeptides of Mr 28 000, 33 000, 68 000 and 120 000 were probably located exclusively in the Nonidet P-40-insoluble residue, which also possessed a 4-fold increase in 5'-nucleotidase specific activity. The results indicate that a reproducible fraction of lymphocyte plasma membrane is insoluble in non-ionic detergents and that this fraction possesses a unique polypeptide composition. By analogy with similar studies with erythrocyte ghosts, it appears likely that the polypeptides are located on the plasma membrane's cytoplasmic face.

  20. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane.

    PubMed

    Iaea, David B; Mao, Shu; Lund, Frederik W; Maxfield, Frederick R

    2017-02-16

    Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and non-vesicular sterol transport processes. Using the fluorescent cholesterol analog, dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 of 12-15 minutes. Approximately 70% of sterol transport is ATP-independent and, therefore, non-vesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. We found that a soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of non-vesicular sterol transport between the plasma membrane and ERC. This study shows that non-vesicular sterol transport mechanisms, and STARD4 in particular, account for a large fraction of sterol transport between the plasma membrane and the ERC.

  1. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].

    PubMed

    Fang, Wei; Zeng, Shu-Guang; Gao, Wen-Feng

    2015-04-01

    To prepare and characterize a nano-scale fibrous hydrophilic poly-L-lactic acid/ Bioglass (PLLA/BG) composite membrane and evaluate its biocompatibility as a composite membrane for guiding bone regeneration (GBR). PLLA/BG-guided bone regeneration membrane was treated by oxygen plasma to improved its hydrophilicity. The growth of MG-63 osteoblasts on the membrane was observed using Hoechst fluorescence staining, and the biocompatibility of the membrane was evaluated by calculating the cells adhesion rate and proliferation rate. Osteogenesis of MG-63 cells was assessed by detecting alkaline phosphatase (ALP), and the formation of calcified nodules and cell morphology changes were observed using scanning electron microscope (SEM). The cell adhesion rates of PLLA/BG-guided bone regeneration membrane treated with oxygen plasma were (30.570±0.96)%, (47.27±0.78)%, and (66.78±0.69)% at 1, 3, and 6 h, respectively, significantly higher than those on PLLA membrane and untreated PLLA/BG membrane (P<0.01). The cell proliferation rates on the 3 membranes increased with time, but highest on oxygen plasma-treated PLLA/BG membrane (P<0.01). Hoechst fluorescence staining revealed that oxygen plasma treatment of the PLLA/BG membrane promoted cell adhesion. The membranes with Bioglass promoted the matrix secretion of the osteoblasts. Under SEM, the formation of calcified nodules and spindle-shaped cell morphology were observed on oxygen plasma-treated PLLA/BG membrane. Oxygen plasma-treated PLLA/BG composite membrane has good biocompatibility and can promote adhesion, proliferation and osteogenesis of the osteoblasts.

  2. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages.

    PubMed

    de la Haba, Carlos; Palacio, José R; Martínez, Paz; Morros, Antoni

    2013-02-01

    Plasma membrane is one of the preferential targets of reactive oxygen species which cause lipid peroxidation. This process modifies membrane properties such as membrane fluidity, a very important physical feature known to modulate membrane protein localization and function. The aim of this study is to evaluate the effect of oxidative stress on plasma membrane fluidity regionalization of single living THP-1 macrophages. These cells were oxidized with H(2)O(2) at different concentrations, and plasma membrane fluidity was analyzed by two-photon microscopy in combination with the environment-sensitive probe Laurdan. Results show a significant H(2)O(2) concentration dependent increase in the frequency of rigid lipid regions, mainly attributable to lipid rafts, at the expense of the intermediate fluidity regions. A novel statistical analysis evaluated changes in size and number of lipid raft domains under oxidative stress conditions, as lipid rafts are platforms aiding cell signaling and are thought to have relevant roles in macrophage functions. It is shown that H(2)O(2) causes an increase in the number, but not the size, of raft domains. As macrophages are highly resistant to H(2)O(2), these new raft domains might be involved in cell survival pathways.

  3. Low energy plasma treatment of Nafion ® membranes for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ramdutt, Devin; Charles, Christine; Hudspeth, Jessica; Ladewig, Bradley; Gengenbach, Thomas; Boswell, Rod; Dicks, Andrew; Brault, Pascal

    Understanding the effects plasmas have on polymer electrolyte membranes such as Nafion is important if plasma technologies are to be employed in the fabrication of MEA components. An argon plasma has been used to treat the surface of Nafion membranes at several energy doses from 0 to 3.056 J cm -2. The effect of the treatment has been characterised using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) as well as measuring water contact angles, proton conductivity and electrical performance. It was found that as energy dose is increased, hydrophobicity of the membrane decreases, as does proton conductivity. The water contact angle for untreated Nafion is around 120° while the surface treated with the maximum dose has a contact angle of 50°. Similarly the proton conductivity drops from above 200 to 35.8 mS cm -1. SEM and AFM results showed only a small change in the surface roughness of the treated samples while XPS results indicated a marked reduction in the concentration of fluorine at the surface of the membrane for increasing dose. Fuel cell electrical performance was also very poor for the treated membranes and this was attributed to the decrease in conductivity as well as an observed poor adherence between electrode and membrane in the pressed MEA.

  4. Active transport of calcium in Neurospora plasma membrane vesicles.

    PubMed Central

    Stroobant, P; Scarborough, G A

    1979-01-01

    Functionally inverted plasma membrane vesicles isolated from the eukaryotic microorganism Neurospora crassa catalyze Mg2+/ATP-dependent Ca2+ uptake. Inhibitors induced efflux studies and isotope-exchange experiments indicate that the Ca2+ is accumulated inside the vesicles against a concentration gradient of about 40-fold, and that the majority of the transported Ca2+ is present essentially in free solution. Comparisons of Mg2+/ATP-driven 45Ca2+ uptake and [14C]SCN-uptake with respect to the Mg2+/ATP concentration dependence, the effects of inhibitors, and the nucleotide and divalent cation specificities indicate that the energy for Ca2+ accumulation is derived from ATP hydrolysis catalyzed by the electrogenic plasma membrane ATPase. Energized Ca2+ uptake is stimulated by the permeant anion SCN- to a degree that varies reciprocally with the ability of this anion to dissipate the membrane potential, and is inhibited by K+ in the presence of nigericin. All of these data point to the conclusion that the active transport of Ca2+ across the Neurospora plasma membrane takes place via a Ca2+/H+ antiporter, which functions to pump Ca2+ out of the intact cell. PMID:40223

  5. A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change.

    PubMed

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change.

  6. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  7. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    PubMed

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    PubMed

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water.

  9. Plasma membrane fluidity affects transient immobilization of oxidized phospholipids in endocytotic sites for subsequent uptake.

    PubMed

    Rhode, Sebastian; Grurl, Reinhard; Brameshuber, Mario; Hermetter, Albin; Schütz, Gerhard J

    2009-01-23

    Oxidized phospholipids in serum initiate severe pathophysiological responses during the process of atherogenesis. On the cellular level it is known that these lipids induce apoptosis; however, the uptake mechanism remains enigmatic. We investigated here the behavior of the fluorescent oxidized phospholipid 1-palmitoyl-2-glutaroyl-sn-glycero-3-phospho-N-Alexa647-ethanolamine (PGPE-Alexa647) in the plasma membrane of various cell lines. The probe was taken up by the cells unspecifically via caveolae or clathrin-coated pits. Interestingly, we found the uptake to be facilitated by the overexpression of the scavenger receptor class B type I. Ultra-sensitive microscopy allowed us to follow the uptake process at the single molecule level; we observed rapid diffusion of PGPE-Alexa647 in the plasma membrane, interrupted by transient halts with duration of approximately 0.9 s at endocytotic sites. Scavenger receptor class B type I overexpression yielded a pronounced increase in the single molecule mobility, and in consequence an increased frequency of immobilization. Alternatively, the plasma membrane fluidity could also be increased by treating cells with high levels of the unlabeled oxidized phospholipid 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine; also in this case, the immobilization frequency of PGPE-Alexa647 was concomitantly increased. The data demonstrate the relevance of plasma membrane properties for uptake of oxidized phospholipids, and indicate a novel indirect mechanism for the control of endocytosis.

  10. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex.

    PubMed

    Ratajczak, M Z; Lee, H; Wysoczynski, M; Wan, W; Marlicz, W; Laughlin, M J; Kucia, M; Janowska-Wieczorek, A; Ratajczak, J

    2010-05-01

    The complement cascade (CC) becomes activated and its cleavage fragments play a crucial role in the mobilization of hematopoietic stem/progenitor cells (HSPCs). Here, we sought to determine which major chemoattractant present in peripheral blood (PB) is responsible for the egress of HSPCs from the bone marrow (BM). We noticed that normal and mobilized plasma strongly chemoattracts HSPCs in a stromal-derived factor-1 (SDF-1)-independent manner because (i) plasma SDF-1 level does not correlate with mobilization efficiency; (ii) the chemotactic plasma gradient is not affected in the presence of AMD3100 and (iii) it is resistant to denaturation by heat. Surprisingly, the observed loss of plasma chemotactic activity after charcoal stripping suggested the involvement of bioactive lipids and we focused on sphingosine-1-phosphate (S1P), a known chemoattracant of HSPCs. We found that S1P (i) creates in plasma a continuously present gradient for BM-residing HSPCs; (ii) is at physiologically relevant concentrations a chemoattractant several magnitudes stronger than SDF-1 and (iii) its plasma level increases during mobilization due to CC activation and interaction of the membrane attack complex (MAC) with erythrocytes that are a major reservoir of S1P. We conclude and propose a new paradigm that S1P is a crucial chemoattractant for BM-residing HSPCs and that CC through MAC induces the release of S1P from erythrocytes for optimal egress/mobilization of HSPCs.

  11. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1990-01-01

    The goals of this project are to provide a mechanistic understanding of freeze/dehydration induced mesomorphic phase transitions if the plasma membrane of winter cereals. Topics discussed include freezing tolerance, hydration characteristics of plasma membrane lipids force-distance relationships of lipid bilayers, and phase behavior of plasma membrane lipids. (KD)

  12. Purinergic receptor stimulation increases membrane trafficking in brown adipocytes

    PubMed Central

    1996-01-01

    Stimulation of brown adipocytes by their sympathetic innervation plays a major role in body energy homeostasis by regulating the energy- wasting activity of the tissue. The norepinephrine released by sympathetic activity acts on adrenergic receptors to activate a variety of metabolic and membrane responses. Since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. We find that micromolar concentrations of extracellular ATP initiates profound changes in the membrane trafficking of brown adipocytes. ATP elicited substantial increases in total cell membrane capacitance, averaging approximately 30% over basal levels and occurring on a time scale of seconds to minutes. The membrane capacitance increase showed an agonist sensitivity of 2-methylthio-ATP > or = ATP > ADP > > adenosine, consistent with mediation by a P2r type purinergic receptor. Membrane capacitance increases were not seen when cytosolic calcium was increased by adrenergic stimulation, and capacitance responses to ATP were similar in the presence and absence of extracellular calcium. These results indicate that increases in cytosolic calcium alone do not mediate the membrane response to ATP. Photometric assessment of surface-accessible membrane using the dye FM1- 43 showed that ATP caused an approximate doubling of the amount of membrane actively trafficking with the cell surface. The discrepancy in the magnitudes of the capacitance and fluorescence changes suggests that ATP both activates exocytosis and alters other aspects of membrane handling. These findings suggest that secretion, mobilization of membrane transporters, and/or surface membrane expression of receptors may be regulated in brown adipocytes by P2r purinergic receptor activity. PMID:8923265

  13. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    PubMed

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-04

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  14. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    PubMed

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  15. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed.

  16. Chloroquine accumulation by purified plasma membranes from Plasmodium falciparum.

    PubMed

    Elandaloussi, Laurence M; Smith, Peter J

    2006-01-01

    Resistance of Plasmodium falciparum to chloroquine (CQ) has been associated with a decrease in CQ accumulation by parasitized erythrocytes. This study aimed at investigating the role of parasite plasma membranes (PPM) in the mechanism of CQ accumulation. CQ accumulation capabilities of membranes were determined using tritiated CQ. PPM isolated from chloroquine-sensitive parasites were found to accumulate less CQ than those isolated from chloroquine-resistant parasites. However, CQ accumulation was found to be ATP-independent suggesting that this accumulation results from binding rather than transport.

  17. The plasma membrane is involved in the visible light-tissue interaction.

    PubMed

    Lavi, Ronit; Ankri, Rinat; Sinyakov, Michael; Eichler, Maor; Friedmann, Harry; Shainberg, Asher; Breitbart, Haim; Lubart, Rachel

    2012-01-01

    The aim of the present study was to determine whether the plasma membrane is also involved in the light-tissue interaction because of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase electron chain, which can serve as a photosensitizer. It has been suggested that the mechanism of photobiostimulation involves light-induced low levels of reactive oxygen species (ROS) that serve as signal transduction messengers. Production of ROS following visible-light irradiation was verified by the electron paramagnetic resonance (EPR) spin-trapping technique, and the mitochondrial cytochromes were suggested as the main cellular target for visible-light absorption. Isolated sperm membranes were illuminated with visible light and the increase in oxygen radical production was measured using the EPR spin-trapping technique coupled with the probe 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). A broadband visible light source (400-800 nm) at 40-130 mW/cm(2) with appropriate filters provided the illumination. In order to determine whether the light-induced ROS production is a result of a photo-accelerated electron transfer in the enzyme-catalyzed reaction with oxygen in the plasma membrane, or resulted from a photochemical reaction of the chromophores alone with oxygen, denatured membranes were irradiated as well. Visible-light-induced oxyradicals were detected in isolated sperm membranes. Blue light was found to be more effective than red. Illuminated denatured membranes produced the same amount of ROS as non-denatured membranes. Visible-light illumination, especially in the blue region, increases ROS levels in isolated plasma membranes. The mechanism of ROS formation is probably a photochemical reaction of the membranal chromophhores, for example, cytochromes or flavins with oxygen, and not an enzyme-catalyzed photochemical reaction.

  18. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain

    SciTech Connect

    Durrie, R.; Saito, M.; Rosenberg, A.

    1988-05-17

    Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl(/sup 14/C)neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides. Synaptosomal SAT exhibited a lower activity, but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAc..cap alpha..2 ..-->.. 8NeuAc..cap alpha..2 ..-->.. 3Gal..beta..1 ..-->.. 4Glc..beta..1 ..-->.. 1Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased, which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system.

  19. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  20. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion

    PubMed Central

    Fernandes, Maria Cecilia; Cortez, Mauro; Flannery, Andrew R.; Tam, Christina; Mortara, Renato A.

    2011-01-01

    Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca2+ transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca2+-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells. PMID:21536739

  1. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    PubMed

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Imaging of blood plasma coagulation at supported lipid membranes.

    PubMed

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  4. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    PubMed

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  5. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  6. Increased response of Vero cells to PHBV matrices treated by plasma.

    PubMed

    Lucchesi, Carolina; Ferreira, Betina M P; Duek, Eliana A R; Santos, Arnaldo R; Joazeiro, Paulo P

    2008-02-01

    The copolymers poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) are being intensely studied as a tissue engineering substrate. It is known that poly 3-hydroxybutyric acids (PHBs) and their copolymers are quite hydrophobic polyesters. Plasma-surface modification is an effective and economical surface treatment technique for many materials and of growing interest in biomedical engineering. In this study we investigate the advantages of oxygen and nitrogen plasma treatment to modify the PHBV surface to enable the acceleration of Vero cell adhesion and proliferation. PHBV was dissolved in methylene chloride at room temperature. The PHBV membranes were modified by oxygen or nitrogen-plasma treatments using a plasma generator. The membranes were sterilized by UV irradiation for 30 min and placed in 96-well plates. Vero cells were seeded onto the membranes and their proliferation onto the matrices was also determined by cytotoxicity and cell adhesion assay. After 2, 24, 48 and 120 h of incubation, growth of fibroblasts on matrices was observed by scanning electron microscopy (SEM). The analyses of the membranes indicated that the plasma treatment decreased the contact angle and increased the surface roughness; it also changed surface morphology, and consequently, enhanced the hydrophilic behavior of PHBV polymers. SEM analysis of Vero cells adhered to PHBV treated by plasma showed that the modified surface had allowed better cell attachment, spreading and growth than the untreated membrane. This combination of surface treatment and polymer chemistry is a valuable guide to prepare an appropriate surface for tissue engineering application.

  7. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets.

    PubMed

    Dionisio, Natalia; Galán, Carmen; Jardín, Isaac; Salido, Ginés M; Rosado, Juan A

    2011-03-01

    STIM1 is a transmembrane protein essential for the activation of store-operated Ca²+ entry (SOCE), a major Ca²+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca²+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca²+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca²+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca²+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn²+ entry, which was inhibited by increasing concentrations of extracellular Ca²+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca²+ entry induced by extracellular Ca²+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca²+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca²+ mediated by the interaction between plasma membrane-located STIM1 and Orai1. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L. ) storage tissue

    SciTech Connect

    Giannini, J.L.; Gildensoph, L.H.; Briskin, D.P.

    1987-05-01

    Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.

  9. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    PubMed

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  10. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells

    PubMed Central

    1975-01-01

    The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane. PMID:163833

  11. THE RELATIONS OF THE PLASMA MEMBRANE, VITELLINE MEMBRANE, AND JELLY IN THE EGG OF NEREIS LIMBATA

    PubMed Central

    Costello, Donald P.

    1949-01-01

    1. The problem of the relation of the plasma membrane to the extraneous coats and cortex of the Nereis egg is discussed in the light of the observations of Lillie, Chambers, and Novikoff. 2. Evidence obtained from experiments with the centrifuge, and by treating eggs with alkaline sodium chloride, indicates that the plasma membrane of the unfertilized egg is external to the jelly precursor granules of the cortex. 3. Experiments with alkaline sodium chloride indicate that the perivitelline space of the fertilized egg is extraovular after jelly extrusion is complete. 4. The cortical behavior (membrane elevation) of the Nereis egg in alkaline sodium chloride and the cortical response (jelly extrusion) following activation of the egg in normal fertilization or parthenogenesis are attributed largely to the properties of the jelly, and presumably, to its reactions with calcium and hydroxyl ions. PMID:18123313

  12. Plasma-membrane calcium pumps and hereditary deafness.

    PubMed

    Brini, M; Di Leva, F; Domi, T; Fedrizzi, L; Lim, D; Carafoli, E

    2007-11-01

    In mammals, four different genes encode four PMCA (plasma-membrane Ca(2+)-ATPase) isoforms. PMCA1 and 4 are expressed ubiquitously, and PMCA2 and 3 are expressed predominantly in the central nervous system. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of so many isoforms is not clear, but evidently it must be related to the cell-specific demands of Ca(2+) homoeostasis. Recent studies suggest that the alternatively spliced regions in PMCA are responsible for specific targeting to plasma membrane domains, and proteins that bind specifically to the pumps could contribute to further regulation of Ca(2+) control. In addition, the combination of proteins obtained by alternative splicing occurring at two different sites could be responsible for different functional characteristics of the pumps.

  13. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity.

    PubMed

    Turk, Martina; Montiel, Vera; Zigon, Dusan; Plemenitas, Ana; Ramos, José

    2007-10-01

    Debaryomyces hansenii is a marine yeast that has to cope with different stress situations. Since changes in membrane properties can play an important function in adaptation, we have examined the fluidity and lipid composition of purified plasma membranes of D. hansenii grown at different external pH values and salt concentrations. Growth at low pH caused an increase in the sterol-to-phospholipid ratio and a decrease in fatty acid unsaturation which was reflected in decreased fluidity of the plasma membrane. High levels of NaCl increased the sterol-to-phospholipid ratio and fatty acid unsaturation, but did not significantly affect fluidity. The sterol-to-phospholipid ratios obtained in D. hansenii grown under any of these conditions were similar to the ratios that have been reported for halophilic/halotolerant black yeasts, but much smaller than those observed in the model yeast Saccharomyces cerevisiae.

  14. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae.

    PubMed

    Hu, Chun-Keng; Bai, Feng-Wu; An, Li-Jia

    2005-09-01

    A combination of three amino acids including 1.0 g/L isoleucine, 0.5 g/L methionine and 2.0 g/L phenylalanine was found to enhance ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. When subjected to 20% (V/V) ethanol for 9 h at 30 degrees C, all cells died whereas 57% remained viable for the cells grown in the presence of the three amino acids. Based on the analysis of protein amino acid composition of plasma membranes and the determination of plasma membrane fluidity by measuring fluorescence anisotropy using diphenylhexatriene as a probe, it was found that the significantly increased ethanol tolerance of cells grown with the three amino acids was due to the incorporation of the supplementary amino acids into the plasma membranes, thus resulting in enhanced ability of the plasma membranes to efficiently counteract the fluidizing effect of ethanol when subjected to ethanol stress. This is the first time to report that plasma membrane fluidity can be influenced by protein amino acid composition of plasma membranes.

  15. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane

    PubMed Central

    Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi

    2016-01-01

    Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p < 0.05), increased total antioxidant capacity (T-AOC) activity and decreased malondialdehyde (MDA) content. The diluent containing four times concentration of exosomes compared to original semen was determined to inhibit premature capacitation, but not to influence capacitation induced in vitro. Inhibition of premature capacitation is likely related to the concentration of exosomes which had been demonstrated to transfer proteins including AWN and PSP-1 into sperm. In addition, using fluorescence microscopy and scanning electron microscopy analysis, it was demonstrated that exosomes in diluent were directly binding to the membrane of sperm head which could improve sperm plasma membrane integrity. PMID:27542209

  16. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane.

    PubMed

    Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi

    2016-09-13

    Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p < 0.05), increased total antioxidant capacity (T-AOC) activity and decreased malondialdehyde (MDA) content. The diluent containing four times concentration of exosomes compared to original semen was determined to inhibit premature capacitation, but not to influence capacitation induced in vitro. Inhibition of premature capacitation is likely related to the concentration of exosomes which had been demonstrated to transfer proteins including AWN and PSP-1 into sperm. In addition, using fluorescence microscopy and scanning electron microscopy analysis, it was demonstrated that exosomes in diluent were directly binding to the membrane of sperm head which could improve sperm plasma membrane integrity.

  17. Plasma Membrane Lipids and Their Role in Fungal Virulence

    PubMed Central

    Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains has been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. PMID:26703191

  18. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  19. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  20. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    PubMed

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  1. TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane.

    PubMed

    Brauchi, Sebastian; Krapivinsky, Grigory; Krapivinsky, Luba; Clapham, David E

    2008-06-17

    TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.

  2. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  3. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment.

    PubMed

    Yu, Hai-Yin; He, Xiao-Chun; Liu, Lan-Qin; Gu, Jia-Shan; Wei, Xian-Wen

    2007-12-01

    Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. The polypropylene hollow fiber microporous membranes (PPHFMMs) were surface modified by N(2) low-temperature plasma treatment to improve the antifouling characteristics. Morphological changes on the membrane surface were characterized by field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurements. The static water contact angle of the modified membrane reduced obviously; the relative pure water flux of the modified membranes increased with the increase of plasma treatment time. To assess the relation between plasma treatment and membrane fouling in a submerged membrane bioreactor (SMBR), filtration of activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 90 h, flux recoveries for the N(2) plasma-treated PPHFMM for 8 min were 62.9% and 67.8% higher than those of the virgin membrane after water and NaOH cleaning. The irreversible fouling resistance decreased after plasma treatment.

  4. Determinants of plasma membrane wounding by deforming stress.

    PubMed

    Oeckler, Richard A; Lee, Won-Yeon; Park, Mun-Gi; Kofler, Othmar; Rasmussen, Deborah L; Lee, Heung-Bum; Belete, Hewan; Walters, Bruce J; Stroetz, Randolph W; Hubmayr, Rolf D

    2010-12-01

    Once excess liquid gains access to air spaces of an injured lung, the act of breathing creates and destroys foam and thereby contributes to the wounding of epithelial cells by interfacial stress. Since cells are not elastic continua, but rather complex network structures composed of solid as well as liquid elements, we hypothesize that plasma membrane (PM) wounding is preceded by a phase separation, which results in blebbing. We postulate that interventions such as a hypertonic treatment increase adhesive PM-cytoskeletal (CSK) interactions, thereby preventing blebbing as well as PM wounds. We formed PM tethers in alveolar epithelial cells and fibroblasts and measured their retractive force as readout of PM-CSK adhesive interactions using optical tweezers. A 50-mOsm increase in media osmolarity consistently increased the tether retractive force in epithelial cells but lowered it in fibroblasts. The osmo-response was abolished by pretreatment with latrunculin, cytochalasin D, and calcium chelation. Epithelial cells and fibroblasts were exposed to interfacial stress in a microchannel, and the fraction of wounded cells were measured. Interventions that increased PM-CSK adhesive interactions prevented blebbing and were cytoprotective regardless of cell type. Finally, we exposed ex vivo perfused rat lungs to injurious mechanical ventilation and showed that hypertonic conditioning reduced the number of wounded subpleural alveolus resident cells to baseline levels. Our observations support the hypothesis that PM-CSK adhesive interactions are important determinants of the cellular response to deforming stress and pave the way for preclinical efficacy trials of hypertonic treatment in experimental models of acute lung injury.

  5. Plasma membrane wounding and repair in pulmonary diseases.

    PubMed

    Cong, Xiaofei; Hubmayr, Rolf D; Li, Changgong; Zhao, Xiaoli

    2017-03-01

    Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.

  6. Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    PubMed Central

    Surls, Jacqueline; Nazarov-Stoica, Cristina; Kehl, Margaret; Olsen, Cara; Casares, Sofia; Brumeanu, Teodor-D.

    2012-01-01

    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response. PMID:22723880

  7. Biochemical characterization and membrane fluidity of membranous vesicles isolated from boar seminal plasma.

    PubMed

    Piehl, Lidia L; Cisale, Humberto; Torres, Natalia; Capani, Francisco; Sterin-Speziale, Norma; Hager, Alfredo

    2006-05-01

    Mammalian seminal plasma contains membranous vesicles (MV), which differ in composition and origin. Among these particles, human prostasomes and equine prostasome-like MV have been the most studied. The aim of the present work is to characterize the biochemical composition and membrane fluidity of MV isolated from boar seminal plasma. The MV from boar seminal plasma were isolated by ultracentrifugation and further purification by gel filtration on Sephadex G-200. The MV were examined by electron microscopy (EM), amount of cholesterol, total phospholipid, protein content, and phospholipid composition were analyzed. Membrane fluidity of MV and spermatozoa were estimated from the electron spin resonance (ESR) spectra of the 5-doxilstearic acid incorporated into the vesicle membranes by the order parameter (S). The S parameter gives a measure of degree of structural order in the membrane and is defined as the ratio of the spectral anisotropy in the membranes to the maximum anisotropy obtained in a rigidly oriented system. The S parameter takes into consideration that S = 1 for a rapid spin-label motion of about only one axis and S = 0 for a rapid isotropic motion. Intermediate S values between S = 0 and S = 1 represents the consequence of decreased membrane fluidity. The EM revealed the presence of bilaminar and multilaminar electron-dense vesicles. Cholesterol to phospholipid molar ratio from the isolated MV was 1.8. Phospholipid composition showed a predominance of sphingomyelin. The S parameter for porcine MV and for boar spermatozoa was 0.73 +/- 0.02 and 0.644 +/- 0.008, respectively, with the S for MV being greater (p < 0.001) than the S for spermatozoa. The high order for S found for boar MV was in agreement with the greater cholesterol/phospholipids ratio and the lesser ratio for phosphatidylcholine/sphingomyelin. Results obtained in the present work indicate that MV isolated from boar semen share many biochemical and morphological characteristics with equine

  8. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  9. The Ca2+-Transport ATPase of Plant Plasma Membrane Catalyzes a nH+/Ca2+ Exchange 1

    PubMed Central

    Rasi-Caldogno, Franca; Pugliarello, Maria C.; De Michelis, Maria I.

    1987-01-01

    Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange. PMID:16665378

  10. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  11. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  12. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane.

    PubMed

    Navarre, C; Goffeau, A

    2000-06-01

    Yeast plasma membranes contain a small 55 amino acid hydrophobic polypeptide, Pmp3p, which has high sequence similarity to a novel family of plant polypeptides that are overexpressed under high salt concentration or low temperature treatment. The PMP3 gene is not essential under normal growth conditions. However, its deletion increases the plasma membrane potential and confers sensitivity to cytotoxic cations, such as Na(+) and hygromycin B. Interestingly, the disruption of PMP3 exacerbates the NaCl sensitivity phenotype of a mutant strain lacking the Pmr2p/Enap Na(+)-ATPases and the Nha1p Na(+)/H(+) antiporter, and suppresses the potassium dependency of a strain lacking the K(+) transporters, Trk1p and Trk2p. All these phenotypes could be reversed by the addition of high Ca(2+) concentration to the medium. These genetic interactions indicate that the major effect of the PMP3 deletion is a hyperpolarization of the plasma membrane potential that probably promotes a non-specific influx of monovalent cations. Expression of plant RCI2A in yeast could substitute for the loss of Pmp3p, indicating a common role for Pmp3p and the plant homologue.

  13. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  14. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.

    PubMed

    Bulychev, Alexander A; Kamzolkina, Natalia A

    2006-10-01

    Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.

  15. The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water Filled Cavities

    SciTech Connect

    Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T.

    2009-05-26

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7{angstrom} resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.

  16. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Magnetic bead isolation of neutrophil plasma membranes and quantification of membrane-associated guanine nucleotide binding proteins.

    PubMed

    Chang, Peter S; Absood, Afaf; Linderman, Jennifer J; Omann, Geneva M

    2004-02-15

    A protocol for isolation of neutrophil plasma membranes utilizing a plasma membrane marker antibody, anti-CD15, attached to superparamagnetic beads was developed. Cells were initially disrupted by nitrogen cavitation and then incubated with anti-CD15 antibody-conjugated superparamagnetic beads. The beads were then washed to remove unbound cellular debris and cytosol. Recovered plasma membranes were quantified by immunodetection of G(beta2) in Western blots. This membrane marker-based separation yielded highly pure plasma membranes. This protocol has advantages over standard density sedimentation protocols for isolating plasma membrane in that it is faster and easily accommodates cell numbers as low as 10(6). These methods were coupled with immunodetection methods and an adenosine 5(')-diphosphate-ribosylation assay to measure the amount of membrane-associated G(ialpha) proteins available for receptor coupling in neutrophils either stimulated with N-formyl peptides or treated to differing degrees with pertussis toxin. As expected, pertussis toxin treatment decreased the amount of membrane G protein available for signaling although total membrane G protein was not affected. In addition, activation of neutrophils with N-formyl peptides resulted in an approximately 50% decrease in G protein associated with the plasma membrane.

  18. Short infrared laser pulses increase cell membrane fluidity

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cantu, Jody C.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses induce a variety of effects in cells and tissues, including neural stimulation and inhibition. However, the mechanism behind these physiological effects is poorly understood. It is known that the fast thermal gradient induced by the infrared light is necessary for these biological effects. Therefore, this study tests the hypothesis that the fast thermal gradient induced in a cell by infrared light exposure causes a change in the membrane fluidity. To test this hypothesis, we used the membrane fluidity dye, di-4-ANEPPDHQ, to investigate membrane fluidity changes following infrared light exposure. Di-4-ANEPPDHQ fluorescence was imaged on a wide-field fluorescence imaging system with dual channel emission detection. The dual channel imaging allowed imaging of emitted fluorescence at wavelengths longer and shorter than 647 nm for ratiometric assessment and computation of a membrane generalized polarization (GP) value. Results in CHO cells show increased membrane fluidity with infrared light pulse exposure and this increased fluidity scales with infrared irradiance. Full recovery of pre-infrared exposure membrane fluidity was observed. Altogether, these results demonstrate that infrared light induces a thermal gradient in cells that changes membrane fluidity.

  19. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  20. Early glycation products of endothelial plasma membrane proteins in experimental diabetes.

    PubMed

    Nguyen, Sarah; Pascariu, Mirela; Ghitescu, Lucian

    2006-01-01

    The participation of glucose and two intermediates of glucose metabolism: glucose-6-phosphate (G6P) and glyceraldehyde-3-phosphate (Gald3P) to the formation of early glycation products was comparatively evaluated in the endothelial plasma membrane of streptozotocin-induced diabetic rats. Antibodies risen to a carrier protein reductively glycated by each of the sugars mentioned above were used to probe by immunoblotting the proteins of the lung microvascular endothelium plasmalemma purified from normal and diabetic rats. The amount of glycated endothelial plasma membrane proteins was below the limit of detection in normoglycemic animals but increased dramatically in diabetic animals for glucose and G6P. In contrast, no signal was found in diabetic rats for Gald3P, indicating that either the contribution of this phosphotriose to the glycation of intracellular proteins is negligible in vivo, or the Schiff base generated by this sugar transforms very rapidly into products of advanced glycation. Globally, the endothelial plasma membrane proteins bound on average 300 times more glucose than G6P proving that, in spite of its low in vitro potency as glycating agent, glucose represents the main contributor to the intracellular formation of early glycation products. The most abundant glycated proteins of the lung endothelial plasma membrane were separated by two dimensional electrophoresis and identified by mass spectrometry.

  1. Studies on the synthesis of plasma membrane proteins of fibroblasts from patients with cystic fibrosis.

    PubMed Central

    Changus, J. E.; Quissell, D. O.; Sukup, M. R.; Pitot, H. C.

    1975-01-01

    The characteristic increased salinity of sweat and other abnormalities of exocrine secretions in patients with cystic fibrosis (CF) suggest the possibility of a disturbed functioning of the plasma membrane in this disease. Several lines of evidence indicate that fibroblasts express the presence of the CF genotype. Therefore these cells were used in an in vitro study directed at determining whether the manifestations of CF might be related to an alteration of one or more of the protein components of the plasma membrane. In order to evaluate the synthesis of these components, growing fibrosblasts from patients with CF and normal subjects were briefly exposed to either 14C- or 3-H-leucine. Their plasma membrances were then isolated and subjected to analysis in a nondetergent acrylamide gel system. Coelectrophoresis of differentially labeled preparations revealed the absence of a detectable abnormality in the synthetic rates of any of the more than 30 resolved protein species. PMID:1163632

  2. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Charles, C.; Ramdutt, D.; Brault, P.; Caillard, A.; Bulla, D.; Boswell, R.; Rabat, H.; Dicks, A.

    2007-05-01

    A low energy (~30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 109-1010 cm-3 range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm-2, and which results from the combination of an ion energy dose (up to 3.8 J cm-2) and a photon (mostly UV) energy dose (up to 1.3 J cm-2). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  3. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    PubMed

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  4. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  5. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  6. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  7. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics*

    PubMed Central

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543–33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology. PMID:25947375

  8. Physical-chemical properties of plasma membrane and function of erythrocytes of cosmonauts after long-term space flight

    NASA Astrophysics Data System (ADS)

    Ivanova, S. M.; Brazhe, N. A.; Luneva, O. G.; Yarlikova, Y. V.; Labetskaya, O. I.; Parshina, E. Y.; Baizhumanov, A. A.; Maksimov, G. V.; Morukov, B. V.

    2011-05-01

    We studied microfluidity and selective ion permeability of plasma membranes and O 2-binding properties of erythrocytes of cosmonauts during early rehabilitation after a long-term space flight (LTSF). Microfluidity of plasma membranes in surface regions was found to undergo a reversible decrease during 13-15 days following LTSF, which was accompanied by a reversible increase in relative cholesterol content. Cosmonauts' erythrocytes revealed an increased activity of Na/H-exchanger and K Ca-channel as well as a decrease in number of discocytes and increase in number of echinocytes, stomatocytes and knizocytes. Total hemoglobin content as well as oxyhemoglobin content were lowered after the LTSF, while the affinity of hemoglobin to O 2 was advanced. It is suggested that the changes in Hb properties, microfluidity and selective permeability of plasma membranes following the elevated cholesterol content in the membranes can decrease tissue supply with O 2.

  9. Artificial plasma membrane models based on lipidomic profiling.

    PubMed

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hyaluronan production enhances shedding of plasma membrane-derived microvesicles.

    PubMed

    Rilla, Kirsi; Pasonen-Seppänen, Sanna; Deen, Ashik J; Koistinen, Ville V T; Wojciechowski, Sara; Oikari, Sanna; Kärnä, Riikka; Bart, Genevieve; Törrönen, Kari; Tammi, Raija H; Tammi, Markku I

    2013-08-01

    Many cell types secrete plasma membrane-bound microvesicles, suggested to play an important role in tissue morphogenesis, wound healing, and cancer spreading. However, the mechanisms of their formation have remained largely unknown. It was found that the tips of long microvilli induced in cells by overexpression of hyaluronan synthase 3 (HAS3) were detach into the culture medium as microvesicles. Moreover, several cell types with naturally active hyaluronan synthesis released high numbers of plasma membrane-derived vesicles, and inhibition of hyaluronan synthesis reduced their formation. The vesicles contained HAS, and were covered with a thick hyaluronan coat, a part of which was retained even after purification with high-speed centrifugation. HAS3 overexpressing MDCK cells cultured in a 3-D matrix as epithelial cysts released large amounts of HAS- and hyaluronan-positive vesicles from their basal surfaces into the extracellular matrix. As far as we know, hyaluronan synthesis is one of the first molecular mechanisms shown to stimulate the production of microvesicles. The microvesicles have a potential to deliver the hyaluronan synthase machinery and membrane and cytoplasmic materials to other cells, influencing tissue regeneration, inflammation and tumor progression.

  11. Analytical study of microsomes and isolated subcellular membranes from rat liver VIII. Subfractionation of preparations enriched with plasma membranes, outer mitochondrial membranes, or Golgi complex membranes

    PubMed Central

    1981-01-01

    Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane

  12. Water permeability of polyethylene terephthalate track membranes modified in plasma of dimethylaniline

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Gilman, Alla; Drachev, Alexander

    2004-09-01

    The surface properties and hydrodynamic characteristics of composite membranes consisting of a porous substrate, on which a polymer layer from a direct current discharge in a mixture of air and vapours of dimethylaniline was deposited, have been investigated. As a substrate, we used poly(ethylene) terephthalate track membrane (PET TM) of the thickness of 10 μ m and the effective pore diameter of 0.215 μ m (pore density is 2\\cdot 10^8 cm-2). The performed researches show that when treating the membranes in plasma, two competing processes are observed: deposition of the polymer layer on a membrane surface, that testifies increase of the mass of sample, and etching of a polymeric matrix which causes growth of effective pore diameter. The last process is stipulated by presence of oxygen in the gas mixture. Decreasing the degree of overweight of the sample at increasing the treatment time leads us to a supposition that a dominating process in this case becomes the process of gas-discharge etching. In all cases, if treating PET TM, a drop of the water contact angle occurs, i.e. hydrophilization of the membrane surface takes place that is connected first of all with a grafting of polymer layer containing polar functional groups. The research in the hydrodynamic characteristics of the initial PET TM and the membranes modified in plasma at neutral and subacid pH value of filtrate leads to a linear dependence of their permeability upon the quantity of applied pressure. It is connected with a viscous character of the flow, that is, when the diameter of the pores of the membrane is much more than the size of the water molecules. This fact shows that the macromolecules of the deposited polymer layer in this case have a compact conformation, which does not hinder the water molecules infiltration. At a lower pH value of the filtrate, the picture cardinally changes. For modified in plasma membranes a diversion from the linear relation is observed. This means that in this case

  13. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  14. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    PubMed

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  15. Water/O2-plasma-assisted treatment of PCL membranes for biosignal immobilization.

    PubMed

    Saşmazel, Hilal Türkoğlu; Manolache, Sorin; Gümüşderelioğlu, Menemşe

    2009-01-01

    The main purpose of this study was to obtain COOH functionalities on the surface of poly-epsilon-caprolactone (PCL) membranes using low-pressure water/O(2)-plasma-assisted treatment. PCL membranes were prepared using the solvent-casting technique. Then, low-pressure water/O(2) plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor in three steps: H(2)O/O(2)-plasma treatment; in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis for final -COOH functionalities. Optimization of plasma modification processes was done using the DoE software program. COOH and OH functionalities on modified surfaces were detected quantitatively using the fluorescent labeling technique and an UVX 300G sensor. Chemical structural information of untreated, plasma treated and oxalyl chloride functionalized PCL membranes were acquired using pyrolysis GC/MS and ESCA analysis. High-resolution AFM images revealed that nanopatterns were more affected than micropatterns by plasma treatments. AFM images recorded with amino-functionalized tips presented increased size of the features on the surface that suggests higher density of the carboxyls on the nanotopographical elements. Low-pressure water/O(2)-plasma-treated and oxalyl chloride functionalized samples were biologically activated with insulin and/or heparin biosignal molecules using a PEO (polyoxyethylene bis amine) spacer. The success of the immobilization process was checked qualitatively by ESCA analysis. In addition, fluorescent labeling techniques were used for the quantitative determination of immobilized biomolecules. Cell-culture experiments indicated that biomolecule immobilization onto PCL scaffolds was effective on L929 cell adhesion and proliferation, especially in the presence of heparin.

  16. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: import of foreign membrane microdomains.

    PubMed

    Vaskovicova, Katarina; Stradalova, Vendula; Efenberk, Ales; Opekarova, Miroslava; Malinsky, Jan

    2015-01-01

    Eisosomes are plasma membrane-associated protein complexes organizing the membrane compartment of Can1 (MCC), a membrane microdomain of specific structure and function in ascomycetous fungi. By heterologous expression of specific components of Schizosaccharomyces pombe eisosomes in Saccharomyces cerevisiae we reconstitute structures exhibiting the composition and morphology of S. pombe eisosome in the host plasma membrane. We show S. pombe protein Pil1 (SpPil1) to substitute the function of its S. cerevisiae homologue in building plasma membrane-associated assemblies recognized by inherent MCC/eisosome constituents Sur7 and Seg1. Our data indicate that binding of SpPil1 to the plasma membrane of S. cerevisiae also induces formation of furrow-like invaginations characteristic for MCC. To the best of our knowledge, this is the first report of interspecies transfer of a functional plasma membrane microdomain. In the described system, we identify a striking difference between eisosome stabilizer proteins Seg1 and SpSle1. While Seg1 recruits both Pil1 and SpPil1 to the plasma membrane, SpSle1 recognizes only its natural counterpart, SpPil1. In the presence of Pil1, SpSle1 is segregated outside the Pil1-organized eisosomes and forms independent microdomains in the host membrane. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    SciTech Connect

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  18. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  19. CHOLESTEROL HOMEOSTASIS AND THE ESCAPE TENDENCY (ACTIVITY) OF PLASMA MEMBRANE CHOLESTEROL

    PubMed Central

    Lange, Yvonne; Steck, Theodore L.

    2008-01-01

    We review evidence that sterols can form stoichiometric complexes with certain bilayer phospholipids, and sphingomyelin in particular. These complexes appear to be the basis for the formation of condensed and ordered liquid phases, (micro)domains and/or rafts in both artificial and biological membranes. The sterol content of a membrane can exceed the complexing capacity of its phospholipids. The excess, uncomplexed membrane sterol molecules have a relatively high escape tendency, also referred to as fugacity or chemical activity (and, here, simply activity). Cholesterol is also activated when certain membrane intercalating amphipaths displace it from the phospholipid complexes. Active cholesterol projects from the bilayer and is therefore highly susceptible to attack by cholesterol oxidase. Similarly, active cholesterol rapidly exits the plasma membrane to extracellular acceptors such as cyclodextrin and high-density lipoproteins. For the same reason, the pool of cholesterol in the ER (endoplasmic reticulum) increases sharply when cell surface cholesterol is incremented above the physiological set-point; i.e., equivalence with the complexing phospholipids. As a result, the escape tendency of the excess cholesterol not only returns the plasma membrane bilayer to its set point but also serves as a feedback signal to intracellular homeostatic elements to down-regulate cholesterol accretion. PMID:18423408

  20. The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol.

    PubMed

    Cantu, Jody C; Tarango, Melissa; Beier, Hope T; Ibey, Bennett L

    2016-11-01

    Previous work from our laboratory demonstrated nanopore formation in cell membranes following exposure to nanosecond pulsed electric fields (nsPEF). We observed differences in sensitivity to nsPEF in both acute membrane injury and 24h lethality across multiple cells lines. Based on these data, we hypothesize that the biological response of cells to nsPEF is dependent on the physical properties of the plasma membrane (PM), including regional cholesterol content. Results presented in this paper show that depletion of membrane cholesterol disrupts the PM and increases the permeability of cells to small molecules, including propidium iodide and calcium occurring after fewer nsPEF. Additionally, cholesterol depletion concurrently decreases the "dose" of nsPEF required to induce lethality. In summary, the results of the current study suggest that the PM cholesterol composition is an important determinant in the cellular response to nsPEF. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel.

    PubMed

    Zhang, Jiangli; Chen, Changsheng; Zhang, Di; Li, Houhua; Li, Pengmin; Ma, Fengwang

    2014-11-01

    Solar ultraviolet irradiation regulates anthocyanin synthesis in apple peel by modulating the production of reactive oxygen species via plasma membrane NADPH oxidase instead of other pathways. The synthesis of anthocyanin in apple peels is dependent upon solar irradiation. Using 3-mm commercial glass to attenuate solar UV-A and UV-B light, we confirmed that solar UV irradiation regulated anthocyanin synthesis in apple peels after exposing previously bagged fruit to sunlight. During sunlight exposure, UV attenuation did not affect the expression of MdHY5, MdCOP1, or MdCRY2, but significantly lowered plasma membrane NADPH oxidase activity and superoxide anion concentrations. UV attenuation also reduced the expression levels of MdMYB10, MdPAL, MdCHS, MdF3H, MdDFR, MdANS and MdUFGT1, UDP-glycose:flavonoid 3-O-glycosyltransferase (UFGT) activity, and local concentrations of anthocyanin and quercetin-3-glycoside. In contrast, exogenous application of hydrogen peroxide could enhance anthocyanin and quercetin-3-glycoside synthesis. Xanthophyll cycle pool size on a chlorophyll basis was higher but its de-epoxidation was lower under direct sunlight irradiation than that under UV-attenuating conditions. This suggests that reactive oxygen species (ROS) produced in chloroplast are not major contributors to anthocyanin synthesis regulation. Inhibition of plasma membrane NADPH oxidase activity lowered the production of ROS through this mechanism, significantly inhibited the synthesis of anthocyanin, and increased the total production of ROS in apple peel under direct sunlight irradiation, suggesting that ROS produced via plasma membrane NADPH oxidase regulates anthocyanin synthesis. In summary, solar UV irradiation regulated anthocyanin synthesis in apple peels by modulating the production of ROS via plasma membrane NADPH oxidase.

  2. Solubilization and Partial Purification of the Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction

    PubMed Central

    Dupont, Frances M.; Leonard, Robert T.

    1980-01-01

    The K+-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mo 17) by solubilization with 30 millimolar octyl-β-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg2+, was further stimulated by K+, was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K+-stimulated ATPase activity. Low concentrations of each detergent, including octyl-β-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity. Images PMID:16661309

  3. ABCC6 is a Basolateral Plasma Membrane Protein

    PubMed Central

    Pomozi, Viola; Le Saux, Olivier; Brampton, Christopher; Apana, Ailea; Iliás, Attila; Szeri, Flóra; Martin, Ludovic; Monostory, Katalin; Paku, Sándor; Sarkadi, Balázs; Szakács, Gergely; Váradi, András

    2013-01-01

    Rationale ABCC6 plays a crucial role in ectopic calcification; mutations of the gene cause pseudoxanthoma elasticum (PXE) and general arterial calcification of infancy (GACI). To elucidate the role of ABCC6 in cellular physiology and disease, it is crucial to establish the exact subcellular localization of the native ABCC6 protein. Objective In a recent paper in Circulation Research, ABCC6 was reported to localize to the mitochondria-associated membrane (MAM) and not the plasma membrane. Since the suggested mitochondrial localization is inconsistent with published data and the presumed role of ABCC6, we performed experiments to determine the cellular localization of ABCC6 in its physiological environment. Methods and Results We performed immunofluorescent labeling of frozen mouse and human liver sections as well as primary hepatocytes. We used several different antibodies recognizing human and mouse ABCC6. Our results unequivocally show that ABCC6 is in the basolateral membrane of hepatocytes and is not associated with the mitochondria, MAM or the ER. Conclusion Our findings support the model that ABCC6 is in the basolateral membrane, mediating the sinusoidal efflux of a metabolite from the hepatocytes to the systemic circulation. PMID:23625951

  4. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. Purification and properties of 5'-nucleotidase from lymphocyte plasma membranes.

    PubMed

    Dornand, J; Bonnafous, J C; Mani, J C

    1978-07-03

    5'-Nucleotidase is purified from lymphocyte plasma membranes by two affinity chromatographies. The first one, on Lens culinaris lectin-Sepharose 4B yields a fraction of twelve lectin-binding glycoproteins (lectin-receptor fraction). The second one on 5'-AMP-Sepharose 4B leads to pure enzyme. This enzyme is a glycoprotein with a molecular weight of 130 000; it gives a single band in polyacrylamide/dodecylsulfate electrophoresis and displays a very high specific activity (2500-3000 mumol Pih-1mg-1). Some properties of purified 5'-nucleotidase are similar to those of membrane-bound enzyme: substrate specificity, temperature dependence, effects of ions and SH-blocking reagents. Others are completely different for the two systems and these differences result from an interaction between the enzyme molecule and other Lens culinaris lectin binding proteins.

  6. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Wang, Pengwei; Hawes, Chris; Hussey, Patrick J

    2017-04-01

    The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants.

  7. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.

    PubMed

    Tang, Daxin; Dean, William L; Borchman, Douglas; Paterson, Christopher A

    2006-03-01

    Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.

  8. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies

    PubMed Central

    1984-01-01

    As the spike proteins of Semliki Forest virus (SFV) pass from their site of synthesis in the endoplasmic reticulum (ER) to the cell surface, they must be concentrated and freed from endogenous proteins. To determine the magnitude of this sorting process we have measured the density of spike proteins in membranes of the intracellular transport pathway. In this first paper, using stereological procedures, we have estimated the surface areas of the ER, Golgi complex, and plasma membrane of infected and mock-infected baby hamster kidney cells. First, we estimated the mean cell volume in absolute units. This was done using a novel in situ method which is described in detail. Infection by SFV was found to have no effect on any of the parameters measured. In the accompanying paper ( Quinn , P., G. Griffiths, and G. Warren, 1984, J. Cell Biol., 2142-2147) these stereological estimates were combined with biochemical estimates of the amount of spike proteins in ER, Golgi complex, and plasma membrane to determine the density in the membranes of these compartments. PMID:6563037

  9. Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms.

    PubMed Central

    Nanjundan, M; Possmayer, F

    2001-01-01

    Lipid phosphate phosphohydrolase (LPP) has recently been proposed to have roles in signal transduction, acting sequentially to phospholipase D (PLD) and in attenuating the effects of phospholipid growth factors on cellular proliferation. In this study, LPP activity is reported to be enriched in lipid-rich signalling platforms isolated from rat lung tissue, isolated rat type II cells and type II cell-mouse lung epithelial cell lines (MLE12 and MLE15). Lung and cell line caveolin-enriched domains (CEDs), prepared on the basis of their detergent-insolubility in Triton X-100, contain caveolin-1 and protein kinase C isoforms. The LPP3 isoform was predominantly localized to rat lung CEDs. These lipid-rich domains, including those from isolated rat type II cells, were enriched both in phosphatidylcholine plus sphingomyelin (PC+SM) and cholesterol. Saponin treatment of MLE15 cells shifted the LPP activity, cholesterol, PC+SM and caveolin-1 from lipid microdomains to detergent-soluble fractions. Elevated LPP activity and LPP1/1a protein are present in caveolae from MLE15 cells prepared using the cationic-colloidal-silica method. In contrast, total plasma membranes had a higher abundance of LPP1/1a protein with low LPP activity. Phorbol ester treatment caused a 3.8-fold increase in LPP specific activity in MLE12 CEDs. Thus the activated form of LPP1/1a may be recruited into caveolae/rafts. Transdifferentiation of type II cells into a type I-like cell demonstrated enrichment in caveolin-1 levels and LPP activity. These results indicate that LPP is localized in caveolae and/or rafts in lung tissue, isolated type II cells and type II cell lines and is consistent with a role for LPP in both caveolae/raft signalling and caveolar dynamics. PMID:11535125

  10. Alkaline ribonuclease and phosphodiesterase activity in rat liver plasma membranes

    PubMed Central

    Prospero, Terence D.; Burge, Malcolm L. E.; Norris, Kenneth A.; Hinton, Richard H.; Reid, Eric

    1973-01-01

    The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results. PMID:4353377

  11. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.

    PubMed

    Fowler, Velia M

    2013-01-01

    The mammalian erythrocyte, or red blood cell (RBC), is a unique experiment of nature: a cell with no intracellular organelles, nucleus or transcellular cytoskeleton, and a plasma membrane with uniform structure across its entire surface. By virtue of these specialized properties, the RBC membrane has provided a template for discovery of the fundamental actin filament network machine of the membrane skeleton, now known to confer mechanical resilience, anchor membrane proteins, and organize membrane domains in all cells. This chapter provides a historical perspective and critical analysis of the biochemistry, structure, and physiological functions of this actin filament network in RBCs. The core units of this network are nodes of ~35-37 nm-long actin filaments, interconnected by long strands of (α1β1)₂-spectrin tetramers, forming a 2D isotropic lattice with quasi-hexagonal symmetry. Actin filament length and stability is critical for network formation, relying upon filament capping at both ends: tropomodulin-1 at pointed ends and αβ-adducin at barbed ends. Tropomodulin-1 capping is essential for precise filament lengths, and is enhanced by tropomyosin, which binds along the short actin filaments. αβ-adducin capping recruits spectrins to sites near barbed ends, promoting network formation. Accessory proteins, 4.1R and dematin, also promote spectrin binding to actin and, with αβ-adducin, link to membrane proteins, targeting actin nodes to the membrane. Dissection of the molecular organization within the RBC membrane skeleton is one of the paramount achievements of cell biological research in the past century. Future studies will reveal the structure and dynamics of actin filament capping, mechanisms of precise length regulation, and spectrin-actin lattice symmetry. © 2013 Elsevier Inc. All rights reserved.

  12. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  13. Lipoproteins removed from serum and plasma by membrane filtration.

    PubMed

    Olson, W P; Faith, M W

    1978-01-01

    Tangential (crossflow) filtration of a plasma/serum mixture through 0.2 micrometer-poresize polycarbonate track-etch membrane filters (PC) at pressures less than 10 psi removes low density lipoproteins (LDL) and very low density lipoproteins (VLDL) but not high density lipoproteins (HDL) from the filtrate. At pressures greater than 10 psi all lipoproteins pass through the PC. Once the filters have been intruded with LDL and VLDL those lipoproteins continue to pass the filters despite subsequent reduction in differential pressure below 10 psi.

  14. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  15. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    PubMed

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level.

  16. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  17. Agents that increase the permeability of the outer membrane.

    PubMed Central

    Vaara, M

    1992-01-01

    The outer membrane of gram-negative bacteria provides the cell with an effective permeability barrier against external noxious agents, including antibiotics, but is itself a target for antibacterial agents such as polycations and chelators. Both groups of agents weaken the molecular interactions of the lipopolysaccharide constituent of the outer membrane. Various polycations are able, at least under certain conditions, to bind to the anionic sites of lipopolysaccharide. Many of these disorganize and cross the outer membrane and render it permeable to drugs which permeate the intact membrane very poorly. These polycations include polymyxins and their derivatives, protamine, polymers of basic amino acids, compound 48/80, insect cecropins, reptilian magainins, various cationic leukocyte peptides (defensins, bactenecins, bactericidal/permeability-increasing protein, and others), aminoglycosides, and many more. However, the cationic character is not the sole determinant required for the permeabilizing activity, and therefore some of the agents are much more effective permeabilizers than others. They are useful tools in studies in which the poor permeability of the outer membrane poses problems. Some of them undoubtedly have a role as natural antibiotic substances, and they or their derivatives might have some potential as pharmaceutical agents in antibacterial therapy as well. Also, chelators (such as EDTA, nitrilotriacetic acid, and sodium hexametaphosphate), which disintegrate the outer membrane by removing Mg2+ and Ca2+, are effective and valuable permeabilizers. PMID:1406489

  18. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    SciTech Connect

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  19. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    DOE PAGES

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; ...

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  20. Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

    NASA Astrophysics Data System (ADS)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2015-02-01

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF4 microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF4 plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF4 plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ∼0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF4 plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  1. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  2. Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H(+)-ATPase activity.

    PubMed

    Dell'Orto, M; Santi, S; De Nisi, P; Cesco, S; Varanini, Z; Zocchi, G; Pinton, R

    2000-04-01

    One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H(+)-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H(+)-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H(+)-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide.

  3. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  4. Modification of polysulfone porous hollow fiber membranes by air plasma treatment

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Ibragimov, R. G.; Abdullin, I. Sh; Gallyamov, R. T.; Ovcharova, A. A.; Bildyukevich, A. V.

    2016-09-01

    Air plasma treatment was used to enhance the surface hydrophilic properties of the polysulfone porous hollow fiber membranes prepared via a dry-wet phase invertion technique in the free spinning mode in air. Membranes prepared had porous asymmetric structure with macroporous support on the shell side and fine-porous selective layer on the lumen side. The wettability of the inner membrane surfaces were checked by contact angle measurements and FTIR was used to compare the surfaces before and after plasma treatment. Membrane morphology was examined with confocal scanning laser microscopy (CSLM). Contact angle measurements confirm that air plasma treatment affords improvement in the wettability of polysulfone membranes and FTIR results show that air plasmas chemically modify the lumen side membrane surface, however, there is no significant change in membranes chemical structure after modification. CSLM data obtained, as well as gas permeability (He and CO2) measurements show that after plasma treatment pore etching occurs.

  5. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    PubMed

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  6. Pentoxifylline modulation of plasma membrane functions in human polymorphonuclear leukocytes.

    PubMed Central

    Hand, W L; Butera, M L; King-Thompson, N L; Hand, D L

    1989-01-01

    Pentoxifylline is known to have major effects on cell membrane function in mammalian cells, including human leukocytes. The protective effects of this agent in animal models of infection and inflammation may be due to alterations in phagocyte (neutrophil and macrophage) function. However, the exact mechanism of action of pentoxifylline is unknown. In this study, we evaluated the effect of the drug on several membrane-associated activities in human polymorphonuclear neutrophils and investigated possible mechanisms for the observed changes in neutrophil function. Pentoxifylline inhibited ingestion of microbial particles (Staphylococcus aureus and zymosan); decreased superoxide generation activated by zymosan, formyl-methionyl-leucyl-phenylalanine, and concanavalin A (but not phorbol myristate acetate); and decreased uptake (transport) of adenosine stimulated by formyl-methionyl-leucyl-phenylalanine and zymosan. In contrast, pentoxifylline actually increased clindamycin uptake in zymosan-stimulated polymorphonuclear neutrophils. However, pentoxifylline had no effect on uptake of adenosine or clindamycin in unstimulated neutrophils. In comparison with known inhibitors of nucleoside transport (nitrobenzylthioinosine and dipyridamole), the results suggested that pentoxifylline does not bind to membrane nucleoside transport receptors. At concentrations which inhibit neutrophil function, pentoxifylline activity is not mediated through external membrane nucleoside regulatory sites. Thus, pentoxifylline affects the activation signal chain at a point beyond the membrane receptors. Whatever its precise mechanism of action, pentoxifylline has a striking modulatory effect on cell membrane-associated responses in stimulated leukocytes and may prove useful for control of injurious inflammatory states. PMID:2553608

  7. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.

    PubMed

    Yabas, Mehmet; Jing, Weidong; Shafik, Sarah; Bröer, Stefan; Enders, Anselm

    2016-01-01

    Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D- (7-AAD-) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD- developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells.

  8. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes

    PubMed Central

    Yabas, Mehmet; Jing, Weidong; Shafik, Sarah

    2016-01-01

    Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D− (7-AAD−) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD− developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells. PMID:26799398

  9. SUMOylation determines turnover and localization of nephrin at the plasma membrane.

    PubMed

    Tossidou, Irini; Himmelseher, Erik; Teng, Beina; Haller, Hermann; Schiffer, Mario

    2014-12-01

    Podocyte effacement and the reformation of foot processes and slit diaphragms can be induced within minutes experimentally. Therefore, it seems likely that the slit diaphragm proteins underlie orchestrated recycling mechanisms under the control of posttranslational modifiers. One of these modifiers, SUMO (small ubiquitin-like modifier), is an ubiquitin-like protein with a 20% corresponding identity to ubiquitin. Modification by SUMOs to proteins on lysine residues can block the ubiquitination of the same site leading to the stabilization of the target protein. Here we found in vitro and in vivo that nephrin is a substrate modified by SUMO proteins thereby increasing its steady-state level and expression at the plasma membrane. A conversion of lysines to arginines at positions 1114 and 1224 of the intracellular tail of murine nephrin led to decreased stability of nephrin, decreased expression at the plasma membrane, and decreased PI3K/AKT signaling. Furthermore, treatment of podocytes with the SUMOylation inhibitor ginkgolic acid led to reduced membrane expression of nephrin. Similarly, the conversion of lysine to arginine at position 1100 of human nephrin caused decreased stability and expression at the plasma membrane. As SUMOylation is a reversible process, our results suggest that SUMOylation participates in the tight orchestration of nephrin turnover at the slit diaphragm.

  10. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity.

    PubMed

    Nakatsu, Fubito; Baskin, Jeremy M; Chung, Jeeyun; Tanner, Lukas B; Shui, Guanghou; Lee, Sang Yoon; Pirruccello, Michelle; Hao, Mingming; Ingolia, Nicholas T; Wenk, Markus R; De Camilli, Pietro

    2012-12-10

    Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P₂) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P₂ because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P₂ was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity.

  11. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    PubMed

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  12. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  13. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  14. Structure and function of thyroid hormone plasma membrane transporters.

    PubMed

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  15. Flat clathrin lattices: stable features of the plasma membrane

    PubMed Central

    Grove, Joe; Metcalf, Daniel J.; Knight, Alex E.; Wavre-Shapton, Silène T.; Sun, Tony; Protonotarios, Emmanouil D.; Griffin, Lewis D.; Lippincott-Schwartz, Jennifer; Marsh, Mark

    2014-01-01

    Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo. PMID:25165141

  16. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  17. A Plasma Membrane Association Module in Yeast Amino Acid Transporters*

    PubMed Central

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J.; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM. PMID:27226538

  18. A Plasma Membrane Association Module in Yeast Amino Acid Transporters.

    PubMed

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-07-29

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Regulation of Ras signaling and function by plasma membrane microdomains.

    PubMed

    Goldfinger, Lawrence E; Michael, James V

    2017-02-07

    Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.

  20. Caveolae protect endothelial cells from membrane rupture during increased cardiac output

    PubMed Central

    Cheng, Jade P.X.; Mendoza-Topaz, Carolina; Howard, Gillian; Chadwick, Jessica; Shvets, Elena; Cowburn, Andrew S.; Dunmore, Benjamin J.; Crosby, Alexi; Morrell, Nicholas W.

    2015-01-01

    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo. PMID:26459598

  1. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    PubMed

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  2. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  3. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  4. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    PubMed

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  5. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy

    PubMed Central

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-01-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  6. Plasma zinc status and membrane lipid composition in genetically diabetic mice (db/db)

    SciTech Connect

    Burke, J.P.; Fenton, M.R.

    1986-03-05

    Sex and age matched diabetic C57BL/Ks-db+/db+ mice (db/db) were sacrificed at eight weeks of age. Plasma samples were collected and zinc levels determined. Livers were excised and mitochondrial and microsomal membranes prepared. Aliquots of membrane fractions were subjected to lipid extraction and cholesterol (Cl), phospholipid (PL) and fatty acid analysis (FA) performed. Plasma zinc levels in db/db mice were elevated 25% compared to m/m controls (148.8+/-8.1 ..mu..g/dl vs. 118.9+/-14.9 ..mu..g/dl). Cholesterol and PL levels remained unchanged in both mitochondrial and microsomal membranes. Analysis of PL composition from db/db mitochondria by two dimensional thin layer chromatography revealed no change in the percentage of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) but a 40% decrease in cardiolipin. Slight increases were observed in the percentage of phosphatidylserine and phosphatidylinositol (PS+PI) in microsomes isolated from db/db mice. Fatty acid analysis of microsomal PC and PE showed a decrease of 28% in the 18:1/18:0 ratio as well as a 21% decrease in the ratio of 20:4/18:2 in db/db animals. Analysis of succinate dehydrogenase (mitochondrial) and glucose-6-phosphatase (microsomal) revealed significant decreases in activity in livers of db/db mice. The altered zinc metabolism as well as the changes in membrane lipid composition suggest that this may be a model to study the role of zinc in membrane structure.

  7. Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    PubMed Central

    Kalay, Ziya; Fujiwara, Takahiro K.; Kusumi, Akihiro

    2012-01-01

    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity. PMID:22479350

  8. Temperature-Induced Protein Conformational Changes in Barley Root Plasma Membrane-Enriched Microsomes

    PubMed Central

    Caldwell, Charles R.

    1987-01-01

    The membrane-bound proteins of barley (Hordeum vulgare L. cv Conquest) root plasma membrane-enriched microsomes displayed fluorescence typical of protein-associated trytophan residues. The protein fluorescence intensity was sensitive to variations in sample temperature. The temperature-induced decline in protein fluorescence intensity was nonlinear with slope discontinuities at about 12 and 32°C. Detergents at levels above their critical micelle concentration enhanced protein fluorescence. Glutaraldehyde reduced protein fluorescence. Protein fluorescence polarization increased at temperatures above 30°C. Both the rate of tryptophan photoionization and the fluorescence intensity of the photoionization products suggested alterations in membrane protein conformation between 12 and 32°C. The quenching of the intrinsic protein fluorescence by acrylamide and potassium iodide indicated changes in accessibility of the extrinsic agents to the protein tryptophan residues beginning at about 14°C. The results indicate thermally induced changes in the dynamics of the membrane proteins over the temperature range of 12 to 32°C which could account for the complex temperature dependence of the barley root plasma membrane ATPase. PMID:16665545

  9. Glucocorticoid interactions with ethanol effects on synaptic plasma membranes: influence on [125I]calmodulin binding.

    PubMed

    Sze, P Y

    1996-02-01

    Ca(++)-dependent binding of calmodulin (CaM) to brain synaptic plasma membranes is known to be inhibited by ethanol and stimulated by glucocorticoids. These opposite neurochemical actions between ethanol and the steroids in vitro are consistent with glucocorticoid antagonism of ethanol-induced sedation reported to occur in vivo. The present study was undertaken to characterize the interactions of corticosterone with ethanol effects on [125I]CaM binding in synaptic plasma membranes. From the shift of concentration-response curves when corticosterone and ethanol were present in combination, the interaction between steroid stimulation and ethanol inhibition occurred in an additive relationship over the range of their effective concentrations. From Scatchard analyses, ethanol-induced decrease in membrane affinity for [125I]CaM was antagonized by steroid-induced increase in the membrane affinity, indicating that the convergent event in their interaction was the alteration of membrane affinity for CaM. Glucocorticoid antagonism of ethanol inhibition of [125I]CaM binding exhibited a high degree of steroid specificity; steroids with glucocorticoid activity including cortisol, dexamethasone and triamcinolone were effective, whereas gonadal steroids and excitatory neuroactive steroid metabolites were ineffective. The demonstration that glucocorticoids antagonized the inhibition of CaM binding by ethanol provides support for the hypothesis that these steroids are among the endogenous factors that modulate neuronal sensitivity to ethanol.

  10. The plasma membrane: Penultimate regulator of ADAM sheddase function.

    PubMed

    Reiss, Karina; Bhakdi, Sucharit

    2017-11-01

    ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.

  11. Induction of stable ER–plasma-membrane junctions by Kv2.1 potassium channels

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Akin, Elizabeth J.; Seel, Peter J.; Krapf, Diego; Tamkun, Michael M.

    2015-01-01

    ABSTRACT Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER–plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K+ channel in the mammalian brain, induces the formation of ER–plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER–plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER–plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca2+ signaling. PMID:25908859

  12. Thymocyte plasma membrane of the rainbow trout, Salmo gairdneri: Associated immunoglobulin and heteroantigens

    USGS Publications Warehouse

    Warr, G.W.; DeLuca, D.; Anderson, D.P.

    1983-01-01

    1. Thymic lymphocytes of the rainbow trout, S. gairdneri were disrupted and a plasma membrane containing fraction isolated by differential and buoyant density centrifugation.2. Radioiodine introduced into the membrane by the lactoperoxidase catalyzed reaction and immunoglobulin (identified by radioimmunoassay with monoclonal antibody) both copurified in the plasma membrane fraction.3. Rabbit antibody raised to the plasma membrane fraction showed a strong reaction with trout lymphocytes in immunofluorescence, was mitogenic for trout lymphocytes, and recognized lymphocyte membrane heteroantigens of molecular weight > 70,000 in the thymus and 45,000–95,000 in the head kidney.

  13. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane.

    PubMed

    Brameshuber, Mario; Weghuber, Julian; Ruprecht, Verena; Gombos, Imre; Horváth, Ibolya; Vigh, László; Eckerstorfer, Paul; Kiss, Endre; Stockinger, Hannes; Schütz, Gerhard J

    2010-12-31

    The plasma membrane has been hypothesized to contain nanoscopic lipid platforms, which are discussed in the context of "lipid rafts" or "membrane rafts." Based on biochemical and cell biological studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition, and heterogeneity. We present here a method that allows for the first time the direct imaging of nanoscopic long-lived platforms with raft-like properties diffusing in the live cell plasma membrane. Our method senses these platforms by their property to assemble a characteristic set of fluorescent marker proteins or lipids on a time scale of seconds. A special photobleaching protocol was used to reduce the surface density of labeled mobile platforms down to the level of well isolated diffraction-limited spots without altering the single spot brightness. The statistical distribution of probe molecules per platform was determined by single molecule brightness analysis. For demonstration, we used the consensus raft marker glycosylphosphatidylinositol-anchored monomeric GFP and the fluorescent lipid analog BODIPY-G(M1), which preferentially partitions into liquid-ordered phases. For both markers, we found cholesterol-dependent homo-association in the plasma membrane of living CHO and Jurkat T cells in the resting state, thereby demonstrating the existence of small, mobile, long-lived platforms containing these probes. We further applied the technology to address structural changes in the plasma membrane during fever-type heat shock: at elevated temperatures, the glycosylphosphatidylinositol-anchored monomeric GFP homo-association disappeared, accompanied by an increase in the expression of the small heat shock protein Hsp27.

  14. Ferrous Iron-Dependent Volatilization of Mercury by the Plasma Membrane of Thiobacillus ferrooxidans

    PubMed Central

    Iwahori, Kenji; Takeuchi, Fumiaki; Kamimura, Kazuo; Sugio, Tsuyoshi

    2000-01-01

    Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane. PMID:10966396

  15. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  16. Partitioning of caffeine in lipid bilayers reduces membrane fluidity and increases membrane thickness.

    PubMed

    Khondker, Adree; Dhaliwal, Alexander; Alsop, Richard J; Tang, Jennifer; Backholm, Matilda; Shi, An-Chang; Rheinstädter, Maikel C

    2017-03-08

    Caffeine is a small amphiphilic molecule, which is widely consumed as a stimulant to prevent fatigue, but is also used as a common drug adjuvant in modern medicine. Here, we show that caffeine interacts with unsaturated lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By combining X-ray diffraction and molecular dynamics simulations, we present evidence that caffeine partitions in lipid membranes and locates at the head group-tail group interface of the bilayers. By attracting water molecules from neighboring lipid molecules, it leads to the formation of "water pockets", i.e., a local increase of water density at this interface. Through this mechanism, caffeine leads to an overall decrease of the gauche defect density in the membranes and an increase of membrane thickness, indicating a loss of membrane fluidity. These non-specific membrane interactions may increase the efficacy of analgesic drugs through changes in the bioavailability and rate of metabolism of these drugs.

  17. In vitro and in vivo phosphorylation of polypeptides in plasma membrane and tonoplast-enriched fractions from barley roots

    SciTech Connect

    Garbarino, J.E.; Hurkman, W.J.; Tanaka, C.K.; DuPont, F.M. )

    1991-04-01

    Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the membrane fractions were incubated with {gamma}(p{sup 32}P)ATP, phosphorylation occurred almost exclusively in the plasma membrane fraction. Phosphorylation of a band at 38 kilodaltons increased as the concentration of Mg{sup 2+} was decreased from millimolar to micromolar levels. Phosphorylation of bands at 125, 86, 58, 46 and 28 kilodaltons required millimolar Mg{sup 2+} concentrations and was greatly enhanced by Ca{sup 2+}. When roots of intact plants were labeled with ({sup 32}P)orthophosphate, polypeptides at approximately 135, 166, 90, 46 to 53, 32, 28, and 19 kilodaltons were labeled in the plasma membrane fraction and polypeptides at approximately 73, 66, and 48 kilodaltons were labeled in the tonoplast fraction. Treatment of the roots of intact plants with 150 millimolar NaCl resulted in increased phosphorylation of some polypeptides while treatment with 100 mM NaCl had no effect.

  18. Mechanisms of transport of nontransferrin-bound iron in basolateral and canalicular rat liver plasma membrane vesicles

    SciTech Connect

    Wright, T.L.; Lake, J.R. )

    1990-09-01

    Although most iron in plasma is bound to transferrin, recent evidence suggests that the nontransferrin-bound fraction contributes to hepatic iron loading and toxicity seen in iron-overload disorders. Our studies of isolated perfused rat liver previously demonstrated saturable uptake of nontransferrin-bound iron that continues despite hepatic iron overload. To further characterize the mechanism of transport of this form of iron, we measured binding of 55Fe-labeled ferrous ascorbate to rat liver plasma membrane vesicles under varying conditions. Binding of 5 mumol/L iron by both basolateral and canalicular membranes was time-dependent and linear for the first 5 sec. Initial rate of binding of ferrous ascorbate to basolateral membrane vesicles was temperature dependent and increased by calcium but, in contrast to the perfused rat liver, was not inhibited by other divalent cations. Binding velocities by basolateral membrane vesicles were saturable at increasing iron concentration (Km = 33 mumol/L, Vmax = 16 pmol/mg protein/sec). Ferrous iron binding by canalicular membrane vesicles was also temperature dependent, but initial association rates were not saturable over the concentration range studied (2 to 20 mumol/L). We conclude that nontransferrin-bound iron associates with basolateral liver plasma membrane vesicles by a saturable mechanism sensitive to temperature and calcium and consistent with a membrane carrier. Other divalent cations do not inhibit membrane association but may compete for a subsequent cytosolic binding site.

  19. Differential association of rat liver heparan sulfate proteoglycans in membranes of the Golgi apparatus and the plasma membrane

    SciTech Connect

    Brandan, E.; Hirschberg, C.B.

    1989-06-25

    Heparan sulfate proteoglycans (HSPG) of rat liver are associated with the plasma membrane in a hydrophobic intrinsic and a hydrophilic extrinsic form. We were interested in determining whether or not these two forms could be detected in the Golgi apparatus, the subcellular site of addition of oligosaccharides and sulfate to HSPG. In vivo and in vitro radiolabeled HSPG from rat liver Golgi apparatus membranes could only be solubilized with detergents that disrupt the membrane lipid bilayer, suggesting that they are solely associated via hydrophobic interactions. Both forms of HSPG were detected in plasma membranes of rat liver and isolated rat hepatocytes. The detergent-solubilized HSPG bound to octyl-Sepharose columns, whereas the hydrophilic form did not; this latter form, however, was released from the membrane by heparin. The hydrophobic anchor of HSPG in the Golgi and plasma membranes was insensitive to treatment with phosphatidylinositol-specific phospholipase C under conditions in which alkaline phosphatase was sensitive; this suggests that the hydrophobic anchor of HSPG is the core protein itself. Preliminary experiments suggest that the subcellular site of processing of the hydrophobic to the hydrophilic form of HSPG is the plasma membrane. A specific processing activity, probably a protease of the plasma membrane not present in serum or the endoplasmic reticulum membrane, converted hydrophobic HSPG of the Golgi membrane to the hydrophilic form. In addition, pulse-chase experiments with (35S)Na2SO4 in rats demonstrated that at short times, the bulk of the radiolabeled cellular HSPG was in the Golgi apparatus; later on, the bulk of the radioactivity was found in the plasma membrane, the only subcellular site where the hydrophilic form of HSPG was detected.

  20. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants.

    PubMed

    Nakamura, Kimiyo; Sano, Hiroshi

    2009-01-01

    We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus.

  1. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    PubMed

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.

  2. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    PubMed

    Zhang, Jie; Sun, Xin; Zheng, Sixin; Liu, Xiao; Jin, Jinghua; Ren, Yi; Luo, Jianhong

    2014-01-01

    The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  3. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    PubMed

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount.

  4. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  5. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  6. Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance

    PubMed Central

    Shang, Zhonglin; Laohavisit, Anuphon

    2009-01-01

    Extracellular ATP has been found to elevate cytosolic free Ca2+ in Arabidopsis thaliana and trigger gene transcription, suggesting that it acts as a plant cell regulator. Recent findings place extracellular ATP upstream of Arabidopsis thaliana NADPH oxidase activity and plasma membrane Ca2+-permeable channels in the root epidermis. Here we show that increasing extracellular ATP concentration evokes a larger but more irregular Ca2+ influx conductance in root epidermal protoplasts. This may help modulate changes in cytosolic free Ca2+ as a second messenger and help explain the dose-dependent effects of extracellular ATP on cell function. The receptors for ATP and the downstream plasma membrane Ca2+ channels remain unknown at the protein or gene level. No equivalents of animal ATP receptors have been identified in higher plant genomes. We propose here that annexins could perceive extracellular ATP and participate in Ca2+ influx. PMID:19826233

  7. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes.

    PubMed

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-02-29

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co(2+) released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes.

  8. High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes.

    PubMed

    Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana

    2008-06-01

    The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice.

  9. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  10. Multiwalled carbon nanotubes inhibit fluorescein extrusion and reduce plasma membrane potential in in vitro human glioma cells.

    PubMed

    Xu, Yonghong; Chen, Xiao; Cheng, Yuli; Xing, Yiqiao

    2010-06-01

    In the study on the interactions of carbon nanotubes with living cells, the cell membrane deserves particular attention as it provides the first interface to initiate CNTs-cell interactions. In the present study, the inhibiting effect of multiwalled carbon nanotubes on the extrusion of fluorescein in human glioma cells was demonstrated using two procedures. To provide clues to explanation of this effect, intracellular glutathione content and reactive oxygen species production were determined as fluorescein is a specific substrate of cell membrane multidrug resistance-related protein whose transport activity requires glutathione which can be depleted under oxidative stress. The plasma membrane potential was also probed as the susceptibility of fluorescein efflux to modulation of the plasma membrane potential has been documented. Results showed a remarkable decrease in cellular glutathione level as well as an increase in reactive oxygen species production. Probe staining also indicated decreased plasma membrane potential. The data suggested that multiwalled carbon nanotubes may affect the transport activity of cell membrane multidrug resistance-related protein through reduction of intracellular glutathione content. Hypopolarization of the plasma membrane may also contribute to MWCNTs' effect. Implications of these findings are discussed.

  11. Voltage- and Tension-Dependent Lipid Mobility in the Outer Hair Cell Plasma Membrane

    NASA Astrophysics Data System (ADS)

    Oghalai, John S.; Zhao, Hong-Bo; Kutz, J. Walter; Brownell, William E.

    2000-01-01

    The mechanism responsible for electromotility of outer hair cells in the ear is unknown but is thought to reside within the plasma membrane. Lipid lateral diffusion in the outer hair cell plasma membrane is a sigmoidal function of transmembrane potential and bathing media osmolality. Cell depolarization or hyposmotic challenge shorten the cell and reduce membrane fluidity by half. Changing the membrane tension with amphipathic drugs results in similar reductions. These dynamic changes in membrane fluidity represent the modulation of membrane tension by lipid-protein interactions. The voltage dependence may be associated with the force-generating motors that contribute to the exquisite sensitivity of mammalian hearing.

  12. Protein diffusion in plant cell plasma membranes: the cell-wall corral

    PubMed Central

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment. PMID:24381579

  13. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  14. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes.

    PubMed

    Mitra, Srijeet K; Walters, Benjamin T; Clouse, Steven D; Goshe, Michael B

    2009-06-01

    Membrane proteins are involved in diverse cellular processes and are an integral component of many signaling cascades, but due to their highly hydrophobic nature and the complexities associated with studying these proteins in planta, alternative methods are being developed to better characterize these proteins on a proteome-wide scale. In our previous work ( Mitra , S. K. et al. J. Proteome Res. 2007 , 6 , ( 5 ), 1933 - 50 ), methanol-assisted solubilization was determined to facilitate the identification of both hydrophobic and hydrophilic membrane proteins compared to Brij-58 solubilization and was particularly effective for leucine-rich repeat receptor-like kinases (LRR RLKs). To improve peptide identification and to overcome sample losses after tryptic digestion, we have developed an effective chloroform extraction method to promote plasma membrane protein identification. The use of chloroform extraction over traditional solid-phase extraction (SPE) prior to off-line strong cation exchange liquid chromatography (SCXC) and reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis facilitated the removal of chlorophylls, major contaminants of plant tissue preparations that can affect downstream analysis, in addition to the effective removal of trypsin used in the digestion. On the basis of a statistically derived 5% false discovery rate, the chloroform extraction procedure increased the identification of unique peptides for plasma membrane proteins over SPE by 70% which produced nearly a 2-fold increase in detection of membrane transporters and LRR RLKs without increased identification of contaminating Rubisco and ribosomal peptides. Overall, the combined use of methanol and chloroform provides an effective method to study membrane proteins and can be readily applied to other tissues and cells types for proteomic analysis.

  15. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1

    PubMed Central

    Gray, Joshua P.; Eisen, Timothy; Cline, Gary W.; Smith, Peter J. S.

    2011-01-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells. PMID:21505151

  16. Plasma membrane calcium ATPase (PMCA4): A housekeeper for RT-PCR relative quantification of polytopic membrane proteins

    PubMed Central

    Calcagno, Anna Maria; Chewning, Katherine J; Wu, Chung-Pu; Ambudkar, Suresh V

    2006-01-01

    Background Although relative quantification of real-time RT-PCR data can provide valuable information, one limitation remains the selection of an appropriate reference gene. No one gene has emerged as a universal reference gene and much debate surrounds some of the more commonly used reference genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). At this time, no gene encoding for a plasma membrane protein serves as a reference gene, and relative quantification of plasma membrane proteins is performed with genes encoding soluble proteins, which differ greatly in quantity and in targeting and trafficking from plasma membrane proteins. In this work, our aim was to identify a housekeeping gene, ideally one that codes for a plasma membrane protein, whose expression remains the same regardless of drug treatment and across a wide range of tissues to be used for relative quantification of real-time RT-PCR data for ATP binding cassette (ABC) plasma membrane transporters. Results In studies evaluating the expression levels of two commonly used reference genes coding for soluble proteins and two genes coding for membrane proteins, one plasma membrane protein, plasma membrane calcium-ATPase 4 (PMCA4), was comparable to the two reference genes already in use. In addition, PMCA4 expression shows little variation across eight drug-treated cell lines and was found to be superior to GAPDH and HPRT1, commonly used reference genes. Finally, we show PMCA4 used as a reference gene for normalizing ABC transporter expression in a drug-resistant lung carcinoma cell line. Conclusion We have found that PMCA4 is a good housekeeping gene for normalization of gene expression for polytopic membrane proteins including transporters and receptors. PMID:16978418

  17. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.

    PubMed

    Park, Kyu-Sang; Jo, Inho; Pak, Kim; Bae, Sung-Won; Rhim, Hyewhon; Suh, Suk-Hyo; Park, Jin; Zhu, Hong; So, Insuk; Kim, Ki Whan

    2002-01-01

    We investigated the effects of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore and uncoupler of mitochondrial oxidative phosphorylation in mitochondria, on plasma membrane potential and ionic currents in bovine aortic endothelial cells (BAECs). The membrane potential and ionic currents of BAECs were recorded using the patch-clamp technique in current-clamp and voltage-clamp modes, respectively. FCCP activated ionic currents and depolarized the plasma membrane potential in a dose-dependent manner. Neither the removal of extracellular Ca2+ nor pretreatment with BAPTA/AM affected the FCCP-induced currents, implying that the currents are not associated with the FCCP-induced intracellular [Ca2+]i increase. FCCP-induced currents were significantly influenced by the changes in extracellular or intracellular pH; the increased proton gradient produced by lowering the extracellular pH or intracellular alkalinization augmented the changes in membrane potential and ionic currents caused by FCCP. FCCP-induced currents were significantly reduced under extracellular Na+-free conditions. The reversal potentials of FCCP-induced currents under Na+-free conditions were well fitted to the calculated equilibrium potential for protons. Interestingly, FCCP-induced Na+ transport (subtracted currents, I(control)- I(Na+-free) was closely dependent on extracellular pH, whereas FCCP-induced H+transport was not significantly affected by the absence of Na+. These results suggest that the FCCP-induced ionic currents and depolarization, which are strongly dependent on the plasmalemmal proton gradient, are likely to be mediated by both H+ and Na+ currents across the plasma membrane. The relationship between H+ and Na+ transport still needs to be determined.

  18. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A1

    PubMed Central

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen; Folch-Puy, Emma; Foronjy, Robert; Jalili, Roxana; Jendresen, Christian Bille; Kimura, Masashi; Kraft, Edward; Lindemose, Søren; Lu, Jin; McLain, Teri; Nutt, Leta; Ramon-Garcia, Santiago; Smith, Joseph; Spivak, Aaron; Wang, Michael L.; Zanic, Marija; Lin, Sue-Hwa

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic-bead separation to obtain highly purified plasma membrane proteins from crude membrane preparations or cell lines. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. When these ConA magnetic beads were used to enrich plasma membranes from a crude membrane preparation, this procedure resulted in 3.7-fold enrichment of plasma membrane marker 5′-nucleotidase activity with 70% recovery of the activity in the crude membrane fraction of rat liver. In agreement with the results of 5′-nucleotidase activity, immunoblotting with antibodies specific for a rat liver plasma membrane protein, CEACAM1, indicated that CEACAM1 was enriched about threefold relative to that of the original membranes. In similar experiments, this method produced 13-fold enrichment of 5′-nucleotidase activity with 45% recovery of the activity from a total cell lysate of PC-3 cells and 7.1-fold enrichment of 5′-nucleotidase activity with 33% recovery of the activity from a total cell lysate of HeLa cells. These results suggest that this one-step purification method can be used to isolate total plasma membrane proteins from tissue or cells for the identification of membrane biomarkers. PMID:18765283

  19. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  20. H+-Pumping Driven by the Plasma Membrane ATPase in Membrane Vesicles from Radish: Stimulation by Fusicoccin 1

    PubMed Central

    Rasi-Caldogno, Franca; De Michelis, Maria I.; Pugliarello, Maria C.; Marrè, Erasmo

    1986-01-01

    The effect of fusicoccin on Mg:ATP-dependent H+-pumping in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings was investigated by measuring the initial rate of decrease in the absorbance of the ΔpH probe acridine orange. Fusicoccin stimulated Mg:ATP-dependent H+-pumping when the pH of the assay medium was in the range 7.0 to 7.6 while no effect of fusicoccin was detected between pH 6.6 and pH 6.0. Both basal and fusicoccin-stimulated H+-pumping were completely inhibited by vanadate and almost unaffected by nitrate. Fusicoccin did not change membrane permeability to protons and fusicoccin-induced stimulation of Mg:ATP-dependent H+-pumping was not affected by changes in the buffer capacity of the incubation medium. Deacetylfusicoccin stimulated H+-pumping as much as fusicoccin, while the physiologically inactive derivative 8-oxo-9-epideacetylfusicoccin did not. Stimulation of H+-pumping was saturated by 100 nanomolar fusicoccin. These data indicate that fusicoccin activates the plasma membrane H+-ATPase by acting at the membrane level independently of the involvement of other cell components. The percent stimulation by fusicoccin was the same at all ATP concentrations tested (0.5-5.0 millimolar), thus suggesting that with fusicoccin there is an increase in Vmax of the plasma membrane H+-ATPase rather than a decrease in its apparent Km for Mg:ATP. PMID:16664978

  1. Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane.

    PubMed

    Kaur, Satinderpal; Ma, Zuwei; Gopal, Renuga; Singh, Gurdev; Ramakrishna, Seeram; Matsuura, Takeshi

    2007-12-18

    Electrospun nanofibrous membranes (ENM) which have a porous structure have a huge potential for various liquid filtration applications. In this paper, we explore the viability of using plasma-induced graft copolymerization to reduce the pore sizes of ENMs. Poly(vinylidene) fluoride (PVDF) was electrospun to produce a nonwoven membrane, comprised of nanofibers with diameters in the range of 200-600 nm. The surface of the ENM was exposed to argon plasma and subsequently graft-copolymerized with methacrylic acid. The effect of plasma exposure time on grafting was studied for both the ENM and a commercial hydrophobic PVDF (HVHP) membrane. The grafting density was quantitatively measured with toluidine blue-O. The degree of grafting increased steeply with an increase in plasma exposure time for the ENM, attaining a maximum of 180 nmol/mg after 120 s of plasma treatment. However, the increase in the grafting density on the surface of the HVHP membrane was not as drastic, reaching a plateau of 65 nmol/mg after 60 s. The liquid entry permeation of water dropped extensively for both membranes, indicating a change in surface properties. Field emission scanning electron microscopy micrographs revealed an alteration in the surface pore structure for both membranes after grafting. Bubble point measurements of the ENM reduced from 3.6 to 0.9 um after grafting. The pore-size distribution obtained using the capillary flow porometer for the grafted ENM revealed that it had a similar profile to that of a commercial hydrophilic commercial PVDF (HVLP) membrane. More significantly, water filtration studies revealed that the grafted ENM had a better flux throughput than the HVLP membrane. This suggests that ENMs can be successfully engineered through surface modification to achieve smaller pores while retaining their high flux performance.

  2. The alpha2beta1 isoform of guanylyl cyclase mediates plasma membrane localized nitric oxide signalling.

    PubMed

    Bellingham, Michelle; Evans, Thomas J

    2007-10-01

    Nitric oxide (NO) is a mediator of copious biological processes, in many cases through the production of cGMP from the enzyme nitric oxide-sensitive guanylyl cyclase. Natriuretic peptides also elevate cGMP, often with distinct biological effects, raising the issue of how specificity is achieved. Here we show that a recently described alpha(2)beta(1) isoform of guanylyl cyclase is expressed in a number of epithelia, where it is localized to the apical plasma membrane. We measured the functional properties of the alpha(2)beta(1) isoform by utilizing the NO-dependent activation of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR), which occurs by phosphorylation via the membrane-bound type II isoform of cGMP-dependent protein kinase. We found that cGMP generated by NO activation of the alpha(2)beta(1) isoform of guanylyl cyclase is an exceptionally efficient mediator of nitric oxide action on membrane targets, activating CFTR far more effectively than the cytoplasmically located alpha(1)beta(1) guanylyl cyclase isoform. Targeting the alpha(1)beta(1) isoform of guanylyl cyclase to the membrane also dramatically enhanced the effects of nitric oxide on CFTR within the membrane. This was not due to increased enzymatic activity of guanylyl cyclase in a membrane location, but to production of a localised membrane pool of cGMP by membrane-localized NO-dependent guanylyl cyclase that was resistant to degradation by phosphodiesterases. Selective effects of cGMP produced from this enzyme in response to NO are directed at membrane targets and suggest that drugs selectively activating or inhibiting this alpha(2)beta(1) isoform of guanylyl cyclase may have unique pharmacological properties.

  3. Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Ren, Li; Wang, Yingjun

    2013-10-01

    For its biocompatibility and biodegradability, chitosan has had considerable attention for biomedical applications in recent years. In this paper, polymerization of poly (ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto chitosan membrane surface through argon plasma-induced graft polymerization. The surface properties after modification were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The results indicated that PEGMA can be grafted successfully onto chitosan membrane surface. The surface hydrophilicity and free energy were improved and the surface roughness increased after modification. The adhesion of a human corneal epithelial cell (HCEC) on chitosan membrane surface was enhanced due to improvement of surface free energy and roughness.

  4. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane

    PubMed Central

    2010-01-01

    Background The plasma membrane (PM) is a compartment of significant interest because cell surface proteins influence the way in which a cell interacts with its neighbours and its extracellular environment. However, PM is hard to isolate because of its low abundance. Aqueous two-phase affinity purification (2PAP), based on PEG/Dextran two-phase fractionation and lectin affinity for PM-derived microsomes, is an emerging method for the isolation of high purity plasma membranes from several vertebrate sources. In contrast, PM isolation techniques in important invertebrate genetic model systems, such as Drosophila melanogaster, have relied upon enrichment by density gradient centrifugation. To facilitate genetic investigation of activities contributing to the content of the PM sub-proteome, we sought to adapt 2PAP to this invertebrate model to provide a robust PM isolation technique for Drosophila. Results We show that 2PAP alone does not completely remove contaminating endoplasmic reticulum and mitochondrial membrane. However, a novel combination of density gradient centrifugation plus 2PAP results in a robust PM preparation. To demonstrate the utility of this technique we isolated PM from fly heads and successfully identified 432 proteins using MudPIT, of which 37% are integral membrane proteins from all compartments. Of the 432 proteins, 22% have been previously assigned to the PM compartment, and a further 34% are currently unassigned to any compartment and represent candidates for assignment to the PM. The remainder have previous assignments to other compartments. Conclusion A combination of density gradient centrifugation and 2PAP results in a robust, high purity PM preparation from Drosophila, something neither technique can achieve on its own. This novel preparation should lay the groundwork for the proteomic investigation of the PM in different genetic backgrounds in Drosophila. Our results also identify two key steps in this procedure: The optimization of

  5. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    PubMed

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  6. A Comparative Spin-Label Study of Isolated Plasma Membranes and Plasma Membranes of Whole Cells and Protoplasts from Cold-Hardened and Nonhardened Winter Rye

    PubMed Central

    Windle, John J.

    1988-01-01

    Lipid-lipid and lipid-protein interactions in the plasma membranes of whole cells and protoplasts and an isolated plasma membrane fraction from winter rye (Secale cereale L. cv Puma) have been studied by spin labeling. Spectra were recorded between −40°C and 40°C using the freely diffusing spin-label, 16-doxyl stearic acid, as a midbilayer membrane probe. The probe was reduced by the whole cells and protoplasts and reoxidized by external potassium ferricyanide. The reoxidized probe was assumed to be localized in the plasma membrane. The spectra consisted of the superposition of a narrow and a broad component indicating that both fluid and immobilized lipids were present in the plasma membrane. The two components were separated by digital subtraction of the immobilized component. Temperature profiles of the membranes were developed using the percentage of immobilized lipid present at each temperature and the separation between the outermost hyperfine lines for the fluid lipid component. Lipid immobilization was attributed to lipid-protein interactions, lipid-cell wall interactions, and temperature-induced lipid phase transitions to the gel-state. Temperature profiles were compared for both cold-hardened and nonhardened protoplasts, plasma membranes, and plasma membrane lipids, respectively. Although cold-hardening extended the range of lipid fluidity by 5°C, it had no effect on lipid-protein interactions or activation energies of lipid mobility. Differences were found, however, between the temperature profiles for the different samples, suggesting that alterations in the plasma membrane occurred as a consequence of the isolation methods used. PMID:16666471

  7. The 82-plex plasma protein signature that predicts increasing inflammation

    PubMed Central

    Tepel, Martin; Beck, Hans C.; Tan, Qihua; Borst, Christoffer; Rasmussen, Lars M.

    2015-01-01

    The objective of the study was to define the specific plasma protein signature that predicts the increase of the inflammation marker C-reactive protein from index day to next-day using proteome analysis and novel bioinformatics tools. We performed a prospective study of 91 incident kidney transplant recipients and quantified 359 plasma proteins simultaneously using nano-Liquid-Chromatography-Tandem Mass-Spectrometry in individual samples and plasma C-reactive protein on the index day and the next day. Next-day C-reactive protein increased in 59 patients whereas it decreased in 32 patients. The prediction model selected and validated 82 plasma proteins which determined increased next-day C-reactive protein (area under receiver-operator-characteristics curve, 0.772; 95% confidence interval, 0.669 to 0.876; P < 0.0001). Multivariable logistic regression showed that 82-plex protein signature (P < 0.001) was associated with observed increased next-day C-reactive protein. The 82-plex protein signature outperformed routine clinical procedures. The category-free net reclassification index improved with 82-plex plasma protein signature (total net reclassification index, 88.3%). Using the 82-plex plasma protein signature increased net reclassification index with a clinical meaningful 10% increase of risk mainly by the improvement of reclassification of subjects in the event group. An 82-plex plasma protein signature predicts an increase of the inflammatory marker C-reactive protein. PMID:26445912

  8. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    PubMed

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  9. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles

    PubMed Central

    Lara-Cruz, C; Jiménez-Salazar, JE; Ramón-Gallegos, E; Damian-Matsumura, P; Batina, N

    2016-01-01

    Gold nanoparticles (AuNPs) have been proposed for use in the treatment of different types of cancer, including breast cancer. At present, neither the mechanisms of AuNP interaction with the plasma membrane surface and their delivery and intracellular distribution in cancer cells nor their effect on the plasma membrane so as to allow cell incorporation of larger amounts of AuNPs is known. The objective of this work was to study the interaction of bare 20 nm diameter AuNPs with the plasma membrane of human MCF-7 breast cancer cells, as well as their uptake, intracellular distribution, and induction of changes on the cell surface roughness. The dynamics of intracellular incorporation and the distribution of AuNPs were observed by confocal laser scanning microscopy. Changes in roughness were monitored in synchronized MCF-7 cells by atomic force microscopy high-resolution imaging at 6 hour intervals for 24 hours during a single cell cycle. The results show that bare AuNPs are capable of emitting fluorescence at 626 nm, without the need for a fluorescent biomarker, which allows monitoring their uptake and intracellular distribution until they reach the nucleus. These results are correlated with changes in cell roughness, which significantly increases at 12 hours of incubation with AuNPs, when compared with control cells. The obtained data provide bases to understand molecular processes of the use of AuNPs in the treatment of different diseases, mainly breast cancer. PMID:27785020

  10. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles.

    PubMed

    Lara-Cruz, C; Jiménez-Salazar, J E; Ramón-Gallegos, E; Damian-Matsumura, P; Batina, N

    Gold nanoparticles (AuNPs) have been proposed for use in the treatment of different types of cancer, including breast cancer. At present, neither the mechanisms of AuNP interaction with the plasma membrane surface and their delivery and intracellular distribution in cancer cells nor their effect on the plasma membrane so as to allow cell incorporation of larger amounts of AuNPs is known. The objective of this work was to study the interaction of bare 20 nm diameter AuNPs with the plasma membrane of human MCF-7 breast cancer cells, as well as their uptake, intracellular distribution, and induction of changes on the cell surface roughness. The dynamics of intracellular incorporation and the distribution of AuNPs were observed by confocal laser scanning microscopy. Changes in roughness were monitored in synchronized MCF-7 cells by atomic force microscopy high-resolution imaging at 6 hour intervals for 24 hours during a single cell cycle. The results show that bare AuNPs are capable of emitting fluorescence at 626 nm, without the need for a fluorescent biomarker, which allows monitoring their uptake and intracellular distribution until they reach the nucleus. These results are correlated with changes in cell roughness, which significantly increases at 12 hours of incubation with AuNPs, when compared with control cells. The obtained data provide bases to understand molecular processes of the use of AuNPs in the treatment of different diseases, mainly breast cancer.

  11. Glycosidases in the plasma membrane of Ceratitis capitata spermatozoa.

    PubMed

    Intra, Jari; De Caro, Daniela; Perotti, Maria-Elisa; Pasini, Maria Enrica

    2011-02-01

    Fruit flies in the family Tephritidae are rated among the world's most destructive agricultural pests. The Mediterranean fruit fly Ceratitis capitata is emerging as a model organism to study the fertilization in Insects. Three integral proteins with glycosidase activity are present in the plasma membrane of spermatozoa. The glycosidases have been purified and characterized. We have demonstrated the presence of three enzymes, a β-N-acetylhexosaminidase, an α-mannosidase and an α-l-fucosidase. The molecular mass of the native enzymes estimated by gel filtration was 160 kDa for β-N-acetylhexosaminidase, 310 kDa for α-mannosidase and 140 kDa for α-l-fucosidase. SDS-PAGE showed that β-N-acetylhexosaminidase is a dimer of a single protein of 73 kDa, α-mannosidase consists of six subunits with different molecular weights and α-l-fucosidase is a dimer made up by two different monomers. Characterization of the purified enzymes included glycosylation pattern, pI, optimal pH, substrate preference, kinetic properties and thermal stability. Soluble forms similar to the sperm associated glycosidases are present. Polyclonal antibodies raised against synthetic peptides designed from the predicted products of the Drosophila melanogaster genes encoding β-N-acetylhexosaminidase and α-l-fucosidase were used. Immunofluorescence labelling of spermatozoa showed that the enzymes are present in the sperm plasma membrane overlying the acrosome and the tail. This work represents the first report on the characterization in C. capitata of sperm proteins that are potentially involved in primary gamete recognition.

  12. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts [High-Resolution Chemical Imaging of Sphingolipid Distribution in the Plasma Membrane

    SciTech Connect

    Frisz, Jessica F.; Lou, Kaiyan; Klitzing, Haley A.; Hanafin, William P.; Lizunov, Vladimir; Wilson, Robert L.; Carpenter, Kevin J.; Kim, Raehyun; Hutcheon, Ian D.; Zimmerberg, Joshua; Weber, Peter K.; Kraft, Mary L.

    2013-01-28

    Sphingolipids play important roles in plasma membrane structure and cell signaling. Yet, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of 15N-enriched ions from metabolically labeled 15N-sphingolipids in the plasma membrane using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids$-$both in living cells and during fixation of living cells$-$exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous 15Nsphingolipid microdomains with mean diameters of ~200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts, and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.

  14. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts [High-Resolution Chemical Imaging of Sphingolipid Distribution in the Plasma Membrane

    DOE PAGES

    Frisz, Jessica F.; Lou, Kaiyan; Klitzing, Haley A.; ...

    2013-01-28

    Sphingolipids play important roles in plasma membrane structure and cell signaling. Yet, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of 15N-enriched ions from metabolically labeled 15N-sphingolipids in the plasma membrane using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids$-$both in living cells and during fixation of living cells$-$exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous 15Nsphingolipid microdomains with mean diametersmore » of ~200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts, and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.« less

  15. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  16. Measuring near plasma membrane and global intracellular calcium dynamics in astrocytes.

    PubMed

    Shigetomi, Eiji; Khakh, Baljit S

    2009-04-26

    The brain contains glial cells. Astrocytes, a type of glial cell, have long been known to provide a passive supportive role to neurons. However, increasing evidence suggests that astrocytes may also actively participate in brain function through functional interactions with neurons. However, many fundamental aspects of astrocyte biology remain controversial, unclear and/or experimentally unexplored. One important issue is the dynamics of intracellular calcium transients in astrocytes. This is relevant because calcium is well established as an important second messenger and because it has been proposed that astrocyte calcium elevations can trigger the release of transmitters from astrocytes. However, there has not been any detailed or satisfying description of near plasma membrane calcium signaling in astrocytes. Total internal reflection fluorescence (TIRF) microscopy is a powerful tool to analyze physiologically relevant signaling events within about 100 nm of the plasma membrane of live cells. Here, we use TIRF microscopy and describe how to monitor near plasma membrane and global intracellular calcium dynamics almost simultaneously. The further refinement and systematic application of this approach has the potential to inform about the precise details of astrocyte calcium signaling. A detailed understanding of astrocyte calcium dynamics may provide a basis to understand if, how, when and why astrocytes and neurons undergo calcium-dependent functional interactions.

  17. The plasma membrane shuttling of CAPRI is related to regulation of mast cell activation

    SciTech Connect

    Nakamura, Rika; Furuno, Tadahide; Nakanishi, Mamoru . E-mail: mamoru@dpc.agu.ac.jp

    2006-08-18

    The Ca{sup 2+}-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, is involved in the inactivation of mitogen-activated protein kinase pathway. However, a precise role of CAPRI in immune responses is still unknown. Here we showed that overexpression of CAPRI suppresses antigen-induced degranulation and cytokine production in mast cells (RBL cells). Antigen elicited the translocation of CAPRI to the plasma membrane from the cytoplasm, which was concomitant with the increase in the intracellular Ca{sup 2+} concentration. The nuclear import of extracellular signal-regulated kinase 2 (ERK2) occurred after the re-localization of CAPRI to the cytoplasm in the mast cells, suggesting that the early phase of ERK2 activation is eliminated. A mutant of GAP-related domain, CAPRI(R472S), showed a feeble translocation to the plasma membrane but did not affect the degranulation, ERK2 activation, and cytokine production. The results suggested that the translocation of CAPRI to the plasma membranes regulates crucially cellular responses in mast cells.

  18. ACA12 Is a Deregulated Isoform of Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana

    PubMed Central

    Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F.; De Michelis, Maria Ida

    2014-01-01

    Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues - highly conserved in other ACA isoforms - localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation. PMID:24101142

  19. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.

  20. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein.

    PubMed

    Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A; Grunwald, David; Sardo, Luca; Burdick, Ryan C; Plisov, Sergey; Liang, Edward; Tai, Sheldon; Pathak, Vinay K; Hu, Wei-Shau

    2016-01-12

    Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms.

  1. Intrarenal localization of the plasma membrane ATP channel pannexin1.

    PubMed

    Hanner, Fiona; Lam, Lisa; Nguyen, Mien T X; Yu, Alan; Peti-Peterdi, János

    2012-11-15

    In the renal tubules, ATP released from epithelial cells stimulates purinergic receptors, regulating salt and water reabsorption. However, the mechanisms by which ATP is released into the tubular lumen are multifaceted. Pannexin1 (Panx1) is a newly identified. ubiquitously expressed protein that forms connexin-like channels in the plasma membrane, which have been demonstrated to function as a mechanosensitive ATP conduit. Here, we report on the localization of Panx1 in the mouse kidney. Using immunofluorescence, strong Panx1 expression was observed in renal tubules, including proximal tubules, thin descending limbs, and collecting ducts, along their apical cell membranes. In the renal vasculature, Panx1 expression was localized to vascular smooth muscle cells in renal arteries, including the afferent and efferent arterioles. Additionally, we tested whether Panx1 channels expressed in renal epithelial cells facilitate luminal ATP release by measuring the ATP content of urine samples freshly collected from wild-type and Panx1(-/-) mice. Urinary ATP levels were reduced by 30% in Panx1(-/-) compared with wild-type mice. These results suggest that Panx1 channels in the kidney may regulate ATP release and via purinergic signaling may participate in the control of renal epithelial fluid and electrolyte transport and vascular functions.

  2. Intrarenal localization of the plasma membrane ATP channel pannexin1

    PubMed Central

    Hanner, Fiona; Lam, Lisa; Nguyen, Mien T. X.; Yu, Alan

    2012-01-01

    In the renal tubules, ATP released from epithelial cells stimulates purinergic receptors, regulating salt and water reabsorption. However, the mechanisms by which ATP is released into the tubular lumen are multifaceted. Pannexin1 (Panx1) is a newly identified. ubiquitously expressed protein that forms connexin-like channels in the plasma membrane, which have been demonstrated to function as a mechanosensitive ATP conduit. Here, we report on the localization of Panx1 in the mouse kidney. Using immunofluorescence, strong Panx1 expression was observed in renal tubules, including proximal tubules, thin descending limbs, and collecting ducts, along their apical cell membranes. In the renal vasculature, Panx1 expression was localized to vascular smooth muscle cells in renal arteries, including the afferent and efferent arterioles. Additionally, we tested whether Panx1 channels expressed in renal epithelial cells facilitate luminal ATP release by measuring the ATP content of urine samples freshly collected from wild-type and Panx1−/− mice. Urinary ATP levels were reduced by 30% in Panx1−/− compared with wild-type mice. These results suggest that Panx1 channels in the kidney may regulate ATP release and via purinergic signaling may participate in the control of renal epithelial fluid and electrolyte transport and vascular functions. PMID:22952282

  3. Yeast mutants affecting possible quality control of plasma membrane proteins.

    PubMed

    Li, Y; Kane, T; Tipper, C; Spatrick, P; Jenness, D D

    1999-05-01

    Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.

  4. The plasma membrane calcium pumps: focus on the role in (neuro)pathology.

    PubMed

    Brini, Marisa; Carafoli, Ernesto; Calì, Tito

    2017-02-19

    The plasma membrane Ca(2+) ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It is organized in the plasma membrane with ten transmembrane helices and two main cytosolic loops, one of which contains the catalytic center. It also contains a long C-terminal tail that houses the binding site for calmodulin, the main regulator of the activity of the pump. The pump also contains a number of other regulators, among them acidic phospholipids, kinases, and numerous protein interactors. Separate genes code for 4 basic pump isoforms in mammals, additional isoform complexity being generated by the alternative splicing of primary transcripts. Pumps 1 and 4 are expressed ubiquitously, pumps 2 and 3 are tissue restricted, with preference for the nervous system. In essentially all cells, the pump coexists with much more powerful systems that clear Ca(2+) from the cytosol, e.g. the SERCA pump and the Na(+)/Ca(2+) exchanger. Its role in the global regulation of cellular Ca(2+) homeostasis is thus quantitatively marginal: its main function is the regulation of Ca(2+) signaling in selected sub-plasma membrane microdomains where Ca(2+) modulated interactors also reside. Malfunctions of the pump linked to genetic mutations are now described with increasing frequency, the disease phenotypes being especially severe in the nervous system where isoforms 2 and 3 predominate. The analysis of the pump defects suggests that the disease phenotypes are likely to be related to the imperfect modulation of Ca(2+) signaling in selected sub-plasma membrane microdomains, leading to the defective control of the activity of important Ca(2+) dependent interactors.

  5. Plasma Membrane Expression of Heat Shock Protein 60 In Vivo in Response to Infection

    PubMed Central

    Belles, Cindy; Kuhl, Alicia; Nosheny, Rachel; Carding, Simon R.

    1999-01-01

    Heat shock protein 60 (hsp60) is constitutively expressed in the mitochondria of eukaryotic cells. However, it has been identified in other subcellular compartments in several disease states and in transformed cells, and it is an immunogenic molecule in various infectious and autoimmune diseases. To better understand the factors that influence expression of hsp60 in normal cells in vivo, we analyzed its cellular and subcellular distribution in mice infected with the intracellular bacterium Listeria monocytogenes. Western blotting of subcellular fractionated spleen cells showed that although endogenous hsp60 was restricted to the mitochondria in noninfected animals, it was associated with the plasma membrane as a result of infection. The low levels of plasma membrane-associated hsp60 seen in the livers in noninfected animals subsequently increased during infection. Plasma membrane hsp60 expression did not correlate with bacterial growth, being most evident during or after bacterial clearance and persisting at 3 weeks postinfection. Using flow cytometry, we determined that Mac-1+, T-cell receptor γδ+, and B220+ cells represented the major Hsp60+ populations in spleens of infected mice. By contrast, B220+ cells were the predominant hsp60+ population in livers of infected mice. Of the immune cells analyzed, the kinetic profile of the γδ T-cell response most closely matched that of hsp60 expression in both the spleen and liver. Collectively, these findings show that during infection hsp60 can be localized to the plasma membrane of viable cells, particularly antigen-presenting cells, providing a means by which hsp60-reactive lymphocytes seen in various infectious disease and autoimmune disorders may be generated and maintained. PMID:10417191

  6. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite.

    PubMed

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  7. Characterization of a Partially Purified Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction 1

    PubMed Central

    Dupont, Frances M.; Burke, Linda L.; Spanswick, Roger M.

    1981-01-01

    The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ ≫ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots. PMID:16661634

  8. A C-terminal di-leucine motif controls plasma membrane expression of PMCA4b.

    PubMed

    Antalffy, Géza; Pászty, Katalin; Varga, Karolina; Hegedűs, Luca; Enyedi, Agnes; Padányi, Rita

    2013-12-01

    Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.

  9. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage.

    PubMed

    Cauchon, Nicole; Nader, Moni; Bkaily, Ghassan; van Lier, Johan E; Hunting, Darel

    2006-01-01

    We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.

  10. Enzymes of phosphoinositide synthesis in secretory vesicles destined for the plasma membrane in Saccharomyces cerevisiae.

    PubMed

    Kinney, A J; Carman, G M

    1990-07-01

    CDP-diacylglycerol synthase, phosphatidylinositol synthase, and phosphatidylinositol kinase activities were associated with post-Golgi apparatus secretory vesicles destined for the plasma membrane of Saccharomyces cerevisiae. These results suggest that the plasma membrane is capable of synthesizing both CDP-diacylglycerol and phosphatidylinositol as well as phosphorylating phosphatidylinositol.

  11. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    USDA-ARS?s Scientific Manuscript database

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  12. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane

    PubMed Central

    Wen, Peter J.; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N.; Jin, Albert; Liu, Allen P.; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  13. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression.